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Abstract

Successful reverse engineering needs to take into account human knowledge about
architecture, about features or even about validation of the results of automatic
analyses. This knowledge should be linked to the automatically reverse engineered
model and should be taken into account by analyses.

Typically, when we want to reason about data, we first encode an explicit meta-
model and then express analyses at that level. However, human knowledge is
often implicit and as a consequence it is not possible to describe it comprehensively
upfront. In this dissertation we propose a generic approach to iteratively enrich the
system model with external knowledge using annotations. Our mechanism allows
the reverse engineer to iteratively describe and refine the annotations during the
analysis process, instead of requiring the meta-model to be built upfront.

As a validation of the expressiveness of our framework, we show how we use it to
support reverse engineering scenarios.
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1 Introduction

The goal of reverse engineering is to understand an existing software system.
Through activities like reading the code, talking with the developers or skim-
ming the documentation, we gain knowledge about the system [Demeyer et al.,
2002]. Often, the way how we store this knowledge is undefined, because it is
unstructured information. So often, a piece of paper or a simple text document is
chosen to write down what we learn during reverse engineering.

At the same time, we have analysis tools that work with a model of the source code
[Nierstrasz et al., 2005; Marinescu et al., 2005]. They usually have a meta-model
which is applicable for many programming languages and can generate metrics,
visualizations and different kinds of reports and automatic detections, and they
provide the reverse engineer with many ways to navigate and explore a system
under analysis.

However, until now there is a missing link. There is no way to link human knowl-
edge to a system model in the reverse engineering tool. Additional information
gleaned from discussions with developers and domain experts cannot be directly
incorporated in the model and be used when generating reports about the sys-
tem.

Other researchers have considered the importance of taking external knowledge
about a system into consideration during analysis. For example, reflexion models
have been proposed for architecture recovery by capturing developer knowledge
and then manually mapping architectural entities to the source code [Koschke and
Simon, 2003; Murphy et al., 1995]. Another example is provided by Intentional
Views which are rules that encode external constraints that are checked against
the reality of source code [Mens et al., 2006; Deissenboeck and Ratiu, 2006].

Storing externally gained knowledge about a system directly in the analyzed model
would also improve the management of this knowledge, because it can be attached
to the matching source components. There could also be possibilities of structuring
this information gradually, as soon as some structure emerges. This is hardly
possible to do when it is only stored in a text document or even on a sheet of
paper.
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1 Introduction

1.1 Challenges of integrating human knowledge

If the external information should be used for reports, visualizations and other
kinds of analyses, it needs to be structured somehow. However, one peculiarity of
human knowledge is that often, it cannot be structured upfront or only partly and
that the structure changes over time. We might at the beginning have information
about some aspect of the system and later on find out that this information could
be turned into an attribute that can be attached to certain objects, where for each
of these objects we can add a value for it.

This requires that information can be attached to any object, to the whole system
itself as well as to all its elements.

Typically, human beings would fill in some values and later find out that the
attribute should be changed a little bit to fit better. We know this characteristic
from database management and from object oriented programming. An example
where such a flexibility is supported for databases is DabbleDB1. An analysis
tool that wants to integrate human knowledge should take this particularly into
account.

Another challenge is that the types of information are unlimited in a human mind.
Because of that, not only a given set of data types should be available for the human
information, but the reverse engineer should have the possibility to introduce new
data types.

Moreover, an important consideration is that people will not be motivated to use
an integration tool if it proves to be too complicated and laborious to use. This
highlights the importance of providing tool support such as editors to enable them
to manipulate units of information and their structure.

With these factors in mind, we argue that an integration of human knowledge into
an analysis engine should meet the following demands:

• It should provide flexible (re-)structuring of the information

• It should have a flexible type management

• It should allow for annotating everything

• It should offer tool support such as GUI editing

1http://dabbledb.com/
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1.2 Our solution in a nutshell

1.2 Our solution in a nutshell

In this dissertation we present an approach of integrating human knowledge into
software analysis based on annotations. With annotations, information is attached
to objects and the description of the structure of this information is stored in
annotation descriptions.

As a proof of concept, we implemented an annotation framework which we call
Metanool with the focus on flexibility and ease-of-use as it is especially needed
for reverse engineering. Our implementation is fully integratable in the Moose
analysis platform [Nierstrasz et al., 2005].

Figure 1.1 demonstrates how annotating works with our solution. It shows the
model extracted by parsing the source code of JEdit2, after it has been loaded in
the Moose Browser. The figure shows that we have selected the org.gjt.sp.jedit.gui
package (or namespace) (1).

Figure 1.1: Metanool annotations in Moose: (1) Selected Namespace, (2) annota-
tions tab, (3) list of annotations, (4) adding a new annotation

On the right hand side, we have the annotations tab open for this package (2). It
contains the list of annotations (3). There are the two annotations comment and
cool which have been described for the Namespace class and whose values can be
edited here for the selected namespace.

To create a new annotation, we enter a name and a type at the bottom of the
annotations tab (4). In Figure 1.1 we entered the name layer and the type String.

2A programmer’s text editor. http://www.jedit.org
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1 Introduction

As a result, a new annotation appears in the annotations list, where we can edit
its value, as shown in Figure 1.2 (1).

Figure 1.2: Editing the newly added annotation: (1) value editor, (2) options menu

On the right hand side of each annotation there is a menu (2) with options to
remove values and to edit the description of the annotations. In Figure 1.3 we see
the annotation description editor for the annotation layer that has been opened
through the options menu. There, we can edit the name, the type and the multi-
plicity of the selected annotation description.

Figure 1.3: Editing an annotation description

Our framework can be used without the gui editor as well, by coding directly in
its native programming language, Smalltalk. This is also very easy, because all we
have to do is describe annotations and attach the descriptions to classes. Then,
the values for all instances of these classes can be edited right away. The following
lines of code show how the same annotation as before is added:

layer := (AnnotationDescription name: ’layer’ type: String.).
FAMIXNamespace annotationDescriptions add: layer.

namespaceA annotations layer: ’gui’.
namespaceB annotations layer: ’model’.

Reading the values of the annotations can be done with the following code:

namespaceA annotations layer.
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1.3 Contributions

This is used every time we want to include the annotations in reports or further
analysis.

1.3 Contributions

The contributions of this dissertation are:

• a generic approach for integrating external knowledge into the reverse engi-
neering process,

• an implementation of this approach providing an extensible annotation model
and editors for managing the annotations, and

• a set of examples of how our mechanism can be used to support existent
reverse engineering approaches that take external knowledge into account.

1.4 Document structure

In Chapter 2 (p.7) we present the state of the art in including external knowledge
in reverse engineering.

In Chapter 3 (p.13) we show how annotating works with our solution named
Metanool .

In Chapter 4 (p.25) we describe the implementation of Metanool .

In Chapter 5 (p.29) we validate our approach by implementing various existing
analysis techniques using Metanool .

In Chapter 6 (p.43) we conclude.

In Appendix A (p.45) we explain how Metanool can be installed.
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2 State of the art

There has been much research in automatic techniques for reverse engineering
of software systems, but only few researchers have worked on capturing human
knowledge in the various automatic approaches during the process of reverse en-
gineering.

We first review the literature that deals with automatic reverse engineering tech-
niques and we argue for the need to complement them with external knowledge.
We then present some approaches that take specific external information into ac-
count but do it in a hard-coded and dedicated way. Last, we argue for the need to
offer a generic mechanism for capturing external knowledge and we review some
approaches that can offer such a mechanism.

2.1 The need to consider external knowledge in the
reverse engineering process

Formal Concept Analysis. Formal Concept Analysis (FCA) allows us to iden-
tify concepts of elements and properties. It has been used by various researchers
to mine abstractions from code, for example to maintain, detect and understand
inconsistencies in class hierarchies [Godin et al., 1998; Snelting and Tip, 1998;
Huchard et al., 2000]. Various approaches use FCA for detecting design patterns
[Tonella and Antoniol, 1999], implicit architectural constraints and conventions
[Arévalo et al., 2004] and the structure and collaborations inside classes [Dekel,
2003; Arévalo et al., 2003]. These approaches help in detecting concepts by con-
sidering the formal structure of elements but require further examination.

Crosscutting concerns. The detection of crosscutting concerns has been done
by studying which parts of a program change at the same time [Breu and Zim-
mermann, 2006]. Another approach has been presented where commonalities in
dynamic traces are identified [Breu and Krinke, 2004]. Gı̂rba et al. proposed de-
tecting crosscutting concerns by analyzing how parts of the system change at the
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2 State of the art

same time using FCA [Gı̂rba et al., 2007]. FCA was also used to identify traits
candidates in object-oriented code [Lienhard et al., 2005]. Marin et al. have in-
troduced a technique for identifying aspects by using a fan-in analysis [Marin et
al., 2007].

Feature identification. Feature identification determines which parts of the
source code are executed for which feature [Wilde and Scully, 1995]. Eisenbarth
et al. worked on feature identification based on a semi-automatic technique using
static and dynamic analysis and FCA [Eisenbarth et al., 2003]. The authors em-
phasize the need for the human input to refine the findings. A more fine-grained
approach works at the level of statements instead of methods [Koschke and Quante,
2005]. Greevy also identified features with dynamic analysis and introduced a fea-
ture affinity measurement which automatically calculates which parts of the source
code are used in how many features using dynamic analysis [Greevy, 2007]. The
author also states that as feature definitions are fuzzy by nature, the results of the
automatic feature identification need to be verified manually.

Group memory. Čubranić et al. developed a “group memory” in the form of a
searchable database with artifacts related to a software system [Cubranic and Mur-
phy, 2003]. They link source code with bug reports, news messages and external
documentation with a structured meta-model. With this, the reverse engineer is
automatically provided with the most relevant artifact for a specific task. Depend-
ing on the size and complexity of the system, the number of the proposed artifacts
might however be immense. Human input about the suitability of artifacts to
certain tasks could improve this approach.

Latent Semantic Indexing. Latent Semantic Indexing (LSI) is a technique to
extract linguistic topics from a set of documents. It was used for software analysis
first by Maletic and Marcus to categorize the source code files of the Mosaic web
browser [Maletic and Marcus, 2000]. Other researchers then continued working
with LSI to detect high-level conceptual clones [Marcus and Maletic, 2001] and to
find concepts in the code [Marcus et al., 2004; Kuhn et al., 2007]. LSI was also
used to detect links between source code and documentation [Marcus and Maletic,
2003] and to compute the class cohesion as a result of the semantic similarity
of the methods of a class [Marcus and Poshyvanyk, 2005]. When we identified
concepts, still some classes were misplaced. Providing a possibility to integrate
human knowledge would increase the quality of LSI.

8



2.2 Approaches that include external knowledge in the analysis

Design flaws detection. One approach to identify design quality problems was
through metrics [Lanza and Marinescu, 2006]. The authors explicitly mention that
the results of automatic detection reveals structures that are suspected of being
flawed, and that manual inspection is required to confirm the results.

Automatic reverse engineering techniques are a good way to quickly get much
information about a system and to support the reverse engineer with hints of
possible concepts, design flaws etc.. However, the results need to be checked
and sometimes altered by a reverse engineer to be more precise. Often, there is
no possibility to add knowledge of a developer to the automatic techniques. A
generic approach of adding external information to any kind of analyzed objects
and results would complement all these automatic analyses and drastically enhance
the applicability of their results.

2.2 Approaches that include external knowledge in
the analysis

Ontologies. Raţiu and Deissenboeck proposed an approach to link source code
with ontologies. They build the ontology and the mapping iteratively and with
human intervention. This mechanism has been used for detection of semantic
defects like conceptual duplications [Raţiu and Deissenboeck, 2006] or mismatches
between described concepts and their implementation [Raţiu and Juerjens, 2007].
It has been extended later on to take into account the diffusion of concepts in the
source code [Raţiu and Deissenboeck, 2007]. Linking ontologies to source code is
an excellent way of integrating domain knowledge into the analysis and structuring
it iteratively.

Reflexion models. Reflexion models are an approach to recovering a system’s ar-
chitecture [Murphy et al., 1995; Koschke and Simon, 2003]. The developer knowl-
edge is encoded in a model and then manually mapped to the source code and
iteratively refined. Automatic clustering has been proposed recently which com-
plements the approach by automatically detecting candidate components in the
source code [Christl et al., 2005].

The approach of reflexion models lives from the interaction of computation and
human knowledge. The approach emphasizes that both parts are needed to not
only complement each other but also to enhance one another.

9



2 State of the art

Dedicated queries. A query-based approach to recover architectural elements
was proposed by Pinzger et al. [Pinzger et al., 2002]. The reverse engineer is
required to define the rules of interest in queries. Mens et al. proposed a similar
approach called Intensional Views, where Prolog-like queries are encoded by the
reverse engineer to link external information to the source code [Mens et al., 2002].
Both approaches take a dedicated kind of human knowledge into account for the
analysis.

All approaches in this section include external knowledge into the analysis, but
they do it only in a hard-coded and dedicated way that does not provide generic
possibilities of integrating human knowledge in the reverse engineering process.

2.3 General approaches to encode external
knowledge

Comments. Every programming language offers textual comments in the source
code to support the encoding of external knowledge directly in the system [Gosling
et al., 2005; Stroustrup and Ellis, 1990]. They serve as documentation and should
be visible to the analysis tool as they are an additional source of information.
One drawback is, however, that they are unstructured and cannot be taken into
account for further analysis. Another issue concerning reverse engineering is that
we might not want to change the original source code to encode our knowledge
about it. Depending on the analysis tool this is not even possible because anal-
ysis environments usually work with a model of the system, not with the system
itself.

Annotations. A more advanced approach of annotating source code are Java
Annotations1. They are meta-described by AnnotationTypes which allows for a
structured handling. However, as Java Annotations are source code based, they
cannot annotate objects as would be necessary when working with models.

As with comments, the source code itself needs to be changed if a class or any
other code artifact is annotated. Every time an annotation description is changed,
it has to be compiled and all annotations described by this AnnotationType have
to be changed manually to conform to it again. Java Annotations also do not
provide editors for annotating and for editing the metadescriptions.

1http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
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2.3 General approaches to encode external knowledge

Adaptive models. Adaptive Object-Models (AOM) [Yoder et al., 2001; Yoder
and Johnson, 2002] encode business entities in metadata instead of classes. Thus,
whenever a business change is needed, the metadata is changed which is then
immediately reflected in the running code. AOMs have only been proposed to
solve changing business models in applications, but they could be applicable for
modeling external knowledge during reverse engineering. This would solve the
problem of inflexibility we have with Java annotations. Our solution is inspired by
AOM in the way that not only the values but also the structure of our annotations
can be changed at any time.

11



2 State of the art

12



3 Annotating with Metanool

In the introduction we identified the requirements that an annotation framework
for reverse engineering should support. We implemented an annotation frame-
work, Metanool , that shows how annotating models of software systems improves
the reverse engineering process. In this chapter we present Metanool with some
examples of how a reverse engineer would work with it.

Metanool is implemented in Smalltalk [Goldberg and Robson, 1983] and has full
support for being integrated in the Moose analysis platform [Nierstrasz et al., 2005;
Ducasse et al., 2005]. Moose offers several analysis mechanisms and can be easily
extended with custom plugins.

Figure 3.1 shows how the Moose browser works. When in a browsing area (1)
one or more items are selected, another sector is opened next to it (2) with the
available tabs for this selection, as for example a browsing tab, a source code tab
or a Mondrian pictures tab. In this figure, the model of JEdit1 has been loaded.
First, “All system classes” is chosen and then the class org.gjt.sp.jedit.bsh.Parser is
selected. For this class, the blueprint tab (3) is visible.

In this case, the blueprint [Ducasse and Lanza, 2005] reveals to the reverse engineer
that the selected class is rather complex. Furthermore, we might be a bit surprised
that a parser is in the bsh package. We are interested in this class now and do not
want to forget to have a look at it later on. For that purpose, we want to attach
an annotation to that class to remember it.

3.1 Creating our first annotation

Figure 3.2 shows Metanool as an annotation tab (1) in the Moose Browser. It con-
tains the list of annotations (2) for the selected element. In this picture, the list al-
ready contains the annotation comment. We will show in this section how an anno-
tation named interesting is added to remember the class org.gjt.sp.jedit.bsh.Parser.

1A programmer’s text editor (http://www.jedit.org)
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3 Annotating with Metanool

Figure 3.1: Moose: (1) browsing meta elements, (2) browsing classes, (3) blueprint
of selected class

Figure 3.2: Metanool annotations in Moose: (1) annotations tab, (2) list of anno-
tations, (3) adding a new annotation

14



3.1 Creating our first annotation

To create a new annotation for the selected class, we enter a name and a type at
the bottom of the annotations tab (3). In this case, we entered the name interesting
and the type Boolean. The new annotation then appears in the annotations list, as
shown in Figure 3.3. There we can set interesting to true or false with a check box.
The annotation is not only available for org.gjt.sp.jedit.bsh.Parser but for all classes
now, because the description has been added to the metadescription of classes in
Moose, namely FAMIXClass. Like this, we automatically have a check box for each
class to say if it is an interesting class.

Figure 3.3: Editing the newly added annotation

The same can be done without the annotations editor as well, by using the native
programming language of Metanool , Smalltalk. This is also very straightforward,
because all we have to do is describe annotations and attach the descriptions to
classes. Then, the annotations for all instances of these classes can be edited right
away. The following lines of code show how the same annotation as in the gui
editor is added:

interesting := (AnnotationDescription name: #interesting type: Boolean).
FAMIXClass annotationDescriptions add: interesting.

The values are set with the following line of code:

aFAMIXClass annotations interesting: true.

15



3 Annotating with Metanool

3.2 Managing annotation types

For annotations to be edited in gui editors, each annotation has a certain type.
Boolean annotations then have a check box, String annotations an input field etc.
Furthermore, annotation types permit in the first place the reuse of annotations
in the analysis because they define what kind of values are valid. An annotation
type is therefore responsible for two things:

• The type should provide a gui element for editing a value

• The type must know if a value is allowed for it or not

Our approach to typing the annotations is flexible and we are not restricted to
only traditional types such as Boolean as used in our example above. In our
implementation we also accept types corresponding to any Smalltalk class, as for
example Color.

Furthermore in Metanool , not only classes can be types. For example, enumer-
ations can be types as well. In this case, the type will be a collection of values.
Then, not a class but a given collection is the type. An enumeration validates if a
value corresponds to it or not by checking if the value is included in its elements.
The gui editor is implemented on the instance side instead of the class side as for
class types and consists of a drop down menu with the enumerated items.

As an example, we could use an enumeration to create a layer annotation which
tells for a package which architectural layer it belongs to (see Section 5.1 (p.29)). In
Figure 3.4 we see such an annotation with the type #(’ui’ ’model’ ’persistence’), a
Smalltalk collection of three Strings. The enumeration could also contain elements
with distinct types because type checking is done by the enumeration as stated
above.

Figure 3.4: Enumeration

Introducing a new type. For the class org.gjt.sp.jedit.bsh.Parser, we not only
want to remember that it is interesting, but we might also want to write down a
question that came to our mind when we discovered it. This is motivated by the
reverse engineering pattern “Tie code and questions” [Demeyer et al., 2002], where

16



3.2 Managing annotation types

the reverse engineer is encouraged to annotate the code with what he does not un-
derstand. So then, we need an annotation that handles questions and answers. In
this section, we show how a new annotation type for questions is introduced.

We create a class Question with the String attributes question, answer and a Boolean
done. This class is now already usable as a type. In the following picture we can see
an annotation with the type Question, with no gui editor specified yet. In the input
field, we can write the code to create a Question object, as seen in Figure 3.5.

Figure 3.5: Generic editor

If we want to tailor an own editor for the class Question, we need to implement
the method mnEditPane. The sourcecode of a possible editor is shown below. It
assembles two text input fields with the labels ’Q’ and ’A’ for the question and
the answer and a check box labeled ’ok’.

Question > mnEditPane

| form label inputFieldD inputFieldM inputFieldY |
form := Widgetry.Form new.

label := Widgetry.DisplayLabel string: ’Q’.
label frame: ((Widgetry.FractionalFrame fractionLeft:0 right:0 top:0 bottom:1)

rightOffset:10).
form addComponent: label.

inputFieldD := String mnEditPaneFor: self question.
inputFieldD frame: ((Widgetry.FractionalFrame fractionLeft:0 right:0.45 top:0

bottom:1) leftOffset:11).
inputFieldD when: ValueChanged do: [:change |

form announce: (ValueChanged
from: self
to: (self question: (String mnEditReturnValue: (change newValue)))) ].

form addComponent: inputFieldD.

label := Widgetry.DisplayLabel string: ’A’.
label frame: ((Widgetry.FractionalFrame fractionLeft:0.45 right:0.45 top:0

17



3 Annotating with Metanool

bottom:1) leftOffset:2; rightOffset: 12).
form addComponent: label.

inputFieldM := String mnEditPaneFor: self answer.
inputFieldM when: ValueChanged do: [:change |

form announce: (ValueChanged
from: self
to: (self answer: (String mnEditReturnValue: (change newValue)))) ].

inputFieldM frame: ((Widgetry.FractionalFrame fractionLeft:0.45 right:1 top:0
bottom:1) leftOffset:13; rightOffset: -31).

form addComponent: inputFieldM.

label := Widgetry.DisplayLabel string: ’ok’.
label frame: ((Widgetry.FractionalFrame fractionLeft:1 right:1 top:0 bottom:1)

leftOffset:-30; rightOffset: -15).
form addComponent: label.

inputFieldY := Boolean mnEditPaneFor: self isOk.
inputFieldY when: ValueChanged do: [:change |

form announce: (ValueChanged
from: self
to: (self isOk: (Boolean mnEditReturnValue: change newValue))) ].

inputFieldY frame: ((Widgetry.FractionalFrame fractionLeft:1 right:1 top:0
bottom:1) leftOffset:-15).

form addComponent: inputFieldY.
ˆform

The following method defines what the editor should like if no value has been
specified yet. In this case, a new object with empty values is asked for its gui
editor.

Question class > mnEditPaneForNil
ˆ(self new question:’’; answer:’’; isOk:false) mnEditPane

In Figure 3.6 we see the result of the above code, a special Question - editor.

Figure 3.6: Question editor
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3.2 Managing annotation types

Making an annotation multivalued. In the case of a question annotation, the
number of questions per object should not be limited to one. This requires that we
can have multivalued annotations. In the annotation editor, we open the menu at
the right hand side and choose “edit annotation description” as seen in Figure 3.7.
This opens the annotation description editor, where we can select the check box
for being multivalued.

Figure 3.7: Making an annotation multivalued

Then the input field for this annotation opens a multi value editor when we click
on it. There we can add as many questions and answers as we want to. As soon
as the last line is filled with a value, a new line is added below (Figure 3.8).

Figure 3.8: Multivalued annotation

The Smalltalk code for transforming an annotation description to be multivalued
is:

anAnnotationDescription beMultiValued.

19



3 Annotating with Metanool

The other direction is also possible, but going from multi-valued to single-valued
naturally results in loss of information as the multiple values need to be dropped.
In Metanool , the user is prompted for every object with more than one value to
select which value he wants to keep.

3.3 Restructuring annotations

Renaming annotations. After having changed the multiplicity of our question
annotation, its name is not exactly appropriate anymore. It should now be called
questions. We can easily change an annotation description name in the editor as
seen in Figure 3.9 or by executing:

(AnnotationDescription named:’question’) name: ’questions’.

Figure 3.9: Renaming annotations

Collecting annotation values into a drop down list. Sometimes we notice dur-
ing the process of annotating that the annotations should be a bit different than
what they are. For example, we find out that we have to type the same values
a lot of times and that we would prefer to select them from a drop down menu.
Such a change requires two things: (1) The type must be changed while already
specified values must be kept, (2) all existing values must be collected to create
an enumeration of them. Metanool supports automatic transformation into an
enumeration and back. In Figure 3.10 we show what such a transformation looks
like.

Turning an enumeration type automatically back into a “normal” type requires
knowing what the new type should be. Metanool selects the most specific common
class or superclass of the elements in the enumeration. This enables the user to
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Figure 3.10: Collecting existing values

transform annotations without having to think about types more than absolutely
necessary. If he wants to, he may choose another type though as we will see in the
next section.

The Smalltalk code for turning an annotation type into an enumeration and back
is the following:

anAnnotationDescription changeToEnumeration.
anAnnotationDescription changeToNonEnumeration.

Type transformation. As we have seen, an annotation description has a type
which the actual annotation values must conform to. During the reverse engineer-
ing process, we might want to change the type of an annotation because we know
in more detail what an annotation should look like as time goes on. For exam-
ple in the case of a questions annotation as shown in Section 3.2 (p.16), the user
might not have had the Question type from the outset but started with a String
annotation.

Suddenly, he realizes that it would be better to have a Question type to be able
to specify questions and answers and to tell if it is still an open issue. So he
creates the new type as described in Section 3.2 (p.16). The next step is then to
change the type of the question annotation from String to Question. The values
that already exist in the system should not be thrown away but be transformed
as well as possible into questions.
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For the existing types in Metanool , transformation strategies have been specified.
As the reverse engineer introduces a new type, he can add transformation strategies
for this type where it is needed. In the following lines we show the method that
allows changing the type from String to Question.

Question class mnFromString: aString
ˆself new question: aString

In Figure 3.11 we show the modification of an annotation description from the
type String to Question. This corresponds to:

questionAnnotationDescription transformToType: Question.

Figure 3.11: Type transformation from String to Question

To enable transformations from Question to other types, we need a base method
mnFromQuestion: that is implemented in Object and that is overridden in all types
that should be able to import questions. In Question, we need the method mnBe:
that calls mnFromQuestion: from the target type. Here we show the needed code
to permit the transformation from a Question into a String.

Question mnBe: aType
ˆaType mnFromQuestion: self

Object class > mnFromQuestion: aQuestion
(self mnCanBe: aQuestion) ifTrue: [ˆaQuestion] ifFalse: [ˆnil]
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String class mnFromQuestion: aQuestion
ˆaQuestion mnPrintString

3.4 Editing groups

Often, there is a need to set certain annotation values for a whole group of elements.
Metanool offers editing annotations for groups in the same way as for single objects.
The additional challenge for group editing is that the user should be able to know
if all elements have the same value for a certain annotation or if they have distinct
values. We did not want to show all distinct values in the group editor because this
would have required a lot more space at the expense of clarity, but we considered
it helpful to show at least one value for each annotation. If this value is common
to all group elements, it is displayed as in the normal editor, and if it’s not, it is
painted pale-gray. In Figure 3.12, four classes are selected that have unequal values
for the annotations color, comment and interesting. For the annotation useful, they
all have the value true. If the user edits the value in the group editor, it is set for
all selected elements.

Figure 3.12: Group editing
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This chapter provides a more detailed description of the Metanool internals.

Moose works with the EMOF meta-meta-model [Ducasse et al., 2008], which can
be used for meta-models as for example FAMIX. Each element of the meta-
model is described by an instance of EMOF.Class. For example when work-
ing with the FAMIX meta-model, the instances of FAMIXNamespace model the
source code namespaces. FAMIXNamespace is described by an EMOF.Class named
’FAMIXNamespace’. Each instance of EMOF.Class can have multiple instances of
EMOF.Property which describe its attributes. For FAMIXNamespace, some of the
properties are: classes, belongsTo, LOC (lines of code).

4.1 Annotations and their descriptions

The term “annotation” is a bit ambiguous: it can mean both the value that is
attached to an object or the name for which an object can have a certain value. In
Metanool , the latter is called “annotation description” and the values are simply
called “values” (or “annotation values”). Where we do not need to distinguish
between the values and the descriptions, we sometimes just say “annotation” in
an informal way.

Figure 4.1 shows how annotation values and annotation descriptions are attached
to objects. We attach them at the meta-level so that annotation descriptions are
properties of an EMOF.Class and are available for all instances of the corresponding
class. In this figure we describe the case where FAMIXNamespace objects are
annotated, hence the annotation description layer is added to the EMOF.Class
named ’FAMIXNamespace’.

To store the actual annotation values, we use the MetanoolRegistry. In this case,
the namespace #jedit.gui has the value ’gui’ for the annotation layer.
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Figure 4.1: Annotation descriptions and values

Figure 4.2: The public interface of Metanool
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4.2 The annotation interface

In Figure 4.2 we see the design of the public interface of Metanool . To avoid
conflicts in the interface of Object and to provide a simple way of accessing an-
notations, we created accessor classes for annotation descriptions and values. The
AnnotationDescriptionsAccessor manages the annotation descriptions for a class, the
AnnotationAccessor the values for an annotated object. AnnotationAccessor has not
only annotation accessors but also two more methods: (1) openEditor opens the
annotation editor which is the same as is integrated in the Moose browser but is a
standalone editor; (2) doesNotUnderstand: transforms all method calls that consist
of a valid annotation name into getters and setters for the annotation values. This
allows us to access the annotation value in two different ways:

aNamespace annotations named: ’layer’ ‘‘equals:‘‘
aNamespace annotations layer

aNamespace annotations named: ’layer’ put: ’gui’ ‘‘equals:‘‘
aNamespace annotations layer: ’gui’

The same is done in AnnotationDescription and in AnnotationDescriptionAccesser to
get annotation descriptions in a quick way.

AnnotationDescription named: ’layer’
AnnotationDescription layer

AnnotationDescription basically has a name, a type and a multiplicity, and on the
class side it has a list of all existing annotation descriptions in the system. It offers
various transforming methods to change its name, type or multiplicity as described
in the previous sections of this chapter.

At the bottom of Figure 4.2 we see that Collection has an additional accessor,
AnnotationAccessorChildren. This accessor delegates all messages to the accessors
of each of its element. Like this, the annotations of the children are edited by
executing for example:

aNamespaceGroup childrenAnnotations layer:’model’

If for a collection, aCollection annotations is called instead of aCollection childrenAn-
notations, the annotations for the collection object itself are edited. With openEd-
itor, AnnotationAccessorChildren opens the group annotation editor.
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4.3 The type interface

By calling anObject annotations openEditor, a MetanoolEditor is opened. The same
editor is integrated in Moose. This editor shows a list of all available annota-
tions for this object, where all values can be directly edited. The editors for each
annotation are not created by the MetanoolEditor itself but by the types of the
annotations. This makes annotation editing generic, as Metanool can be extended
with new types without changing the core editor but by providing some gui meth-
ods directly in the type definition. In Figure 4.3 we see the methods that are
responsible for type behavior (as explained in Section 3.2 (p.16)). There are meth-
ods for the gui editors, for type transformations and for type checking. All of them
are prefixed by “mn” according to the Smalltalk convention to avoid conflicts in
the Object interface. mnCanBe:aValue usually evaluates if the value is an instance
of this class or of a subclass, but it can be overridden to provide a specific type
check, for example for enumerations.

Figure 4.3: Methods related to types
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To give an impression of the usefulness of our annotations approach, we describe
some typical use cases from the world of reverse engineering.

The first use case examines an architecture recovery of a layered system which
reveals violations of architectural restrictions. The second use case we describe is
a task list implementation, which lets a programmer assign tasks to code artifacts
and shows a list of all tasks inside a system. Then we show how automatic design
flaw detection (e.g., god classes, data classes, feature envy. . . ) is improved by
human validation. The final example is how to use our annotations to perform
and validate the results of automatic feature analysis based on dynamic analysis
of traces [Greevy and Ducasse, 2005b].

All of these use cases have been performed in Moose [Nierstrasz et al., 2005] and
the visualizations are painted with Mondrian [Meyer et al., 2006].

5.1 Architecture Recovery

Many software companies define a standard architecture for a set of applications.
When new applications are being developed, the software architects need to mon-
itor the compliance of the software development with the architectural rules (see
reflexion models [Murphy et al., 1995; Koschke and Simon, 2003]). Architectures
are typically not explicit in the source code. Packages are usually used to group
classes according to their particular role or function in the system. However there
may be multiple packages associated with an architectural layer, or a package may
be associated with multiple layers. In the absence of a language construct to re-
flect architectural layering, our annotations provide an ideal way during analysis
of a system to associate packages with layers and then to perform an analysis of
the invocations to ensure that the architectural boundaries are being adhered to.
A similar architecture analysis can be done with Sotoarc1, a commercial software
architecture analysis tool specialized on layer modelling.

1http://www.software-tomography.de/html/sotoarc.html
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In this section we present two ways of using annotations for the package-level
definition of layer membership. Both will annotate the packages with a layer
annotation and then create a visualization of the layers and accesses between the
layers. They will make visible the structure of the system and point out violations
of the layered architecture. The model that we will use in this section is again the
model of JEdit.

5.1.1 Way one: Layer numbers

The layered architecture of JEdit had been analyzed before by Patel et al. [Patel et
al., 2003]. The authors found 14 layers and wrote down for each layer which pack-
ages belong to it. What we did then was to include their knowledge into our tool
by annotating the packages with their layer number. The annotation description
had the name layerNumber, the type was Integer and the multiplicity was 1. Then
each package received a layer number, according to the number that we found in
the report. Figure 5.1 shows the annotation for the package org.gjt.sp.jedit.print
that belongs to layer number one which is the topmost layer.

Figure 5.1: Annotating packages with a layer number

The visualization seen in Figure 5.2 was painted with Mondrian based on the layer
numbers. The small squares are the packages and the big rectangles are the layers.
The packages that did not exist in the report because the authors used a different
version of JEdit could not be annotated; all these are collected in the “rest” group.
The visualization considers not only the external knowledge about which package
belongs into which layer, but also architectural constraints about accesses between
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layers. One of these constrains is that accesses between layers should never go from
a lower to a higher layer, e.g., a class in the persistence layer should not call a gui
class. We painted all accesses that go from bottom up in red to show that they
are a violation of the architecture. Accesses from top to bottom are blue because
they are allowed. Grey lines are drawn for all packages that could not be assigned
to a layer.

Another constraint prohibits jumping over a layer, but as we can see in this picture,
layers are jumped over very often and we doubt if this architectural rule can be
applied to this classification of fourteen layers. Usually the number of layers is
about three or four. But even though the model is not necessarily correct, the
exercise was about being able to encode the external information.

Package names are not visible in Figure 5.2 because they would have needed a
lot of space. However, when watching the visualization in the Mondrian view
pane, package names are interactively shown when pointing at them with the
mouse.

5.1.2 Way two: allowed / forbidden

Adding layer names. Another approach to model knowledge about layers in
annotations is to add a String annotation to the packages that contain the name of
their layer, e.g., gui, model, data etc.. The following code does exactly this.

layer := (AnnotationDescription name: #layer type: String.).
FAMIXNamespace annotationDescriptions add: layer.

namespaceA annotations layer: ’gui’.
namespaceB annotations layer: ’model’.
aGroupOfNamespaces childrenAnnotations layer: ’data’.

All this could of course also have been done in the editor. Besides, this is a good
candidate for changing the annotation type into an enumeration as described in
Section 3.3 (p.20).

Adding constraints. Next, we define for each layer which layers are allowed
or forbidden to access. These relations between layers are also modeled with
annotations. For this, we need an annotation allowed and an annotation forbidden
that are both attached to the class String. We will directly annotate the layer
names which are instances of String. The type of the two annotations is also
String, because we want to interrelate String objects. To be able to define multiple
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Figure 5.2: JEdit in 14 layers and their access violations (red)
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forbidden and allowed layers for each layer, we make the annotations multi-valued
as shown in the following code segment.

String addAnnotationType:
(AnnotationDescription name: #allowed mutivaluedType: String)

String addAnnotationType:
(AnnotationDescription name: #forbidden mutivaluedType: String)

Then the layer names are annotated like this:

’ui’ annotations allowed: ’model’
’persistence’ annotations forbidden: ’model’
’persistence’ annotations forbidden: ’ui’

Figure 5.3 gives an overview of the process of annotating the layer annotations.
The picture shows three packages that are annotated with a layer annotation; two
of them belong to the “gui” layer and one of them to the “persistence” layer. The
“persistence” layer is in turn annotated with the value “gui” for forbidden.

Figure 5.3: Annotating namespaces and their annotations

Creating a visualization. With this information, we can again create a Mon-
drian painting where we paint all namespaces grouped by layers (Figure 5.4). The
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invocations between the namespaces are now painted in a color according to the
“allowed” and “forbidden” annotations of their layers. The gray lines mean that
nothing has been specified. We do not at all claim that this picture shows the truth
about JEdit, because the layer annotations were added without deep knowledge
of the system. The important point is that we created a possibility of enhancing
the analyzed model with architectural knowledge that could not be extracted from
the code itself.

Figure 5.4: JEdit in four layers and their access violations (red)

5.2 Checklist

In this use case, tasks are added to code artifacts and a list of all tasks in the system
is generated. This is similar to the @TODO annotation in Java. A checklist is
useful for example if during reverse engineering, the user detects issues that he
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wants to address later on. He can add tasks directly to the affected part of the
system.

Introducing a task type. When we want to attach tasks to some elements, maybe
classes and namespaces (packages), we introduce a new data type: ToDo. A new
class ToDo is created that has two instance variables: a String named “task” and
a Boolean named “done”. Like this, each ToDo has a task description and can
be marked as done. This new type is introduced the same way as Question in
Section 3.2 (p.16).

Editing the tasks. After having created a ToDo data type, we add a toDo Anno-
tationDescription to the elements we want to annotate. The AnnotationDescrip-
tion will have the name toDo, the type ToDo and be multivalued. Like this, every
element can have as many tasks as needed. Then, we can annotate our elements
as seen in Figure 5.5. We can add the same AnnotationDescription to several
elements, e.g., FAMIXClass and FAMIXNamespace.

Figure 5.5: Editing tasks

Printing a checklist. With this information, we can easily print a checklist of all
tasks in the analyzed model, as we can see in Figure 5.6.

35



5 Metanool Use Cases

Figure 5.6: Generated Tasklist

5.3 Detection strategies

Another reverse engineering use case of annotations is based on detection strate-
gies. Detection strategies define rules that automatically detect candidate classes
that represent design flaws in a system, such as god classes, data classes, brain
classes and other code smells [Lanza and Marinescu, 2006]. The shortcoming of
automatically applying detection strategies there is that the results are not always
correct. As a reverse engineer performing the analysis, we might want to encode
our knowledge of the system into the detection strategy analysis mechanism to
indicate which results represent false positives or false negatives before generating
a report on the design of a system. This is a typical case where automatically
and manually detected information need to be merged together. We claim that
annotations are the right place to store this kind of information.

We explain our approach taking with the example of the detection of god classes.
First, we run the automatic detection and receive a set of candidate god classes.
We add the annotation description auto god class (type: Boolean) to classes. For
our group of detected god classes, we set the value to true. Then, we add a second
annotation description manual god class. There, we set the values manually for
god classes that were not automatically detected but are considered by the reverse
engineer as being god classes. A report engine can now take both annotations into
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account.

For example, an overview as seen in Figure 5.7 can be generated. It is a visual-
ization that shows classes as squares and inheritance definitions as lines. In this
system overview, classes are represented by rectangles in different sizes: large rect-
angles indicate god classes, whereas the small rectangles indicate non-god classes.
Both the automatic and the manual detection are taken into account. We use
color to represent how the decision was taken if a class is a god class or not.
Automatically detected god classes without a manual confirmation are painted
gray. Red indicates that the automatic detection has been confirmed manually.
Orange classes have not been detected automatically but have been stamped man-
ually as being god classes. For the non-god classes that are all drawn as small
squares, we distinguish white and blue squares: blue means that they have been
detected by the automatic detection strategy but have been refused by the reverse
engineer.

Figure 5.7: A god class report combining automatic and manual detection.

We can also just print a list with all god classes and sort them by “true positive”,
“false positive”, “false negative” etc. We can also simplify the result and just make
a list of all classes that from the combination of manual and automatic detection

37



5 Metanool Use Cases

are considered as being god classes. The new list of god classes can be used in
the same ways as the original automatically detected list, only with the advantage
that it is more precise because human knowledge has been integrated.

5.4 Feature analysis

Features are abstractions that encapsulate knowledge of a problem domain and de-
scribe units of system behavior [Greevy, 2007]. Several researchers have identified
the potential of exploiting features in reverse engineering [Eisenbarth et al., 2003]
[Antoniol and Guéhéneuc, 2005] [Greevy, 2007]. Feature identification approaches
(e.g., Software Reconnaissance [Wilde and Scully, 1995]) describe various tech-
niques for locating which parts of the code implement a given feature. Automatic
approaches to feature identification are typically based on dynamic analysis where
the features are executed on an instrumented system and the traces of all message
sends are captured.

Feature analysis techniques are limited because features are abstractions, thus a
feature representation in the model is an approximation by nature. This means
that the results of feature analysis are influenced on the one hand by how the
features are executed during the tracing phase and on the other hand by the
number and choice of features traced.

In this section we show how the use of our Metanool annotations support feature
analysis by addressing the above problem.

Feature analysis results. We performed a feature analysis on the Moose system
with 8 specified features using a Dynamix model of Moose. Then we applied the
feature affinity metric to the classes based on the results to quantify which classes
belong to only one feature and which classes are used for many features.

Figure 5.8 shows a visualization of 8 feature views of our model [Greevy and
Ducasse, 2005a]. For all 8 features, we have a rectangle that contains colored
small rectangles which are classes. The classes are grouped and colored according
to the feature affinity metric (for more details see [Greevy, 2007]). For example
the class VisualWorksParseTreeMetricsCalculator is cyan because it was only used in
the computeMetrics feature (single feature affinity). The yellow classes (low group
affinity) (2) were touched by a low number of features. More general functionality
is provided by the orange high-group-affinity (3) and the red infrastructural (4)
classes.
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(1) VisualWorksParseTreeMetricsCalculatior
(single feature)

(4)MooseModel, FamixNameResolver
(infrastructural feature)

(2) FAMIXFolder, MetaMeasurement,...
(low group feature )

(3) EntityStorage, DefaultEntityState,SetupStorage
(high group feature)

Figure 5.8: 8 Feature Views of Moose showing the feature affinity values of classes

Validation of the results. Our feature views reveal three classes that have been
automatically detected as ’infrastructural’. The developers of Moose deny this
result. They state that the class FamixNameResolver does not implement infras-
tructural functionality but is specific to importing a moose model from Smalltalk
source code, which is another feature that has not been considered in the analy-
sis. Another one of the three detected infrastructural classes is called UNKNOWN,
which represents a class that could not be identified and does not exist in the
system.

This developer knowledge reveals two important facts to the reverse engineer:
Firstly, the behavior of importing Smalltalk models needs to be treated as a dis-
tinct feature, and secondly, the behavior of the executed features was not well
delimited. They all used Smalltalk source code import which made the class
FamixNameResolver appear as an infrastructural class.

However, we do not want to throw away the results of dynamic feature analysis just
because we have detected this false positive in ’featureAfffinity’ assignment. Our
feature views, though they are approximations, reveal other interesting information
about the features of the Moose system. Instead we choose to refine the feature
representations using annotations.

We create an annotation named feature-affinity with an enumeration type #(’none’
’single feature’ ’low group’ ’high group’ ’infrastructural’) (see Figure 5.9. We then
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annotate the classes according the their automatically computed ’featureAfffinity’
values, but we change the value manually for the classes that have been classified
wrong. The class FamixNameResolver receives the value ’single feature’ instead of
’infrastructural’.

Figure 5.9: The feature-affinity annotation for classes

Refined visualization. In Figure 5.10 we show a system complexity view with the
classes colored according to their feature-affinity annotation. The class MooseModel
(1) is the only class that appears as ’infrastructural’ in this picture. As this class is
fundamental to every feature when using Moose, this result is more true to reality.
The originally wrong categorized class FamixNameResolver (2) is now correctly
painted as a ’single feature’ class (blue).

With this example we have shown how an automatic feature analysis is enriched
with developer knowledge using Metanool annotations and how this improves the
reliability of the results.
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Figure 5.10: The refined feature affinity values of classes
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6 Conclusions

In this chapter we conclude by summarizing the contributions of this dissertation
and discussing possible future work that could be done in this area.

6.1 Contributions

The contributions of this thesis are:

A generic approach for integrating external knowledge into the reverse en-
gineering process. We motivated the need of extending software analysis tools
with a mechanism to include external knowledge. Our approach is to use an-
notations which are attached to objects and are meta-described in annotation
descriptions. We emphasized that such a mechanism should provide possibilities
to change the annotations and their descriptions during the whole analysis process.
Furthermore we pointed out that the reverse engineer should be able to introduce
new types.

An implementation of this approach. We developed an annotation framework
called Metanool as an implementation of our approach. Metanool is implemented
in Smalltalk and is integrated in the Moose reverse engineering environment. It
provides an flexible and extensible annotation model. It also offers the possibility
to watch and manipulate the annotations and their descriptions in a gui environ-
ment.

A set of examples of how our mechanism can be used to support existing ap-
proaches that take external knowledge into account. We first showed different
ways of using annotations in architecture recovery. Then we demonstrated how
task lists are realized with annotations. Annotations were then used to let reverse
engineers refine automatic detection results. Finally we showed how annotations
support feature analysis.
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6.2 Future work

During the development of our approach, some ideas and points of interest have
been found that could be the subject of future research in the area of annota-
tions:

User defined type transformation. Changing the type of an annotation and
automatically transforming of all existing values to conform to the new type is
a central point of our approach. An extension would be if the reverse engineer
could define a transformation strategy at the moment when he wants to transform
the values, instead of being limited to the implemented transformation strategies.
This would not only allow the user to change to a new type without implementing
the strategy upfront but also to change the existing strategies when needed.

Java annotations. Java annotations could be enhanced with gui support to pro-
vide some of the benefits of Metanool also in Java source code. This would broaden
the topic onto forward engineering as well as to a lightweight reverse engineering
approach directly in the Java source code, making use of the development envi-
ronment tools such as for example Eclipse [Murphy et al., 2006].

Annotations for forward engineering in general. Annotations could be inte-
grated in code browsers in various ways to also support forward engineering. For
example, source artifacts could be tagged and categorized by annotations and then
be browsed based on these categories. Browsers could also use colors to show some
annotation based information directly in the navigation.

Scoping. In Metanool, annotation descriptions are system-wide unique. Further
development could find out if more sophisticated scoping of annotations is needed.
Also, the idea of value inheritance could be interesting. With value inheritance,
a child object would return for a certain annotation description the annotation
value of its parent unless it has an own value.
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This section describes how to download and run Metanool .

A.1 Installing Metanool

• Download VisualWorks 7.5. Non Commercial from
http://www.cincomsmalltalk.com/userblogs/cincom/blogView?content=

smalltalk

• Open visualnc.im with VisualWorks (drag it onto the VM, e.g., Cincom/
vw7.5nc/bin/win/vwnt.exe on a Windows machine)

• Connect to the repository (Store / Connect to Repository) with the following
settings:

– interface: PostgresSQLEXDIConnection

– environment: db.iam.unibe.ch scgStore

– user name: storeguest

– password: storeguest

– table owner: BERN

• Load MooseSetup 1.6 (Store / Published items)

• Load System-Announcements 1.1.

• Load the latest version of Widgetry

• Load the latest version of Metanool

A.2 Getting started

Choose one of the following actions to create your first annotations:
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A Quick Start

• Execute ’Hello world’ annotations openEditor

• Open Moose (Tools / Open Moose Zooming Finder) and open a Metanool
tab

• Execute some code from the introduction of this dissertation (Section 1.2
(p.3))
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grams represent reality (and how they don’t). In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE’06), Los Alamitos CA, 2006. IEEE
Computer Society.
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