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Abstract

Optimizations are an omnipresent topic when working on Virtual Ma-
chines (VMs). There is a plethora of different optimizations available
ranging from simple tweaks and tricks to full evaluation concepts requiring
a complex infrastructure. Depending on the complexity of an optimization
and the performance increase it is important to choose the right kinds of
optimizations. Based on a high-level language VM as a case study we ar-
gue in favor of transparent optimizations which do not require changes in
the interpreted language’s semantics. Furthermore it is necessary to write
and properly evaluate benchmarks to be able to track the performance im-
pact of a certain optimization.

When building a high-level language VM the underlying system – tra-
ditionally a C or C++ core – does not share many concepts with the imple-
mented language. Hence some optimizations emerging from the low-level
VM core are orthogonal to the high-level concepts of the interpreted lan-
guage. Focusing on such optimizations can strongly limit the dynamic
capabilities of a high-level language. These non-transparent optimizations
require the semantics of the interpreted language to be changed. Changes
in the language’s semantics can require extensive changes in the sources
which is an undesired property. However transparent optimizations pre-
serve semantics of the language. Using transparent optimizations helps to
separate the low-level requirements of the VM form the high-level design
decisions of the language. We argue that non-transparent optimizations
should only be applied to a high-level language VM in an early devel-
opment stage. Furthermore each non-transparent optimization should be
paired with a compatible way to reintroduce the lost or altered semantics.

To make valid statements about optimizations it is necessary to write
adequate benchmarks. The benchmarks have to be reproducible and the
evaluation has to be statistically sound, furthermore the benchmarks should
focus on covering specific use cases to help locating performance issues
in the VM code. Benchmarks are to be used in a similar way as unit tests.
Optimizations can only be evaluated in a sound way when the correspond-
ing benchmarks produce deterministic values. Furthermore we state that
focusing on micro benchmarks helps to locate and track performance crit-
ical code segments of the VM.
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1
Introduction

Developing high-level language virtual machines (VMs) is generally a balancing act
between the flexibility and the speed of the resulting system. On the one hand a sys-
tem can be more performant if more and more assumptions are hard-coded in the VM
itself but might reduce the language’s dynamic capabilities. On the other hand creating
a more flexible VM requires more indirections while executing code and thus might
have negative speed impact. However by using the right optimization techniques it is
possible to reduce the number of indirections at runtime.

Choosing the right optimization depends mainly on two factors: the implementa-
tion complexity and the performance boost achieved. Next to the direct implementa-
tion costs of the optimizations a secondary cost can be observed. Depending on the
optimization it is necessary to adapt the interpreted language. Such non-transparent
optimizations are generally unwanted. Changing a language’s semantics can require
significant changes to the sources and adaption of existing unit tests. By observing
the Pinocchio VM – a Smalltalk-like system – we see that most of the optimizations
applied were transparent. Non-transparent optimizations have only been applied in
the early stage of development. With a more stable system comes more responsibility
– optimizations have to focus on preserving the existing semantics in order to avoid
secondary implementation costs. However, as observed in Pinocchio, a well defined
non-transparent optimization can give a signification performance boost. Generally it
is possible to create a compatible way to make the lost or altered semantics accessible
again. Although this way of reintroducing lost features due to optimizations does not
relieve the programmer from adapting the existing sources, it is possible to reduce the
amount of changes necessary to render the code compatible again

It is not always possible to make the right choice when applying certain optimiza-
tions . Thus it is important to track the impact of each applied optimization, since it
might happen that a new optimization has a negative impact on the overall system. This
requires a similar mechanism as regression tests or unit tests. With proper benchmark-
ing it is possible to track the speed impact of each optimization in-depth. Benchmarks
should be written specifically to track single optimization properties, similar to unit test
preferably focusing on the smallest behavior possible. Using micro benchmarks helps
to locate performance critical code segments of the VM implementation. In contrast
general benchmarks focusing on common language use cases provide a convenient way
to compare the overall performance of a system. But with such a single result it is al-
most never possible to identify a certain bottleneck of a VM. In order to optimize a VM
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it is necessary to write specific micro benchmarks to measure the impact of a specific
optimization. For Pinocchio a set of three benchmark suites consisting of several micro
benchmarks is used to identify potential issues with the different optimizations applied.

1.1 Flexibility versus Speed
Implementing high-level language VMs requires to choose between speed and dynamic
features of the interpreted language. Generally it is possible to write a fast VM by
altering the design of the interpreted language to follow more closely the low-level
implementation language – generally C. On the other hand, a very flexible but unopti-
mized system requires more indirections during execution. Furthermore the mismatch
between the VM definition language – generally C – and the high-level language being
interpreted can introduce an additional overhead.

As an example of such a dynamic system we take SchemeTalk – a Scheme dialect
with the semantics of Smalltalk. In SchemeTalk the semantics of Smalltalk are intro-
duced to the underlying Scheme by a set of macros. Since the interpreted language –
a Scheme dialect close to Smalltalk– and the VM definition language – also a Scheme
– are syntactically and semantically very similar there is no clear boundary between
the VM definition and the interpreted language. It is noteworthy that SchemeTalk does
not feature a real VM implementation but rather consists of a set of macros to trans-
parently add the semantics of Smalltalk. In fact objects can freely flow between the
Smalltalk world and the Scheme world. Furthermore objects from the Smalltalk world
can only be accessed in a well-defined manner from the Scheme level. This is only pos-
sible since Scheme has many features built into the language which can be reused for
running a Smalltalk-like language on top. For instance to build the Smalltalk objects
SchemeTalk uses Scheme level lambdas which already encapsulate data and behavior.
Hence it is not possible to break the encapsulation of the Smalltalk objects by passing
them down to Scheme and directly accessing the raw values stored in the object. The
advantages of a compact and simple VM definition are traded for a rather slow system.
The resulting system is roughly 1000 times slower than the original Pharo system.

The question arises on how to optimize such a system while keeping its dynamic
nature. In a first attempt we tried to avoid the scheme interpreter by implementing a
low-level core system in C. The resulting system featured AST nodes which knew how
to evaluate themselves. This way the system can be extended with arbitrary new AST
nodes since the VM itself expects only a very limited interface to activate the nodes.
The resulting system was even more flexible than its predecessor SchemeTalk and in
this case again did not meet the performance expectations. The self-evaluating AST
nodes introduced too many indirections. From here on a plethora of optimizations were
applied to the system and eventually resulted in Pinocchio with a rather classical VM
design with a performance in the range of common scripting languages like Python,
Ruby or Smalltalk.

1.2 Benchmarking
In order to improve the speed of VM it is important to have proper benchmarks track-
ing different performance aspects. However there are several important properties of
benchmarks which are ignored too frequently. The three core aspects of benchmarking
which drive the evaluation of this thesis:

Reproducible results: Benchmarks should work similar to unit tests and have to be
reproducible with a minimal effort.
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Micro benchmarks: Focusing on micro benchmarks helps to identify performance
critical sections of a high-level language VMs. This is again similar to unit tests
which help to isolate bugs by writing tests for single features.

Statistical sound evaluation: The results from the benchmark runs have to be pre-
sented with respect to a basic statistical evaluation.

The first two principles, reproducibility and micro benchmarks, are also key ele-
ments of unit testing. Unit tests have to be reproducible in order to make sense. If a
test provides non-deterministic results it is of no use. The same principle counts for
benchmarks: they only provide useful information if the results can be reproduced by
different programmers.

By writing small tests which cover only a limited set of functionality, the task to
locate a faulty piece of code is greatly simplified. Again, the same holds for bench-
marks. By writing an overall benchmark, it is possible to provide a simple results to
track the performance of a whole system. However, this is only of limited help if the
goal is to improve the performance of a VM. The overall benchmark result hides too
many details. Hence writing micro benchmarks helps to spot performance critical code
segments.

The third principle is new, compared to the unit test approach. Unit tests ultimately
provide only a single boolean results, either the test succeeded or failed. However,
a benchmark results is calculated from an average of several timed benchmark runs
which requires a minimal statistical evaluation. Although it would be possible to use
the time spent of only a single run, it would provide only a very inaccurate result. The
time spent for a benchmark relies on a multitude of parameters of the host system, con-
trolling all of them is almost impossible. For instance each running background pro-
cess, or the overall memory consumption of the host system might impact the outcome
of a benchmark run. Hence the most common way to eliminate these error sources is
to run a benchmark several times and thus average out the different system setups at
different times.

The straight-forward way to address these three principles is by writing a simple
benchmarking framework. Similar to a unit testing framework, the programmer can
focus on writing the single benchmarks and does not have to deal with the low-level
details of benchmark evaluation. For this thesis a simple benchmarking framework
called PBenchmark was developed in Smalltalk and has been used to evaluate a set
of optimizations. The details of the benchmarking framework and the limited statistic
background needed to evaluate benchmark results are presented in Chapter 3.

1.3 Optimizations
By observing the high-level language VM Pinocchio we identify a broad classifications
for optimizations:

Transparent optimizations focus on optimizations which do not enforce semantic
changes on the interpreted language. A typical example of such an optimization
is a just in time compiler which optimizes the underlying evaluation structure at
runtime.

Non-transparent optimizations require the semantics of the interpreted language to
be altered. An example of such an optimization is the switch from an untyped to
a typed language.

Embedding assumptions: This group of optimizations focuses on making the low-
level VM implementation aware of the high-level structures used in the inter-
preted language. By embedding the assumptions for common use cases into the
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VM execution speed can be greatly improved. The goal is to reduce the overhead
introduced by the semantic mismatch of the VM definition language – generally
C – and the interpreted language. A common example is the replication of high-
level data structures on the C level.

Caching values focuses on avoiding the repeated calculation of the same values. An
example for frequently used caches are inline caches.

The four groups of optimizations are not mutually exclusive and the transparency
property in particular overlaps with the last two properties. The last two properties,
embedding assumptions and caching values, are a classification on the low-level im-
plementation details of an optimization. The transparency property, however, describes
a more abstract class of optimizations.

In this thesis, optimizations from all four groups are presented, however, only a
set of four non-transparent optimizations is presented in more detail. Non-transparent
optimizations are generally applied in the early stages of a VM. Significant changes
in semantics are to be avoided, especially in a more mature system. In Pinocchio
several non-transparent optimizations were applied in early development versions of
the VM as described in Chapter 2. At that point the code base was still very limited and
thus semantic changes could be easily reflected onto the existing sources. In the later
stages, having already a rather mature system, optimizations were mainly transparent.
This allowed us to separate the low-level work on the VM from the high-level design
decisions. This is especially important in a high-level system which is semantically
distant from the VM definition language. Otherwise, it could happen that many features
of the VM definition language are adopted for performance reasons. Hence we argue
that the focus should lie on transparent optimizations, such as those presented in more
detail in Chapter 4.

1.4 Outlook
The rest of this introduction identifies important properties of VM implementations,
benchmarking and the choice of optimizations. In the rest of this thesis the most im-
portant design and optimization decisions taken in the Pinocchio VM are presented
in more detail. Throughout the design process we paid attention to keep the VM ex-
tendible but still were able to achieve a speedup of around two orders of magnitudes.
In Chapter 2 Pinocchio and its predecessors are presented giving a broad overview of
the design choices and a limited set of optimizations applied. The core of all these
optimizations is to embed assumptions to avoid as many indirections as possible in
the low-level code. Nevertheless it is possible to apply most optimizations such that
there is backwards compatibility. As an example of such behavior we present the C
implementation of the common dictionary data structure in Pinocchio in Section 4.3.
Five other important optimizations are presented in Chapter 4 ranging from familiar
inline caches to a Pinocchio specific dictionary implementation. Each optimization is
explained with the results of three different benchmarks. Chapter 3 provides reduced
statistical background information needed to perform a sound benchmark evaluation.
The same chapter provides an overview of our custom benchmarking framework which
provide reproducible results. In Chapter 5 we summarize the results and conclude.
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2
Pinocchio

In order to distinguish between different types of optimizations we target the Pinocchio
VM. Pinocchio is a Smalltalk-like high-level language VM used in this thesis to show
different aspects of optimizations. Up to the version discussed in this thesis, Pinoc-
chio has undergone major changes. Its predecessor is a Scheme dialect with Smalltalk
semantics called SchemeTalk. By applying taking radical optimization decisions the
system evolved into a more classical VM with an opcode based interpreter. Looking
at the history of Pinocchio we can identify several non-transparent optimizations in the
early stages whereas most optimizations which happened later are transparent.

The first sections provides a broad overview of the features of Pinocchio. The
origins of most of the current features are then described in the next section covering
the evolution of Pinocchio and its predecessor SchemeTalk. The last section covers in
more detail the manifold extension mechanism of Pinocchio and sheds light on possible
optimization issues.
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2.1 Pinocchio
The different optimizations in this thesis are presented by observing the high-level
language VM Pinocchio. Pinocchio is a modern VM for a Smalltalk-80 [4] dialect
with focus on extendability. Additionally to the already strong reflective capabilities
of Smalltalk Pinocchio adds first-class interpreters and first-class slots to the language.
Interpreters can be created, run and extended at runtime. Customized interpreters eval-
uate AST nodes and can change the default evaluation by overwriting visitor methods.
Unlike the custom interpreters the core interpreter is based on the much faster opcode
evaluation scheme.

To construct a new variant of the Pinocchio interpreter it suffices to subclass the
Interpreter class and override a part of its visitor interface (see Figure 2.1). The
Interpreter class defines a meta-circular interpreter implemented as an AST visi-
tor that manages its own environment but relies on recursion to automatically manage
the runtime stack.

The meta-circular interpreter reifies the core interpreter written in C. Eventually the
meta-circular interpreter will use natives for its methods which hook into the underly-
ing C interpreter code. However so far this has never been realized and is impossible
to achieve with the current opcode based evaluation scheme. Hence the meta-circular
interpreter is almost fully written in Pinocchio itself. However there is one exception
when a real native needs to be evaluated. In this case the meta-circular interpreter has
to pass on control to the underlying interpreter for native evaluation. This example is
demonstrated in the following code excerpt.

invokeNativeMethod: aClosure on: receiver
message: aMessage alternative: aBlock
<pPrimitive: #invokeNativeMethod:on:message:alternative:

plugin: #’Interpretation.Interpreter’>
� aBlock value

The first line of the method body activates the evaluation of the native denoted by
aMessage. If this should fail the block passed on in the argument aBlock is evalu-
ated as an alternative.

Interpreter extensionInterpreter extension

C CoreC Core

InterpreterInterpreter
overridesoverrides

implements nativelyimplements natively

nativesnatives

environmentenvironment

Figure 2.1: Native methods in the MainInterpreter and interpreter extension
through subclassing

Application code is evaluated by a new interpreter by sending the interpret:
message to the desired interpreter class with a closure representing the code as its
argument. For example, the expression

Debugger interpret: [ self runApplication ].
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will cause the closure [ self runApplication ] to be evaluated by the De-
bugger interpreter. This special interpreter is further described in Section 2.4.2.

As usual, closures encapsulate an environment and an expression object. When
passing the block [ self runApplication ] to the specialized interpreter the
environment captured by the block is installed in the interpreter. The expressions are
then evaluated in the environment of captured by the block. Since the passed expression
for the default interpreter is a closure the expression is evaluated by sending the mes-
sage value to the closure in first-class the interpreter. The following snippet shows
how the closure argument is evaluated by sending the valuemessage at the base level:

interpret: aClosure
"base level block activation"
� self send: (Message new selector: #value)

to: aClosure.

Although it might seem correct to directly evaluate the closure by invoking value on
it, this is incorrect as the closure would be evaluated at the wrong level of interpretation.
It would run at the level of the interpreter (the meta-level from the application’s point
of view) rather than at the application level as desired. Another issue with the direct
invocation is that the MOP for message activation would be surpassed.

The open design of the meta-circular interpreter lets programmers extend the run-
time with very little effort. More importantly, the extensions to the interpreter are im-
plemented within the language provided by the interpreter itself. As such they can be
implemented using any of the existing tools for the language, including development
environments, debuggers, test runners and versioning systems. Further details about
customized interpreters are given in Section 2.4.

2.2 The Evolution of Pinocchio
This section covers the different stages of the Pinocchio interpreter, from its predeces-
sor SchemeTalk to the first version of Pinocchio supporting a Scheme, on to the current
version.

2.2.1 SchemeTalk
SchemeTalk can be seen as the main origin of Pinocchio. SchemeTalk was developed
by Toon Verwaest to examine the properties of a highly dynamic language. Scheme-
Talk is an object-oriented language built on top of Scheme. It combines the syntax of
Scheme with the message send semantics of a Smalltalk system. Objects are imple-
mented as dispatch objects on top of Scheme. Given the fact that the language of the
VM and the evaluated one are very alike the interface of the VM could be built with
a unified interface. Verwaest and Renggli [12] describe that this is an important prop-
erty for simplifying the creation of new programming languages on top of an existing
VM. In a hybrid system the encapsulation of objects is not guaranteed when crossing
the barrier from the application level to the VM level. Typically the VM can directly
access the application level objects. In combination with reflective features that need
support from the underlying VM level to access certain properties this poses a certain
risk. Reflection in combination with the raw VM level access can be used to invali-
date or manually alter objects. This is not possible since the application-VM barrier
would preserve encapsulation. Generally this happens in languages abstracting away
many low-level features which might be needed for the new language. In this case the
VM can be opened using reflection [8] to manually inject new features. But since the
reflection breaks encapsulation the VM has no knowledge about the injected code.

An example of such a feature [7] is backtracking in Smalltalk without direct support
from the underlying VM. The only way to change execution in Smalltalk is to manually
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realign the stack frames. This is problematic in the case of an optimization that is based
on the assumption of a valid VM state which achieved only through encapsulation
preserving operations. In the case of manually changing the stack the optimization has
to be fully aware of that. For instance a tracing JIT will directly rely on the C stack
for speed fully omitting the use of the VM-level stack. Each time the stack is manually
managed in the application code the stack has to be reconstructed for the JITed parts.

In SchemeTalk the VM is a homogeneous system in which encapsulation cannot be
broken. Application level objects are constructed using closures which are not intro-
spectable from within the Scheme code. Due to its open design, SchemeTalk exposes
almost all types of low-level behavior in application-level code. Hence new language
features in SchemeTalk can be expressed from within the application level code. This
further implies that new language will not break encapsulation by accessing VM inter-
nal features.

Next to the fact that the VM and the interpreted language are conceptually very
close there are further interesting concepts in SchemeTalk which are notable and partly
influenced Pinocchio. As extensions to a standard Smalltalk implementation Scheme-
Talk supports class methods, a well-defined MOP for method activation and first-class
slots. Slot accesses are handled by always following the MOP and sending getter and
setter messages to the slot objects. Method activation is handled in a similar way. First
the method is looked up in the class hierarchy much like in a traditional Smalltalk
implementation. The found method is activated using an extended MOP compared
to what is available in a Smalltalk system like Pharo. Generally the found method is
passed down to the VM for activation leaving no possibility for changes from within
Smalltalk. The only MOP available for method activation in an already compiled
Smalltalk method is during the lookup by using the doesNotUnderstand: hook
whereas in SchemeTalk methods are activated upon receiving an execute message.
This way special method objects can be used with changed activation properties. It
is possible to emulate the behavior for changing the method activation by using the
perform:with: MOP of Pharo. However, this requires the code to be explicitly
changed in a very verbose manner. Further extensions to methods are meta methods.
Similar to Python’s @ decorators they allow a method to be wrapped in a meta method
adding additional behavior.

The drawback of this elegantly designed and highly flexible system is performance.
Each method activation and slot access is slowed down by several indirections of mes-
sage sends. The goal of the succeeding version of Pinocchio is to avoid these indirec-
tions for the most common cases to increase speed but still maintain a comparably high
level of flexibility.

2.2.2 Scheme Pinocchio
The first version of Pinocchio emerged from the SchemeTalk project. It addressed per-
formance issues by a reimplementation of the core system in C instead of Scheme.
Nevertheless it introduced another level of flexibility by encapsulation the evaluation
of each AST node directly on the objects themselves and not just centralized in the VM
core. This way the existing MOP for method activation and slot accesses of Scheme-
Talk could be absorbed like most of the data structures. The language executed on top
of the first Pinocchio version was Scheme. The choice was driven by the comparably
simple compiler needed to support the language. Since in SchemeTalk the evaluated
language and that of the VM are very close – and even the same on a syntactical level –
the core system is rather small. The C version needed some work to achieve the same
state and involved for instance the implementation of method context – something you
get for free when implementing the VM on top of Scheme.

By dropping some of the flexible properties of SchemeTalk a different concept of
how to dynamically modify the code execution was explored. Pinocchio complemented
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the self evaluating AST nodes with first-class interpreters. The idea behind this is to
provide custom tailored execution next to a fast base system which knows how to di-
rectly evaluate common AST nodes. The approach used in SchemeTalk enforces many
indirections in the core system, whereas the goal with the interpreter approach is to
only introduce indirections when needed. Ideally a new interpreter is only launched for
a limited time when special execution behavior is needed, for example a debugger. De-
bugging generally involves programmer interaction on each message send for instance
to allow the programmer to step through the code. To do so the running interpreter
needs to support these kinds of stepping actions. However it would be wasteful to do
part of this even in normal execution mode. Whereas a traditional VM needs a spe-
cial hard-coded hook to support debugging, in Pinocchio you would launch a debugger
interpreter. The debugger shares most of the code with the default implementation
but adds an indirection upon each message send. Once debugging is finished and the
control flow leaves the debugger interpreter, execution resumes to the normal mode.

From a developer point of view there are several pros and cons to be mentioned.
Compiling the core system for instance, involved exporting C code that builds up the
AST nodes. This worked with a simple compiler outputting in a verbose fashion very
simple C statements. Hence at that point module based compilation was not possible
– only the whole system could be compiled at once. Compared to the next version of
Pinocchio the system was still rather small, thus the single file approach was not that
problematic. However locating errors was more cumbersome as it is not directly visible
to which class or method a certain C statement belongs. However a nice fact about this
version of Pinocchio is that natives could be directly written with inlined Scheme code.
The following code illustrates this feature:

1 ((eval ()
2 "

call_object ast_call = context->self.ast_call;
4 object env = context->env;

context->code = &ast_call_invoke_env;
6 "

(send ast_call->target eval)
8 "

inc();
10 ")

On line 7 the application-level message eval is sent to the object at the C location
ast_call->target. The inlined code would then be fully expanded by the com-
piler to C code which builds up the corresponding AST nodes. Thus the native code
was rather compact and only the crucial parts had to be written in C avoiding the cum-
bersome manual creation of AST nodes. A rather unlucky design choice was the reg-
istration of new natives in the core system. Adding a new native involved changing
sources in 3 different locations.

Another exceptional mechanism to be mentioned is how arguments are handled in
the first version of Pinocchio. The Scheme version featured call-by-reference which is
not possible anymore in the Smalltalk version of Pinocchio. Rather than letting the VM
evaluate arguments directly the raw expressions were passed to the method activation.
Each method had to evaluate the arguments on its own. Although certain shortcuts
are provided the main responsibility stayed on the method body itself. The methods
in Scheme Pinocchio are split up into two distinct parts. The first part handles the
argument evaluation in the old context (the call site) and a second part creating the
new context and evaluating the method body in it. This was changed later on in the
Smalltalk version of Pinocchio where argument evaluation is directly handled by the
VM. Conceptually this was a nice feature to have but introduced additional overhead
in most cases. Since in the general case there is no need to interfere with the method
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evaluation. Thus the default case was hard-coded in the VM.
Implementation-wise the first Pinocchio VM had several features which took a long

time to reappear in the following versions. The most important one is that the Scheme
version could handle exceptions quite early thus allowing for writing proper test cases.
This allowed us to write test cases directly in Scheme code and properly handle asser-
tions. In the following Smalltalk version, Pinocchio only C level assertions could be
used for a long time. This is clearly visible in the lack of unit tests for the core system.

2.2.3 Smalltalk Pinocchio
After implementing a working Scheme on top of the first Pinocchio VM we decided to
implement a second language interface for Smalltalk. However the syntax of Smalltalk
requires a more elaborate parser and compiler than for Scheme. During the develop-
ment of the Smalltalk the shortcomings of the Scheme Pinocchio became obvious. A
too flexible system has not only advantages and in this case might even slow down the
development. The main drawbacks already mentioned in the previous subsection are
the registration mechanism for new classes spread over 3 different source locations and
a complex argument evaluation mechanism. Hence we started already in parallel on a
second version of Pinocchio to overcome the speed limitations and the design issues
of the Scheme version. The main difference to the Scheme version are how the ASTs
are evaluated. Instead of directly allowing special behavior to be installed on the AST
nodes themselves we hard coded the most common cases. The following excerpt shows
the main dispatch for AST evaluation.

1 void send_eval(Object exp, Type_Class class, Array args)
2 {

EVAL_IF(AST_Assign)
4 EVAL_IF(AST_Constant)

EVAL_IF(AST_Variable)
6 EVAL_IF(AST_Self)

EVAL_IF(AST_Block)
8 EVAL_IF(Slot_Slot)

EVAL_IF(Slot_UIntSlot)
10 EVAL_IF(Organization_ClassReference)

12 //MOP: visit the AST node with the current interpreter
Type_Class_direct_dispatch(exp, class,

14 SMB_accept_, args);
}

The EVAL_IF macros expand to simple type checks and a call to the corresponding
AST evaluation function in C. The expanded version of EVAL_IF(AST_Assign)
would look like the following snippet:

1 if (class == AST_Assign) {
AST_Assign_eval(exp, args);

3 return;
}

The last statement in the larger example above is the fallback mode for unknown or
customized AST objects. It activates the AST node using the current interpreter – an
AST visitor – by sending the accept: message with the current AST node as argu-
ment. Since the behavior of certain AST nodes is known upfront the evaluation speed
can be significantly improved by shortcutting the AST visitor/interpreter and directly
calling the proper C function. Hence we avoid several layers of indirection introduced
by the AST visitor/interpreter but lose some flexibility as we can no longer change the
behavior of the core AST nodes. Custom AST nodes are still supported by writing a
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custom AST visitor with additional visitor methods for the custom node types. How-
ever this approach clearly limits the capability of the main interpreter compared to the
previous version of Pinocchio. New kinds of AST nodes can no longer be introduced
at any point in time but are coupled to a specific type of interpreter. However by stor-
ing the evaluation behavior of the AST nodes centralized in an interpreter the general
evaluation performance is greatly improved.

Early versions of the Smalltalk version still supported custom AST nodes through a
special MOP. The default visitor could send the eval message to unknown AST nodes
and thus fully support the old evaluation scheme and still be fast in the common cases.
In later versions of Pinocchio the support for custom AST nodes was dropped due to
introduction of opcodes. A possible solution for custom AST nodes is based on the
idea of using the nodes themselves as code generators. The custom AST nodes could
provide a template for the visitor methods in the interpreters. This way the behavior
of all AST nodes, custom and known, could be defined directly on the nodes without a
secondary or parallel implementation in an interpreter.

Even though the Smalltalk version is already much faster than its Scheme-based
predecessor it was still around 10 times slower than a comparable Smalltalk implemen-
tation like Pharo. The visitor-based AST evaluation is expensive as it requires many
unnecessary stack operations to evaluation the tree-based structure. The next version
of Pinocchio explicitly addresses this issue by using opcodes as main interpretation
structure which flattens out the indirections introduced by the AST nodes.

2.2.4 Pinocchio with Opcodes
During a phase where the progress of Pinocchio was focused on performance we tried
to improve speed by creating more and more native methods. The most common ex-
ample where this approach works well is the dictionaries since the public interface of
the class is minimal. Thus a great part can be implemented in C resulting in significant
speedups. But we also tried to improve performance for instance on the boolean class
by directly implementing native versions of ifTrue: or ifFalse:. This comes
with mainly two disadvantages. Firstly we have to program in C and may abandon
a bit the dynamic world of Smalltalk and secondly we have two versions of the same
code. Resuming the example of dictionaries, on several occasions the C version did not
incorporate the newest design choices made in the Smalltalk version. This was mostly
due to the imposed overhead of programming and debugging in C. These examples
should strengthen the argument that natives are only useful for either very performance
critical libraries or general data structures with a substantial part of the functionality
being hidden behind a simple interface. Focusing on performance we brought much
attention on the evaluation of ASTs. Of course evaluating the ASTs directly with a
visitor has significant overhead. Mostly due to the treelike nature of ASTs, evaluation
cannot be directly flattened out and requires temporary values to complete evaluation.
As an example we take the simple binary message send +. First the left-hand side is
evaluated and pushed on the stack followed by the same operation for the right-hand
side. Eventually the two arguments are popped from the stack, summed up and the
sum is pushed again on the stack for further usage. Generally speaking there are al-
ways multiple stack operations necessary to keep track of the current position within
the AST evaluation. However this is not the case with bytecodes as the control flow
has already been flattened as for instance in loops. Loops can be performed by directly
jumping into a list of statements whereas the same behavior using pure ASTs involves
many block activations and superfluous stack operations.

Hence as the performance increase was stalled and no further optimization was in
sight we decided to build an opcode compiler and evaluator. It is important to say that
Pinocchio does not use bytecodes as the only evaluation structure. Rather we focused
on a dual system that is compatible with the existing AST visitor. This is achieved by
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keeping both data structures alive next to each other. Each method contains the original
ASTs – used for inspection and refactoring – and a list of opcodes and values for fast
evaluation. A second compiler step transforms the original ASTs into opcodes. For
instance a common send AST is transformed into a send opcode with the original send
object in the next position. When the send opcode is invoked it takes the send AST out
of the next position and evaluates it in the usual way. Furthermore we optimize special
boolean messages like ifTrue: or looping constructs like to:by:do: where op-
code evaluation outperforms AST evaluation by far. At the moment the following send
instructions are optimized:

• ifTrue:
• ifFalse:
• ifTrue:ifFalse:
• ifFalse:ifTrue:
• to:by:do:
• to:do:

By using special opcodes for the most common sends and constants the number of na-
tives could be drastically shrunken. The native methods mentioned previously for the
booleans are no longer needed. Even though we removed some natives the opcode exe-
cution is still significantly faster. Directly traversing a list is much faster than following
the indirections introduced by an AST visitor and avoids multiple stack operations to
track the current location in the AST tree. By using opcodes and certain simple opti-
mizations we could achieve an overall speedup of a factor 10. The specific speedups
for the different optimizations used with opcodes is discussed on page Section 4.1.3.

Pinocchio has been built to provide a flexible high-level language runtime which is
extendable by first-class interpreters and a well-defined MOP. This section covers the
separate extension mechanisms in more detail. The first subsection covers the MOP of
Pinocchio which is for the most part what Smalltalk does. The second part covers the
creation of new interpreters.

It is important to list these different extension mechanisms separately in order to
point out several optimization issues. Generally the more flexibility is added to a lan-
guage the more indirections during evaluation are introduced. This can affect the per-
formance of such a high-level system in a negative way.

2.3 Pinocchio’s Metaobject Protocol
Aside from providing access to user-definable and first-class interpreters, Pinocchio
provides a default metaobject protocol that is sufficient for many reflective use cases.
From the point of view of the programmer, the main interpreter is written as a meta-
circular AST visitor whose methods can be overwritten to change standard evaluation.
Another way to add new semantics to the language is by replacing standard application
constructs such as methods with custom metaobjects following the same metaobject
protocol. The following extension points are noteworthy.

2.3.1 First-class AST nodes
New nodes can be defined by following the visitor protocol. The new nodes can be
generated by extending the default parser and compiler. This can for example be used
to provide mutable AST nodes or link objects for partial behavioral reflection. As a
second step additional visitor methods can be provided in a custom interpreter class
to deal with the new AST nodes. The following output shows a live inspection in a
running Pinocchio to give an overview of the AST features:
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> methodClosure := 1 class methodDict at: #’-’
MethodClosure

code: NativeMethod
selector: #’-’
host: Kernel.Number.SmallInteger

> method := methodClosure code
NativeMethod

params: Array
locals: Array
package: Nil
annotations: Array
info: Info
threaded: ThreadedCode
1: Send
2: Self

> method annotations first
Annotation

selector: #’pPrimitive:plugin:’
1: #’-’
2: #’Number.SmallInt’

> method at: 1
Send

cache: InlineCache
message: #’pinocchioPrimitiveFailed’
receiver: Self

> method annotations
Array

1: Annotation

AST nodes were subject to several bigger optimizations during the development of
Pinocchio. Initially the AST nodes encapsulated the full evaluation behavior. From an
object-oriented point of view this was a very elegant solution in SchemeTalk. However
this design introduced too much overhead. The next versions of Pinocchio directly
hard-coded the behavior for the most common AST nodes thus avoiding most of the
indirections.

2.3.2 Does not understand
Following Smalltalk-80, our core interpreter sends the doesNotUnderstand: mes-
sage to any object that does not implement a method corresponding to the selector of
a message sent to it. This is an important feature to make Pinocchio compatible with
existing Smalltalk code.

Interpreter>>send: aMessage to: receiver class: class
| method |
method := self lookupSelector: aMessage selector

in: class.
method ifNil: [

� self sendDoesNotUnderstandFor: aMessage
to: receiver ].

� method
accept: self
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on: receiver
message: aMessage

2.3.3 First-class slots
Unlike most Smalltalk systems which rely on magic numbers to encode the layout of
instances, Pinocchio’s class layouts are described using layout metaobjects. Magic-
numbers used in Smalltalk are a bad unification of the structures used internally in the
VM. Since there is almost a one-to-one mapping first-class objects could be used as
well. Especially in a system that claims that everything is an object it is unfavorable
to draw the line between high-level objects and VM internal values already at that
level. Pinocchio shows that is possible to provide first-class objects even for the layout.
The following session gives an example of inspecting the layout of a SmallInt, a
String, an Array and a Class:

> 1 class layout
IntLayout
> ’a’ class layout
WordsLayout
> Collection.Array layout
ArrayLayout ()
> 1 class class layout
ObjectLayout

1: Slot(layout)
2: Slot(superclass)
3: Slot(methods)
4: Slot(name)
5: Slot(package)

These metaobjects further rely on slot metaobjects that define the semantics of instance
variables. Whenever a reference to an instance variable is made in the application’s
source code the compiler directly inserts the corresponding slot metaobject into the
resulting method’s AST. The following session shows how to access the first-class slots
from the Dictionary layout:

> Collection.Dictionary layout
ObjectLayout

1: Slot(size)
2: Slot(maxLinear)
3: Slot(ratio)
4: Slot(buckets)
5: Slot(linear)

> Collection.Dictionary layout at: 1
Slot(size)

index: 0
name: #’size’
package: Nil

Every slot metaobject can override the AST node evaluation protocol to provide custom
semantics for retrieving the instance variable. Custom semantics for the assignment to
instance variables are implemented by overriding the protocol provided by the inter-
pretation of the Assign AST node. The default implementation of this protocol on
Slot is given in the following example:

Slot>>assign: value on: anObject
<pPrimitive: #assign:on: plugin: #’Slot.Slot’>
self pinocchioPrimitiveFailed
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Slot>>readFrom: anObject
<pPrimitive: #readFrom: plugin: #’Slot.Slot’>
self pinocchioPrimitiveFailed

The default implementation relies on natives to directly access the values stored by the
slot object.

By providing explicit layout and slot metaobjects, applications can easily decide
what kinds of layout and accessing semantics to attach to specific classes. Special
behavior such as first-class relationships or singletons can cleanly be factored out into
slot libraries to avoid cluttering of the code. Instead of repeating code segments – for
instance for the singleton pattern – a special slot class can be reused.

This slot only instantiates an object on the first access and returns the same object
from this point on. Of course to fully stick with the singleton pattern writing to this
slot has to be prohibited by overwriting the corresponding assign:on: method.

At the moment slots are only used as descriptors in the layout and don’t add be-
havior at runtime. However, future versions of Pinocchio should provide a library of
reusable slot implementations. Similar to the use of natives, the performance of the
default implementations should stay untouched and only the override versions should
be evaluated meta-circularly.

2.4 First-class Interpreters
The MOPs presented in the previous Section 2.3 are quite standard. Although in current
Smalltalk implementations only the Does-not-understand MOP is available. Smalltalk
features first-class AST nodes but they are not used as an interpretation source but
mostly for refactoring. First-class slots are also a rare feature in most modern high-
level languages but a widely known concept in the language community [11]. But
next to the three extension mechanisms presented earlier Pinocchio provides access
to the evaluation by using first-class interpreters. The interpreters are AST visitors
which allow for customization of most of the aspects of AST evaluation. Since the
interpreters are first-class they can be treated like any other object, subclassing and
runtime instantiation can be used normally. First-class interpreters emerged from its
predecessor Scheme Pinocchio which featured self-evaluating AST nodes. In Scheme
Pinocchio it is possible to introduce new types of AST nodes with different evaluation
behavior into a running system. There was no interpreter controlling the evaluation.
However this design introduced too much overhead and eventually was replaced by an
interpreter based approach.

Although there is a core interpreter implemented in C it can be extended at runtime
by subclassing. These first-class interpreters provide an interface to the evaluation of
all the AST nodes by using the visitor pattern. By subclassing it is possible to introduce
evaluation behavior for different kinds of AST nodes by having custom visitor methods.
Thus the interpreter-based approach is as flexible as the original version with self-
evaluating AST nodes. However instead of supporting any type of AST nodes in the
general case Pinocchio only knows a certain set of AST nodes at a time. In the default
case these are the nodes produced by the Pinocchio compiler. If a different set of
AST nodes should be supported a new customized interpreter has to be instantiated
and run on top of the existing one. This way each newly launched interpreter uses the
interpreter below for its evaluation.

2.4.1 Minimizing the Interpreter Stack
The approach of starting new interpreters on top of other interpreters is similar to, albeit
the inverse of, the tower of first-class interpreters in Refci [10]. This has the advantage
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that we can use the same approach to minimize the height of the tower that is actually
running at each point in time. For example, since the MainInterpreter does not
alter the interpretation behavior of the standard interpreter, the evaluation of the appli-
cation can happen fully at the C level, dropping the MainInterpreter from the
active interpreter stack. It is important to never run on a stack bigger than necessary,
since each extra level of interpretation has a steep price in terms of performance. For
instance the Debugger interpreter introduces an overhead of around 6 message sends
for each normal message send in Pinocchio. Thus running two debuggers on top of
each other is already 36 times slower than the default interpreter.

In Pinocchio the height of the tower is pragmatically minimized by making the
whole definition of the standard interpreter available as a fine-grained set of natives
installed on the Interpreter class (see Figure 2.1). Only the extensions – the
override visitor methods – to the interpreter are evaluated meta-circularly.

Since natives are able to send messages back to the application level, every call
to invokeNative has to store the interpreter that triggered the actual native. Each
time a native wants to send back a message on the application level the original stack of
interpreters has to be restored. An example of such a case is the native implementation
of the at: method installed on dictionaries. This method needs to be able to request
the hash value of a key, and later compare it with the keys in the dictionary using the =
message. Both methods are within the control flow of the native evaluation of the at:
method but need to be evaluated on the application level. To evaluate both methods
at the right level of interpretation, the stack of interpreters that was active before the
at: was invoked needs to be reconstructed before the evaluation of each contained
application level message is started.

2.4.2 An example Interpreter: The Pinocchio Debugger
So far the capability of Pinocchio to create new kinds of interpreters has only been
discussed in a theoretical manner. This section covers in more detail the implementa-
tion of the Pinocchio debugger – a customized interpreter. Pinocchio does not feature
a special VM mode for debugging but rather takes advantage of the first-class inter-
preters. Remember that in Pinocchio debugging is enabled by passing a statement to
the Debugger’s interpret: method – as shown in the following statement:

Debugger interpret: [ ’a’ + 1 ]

By sending interpret to the Debugger class a new Debugger is instantiated and
the control is passed on to this new interpreter. As mentioned before, the passed-in
block captures an environment thus all the external variables are still accessible. In
the following example the variable a is defined outside the interpreted block. Nev-
ertheless, the value of a is properly used during the evaluation of [a + 1] in the
Debugger. Furthermore the following example shows the full debug trace of all the
message sends used for the evaluation of [a + 1]:

> a := ’a’
’a’
> Debugger interpret: [ a + 1 ]
BlockClosure>>#value (0)
pidb> String>>#+ (1)
pidb> String>>#doesNotUnderstand: (1)
pidb> DoesNotUnderstand class>>#new (0)
pidb> ObjectLayout>>#instantiate: (1)
pidb> ObjectLayout>>#basicInstantiate: (1)
pidb> ObjectLayout>>#initialize: (1)
pidb> DoesNotUnderstand>>#initialize (0)
pidb> BlockClosure>>#value: (1)
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pidb> DoesNotUnderstand>>#message: (1)
pidb> DoesNotUnderstand>>#receiver: (1)
pidb> DoesNotUnderstand>>#signal (0)
pidb> Exception class>>#throw: (1)
pidb> Exception class>>#handler (0)
pidb> Continue>>#escape: (1)
pidb>
’a’ does not understand: #+ (1)
>

The abstract principle of a debugger is to run custom actions – in this case a shell
– on each message send. We decided to abstract the implementation of handling cus-
tom actions on each message send away by creating an abstract SteppingInter-
preter. Figure 2.2 shows an overview of this implementation. The Stepping-

interpret:
send:to:class:
visitSend:
visit...

environment
Interpreter

send:to:class:
defaultStepBlock

Stepping
stepBlock

defaultStepBlock

Debugger
 

Figure 2.2: UML Diagram of the Debugger related Classes

Interpreter overwrites the visitor methods for handling the message send so that
custom blocks can be executed.

SteppingInterpreter>>send: message
to: receiver
class: class

� self
checkStep: receiver
class: class
message: message
do: [ super

send: message
to: receiver
class: class ]

The method checkStep:class:message:do: simply forwards all its arguments
to the stepBlock. The default implementation of this stepping block simply executes
the action passed in, which means that it forwards the message evaluation to the default
implementation in the super class.

defaultStepBlock
� [ :receiver :class :aMessage :action | action value ]
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For the Debugger the evaluation of the passed in action is deferred. Instead a shell
is launched providing basic functions to inspect the current values and print the stack
trace.

defaultStepBlock
� [ :receiver :class :message :action |

self print: receiver class name, ’>>’, message.
self debugShellWithAction: action ].

2.4.3 Extending the Debugger
As a case study we implement a parallel debugger. Unlike the normal debugger, which
only evaluates one block at a time, this special kinds of debugger takes two blocks and
interprets them in parallel comparing the state of evaluation at each step.

Consider the following failing test case that we encountered during the develop-
ment of Pinocchio:

bucket := SetBucket new.
bucket at: #key put: ’value’.

self assert: (bucket includes: #key).
self assert: (bucket includes: ’key’).

The second assertion (last line) fails. This test was documenting a bug that we had
difficulties to track down. Symbols and strings are considered equal (#key = ’key’)
in Smalltalk and hence the second assertion should pass too.

Using the basic debugger described in Section 2.4.2 to find the difference in execu-
tion of the two assertions is cumbersome. The manual approach would be to launch a
separate debugger for each of the assertions and step through the code until the states
of the tests differ.

An effective solution for this specific problem is to create a new specialized debug-
ger, a ParallelDebugger. The use of the ParallelDebugger for the previ-
ously mentioned test case looks as follows:

ParallelDebugger interpret:
(Array

with: [ bucket includes: #key ]
with: [ bucket includes: ’key’ ])

The debugger runs the given blocks in parallel up to the point where the executions
start to differ:

SetBucket>>#includes:
SetBucket>>#do:

SmallInt(1)>>#to:do:
BlockClosure>>#whileTrue:

SmallInt(1)>>#<=
SmallInt(1)>>#>
--> false
false>>#not
--> true

true>>#ifTrue:
SetBucket>>#at:
--> #’key’
Symbol(#’key’)>>#==
1) (#’key’)--> true
2) (’key’) --> false

Listing 2.1: Parallel debugger trace
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Looking at this trace immediately reveals that both traces differ upon a strict equality
check on a symbol. In the first case the comparison returns true, in the second case
false. SetBucket incorrectly uses == (pointer equality) rather than = to compare
keys, rendering strings and symbols distinct. The ParallelDebugger provides the
minimal output needed to quickly identify the root cause of the problem.

interpret:
send:to:class:
visitSend:
visit...

environment
Interpreter

send:to:class:
defaultStepBlock

Stepping
stepBlock

defaultStepBlock
switchThread
interpret:

threads
states

Parallel

send:to:class:
visitBlock:
...

Alias

main:
interpretFile:
shell

Main

defaultStepBlock

Debugger
 

Figure 2.3: A Pinocchio Interpreter hierarchy

Just like the normal debugger (described in Section 2.4.2) the parallel debugger is
built as a subclass of the stepping interpreter (see Figure 2.3). The main difference is
that the stepping block is not used to control a single execution trace but to handle the
interleaved execution of the given number of closures to evaluate. We use the first-class
continuations of Pinocchio to run the closures in parallel as threads, switching between
the threads at each message send. Whenever we reach the end of the list of threads,
we compare the state of all the routines and continue with the first thread. The imple-
mentation of the parallel debugger is similar to the implementation of coroutines using
continuations [5] but with automatic thread switching before and after each message
send.

The code to implement the parallel debugger is shown below. The interpret:
method initiates the interpretation. It starts by using its initialize: method (2) to
create a number of threads to interpret the closures to be interpreted in parallel. Next it
starts a loop (3) that will lazily start a thread for each closure. This is done by capturing
the current continuation inside the loop (4), and using this continuation to initialize the
next thread (9). Continuation on: captures the current continuation and passes it
in as an argument to the block that follows. Here, the current continuation is bound to
startNext. If there is a thread following the current one (7), then the next thread’s
continuation and context are initialized. The interpreter then proceeds to interpret the
closure in the current thread (13), which will eventually pass control to the next thread,
or return, thus terminating all threads.
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1 interpret: closures
self initialize: closures size.

3 closures do: [ :aClosure |
4 Continuation on: [ :startNext |
5 " Pre-install a thread that starts

evaluating the next closure. (a) "
7 threads ifHasNext: [ :thread |
8 thread
9 continuation: startNext;

10 context: nil ].
11 " Leave the debugger when the first

thread actually returns. "
13 � super interpret: aClosure ]].

The parallel debugger uses two instances of StatefulArray to manage the debug-
ger’s state. A StatefulArray is simply an array that maintains a pointer to keep
track of the currently selected entry. At each invocation of next, the pointer advances.
After reaching the end of the list, the pointer returns to the first element. The threads
array keeps track of the currently executing thread, and the states array keeps track
of the value computed by the current thread.

14 initialize: size
threads := StatefulArray new: size.

16 states := StatefulArray new: size.
1 to: size do: [ :index |

18 threads at: index put: Thread new ].

Just like the normal debugger, the execution of the parallel debugger is handled by the
stepping interpreter and governed by defaultStepBlock:

19 defaultStepBlock
20 � [ :receiver :class :message :action |

states put: receiver @ class @ message.
22 self showInvocation.
23 " Switch to compare all invocations. (b) "
24 self switchThread.
25 states put: action value.
26 self showReturn.

" Switch to compare all return values. (e) "
28 self switchThread.
29 " Return the result of the invocation. (f) "
30 states current ].

Whenever the current thread sends a message, the block above is activated. It saves
the invocation information into the states array (21), shows some information about the
invocation to the user (22), and switches to the next thread (24).

When the parallel debugger returns to the thread, the actual message send is per-
formed and the result of the message send is stored back as the current state of the
thread (25). The next thread is then activated again (28).

Finally when the parallel debugger returns to the thread, the result of the method
invocation that activated this particular block is returned from the block (30).

As we have seen above, each thread stores the current continuation and its context.
Threads are switched by passing control from the current thread to the next thread:

31 switchThread
32 | thread |

Continuation on: [ :aContinuation |
34 " Store the current thread."
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threads current
36 continuation: aContinuation;

context: context.
38 " Prepare the next thread. "

states next.
40 thread := threads next.

" After having stepped through all threads,
42 compare all states to the first. (c) "
43 threads ifAtFirst: [
44 states do: [:each|
45 self assert: (each == states current) ]].
46 " Resume the next thread (d) "
47 context := thread context.
48 thread continuation continue ].

First, the current thread captures the current continuation and context and stores them
(37). (NB: Note that context is an instance variable of the interpreter (see Figure
2.3). Then the arrays containing the states and the threads are advanced to the next
position (39). If all threads have advanced one step (43), the states are checked for
equality (44). Finally the next thread is resumed by restoring its context and continuing
the continuation of that thread (48).

In Figure 2.4 we can see the resulting behavior of the parallel debugger. At point
(a) (line 6 in the interpret: method of the parallel debugger), the two threads are
installed. We then skip ahead to point in the trace (Listing 2.1) where the results of
retrieving the keys from the first bucket are compared to the actual key. The invocation
true ifTrue: ... is displayed and control switches to the second thread at
point (b / line 23). The second thread switches back when it reaches the same point
(b). Since we now have returned to the first thread, the invocations are compared (c
/ line 42) to see if they are the same. This means that the receivers (both true),
the message (ifTrue:) and the code of the argument blocks are compared. The
invocations match, so the first thread is resumed (d / line 46). The interpreter is now
recursively invoked to retrieve the first element in the bucket. Again the invocations
match. Now the results of the invocations are computed and saved, control is returned
(e / 27), and the results are compared. The results match, so they are returned (f / 29),
and the interpreter again invokes itself recursively to check if the retrieved key matches
the expected one. The invocations match (since #’key’ = ’key’ in Smalltalk), but
the results of the invocations do not match (since #’key’ == ’key’ does not hold).

Evaluation The parallel debugger, like the serial debugger presented in Section 2.4,
directly reuses the object model of the underlying base level interpreter. As a conse-
quence, no upping or downing is required, and objects can freely flow between the base
and meta levels.

Even though interpreters are defined recursively as AST visitors, this poses no prob-
lem for expressing non-local flow of control. Threads are easily simulated by capturing
the needed continuations and explicitly transferring control when needed. The parallel
debugger is only possible due to the support for continuations in Pinocchio. Without
continuations we could not switch between the execution of multiple closures. It would
only be possible to continue the execution of the next closure from inside the current
one.

2.5 Summary
In the first part of this chapter we discuss the background and certain details of the
Smalltalk based high-level language VM called Pinocchio. In Chapter 4 we will use
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Figure 2.4: Thread-based parallel execution of two code parts in the Parallel-
Debugger.

Pinocchio to discuss in detail several optimizations. Pinocchio is based on the early
Scheme dialect with Smalltalk semantics called SchemeTalk presented in Section 2.2.1.
SchemeTalk is not classical VM based language implementation but rather a macro-
based extension to a standard Scheme. Since the VM definition language and the in-
terpreted language are conceptually very close objects can flow between both levels
without breaking encapsulation. Based on the work of SchemeTalk the first version of
Pinocchio was developed. Scheme Pinocchio presented in Section 2.2.2 featured self-
evaluating AST nodes which were later complemented with first-class interpreters. Due
to the high language-level flexibility with the concept of self-evaluating AST nodes the
performance expectations were not met. In the next version of Pinocchio the per-
formance issues and the complex implementation of the predecessor were addressed.
In Smalltalk Pinocchio presented in Section 2.2.3 performance has been increased by
manually hard coding the evaluation of common AST nodes. To further increase speed
the visitor based evaluation approach has been complemented by opcodes. Section
2.2.4 describes how an opcode-based evaluation helps to avoid unnecessary stack op-
erations needed during visitor-based AST evaluation.

The second part of this chapter focuses on the different extension mechanisms of
the current Pinocchio implementation. Next to standard Smalltalk MOPs Pinocchio
features first-class AST nodes and first-class interpreters. Using first-class interpreters
instead of self-evaluating AST nodes improves the performance of code that relies on
standard AST nodes.

The shift from the visitor-based evaluation to the opcode-based approach has been a
significant performance improvement in the history of Pinocchio. But next to this major
change several smaller optimizations have been applied. Later in this thesis in Chapter
4 five optimizations are discussed in more detail. In order to properly understand the
effect of these optimizations we have to write and evaluate benchmarks. There are
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three key aspects which have to be respected when writing and evaluating benchmarks:
reproducibility, statistical sound evaluation and the focus on micro benchmarks. The
tools and techniques to respect these aspects are presented in the following chapter.
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3
Benchmarking

To properly evaluate the performance of a computer program several measures have to
be taken into account. How should a benchmark be run and how should the results be
presented? What benchmarks should be chosen to produce meaningful results?

For building a fast VM it is crucial to have a solid unit test and furthermore a solid
benchmark coverage. Benchmarks are used to control the performance development
of a VM. Generally many programmers tend to use simple scripts with limited appli-
cability to evaluate the benchmark results. Furthermore the bigger part of benchmark
results presented in computer science lack proper scientific presentation and are hard
to reproduce. Only a fraction of the papers displays the average of all benchmark runs
and a confidence interval [3]. Especially the confidence interval is fundamental in or-
der to provide a measurement of the result’s qualities. Properly written benchmarks
are reproducible and help to locate bottlenecks in a VM implementation. Hence we
encourage the use of a benchmarking framework to produce reliable and trustworthy
results.

The first subsection explains the statistical background of benchmarks and explains
the basic concepts of standard deviation and confidence intervals. In the next section
our benchmarking framework PBenchmark is presented which follows the mathe-
matical background presented in the previous subsection. The benchmarking frame-
work provides an easy way of writing reproducible benchmarks of application level
code much like unit tests. However in order to inspect low-level details of the VM
at runtime other tools are required. Hence we present DTrace a tool developed to
inspect C binaries at runtime with minimal computational overhead.
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3.1 Statistic Evaluation
All the benchmarks provided in this thesis are performed using our own benchmarking
suite. Similar to unit tests simple benchmark methods are defined and run at least 30
times. Since this is considered to be a high number of probes [3], a Gaussian normal
distribution around the average of the results can be assumed. Figure 3.1 shows a visual
representation of equation 3.1 with x̄ = 0 and σ = 1.

f(x) =
1√

2πσ2
e−

(x−x̄)2

2σ2 (3.1)

-8 -7 -6 -5 5 6 7 8-4 -3 -2 -1 0 1 2 3 4

0.5

68.27%68.27%

0.250.25

95.45%95.45%

Figure 3.1: Gaussian normal distribution for x̄ = 0 and σ = 1

This curve is used to calculate the quality of the benchmark samples. Generally a
certain variation around the average of the sample is given together with the percentage
of samples lying in this region. Depending on this so-called confidence interval the
percentage or significance level changes. In the example in Figure 3.1 the percentage
for the interval [−1, 1] is 68.27%. If the confidence interval is increased the percentage
of covered samples rises as depicted with the [−2, 2] interval.

In the case of benchmark evaluation it is the ultimate goal to keep the confidence
interval small and the significance level as high as possible. This can be either achieved
by increasing the number of samples or reducing the variation of the samples. In the
second case this means to avoid systematic sampling errors. For instance this can
be achieved by using a dedicated benchmarking machine which does not pollute the
benchmark results by irregular resource consumption by background processes.

The confidence interval can then easily be calculated from the average x̄ and the
standard deviation σ and the number of samples n.

x̄ =

∑n
i=1 xi
n

, σ =

√∑n
i=1(xi − x̄)2

n
(3.2)

The confidence interval [c1, c2] defined by the significance level α is calculated as
follows:

c1,2 = x̄± z · σ, z = erf−1(α)
√

2 (3.3)

With erf−1 being the inverse of the error function. The factor z describes the relation
between the standard deviation σ, the confidence interval [c1, c2] and the significance
level α. Choosing the confidence interval [x̄ − σ, x̄ + σ] and thus a z = 1 results
in a significance level of about 68%. This means that with a 68% probability the
next sample is going to be in the provided confidence interval. 3.4 shows the relation
between the given values.

α = erf
(

z√
2

)
(3.4)
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Common values for z and the significance level α are shown in Table 3.1. If not men-
tioned otherwise, all the benchmarks are run with at least 30 probes and a significance
level of 90% is used.

z α = erf(z · 2−1/2)

1.000 68.27%

1.282 80.00%

1.645 90.00%

1.960 95.00%

2.000 95.45%

2.576 99.00%

3.000 99.73%

Table 3.1: Common values for the significance level α and the corresponding factor z
of the standard deviation σ

3.2 The PBenchmark Framework
To run the different benchmarks we created a small benchmarking framework in Smalltalk
called PBenchmark. It allows you to easily write benchmarks in the same manner as
you would write unit tests. The framework follows closely the statistics background
mentioned previously in Section 3.1.

3.2.1 Related Benchmarking Frameworks
To compare the performance of two different language implementations it is crucial
to provide fair and balanced benchmarks. Generally there is no such thing as a single
benchmark fulfilling this requirement. A better way to solve this issue is to define a
set of common problems addressed in both languages and compare these results pair-
wise. This is the approach taken for instance by the PyPy project to check their current
performance status. The results of around 25 different benchmarks for Python are run
on nightly basis and presented on their website1. A similar but somewhat more com-
plete approach is taken by the Computer Language Benchmark Game2. A matrix of
results for approximately 30 languages, around 10 benchmarks and several OS configu-
rations are presented. The benchmarks mostly solve mathematical problems addressed
in game engines. Such a detailed evaluation provides the results to decide upon the
speed of a language in a very specific task. Since the benchmarks are implemented
slightly differently for each language they can take advantage of specific language
features. This is clearly not an objective statement to compare the performance of a
language in general. An important lesson learnt from the Computer Language Bench-
mark Game is that almost every benchmark is flawed. The only way to overcome this
limitation is to clearly state what is tested under which exact conditions. Only under
these circumstances is it possible to provide reproducible results.

3.2.2 Implementation Details of PBenchmark
The two main classes of the framework are the PBenchmarkRun and the PBench-
markSuite. The class Run is an extended storage class tracking the execution
times/probes of a single benchmark. Furthermore it provides a simple interface to

1http://speed.pypy.org
2http://shootout.alioth.debian.org
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extract the statistical relevant information out of the calculated probes. The other class
Suite provides an interface to run several benchmarks within a single class. Again
this is very similar to a TestSuite in SUnit. Selectors prefixed with bench are
considered to be benchmarks. When running a benchmark suite for each selector a Run
instance is created which then handles the evaluation of this particular benchmark. In
SUnit this would correspond to a TestResult object.

confidenceVariance
probeCount
PAbstractBenchmark

run
runProbe
average
stdev

PBenchmarkRun
target
selector
probes
base

PBenchmarkSuite

run
runAll
run: aSelector
runBaseBenchmark
setUp
tearDown

runs

Figure 3.2: UML Diagram for the PBenchmark Framework

The benchmarking framework is heavily used in the dictionary evaluations dis-
cussed on page 35. A base benchmark suite is created hosting the different benchmarks.
The base suite then is subclassed to specialize the type of dictionary to be used.

While using the PBenchmark framework for preparing the dictionary benchmarks
we tried to create a flexible way of using different types of hashes. The most flexi-
ble way in this case was to use a special key object where we could manually set the
hashes. The previous versions of the benchmark simply used SmallInts as keys which
did not pose significant performance overhead compared to the time spent in the dic-
tionary code itself. But with the more complex key objects which are not optimized
specially by the VM the benchmark results were no longer comparable to the original
ones using SmallInts. A way to solve this issue manually is to calculate the overhead
of using the key objects by subtracting the runtime from a benchmark using SmallInts.
For an initial setup we made sure that both the SmallInts and the created key objects
produce the same hashes. Since both benchmarks would use the same hash values we
could assure that the time spent in the dictionary code is the same. Thus by calculating
the difference of the two benchmarks the resulting time represents the overhead of the
key objects versus the SmallInts. Of course this involves several steps of manual work:
creating a comparable base benchmark, running the base benchmarks and the normal
benchmarks, calculating the overhead and finally subtracting the overhead from the
key object based benchmark. Instead of manually performing these tasks we decided
to include this feature directly into the PBenchmark framework. Each benchmark can
provide a base benchmark which represents the overhead. In the case of the previous
example using key objects a second version of the benchmark is created which cre-
ates the same amount of key objects but does not run the dictionary code. This base
benchmark then results in the pure overhead introduced by using the key objects. The
following code shows the new runmethod with an additional runBaseBenchmark
message in the end.

run
self reset.
self runAll.
self runBaseBenchmark
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The following excerpt shows in detail how the base benchmark is run.

runBaseBenchmark
| result base |
(self respondsTo: #baseBenchmark) ifFalse: [ � self ].
base := self baseBenchmark.
result := base runAll
result runs keysAndValuesDo: [ :selector :run|

(self runs at: selector) base: run.]

We first check if the current benchmark implements the baseBenchmark method.
This is done to stay backwards compatible with benchmarks that do not need a base
benchmark. To support a base benchmark the baseBenchmarkmethod has to return
a valid instance of a benchmark which is then run. Each result of the base benchmark
is then attached to the existing benchmark runs. Hence each benchmark run can now
provide results in respect to the overhead defined in the related base benchmark run.

An example is given by Figure 3.3 showing the UML-diagram of the dictionary
benchmarks. Note that BaseDictionaryBenchmark implements the baseBench-
mark method and all the benchmarks themselves. The baseBenchmark method re-

setUp
tearDown
baseBenchmark

PBenchmarkSuite

key:
value:
dictionaryType
setUp
tearDown
baseBenchmark
benchDo
...

BaseDictionaryBenchmark
dict
dictSize
keyBlock
valueBlock

dictionaryType

DictionaryBenchmark
 

dictionaryType

PDictionaryBenchmark
 

Figure 3.3: UML diagram a use case of the benchmark framework

turns an instance of the BaseDictionaryBenchmark and sets some properties on
the newly created instance.

baseBenchmark
| inst |
inst := PBAbstractDictionary new.
inst keyBlock: self keyBlock.
inst valueBlock: self valueBlock.
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In this example the simplest solution is to recycle the base benchmark suite for the
normal benchmarks – avoiding a separate implementation of the same benchmarks
again. In order to make this work a dummy dictionary had to be implemented. It
provides the whole interface used by the benchmark suite but does not provide any
functionality. Thus it can be used with the existing benchmarks but does not impose
any additional overhead – except for some message sends for using the interface’s
dummy methods.

3.3 DTrace
The PBenchmark framework presented in the previous section is useful for testing the
performance of application level code. When it comes to optimize the low-level details
of the VM itself other methods are necessary. A comfortable tool to inspect a program
written in C is DTrace. It allows you to probe a C binary with only minimal changes
to the sources. DTrace is meant to be used in a production environment as it keeps the
probing overhead to a minimum. As long as no probes are activated no considerable
overhead can be recorded.

The minimal example of a probe is to track function calls. The following scripts
written in the D programming language trace the cumulative and average time spent in
each function in the Pinocchio binary.

1 pid$1:pinocchio::entry
{

3 self->ts = timestamp;
}

5

pid$1:pinocchio::return
7 /self->ts/

{
9 elapsed = timestamp - self->ts;

@tot[probefunc] = sum(elapsed);
11 @avg[probefunc] = avg(elapsed);

}
13

END {
15 trunc(@tot, 50);

trunc(@avg, 50);
17 normalize(@tot, 1000);

normalize(@avg, 1000);
19

printf("\nTotal [ms]: "); printa(@tot);
21 printf("Average [ms]: "); printa(@avg);

}

The :entry probe is activated whenever a function is entered. Hence we record a
timestamp associated with the called function at that time. Whenever a function in
the Pinocchio binary returns, the action under the :return probe is evaluated. In
this case the elapsed time since the function was called is calculated. The next line
accumulates the time spent in the current function denoted by probefunc. sum is
not a simple function working on its own but rather belongs to an aggregation defined
by the source line @tot[probefunc] = sum(elapsed);. When the probing is
stopped the action defined by END is executed. In this example the aggregation stored
in @tot and @avg is limited by trunc to the topmost 50 elements. The next two
lines normalize the results to milliseconds as the timestamp used earlier in the code is
recorded in microseconds. Eventually the results are printed out.
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We used DTrace in several places throughout the performance evaluation of Pinoc-
chio. Most low-level details about the optimizations presented in this thesis were ex-
tracted using several different DTrace scripts.

3.4 Summary
In this chapter we have shown how to properly evaluate benchmarks. Starting with the
basic mathematical background explaining the core concept of statistical evaluation.
Based on this background our Benchmarking framework PBenchmark has been intro-
duced. It allows to write benchmarks very similar to unit tests by writing either single
benchmarks or combine them to suites. Relying on a framework helps to reduce evalu-
ation errors and improves reproducibility. We encourage writing benchmarks for very
specific use cases in order to help isolating problematic code in the VM implementa-
tion. However, it is not possible to track and detect all types of performances flaws in
a VM with traditional benchmarking. The can only provide top-down view using the
VM implementation as a black box. Hence we further introduced DTrace a low-level
binary probing framework. DTrace allows to efficiently inspect the VM internals using
customizable probes and a simple query language.

In the next chapter five specific optimizations applied to Pinocchio are discussed
using results obtained by the tools and techniques presented in this chapter.
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4
Optimizations

After discussing the evolution of Pinocchio and the tools used to benchmark in the
previous chapters we focus on the different aspects of performance and optimizations
applied in Pinocchio. We focus on the process described in the introduction and the
previous section. The benchmark results are obtained by a set of benchmarks imple-
mented using the PBenchmark framework. By using the same set of benchmarks for
different types of optimizations we can analyze the performance impact easily. Further-
more we classify the optimizations on the scheme described in Section 1.3 and further
specified in the following Section 4.1. With the results presented the efficiency of each
benchmark and implementation effort is presented.

Focusing on Pinocchio allows us to discuss many different optimization techniques
which were applied throughout the development history. The early version of Pinoc-
chio worked in a very dynamic way by using self-evaluating AST nodes which generate
considerable overhead. In the subsequent versions more and more assumptions were
directly embedded into C code. Next to avoid dynamic lookups it is important to be
able to access often-used object attributes directly in the C level without the need to
convert them. Caching data helps to avoid indirect calculations of often used attributes.
Caching not only focuses on data allocation but by using inline caches can also focus
on execution. Inline caches improving performance by avoiding repeating lookups.
The last optimization with significant impact on the performance of Pinocchio is un-
wrapping values. Hereby pointer indirections on C level are avoided by directly using
the low-level value instead of a wrapped version.

To describe these different optimizations a restricted set of three benchmarks is
chosen in Section 4.2. In the same section the detailed properties such as the used
environment or the number of probes are listed followed by the discussion of the results
of the three default benchmarks in Pinocchio and Pharo in Section 4.2.1. The following
Section 4.1 lists four important properties of optimizations. For each optimization
property an example discussed in the thesis is listed. The next sections cover specific
optimizations in more detail. Each optimization is analyzed using the set of the three
default benchmarks. Section 4.3 covers the optimizations applied to the dictionary data
structure.The following Section 4.1.4 deals with the performance results of caching
with SmallInts and characters as a first use case. The next Section 4.7 describes the
performance impact of using unwrapped values for the size value of arrayed objects.
In the last Section 4.8 future optimization possibilities are listed and their potential
performance impact is discussed.
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4.1 Type of Optimizations
The VM optimizations presented in this chapter can be separated into two different
groups. First there are the transparent optimizations which do not affect the seman-
tics of the interpreted language. Secondly there are the non-transparent optimizations
which enforce certain semantic changes. The following two subsections Section 4.1.1
and Section 4.1.2 discuss these two groups in more detail. Next to the effects on the
language we can classify optimizations into two other broad groups depending on their
implementation details. Optimizations which focus on embedding assumptions pre-
sented in Section 4.1.3 and optimizations focusing on caching data presented in Section
4.1.4.

Table 4.1 provides an overview of the types of optimizations presented in this thesis
and their corresponding classification.

Transparent Non-Transparent
Embedding Caching

Assumptions Data

Native Dictionaries X X X

Opcodes X X

Caching Integers X X

Unwrapping values X X X

Table 4.1: List of the optimizations discussed in this thesis and their classification

4.1.1 Transparent Optimizations
Transparent optimizations are VM-level optimizations which do not require changes in
the interpreted language’s semantics. An example of such an optimization is presented
in Section 4.5 where integers and characters are cached in a transparent manner. Al-
though not all integer objects are treated the same way, there is no possibility for the
programmer to see the difference. The most commonly used integers are already pre-
allocated to improve speed. The only way a programmer could potentially distinguish
a cached integer from a non-cached version would be to rely on the object identity.
However, the == method on SmallInt is implemented natively to directly compare
the integer value. This is different from the default implementation where the C-level
pointer value is used to determine object identity. So even though the optimization
would be not fully transparent the small change in the comparison semantics help to
guarantee transparency again.

A common optimization which is transparent – not yet present in the current version
of Pinocchio– is a just in time compiler (JIT). A JIT alters the evaluation structure at
runtime to be more efficient on the underlying hardware. Nevertheless it does not alter
the semantics of the language. This is an implicit property of a JIT as the modification
of the evaluation structure generally happens at runtime. Hence it would be strange if
the semantics of the language would change over time depending on the usage. Thus
we can clearly identify that JITs are transparent optimizations.

For a stable language it makes most sense to rely on transparent optimizations.
This way the VM can be considered as a black box implementing a predefined set of
language requirements. Transparent optimizations help to form a stable language with
a clear design. Especially for a high-level system such as Smalltalk it is crucial to
separate the high-level language concerns from the low-level VM ones. Otherwise all
high-level languages will start resembling a C-like system just because it is easier and
faster to build an efficient system for such a language.
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4.1.2 Non-transparent Optimizations
In contrast to transparent optimizations the non-transparent ones explicitly require
changes in semantics. During the early stages of Pinocchio several non-transparent
optimizations were applied to the VM in order to increase performance. Such an ex-
ample was the remove of self-evaluating AST nodes in Section 2.2.3. As a replacement
we introduced first-class interpreters which of course required to rewrite parts of the
Smalltalk code.

Generally non-transparent optimizations should be avoided in high-level languages.
Depending on the kind of optimization they might pollute the design. The favorable
way to apply non-transparent optimizations it by finding a compatible way to reintro-
duce the lost features. The previously mentioned first-class interpreters in Pinocchio
are an example for this.

4.1.3 Embedding Assumptions
High-level dynamic languages try to introduce more flexibility by delaying the point
on which to decide what code gets executed. For instance by using polymorphism it
is unclear which code gets executed until the current evaluation reaches that point. On
the other hand it is possible to directly inline functions in a statically typed language
like C. Another issue when using high-level languages is the difference in evaluation
compared to the language the VM is written in. In the case of Pinocchio the VM core
is written in C. To overcome these semantic differences an intermediate evaluation
scheme is chosen, most commonly bytecodes. Bytecodes provide a simple abstraction
for high-level operations but still allow for versatile composition. However compared
to a pure C level evaluation a significant overhead can be observed. Hence one way
to increase performance is to push as much code as possible to the C level. Of course
this is in contradiction with the principle of using a high-level language. Furthermore
it is not always guaranteed that the pure C-level implementation can be evaluated much
faster. Embedding assumptions does not mean to reimplement high-level concepts in
the VM definition language but in general to avoid indirections introduced by high-
level nature of the implemented language.

Section 4.3 and Section 4.4 provide an overview of two different approaches of
embedding assumptions. The first example covers the classical implementation of a
high-level data structure directly in C. The dictionary data structures from Pinocchio
are available in Smalltalk and in C. The next example covers the use of opcodes. Unlike
the first example, focusing on data structures, the focus is on the evaluation scheme
itself.

Another type of embedding assumptions is presented in Section 4.7 where the size
property is stored using either a high-level or a low-level number representation.

4.1.4 Caching Data
In an object-oriented language such as Smalltalk it is comparably expensive to perform
algorithmic calculations. Even though sending messages in Smalltalk is cheap com-
pared to other dynamic languages it is still expensive compared with a C level function
call. To avoid subsequent calculations it pays off to cache certain values. An example
of that can be seen in the PDictionary code presented in Section 4.3. Each bucket
knows exactly the number of elements stored in it. When looping over the elements of
a bucket it is straight-forward to use the known boundaries to limit the number of tra-
versed items. However, the cached number of elements is not needed for a successful
bucket traversal. In a very primitive solution one could figure out the bucket boundaries
by comparing each element against nil, since the unused position at the end of the
bucket are initialized with nil. Of course in this case this poses a significant overhead
due to the high number of superfluous checks.
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Next to optimizing the data structures themselves by caching often used values
it pays off to store recycle certain objects as a whole. In a high-level language like
Smalltalk integers and characters are first-class objects. This implies a significant over-
head as these objects are used with a very high frequency. In Section 4.5 we present
how integers and characters are precalculated and reused.

A further version of caching presented in Section 4.6 which does not directly focus
on caching values used in data structures. Inline caches help to improve the lookup
speed for methods. Instead of performing a certain method lookup over and over again,
the resulting method is cached at the send site.

4.2 Default Benchmarks
During the optimization of Pinocchio we cared about the overall performance but for
a long time our only use case was the Fibonacci algorithm. The particular choice
for this benchmark was rather driven by the simplicity of its implementation than the
quality of the results – the very first version of this benchmark was created by tediously
assembling the AST in plain C code. There the size of the sources measured in number
of AST nodes was crucial. By further optimizing the system it paid off to have very
specific micro benchmarks. Thus the outcome of a single optimization can be tracked
more easily than with a big benchmark producing only a single result. When using the
PBenchmark framework presented previously in Section 3.2 several micro benchmarks
can be grouped into a suite. This way it is possible to combine a single results – for
basic comparison – with a fine grained view on different aspects of an optimization.

In order to evaluation the different optimizations applied during the development
of Pinocchio we focus on a set of three default benchmarks. This way it is possible to
compare the performance impact of each optimization. The set of benchmarks used are
a parser suite, a dictionary suite and Fibonacci. The complete sources of these bench-
marks are listed in the appendix. The parser and the dictionary benchmark consist of
around 10 different micro benchmarks. Throughout the evaluation of the optimization
the choice of benchmarks has proven to be good enough to display the various im-
pacts on performance. The benchmarks’ sources are available from the PBenchmark
framework and the Pinocchio project respectively.

4.2.1 Default Benchmark Results
If not otherwise specified all the benchmarks are run on a 64-bit server machine with 8
cores à 2.3 GHz and 16 GB of installed RAM whereof around 800 MB are consumed
by the running system. The running operating system is an Ubuntu 10.04.1 LTS
with the 2.6.32-24-server Linux kernel. At most four benchmark evaluations
are performed at the same time keeping the overall load inclusive background tasks
maximally at 60%. Generally the benchmarks are run 1000 times taking the average
and displaying the variation for a significance level of 90%.

Table 4.2 and Table 4.3 show the results of the three different benchmarks for
Pinocchio and Pharo respectively. The tables show the absolute time used for each
of the benchmark suites. The value in parentheses shows the variation in the last two
digits for the 90% significance level. Figures like Figure 4.1 present the relative time
compared to the results given by the default run times shown in Table 4.2. For instance
compared to Pinocchio, Pharo runs around 100% or 2 times slower in the Dictionary
benchmark using PDictionaries.

The results for Pharo presented in Table 4.3 show that Pinocchio is around 3 to
6 times slower than Pharo in tasks like message sends and integer addition – the most
common actions in the Parser and Fibonacci benchmarks. In the dictionary benchmarks
Pharo is 2 to 4 times slower depending on the choice of dictionaries. This is due
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to native implementations of part of the dictionary code in Pinocchio. The results
presented in Section 4.3 should provide a more thorough presentation of the different
dictionary implementations on the two platforms.

Benchmark Absolute Time

Parser 2.9184(15)s

Dictionary 0.1707(17)s

Fib 31 0.82383(79)s

Table 4.2: Benchmark evaluation with all optimizations enabled in Pinocchio

Benchmark Absolute Time Ratio compared to Pinocchio

Parser 0.46317(13)s 0.159

Smalltalk - Dictionary 0.3262(42)s 1.911

Dictionary 0.62680(41)s 3.671

Fib 31 0.32047(11)s 0.389

Table 4.3: Benchmark evaluation from within Pharo-1.1 in comparison with Table 4.2
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Figure 4.1: Benchmark evaluation from within Pharo-1.1 compared to Pinocchio

4.3 Native Dictionaries
To increase performance in a dynamic language it is crucial to implement as much
as possible in C code. However this might harm the dynamic nature of a language
if not done carefully. In Pinocchio much work has gone into implementing efficient
dictionaries and sets in C code. Dictionaries are essential components of the language
– used as method dictionaries the access speed highly affects the overall speed of the
VM, although there are ways to avoid repeating method lookups using inline caches as
discussed in Section 4.6. Another place where such a data structure affects performance
– although considerably less – is the symbol set. For each conversion from a string to
symbol a lookup in the symbol dictionary is performed. In both cases it makes sense a
highly optimized version directly in C since only a limited number of types for the keys
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are used to access the items in the dictionary. For both method and symbol dictionaries
the keys or elements are Symbols. The C version natively supports Symbols, Strings
and SmallInts as keys. Specialized C functions can directly extract the hashes from
these objects without leaving C. In the case there is an “unknown” type of object the
default MOP needs to be activated. Hence hash is sent to the key objects of types other
than Symbol, String or SmallInt. Of course this involves some overhead since the C
level has to be left and the hash value is retrieved asynchronously. Thus the C code has
to be written in a stack ripped style. At each message send back to the application level
the C function needs to be split up into subfunctions. This is the only way to let the
VM fully handle control flow interleaved with native C code.

4.3.1 Implementation
The dictionary implemented in Pinocchio is bucket-based and uses a hybrid scheme
between a linear collection and a dictionary lookup. For a certain number of element
(the default is 40) the dictionary behaves like a SmallDict: Instead of using several
buckets only a single bucket is used. This pays off for as long as the linear search over
a bucket is faster than retrieving the hash and calculating the proper basket.

Both, sets and dictionaries internally work with an Array of buckets. The number
of buckets is always a power of two, making it possible to directly index into the bucket
by masking the hash value of the key. In the dictionary bucket itself keys and values
are stored sequentially in an alternating fashion. If the buckets start to degenerate by
having too many elements, the total number of buckets is doubled and the elements
are redistributed. During this rehashing only the elements with a changed bucket index
need to be moved. Since the total number of buckets has been doubled the new position
of the key-value pair depends only on the newly masked bit of the hash.

Currently the native code supports normal dictionaries, sets and identity dictio-
naries. Although most of the functionality has been implemented in Smalltalk code
a subset of the methods for putting and retrieving elements is implemented directly
in C code. Explicit type checks for SmallInts, Strings and Symbols are performed to
extract the precalculated hashes without indirections over the application level. Since
dictionaries are already used during the bootstrap for the symbol table and method
dictionaries, part of the functionality is implemented as pure C functions:

1 void IdentityDictionary_store(IdentityDictionary self,
2 Optr key, Optr value)

{
4 assert0(self != (IdentityDictionary)nil);

long hash = get_identity_hash(self, key);
6 DictBucket * bucketp = get_bucketp(self, hash);

if (*bucketp == (DictBucket)nil) {
8 *bucketp = new_bucket();

DictBucket bucket = *bucketp;
10 bucket->values[0] = key;

bucket->values[1] = value;
12 bucket->tally = 2;

return IdentityDictionary_check_grow(self);
14 }

if (Bucket_quick_store(bucketp, key, value)) {
16 IdentityDictionary_check_grow(self);

}
18 }

IdentityDictionary_check_grow can be directly called from within C code.
The only computed values used during this operation are the objects’ identity hashes
which can be calculated without the need of application level code. For the general
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usage during program execution a second version of the aforementioned function is
implemented as an opcode:

1 OPCODE(dictionary_store)
2 Optr w_hash = PEEK_EXP(0);

Dictionary self = (Dictionary)PEEK_EXP(4);
4 long hash = unwrap_hash(self, w_hash);

Optr key = PEEK_EXP(3);
6 Optr value = PEEK_EXP(2);

8 DictBucket * bucketp = get_bucketp(self, hash);

10 if (*bucketp == nil || (*bucketp)->tally == 0) {
add_to_bucket(bucketp, key, value);

12 ZAPN_EXP(3);
POKE_EXP(0, value);

14 pc += 2;
return;

16 }

18 pc += 1;
POKE_EXP(0, 0);

20 POKE_EXP(1, bucketp);
Bucket_compare_key(key, (*bucketp)->values[0]);

22 END_OPCODE

This of course only implements parts of the whole functionality. Since the C stack
cannot be used in the general case the code has to be split up into small asynchronously
executed bodies. Looking at the Dictionary_at_ifAbsent_ native reveals its
indirect nature:

1 NNATIVE(Dictionary_at_ifAbsent_, 5,
2 t_push_hash,

t_dictionary_lookup,
4 t_bucket_lookup,

t_pop_return,
6 t_dictionary_ifAbsent_)

The highlighted t_push_hash opcode has to be executed separately and cannot be
inlined directly. Extracting the hash in C can happen only for certain known types
of keys but for all the other cases a hash message has to be sent back to the key
object on the application level. This makes it necessary to have several subfunctions
for originally a single C function. The next code excerpt shows the implementation of
the push_hash opcode.

1 OPCODE(push_hash)
2 pc += 1;

SmallInt hash;
4 Optr key = PEEK_EXP(0);

Optr tag = GETTAG(key);
6 if (TAG_IS_LAYOUT(tag, Words)) {

hash = String_hash((String)key);
8 } else if (TAG_IS_LAYOUT(tag, Int)) {

hash = (SmallInt)key;
10 } else {

Class_direct_dispatch(key, HEADER(key),
12 SMB_hash, 0);

return;
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14 }
PUSH_EXP(hash);

16 END_OPCODE

After extracting the key from the stack its layout type is checked for either belonging
to a String/Symbol or for a SmallInt. In both these cases the VM knows how to directly
extract the hash value from the object. In the other cases the hash message is sent to
the key object which will then push the hash as a result on the stack. By introducing
these type checks we basically perform manual JITting and thus avoid indirections.
The code presented here is equipped with guards for specific types which then can
execute directly C code. Not only does the control flow stay longer on the C level but
also can the C compiler give another improvement since bigger functions much better
optimized.

4.3.2 General Evaluation
Comparing the impact of natives on the speed of the dictionary implementation in
Pinocchio the three default benchmarks are run without any natives. Figure 4.2 shows
how much each benchmark suite uses dictionaries. The corresponding numbers are
presented in detail in Table 4.4. Fibonacci runs at almost the same speed independent
of the performance of the dictionaries. This clearly is in sync with the simplicity of
this benchmark. The algorithmic code used in the parser takes minimal advantage in
dictionary code. Dictionaries are only used in a limited way for caching. The overall
calls to dictionary code must still be very small as there is no measurable performance
decrease with natives deactivated. The third benchmark suite focusing on dictionaries
exclusively, of course is heavily affected by the disabled optimization. We can see that
the overall impact is around the factor ten in the most optimal case. Since the keys used
for the dictionary benchmark suite are integers the natives of Pinocchio do not have to
leave the VM for most dictionary operations.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 2.9122(15)s 2.9184(15)s 0.998

Dictionary 1.9380(22)s 0.1707(17)s 11.351

Fib 31 0.81941(91)s 0.82383(79)s 0.995

Table 4.4: Benchmark evaluation without natives for Dictionaries

4.3.3 Detailed Comparison of the Dictionary Implementations
The results from the general evaluation show that the Pinocchio implementation of
dictionaries is around 10 times faster than the Pharo versions in the optimal case. But
the dictionary benchmark used in the previous section is heavily flawed if it should
represent an overall use case. By using SmallInts as keys we overly take advantage of
Pinocchio’s natives optimized specifically for this case. In Pharo there is no specially
optimized code for this situation. To create a meaningful comparison several micro
benchmarks are presented in more detail in the following text. Focusing on micro
benchmarks is particularly useful if the goal is to increase performance and not to
simply compare two different implementations with a single, simplified number. It
is important that each benchmark does not provide an overall real-world application
usage but rather a specific use case with well-defined properties. This helps to define
the strengths and weaknesses of the different dictionary implementations in Pinocchio
and Pharo. The presented micro benchmarks are:
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Figure 4.2: Performance impact with disabled natives for dictionaries

1. at:put: stores a value with the given key. Half of the keys are already occup-
ied half of the keys are new.

1 to: self dictSize * 2 do: [ :i|
dict at: (self key: i)

ifAbsentPut: (self value: i)].

2. includesKey: tests if a key is included using 50% new keys

1 to: dict size * 2 do: [ :i|
dict at: (self key: i)

ifAbsentPut: (self value: i)].

3. do: iterates over all elements

4 timesRepeat: [
dict do: [ :i| ]].

4. includes: tests if an element is included using 50% unknown elements

1 to: self dictSize * 2 by: 73 do: [ :i|
dict at: (self key: i)

ifAbsentPut: (self value: i)].

Each benchmark is presented with a different flavor of keys. Unlike in the default
dictionary benchmark we do not use SmallInts directly but rather a key object with
customizable hash values. This way the number of unique hashes can be controlled in
all detail. The algorithms to produce the hashes are the following:

(i << 18) + i producing no hash collisions
(i % 100) << 18) + i producing only 100 distinct hashes leading

to significant hash collisions
(i % 10) << 18) + i producing only 10 distinct hashes leading

to a very high collision rate

The micro benchmarks are run with our version of the dictionary marked with PDict
and the default Pharo dictionary marked with STDict. Due to the nature of implemen-
tation only the PDict is run in Pinocchio whereas both dictionary implementations
are evaluated in Pharo. Since SmallDictionary performs well only for very small
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number of elements and degrades very quickly for larger numbers it has been excluded
from the following benchmarks. The benchmarks are presented with an exponentially
increasing number of elements ranging from 101 to 103. Figure 4.3 shows an example

General Results with many Hash-Collisions
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Figure 4.3: Example performance evaluation of all three flavors of dictionaries with
the four different micro benchmarks. To generate interesting results only 10 different
hashes were used to force quick degradation.

presenting a complete benchmark run displaying all three flavors of dictionaries and all
four micro benchmarks. To create an interesting result a very inefficient set of only ten
distinct hashes is used in this benchmark. On this figure we can observe that the four
micro benchmarks can be split into two groups. On the left are the at:put: and the
includesKey: both showing a similar increasing execution time for each element
as the overall number of elements increases. On the other side are two benchmarks
which involve looping over all the items in a dictionary.
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Figure 4.4: Dictionary Performance: evaluating do: without hash collisions
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Figure 4.5: Dictionary Performance: evaluating do: with heavy hash collisions

Figure 4.4 and Figure 4.6 show in detail the two looping micro benchmarks for key
objects with randomly distributed unique hashes. The do: benchmark shows a linear
behavior since the time spent per element is constant. Due to the high error, resulting
from the short runtime of the benchmark only the PDict in Pharo serves as a proper
performance indicator. In the other cases the deviation depicted by the vertical bars
is too high. We can see that the time per element is constant or even decreases with
more elements to loop over. With perfect hashes the Smalltalk implementation is faster
than the PDict. Figure 4.5 shows the results with heavy hash collisions resulting
from using key objects with only ten different hashes. In this case the performance
of the Pharo dictionaries stays the same whereas the PDict performance slightly im-
proves. The performance increase of PDict can only be explained by assuming that
the looping over the buckets involves some significant overhead. Since there are only
10 filled buckets in the latter example the overhead of looping over the buckets dimin-
ishes. Whereas with perfect hashes many buckets are used. Furthermore the version
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run in Pinocchio cannot benefit from the power of natives as the do: operation invokes
a block with each item as an argument. This cannot be handled directly in the native
code.
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Figure 4.6: Dictionary Performance: evaluating includes: without hash collisions
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Figure 4.7: Dictionary Performance: evaluating includes: with heavy hash colli-
sions

Figure 4.6 and Figure 4.7 show the results for the same setup but this time for the
includes: benchmark. The straightforward implementation of includes: uses
the do: method to loop over all the elements and returns true when the item is
found. Although both the includes: and the do: benchmark are highly similar,
they do not show exactly the same results. In general the includes: benchmark is
slightly slower due to the additional block invocation and comparison overhead. Since
these two benchmarks focus more on the execution speed of the VM rather than the
data structure we will focus only on the second group of benchmarks, the at:put:
and the includesKey:. In this case we use the dictionary in the most optimal way
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Figure 4.8: Dictionary Performance: evaluating at:put: without hash collisions

by accessing stored elements using a key. In the optimal setup using PDicts this
happens in constant time. The key is directly used to index into the correct bucket
where a linear search over the bucket’s items is performed. Thus in the optimal case
the lookup time is defined by these two factors. The indexing into the proper bucket is
a linear operation and so is the linear search. The dictionary is rehashed – the items are
distributed over more buckets – when there are too many elements stored. Thus there is
a limited number of elements per bucket in the optimal case which results in an upper
boundary for the linear search.
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Figure 4.9: Dictionary Performance: evaluating includesKey: without hash colli-
sions

Figure 4.8 and Figure 4.9 show the results for optimal hashes. Both graphs are
almost congruent hence we will only focus on the at:put: benchmark. Even though
the benchmark is already generalized – half of the added hash values are already present
in the dictionary – it is fully sufficient to show how the dictionary implementations react
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to different quality of hashes.

HashObject with: (i << 18 + i)
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Figure 4.10: at:put: dictionary benchmark using perfect hashes.

HashObject with: ((i % 100) << 18 + (i % 100))
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Figure 4.11: at:put: dictionary benchmarks using only 100 distinct resulting in
moderate hash collisions.

Figure 4.10, Figure 4.11 and Figure 4.12 show the performance degradation of the
dictionary implementation with decreasing hash qualities.

In the first graph on Figure 4.10 perfect hashes are used. The hash generating code
is shown in the title of the graph. Except for one outlier in the Smalltalk line, the results
are very consistent. The Pinocchio PDict line shows almost the expected behavior.
The time to look up a single item in the dictionary stays constant over an increasing
number of element stored in the dictionary. This is also the case for the versions run on
Pharo when there are only a limited number of elements used. Starting from 1000 ele-
ments the dictionaries seem to degrade a bit. Even though there is a similar movement
visible in the Pinocchio line, the errors do not allow for proper comparison. Since the
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HashObject with: ((i % 10) << 18 + (i % 10))
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Figure 4.12: at:put: dictionary benchmarks using only 10 distinct hashes resulting
in a high collision chance.

dictionary degradation is almost the same in Pharo for both dictionary implementations
we assume a common source. Most probably the same effect is hidden in Pinocchio
since the dictionary is accessed using native code.

In the second graph on Figure 4.11 only 100 distinct hashes are used and thus the
number of hash collisions is increased. Comparing this graph to the previous one on
Figure 4.10 clearly shows a different performance. This time both PDict versions
have a almost congruent performance line. The dictionaries start to degenerate after
around 250 elements. The final curve shows that the access time is linear to the amount
of elements in the dictionary. As soon as the PDict degenerates the linear search part
of the lookup is no longer a constant but the dominant linear factor. Even though the
Smalltalk dictionary does not use buckets it manages to show the same performance re-
sponse, although in average with a 3 times slower lookup time compared to the PDict.

In the last graph on Figure 4.12 the hash collision rate is increased by only using
10 different hashes. The performance response is very similar to the previous version
presented in Figure 4.11. This time the degeneration is already visible at less than 100
stored elements. The curve is a bit steeper than the one from the previous version. In
Figure 4.11 most probably the curve would approximate the one from Figure 4.12 if a
few more data points would be added. Again the Smalltalk dictionary performs around
3 times slower than the PDict.

It is clearly visible that the hash quality has a direct impact on the speed of key
lookups. The initial constant lookup time in the at:put: benchmark degrades to a
linear overhead as the buckets sizes degrade. From the graphs presented so far PDict
performs around 3 times better in lookup related operations. But even in the other two
operations the Smalltalk implementation performs slightly worse as shown by Figure
4.3. So far the keys are generated using a list of consecutive integers. For the PDict
the order of hashes has no direct impact on the performance, only the hash quality does.
However since the Smalltalk implementation does not rely on buckets the order of the
hashes has an impact of the performance. To avoid a premature judgement a second set
of benchmarks is performed using randomized hashes. Figure 4.13 shows the graph for
the same benchmark as Figure 4.11 but this time with randomized input. Both versions
of the PDict perform almost the same. The Smalltalk dictionary performs not better
than with consecutive hashes. Thus we can conclude with a high probability that the
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HashObject with: ((i % 100) << 18 + (i % 100))
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Figure 4.13: at:put: dictionary benchmark using randomized hashes with moderate
hash collisions.

bucket based approach of the Pinocchio dictionaries is faster than the association-based
Smalltalk implementation.

For further comparison of the performance degradation the graphs on Figure 4.14
and Figure 4.15 show the performance response for all four micro benchmarks with
the decreasing hash quality. This time the benchmark results are grouped by dictionary
flavor rather than benchmark type.
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PDictionaries in Pharo
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Figure 4.14: Performance degradation with decreasing hash quality on PDictionaries
run in Pharo.

4.3.4 Issues
As shown by the ideal benchmark for dictionaries we can achieve a speedup of a factor
of ten. Natives are most effective when there is no need to leave the VM level code
for application level message sends. Hard-coding known behavior for certain types
can greatly improve performance, however, might impose a slight overhead and thus
performing worse in other cases. In the case of dictionaries extracting the hash for
SmallInts, Symbols and Strings – the most common keys – is greatly accelerated by
hard-coded segments. The number of these specialized functions should be kept min-
imal as well as the number of different hard-coded types. Generally they lead to a
rather hard to maintain dual system. Regarding dictionaries it occurred several times
that high-level optimizations in the Smalltalk code were not ported down to the C level
– just because stack ripped programming tends to be tedious. It would greatly improve
maintainability if the C code could be written in a sequential style, directly with inlined
application-level message sends. These message sends indicate the points where the
control flow is handed back to the application level. Hence this implies that the C-level
control flow is interrupted and only resumed after the application-level message send
has returned. The following example shows an example of a native require the hash of
an argument.

1 NATIVE(source_stackripped,
2 Optr arg = NATIVE_ARG(0);

...
4 // application level message send

Optr hash = SEND(arg, SMB_hash, 0);
6 ...

)
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STDictionaries in Pharo
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Figure 4.15: Performance degradation with decreasing hash quality on STDictionaries
run in Pharo.

The resulting code would then be a stack-ripped version consisting of split-up parts of
the function to handle the indirections.

1 OPCODE(stackripped_1,
Optr arg = NATIVE_ARG(0);

3 ...
// Perform an application level message send

5 Class_direct_dispatch(arg, HEADER(arg), SMB_hash, 0);
);

7

OPCODE(stackripped_2,
9 // retrieve the hash from the previous message send

Optr hash = POP_EXP(0);
11 ...

);
13

NNATIVE(source_stackripped, 2,
15 t_stackripped_1, t_stackripped_2);

Each of the sub functions ends in an application level call, in the previous example de-
noted by the Class direct dispatch. Furthermore it is visible that the C-level
control flow is interrupted by the application-level message sends and only later re-
sumed in a second function body. Even this small example results in rather unreadable
sources with many unnecessary indirections. If this transformation could be done au-
tomatically only the first version would be needed, which helps to keep the sized of the
C code small and understandable.

As mentioned in Section 2.2.2 the Scheme Pinocchio featured a style of writing
natives in a mixed style with inlined high-level statements. This would be the first step
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towards stack-ripped styled code. Next to expanding the high-level statements the C
function would have to be split up and probably push needed arguments onto the stack.

4.4 Opcodes
As mentioned in the previous optimization presented Section 4.3 Pinocchio uses op-
codes. Opcodes helped to greatly improve performance of the original AST visitor.
Similar to bytecodes the control flow is linearized and thus allowing for more opti-
mizations. The choice of opcodes over bytecodes was driven by the possible faster dis-
patch speed of a direct threaded system.. When using bytecodes or so called dispatch-
threaded evaluation, the appropriate behavior for each bytecode has to be decoded.
Generally this is achieved by a verbose switch in the main dispatch loop of an inter-
preter.

1 // evaluatable code
int method_body[] = { 1, 2, 30, 1, ...};

3

void evaluate() {
5 while(true) {

unsint bytecode = fetch_next();
7 switch(bytecode) {

case 0:
9 behavior_0();

break;
11 case 1:

behavior_1();
13 break;

...
15 default:

trigger_invalid_bytecode();
17 }

}
19 }

In the most primitive way the incoming bytecodes are compared with several values
until the proper switch body is found. The use of a dispatch table is encouraged in
this case. Rather than testing until the right function is found the bytecodes are used to
directly index into an array of function pointers as illustrated by the following example.

1 // bytecode function definitions
void behavior_0() {

3 ...
eval_next_opcode();

5 }
...

7

// lookup table linking bytecodes with functions
9 lookup_table[0] = &behavior_0;

lookup_table[1] = &behavior_1;
11 ...

13 // evaluatable code
int method_body[] = { 1, 2, 30, 1 ...};

15

void evaluate() {
17 while(true) {
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unsint bytecode = fetch_next();
19 if (bytecode > lookup_table_length {

trigger_invalid_bytecode();
21 }

lookup_table[bytecode]();
23 }

}

Of course a intelligent enough compiler should be able to automatically transform the
dispatch switch from above into a dispatch table. Depending on the optimizations per-
formed by the C compiler a dispatch switch with inlined C functions might be faster
than a dispatch table. The next step to optimize is to get rid of the lookup indirection
at all. Instead of using an intermediate code as binary format which has to be trans-
lated to the associated behavior, the function pointers themselves can be used directly.
Thus the bytecodes can be replaced by function pointers. In the following example the
previously inlined switch bodies have been split up into separate small functions.

1 // opcode definitions
2 void behavior_0() {

...
4 eval_next_opcode();

}
6

void opcode_1(){
8 ...

eval_next_opcode();
10 }

12 // evaluatable code
void *method_body[] = {

14 &behavior_0, &behavior_1, ...
};

16

void eval_next_opcode() {
18 pc++;

method_body[pc]();
20 }

22 void evaluate() {
method_body[0]();

24 }

The evaluation strategy is almost the same as with bytecodes. The next instruction is
fetched and evaluated. But in this case there is no need for a second indirection to trans-
late the numeric value of the bytecodes into an executable function. To further optimize
the opcode evaluation we can use direct threading. Hereby the dispatch is optimized
fully away by letting each opcode directly jump to the next instruction preferably using
goto statements. [9] shows that direct threaded evaluation can be up to two times faster
than a bytecode dispatch based evaluation. The following code shows a variant of the
previous examples in a direct-threaded fashion. Now again the behavior bodies are
included in a single function. Instead of activating a full function the NEXT statement
directly fetches the next goto target and jumps there.

1 void *method_body[] = {
2 &&behavior_0, &&behavior_1, ...

};
4

50



// directly evaluation the next opcode using gotos
6 #define NEXT goto **++pc;

8 void evaluate() {
void **pc = method_body - 1;

10 NEXT;

12 // opcodes using goto labels
behavior_1:

14 ...
NEXT;

16 behavior_2:
...

18 NEXT;
...

20 }

The general issue with the faster dispatch is that the representation of the code is no
longer platform independent as it previously was with bytecodes. However it is pos-
sible to translate bytecodes into opcodes suitable for direct-threaded evaluation. Of
course this can happen lazily at runtime keeping the portable nature of bytecodes and
reducing a possible startup delay. However using bytecodes as an intermediate format
might not be necessary at all. Similar to JavaScript VMs in popular browsers a fast
enough compiler can directly output opcodes from the source code.

The compiler used in the version of Pinocchio presented here was written in around
one day and can thus be considered as rather primitive and immature. Nevertheless we
could achieve a remarkable speed improvement by adding simple optimized special
opcodes. The choice for the following optimization was driven by the choice originally
made for Pharo VM where the same special bytecodes exist.

visitSend: aSend
| aBlock |
aSend message = #ifTrue:

ifTrue: [ � self compileSendIfTrue: aSend ].
aSend message = #ifFalse:

ifTrue: [ � self compileSendIfFalse: aSend ].
aSend message = #ifTrue:ifFalse:

ifTrue: [ � self compileSendIfTrueIfFalse: aSend ].
aSend message = #ifFalse:ifTrue:

ifTrue: [ � self compileSendIfFalseIfTrue: aSend ].
aSend message = #to:do:

ifTrue: [ � self compileSendToDo: aSend ].
aSend message = #to:by:do:

ifTrue: [ � self compileSendToByDo: aSend ].
self compileSend: aSend.

By using some simple tests certain special message sends are rewritten. In this case we
have a look at the specialized ifTrue: message.

compileSendIfTrue: aSend
| aBlock |
aBlock := aSend at: 1.
aBlock isScoped ifTrue: [ � self compileSend: aSend ].
aSend receiver accept: self.
self append: #’send_ifTrue_’ with: aSend.
self compileBlock: aBlock.
self code addLast: aBlock
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First we check if the block passed as an argument to the ifTrue: message is really
a block and if it is scoped. If it is not a block the standard protocol is followed and
a full ifTrue: message is sent to the receiver. If the block has captured variables
we cannot directly invoke its code either. Since a block context needs to be allocated
we follow again the standard protocol. It is in these two non-optimal cases where a
normal send object is used to follow the standard protocol by sending a message. The
fallback mode is important to make the full Smalltalk MOP work properly. For instance
in Pharo the special bytecodes handling the boolean messages are not aware of other
types than booleans and fail on customized booleans. This constraint on the evaluated
code works in most cases but defeats the purpose of a dynamic object-oriented system.
Objects with compatible behavior should be interchangeable but with booleans in Pharo
this is not the case. Hence the opcodes used in Pinocchio make sure the full protocol
is supported. The following example shows that we first check for the known cases
true – evaluate the block; false – do nothing; and the fallback where the ifTrue:
message is sent to whatever type the receiver is.

1 OPCODE(send_ifTrue_)
2 Optr bool = PEEK_EXP(0);

if (bool == true) {
4 Block block = (Block)get_code(pc + 2);

pc += 3;
6 POKE_EXP(0, current_env());

push_code(block->threaded);
8 } else if (bool == false) {

POKE_EXP(0, nil);
10 pc += 3;

} else {
12 Send send = (Send)get_code(pc + 1);

push_closure(pc + 2);
14 Class_normal_dispatch(bool, send, 1);

}
16 END_OPCODE

In case of the send_ifTrue_ opcode almost no performance is lost by supporting
the full MOP. But even if the additional fallback would impose an overhead it has to
be supported nevertheless. All optimizations done by the underlying compiler have to
be fully transparent to the language run on top even though the compiler is by nature
closely connected to the VM and the language run on top. Nevertheless all optimiza-
tions in a dynamic language have to be transparent. If general optimizations start to
constrain the language principles a language will evolve only into the direction of the
highest performance gain, which is contradictory to the principles for instance of a
Smalltalk with all its dynamic message sends and typeless code. The only way to be in
harmony with the goals of a Smalltalk in particular, or a dynamic high-level language
in general is to introduce optimizations in a non-intrusive way. Only this way the se-
mantic assumptions of the language are kept throughout execution and optimization.

Next to special optimized opcodes for looping and branching there are versions for
pushing the most common constants. Namely the constants nil, 0, 1, 2, true and
false are handled by special opcodes which directly push the elements on the stack:

1 #define PUSH(name, value) OPCODE(push_##name) \
2 PUSH_EXP(value);\

pc = pc + 1;\
4 END_OPCODE

6 PUSH(nil, nil)
PUSH(0, smallInt_0)
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8 PUSH(1, smallInt_1)
PUSH(2, smallInt_2)

10 PUSH(true, true)
PUSH(false, false)

The choice for these hard-coded push opcodes was guided by the existing choice of
Smalltalk and observing the integer usage pattern. Although there could be a potential
bigger choice for constant opcodes – taking the whole integer range for example – they
greatly affect the size of the binary. Thus the speed could suffer from degenerated
memory access and CPU caching in the resulting binary. Furthermore the speedup
achieved by this optimization is minimal as only few indirections are avoided.

4.4.1 Evaluation
As a first evaluation we have a look at the speed impact of the specialized send opcodes.
The results are shown in Table 4.5 and the Figure 4.16. The impact is again varying
from benchmark to benchmark. Nevertheless both the parser and the dictionary bench-
marks show around the same slow-down. The Fibonacci benchmark is around four
times slower than with the optimization which can be traced back to the simple struc-
ture of the benchmark amongst other heavily relying on boolean branching. In general
we can say that the overall speedup introduced by the set of special send opcodes is
around the factor two – quite an impressive result for the simplicity of the implemen-
tation.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 6.6073(16)s 2.9184(15)s 2.264

Dictionary 0.3901(43)s 0.1707(17)s 2.285

Fib 31 3.3671(11)s 0.82383(79)s 4.087

Table 4.5: Benchmark evaluation without any special opcodes
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Figure 4.16: Performance impact with special opcodes disabled

As a next step we have a look at the impact of the specialized boolean sends in detail.
The results are presented in the Table 4.6 and the relative impact in Figure 4.17. What
has been previously assumed about the Fibonacci benchmark is clearly visible here –
it heavily profits from the optimized branching in opcodes. The overall impact on the
two other benchmarks is less significant. The dictionary benchmarks show almost no
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use of these boolean branch sends and thus show an overall slowdown of only around
10%. The rather algorithmic code of the parser benchmark is with 50% more affected.

Benchmark Time without Optimization Time with Optimization Rato

Parser 4.3000(20)s 2.9184(15)s 1.473

Dictionary 0.1843(18)s 0.1707(17)s 1.080

Fib 31 3.3943(14)s 0.82383(79)s 4.120

Table 4.6: Benchmark evaluation without special boolean opcodes
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Figure 4.17: Performance impact with special boolean opcodes disabled

To justify the results of the first evaluation having all special send opcodes disabled
we have to run the two loop optimizations separately. First we removed the simple
to:do: optimizations resulting the in values in Table 4.7 and the Figure 4.18. Of
course there is no impact on the Fibonacci benchmark since we have shown that most
of the speedup there results from the boolean optimizations. The parser is again af-
fected since it uses simple loops over collections. Dictionaries are less affected by this
optimization since there the most of the looping is done in buckets but only in steps of
two.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 4.3335(13) 2.9184(15)s 1.485

Dictionary 0.1807(19) 0.1707(17)s 1.058

Fib 31 0.8252(15) 0.82383(79)s 1.002

Table 4.7: Benchmark evaluation without special to:do: opcode

The second send optimization for iterations in steps other than one, done by the
to:by:do: message on integers mostly affects the dictionary code. To find an ele-
ment identified by a particular key all the existing keys in the bucket have to be checked.
Since the values in the bucket are stored pair-wise – first the key then the value – only
every second item in the bucket is a key. Thus iterating over the values happens in
steps of two and not just one. Hence the different results whether the to:do: or the
to:by:do is deactivated.
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Figure 4.18: Performance impact with special to:do: opcode disabled

Benchmark Time without Optimization Time with Optimization Ratio

Parser 2.8863(16) 2.9184(15)s 0.989

Dictionary 0.2642(19) 0.1707(17)s 1.548

Fib 31 0.8768(10) 0.82383(79)s 1.064

Table 4.8: Performance impact with special to:by:do: opcode disabled
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Figure 4.19: Benchmark evaluation without special to:by:do: opcode

The results about the opcode optimizations discussed so far only cover the op-
timization on the existing opcode infrastructure. The impact of the opcode evaluation
scheme over the old AST version has not been evaluated yet. During the start of the
optimization period we decided to track the progress on the minimal Fibonacci bench-
mark. Hence we setup a speedcenter which regularly runs the benchmark and uploads
to the result to a website. The project was originally created for the PyPy project1.
Figure 4.20 shows only a small number of data points. It seems that Pharo has not been
designed to run in headless mode, since merge conflicts raised window pop-ups which
had to be resolved manually. Nevertheless the graph shows a raw overview of the speed

1http://speed.pypy.org
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of Pinocchio.
The initial speed in the early days of the graph is still achieved by a slightly op-

timized version of the AST visitor. The following data points residing at almost the
same value of 2.4 seconds were several attempts to optimize the AST evaluator further.
Since all the micro optimizations were not very successful a different path had to be
taken. The only way to achieve further speedup was to change the evaluation scheme.
Hence we implemented an opcode based evaluator. Thus the following steep improve-
ment was the result of this paradigm change. Roughly spoken the opcode evaluation
improved the speed by a factor of eight.
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Figure 4.20: The Pinocchio speedcenter. Evolution of the Fibonacci benchmark over
time

4.4.2 Issues
The overall speedup introduced using opcode evaluation is significant – even with a
very simple compiler. With the shift from the pure AST evaluation to the opcode based
version we could observe an increase in the size of the resulting binary since we still
keep the AST code for inspection and possible refactorings. The resulting binary of the
core Pinocchio is around 2.5MB which is still very little on a modern system. A pure
opcode system would reduce the size of the binary but also drop support for custom
interpreters as they rely on AST nodes for evaluation. There is basically only one
valid argument against opcodes and in favor of bytecodes. Using bytecodes makes a
language more system independent. Since the opcodes point directly to the address
where the function is stored there is no way to make one single version available on
different platforms. To get system independent versions you could consider to use an
intermediate bytecode-based format which gets dynamically translated to a threaded
code. This way you could profit from the platform independence of bytecodes and the
speed advantages of threaded code.

56



4.5 Caching Integers and Characters
In Pinocchio and in Smalltalk, integers are seen as normal objects from the user point
of view. Thus performing numeric calculations comes with a significant overhead. For
each low-level integer we have to create a full object instance. However there are ways
to reduce the memory footprint of full objects by using tagged integers. One bit of
each pointer is reserved to indicate whether the object is an integer or not. Thus for a
normal object the pointer points to the location of a valid memory location. However
for integers the pointer value itself is used as the final integer value. And since integers
are immutable there is no need to have a corresponding memory location for storing
instance variables. A single integer instance known to the VM suffices. Another way
to reduce the cost of creating integers is to cache the most commonly used integers.
Hereby a certain range of integers is precalculated. The following code excerpt shows
the added indirection for integer creation.

1 SmallInt new_SmallInt(long value)
2 {

if (CACHE_LOWER <= value && value < CACHE_UPPER) {
4 return SmallInt_cache[value];

}
6 return raw_SmallInt(value);

}

Instead of directly returning a new instance, precalculated integers are returned when-
ever the value lies within a given range. The current caching range is from −1 to 1024
which is proven sufficient in the following evaluation section. The same principle was
applied to characters where we cache the ascii range.

4.5.1 Evaluation
The graphs on Figure 4.21 and Table 4.9 show the impact of disabling the integer
caching. Obviously the Fibonacci benchmark is heavily affected by the speed of integer
creation. The speedup achieved for this particular benchmark with integer caching
enabled is around the factor 3 whereas the other two benchmarks are less affected. Still
both the dictionary and the parser benchmark can benefit with around 30% speedup.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 4.0327(18)s 2.9184(15)s 1.382

Dictionary 0.2158(19)s 0.1707(17)s 1.264

Fib 31 2.84929(75)s 0.82383(79)s 3.459

Table 4.9: Benchmark evaluation without a SmallInt cache

The results presented here are in comparison to the default integer caching for a
range from −1 to 1024. The boundaries were initially determined experimentally. To
fully assure that this range makes sense we tracked the integer usage over the three
benchmarks. The graph on Figure 4.22 shows that there is an almost perfect match
for the Parser benchmark. The parser mostly uses the integers in the range of −1 and
211 = 2048. Generally there is a certain percentage of usage in the very high ranges
resulting from using the C-level pointer values directly as hash values.

The results from analyzing the impact of the character cache on the three bench-
marks is presented in Table 4.10 and Figure 4.23. There is no measurable impact on
the dictionary and the Fibonacci benchmarks since there are no characters involved
during the whole calculation. But for the parser benchmark we see a 6% performance
loss. There would be even a bigger performance gap if the parser would not have
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Figure 4.21: Performance impact with disabled SmallInt cache
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Figure 4.22: Histogram of cached Integers for different Benchmarks

been refactored to almost never use characters. To compare the speed of the Pinocchio
parser with the one from Pharo several optimization decisions were taken to increase
performance on Pharo. One of them was to use integer instead of character comparison
as it is significantly faster under Pharo. Since strings internally consist of an array of
C-characters there are almost no characters needed and the integer value for a character
can be directly extracted with a native.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 3.1038(15)s 2.9184(15)s 1.064

Dictionary 0.1700(17)s 0.1707(17)s 0.996

Fib 31 0.81594(72)s 0.82383(79)s 0.990

Table 4.10: Benchmark evaluation without a character cache
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Figure 4.23: Performance impact with disabled character cache

4.5.2 Issues
The evaluation of the SmallInt cache has shown a significant speedup. On the other
hand the addition of a character cache did not significantly improve performance which
is also influenced by the choice of benchmarks. They almost never use characters. Us-
ing caches is a simple way to increase performance but on the downside might pose a
significant memory overhead. In the case of the SmallInt cache roughly 1024 ·8Bytes ·
3 = 24KB is used to cover the most common cases on a 64Bit machine – nowadays a
neglectable amount. In every case it is important to estimate a proper range of values.
For instance it would make no sense to precalculate the full range of the SmallInts as
it would exhaust the addressable memory on every system. Furthermore it is important
that the cache can be accessed with a minimal overhead. In the case of such sim-
ple objects as SmallInts it might even pay off to generate the values on the fly rather
than precalculate them. The additional check if an element has already been stored
would have a negative impact – especially when more complex operations than a sim-
ple NULL-check is involved. But the cache access time needs to be kept in relation to
the object creation size and yield a positive result to eventually provide a speedup.

4.6 Inline Caches
One reason why dynamically typed languages run slower than statically typed ones is
the high number of dynamic message sends. . One way to improve performance for
send sites is to use inline caches (IC)[2]. Instead of dynamically looking up a method
a class method pair is stored in the IC and used for directly dispatching. Inline caches
work well when there are no changing types for the receiver. In case the number of
different types is limited, polymorphic inline caches (PIC)[6] can help. In contrast to
single lookup caches PICs can store the recent method lookups for more than just a
single type.

Supporting inline caches in Pinocchio is rather simple as mainly the dispatching
code is affected. Considering the original dispatch code in the following example:

1 void Class_normal_dispatch(Optr self, Send send,
uns_int argc)

3 {
Class class = HEADER(self);

5 assert_class((Optr)class);
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Symbol msg = (Optr)send->message;
7 assert0(msg != nil);

9 PUSH_EXP(send);
Class_do_dispatch(self, class, msg, argc,

11 T_Class_dispatch);
}

First we extract the class from the current self, then the message selector. Finally the
send object is pushed onto the stack and a class dispatch is performed. The Class -
do dispatch performs the selector lookup through the class hierarchy and might
perform the doesNotUnterstand send if the selector is not found. To support
inline caches in this code we shortcut the Class_do_dispatch by first checking
if we already dispatched on the specified class and selector pair. The Following code
shows the current version of the dispatch function including support for inline caches.

1 void Class_normal_dispatch(Optr self, Send send,
2 uns_int argc)

{
4 Class class = HEADER(self);

Array cache = send->cache;
6

if ((Optr)cache != nil) {
8 Optr method = InlineCache_lookup(cache, class);

if (method) {
10 return invoke(method, self, argc);

}
12 } else {

send->cache = new_InlineCache();
14 }

assert_class((Optr)class);
16

Optr msg = (Optr)send->message;
18 assert0(msg != nil);

20 PUSH_EXP(send);
Class_do_dispatch(self, class, msg, argc,

22 T_Class_dispatch);
}

Now instead of directly continuing with the selector-lookup we lazily use the inline
cache. Caches are currently created lazily to increase the startup speed of the system
as there are several thousand send sites to be initialized. If a send with a inline cache
is found we perform a lookup directly in the inline cache rather on the class hierarchy
by calling the InlineCache_lookup function in C. This function checks if the
inline cache as already encountered the incoming class as a message receiver. For
single inline caches the lookup is a single pointer equality check. For polymorphic
inline caches a linear search is performed – as demonstrated in the following code
example:

1 Optr InlineCache_lookup(Array cache, Optr class)
{

3 int i;
for (i = 0; i < GET_SIZE(cache); i += 2) {

5 if (cache->values[i] == class) {
return cache->values[i+1];

7 }
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}
9 return NULL;

}

Once the class is found in the cache the corresponding method is returned and can be
invoked directly. In order to fill the inline caches properly a second change is necessary
in the lookup code of Pinocchio. Each time a lookup is performed the resulting method
has to be stored in the inline cache.

4.6.1 Evaluation
Next to running the three default benchmarks we additionally track the usage of inline
caches to validate the performance impact of polymorphic inline caches. By using a
small DTrace script we can precisely see how many cache hits and misses occur during
a benchmark. Furthermore we can even accurately count the cache misses per selector
and class. Enabling DTrace probes of course has a slight performance impact as a
small helper code needs to be activated on each cache access and message send. Hence
we use a different version for the tracing than for measuring the time spent for each
benchmark.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 3.0796(12)s 2.9184(15)s 1.055

Dictionary 0.1683(18)s 0.1707(17)s 0.986

Fib 31 0.9421(16)s 0.82383(79)s 1.144

Table 4.11: Benchmark evaluation without a polymorphic inline caches but simple
inline caches
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Figure 4.24: Performance impact with disabled polymorphic inline caches

Table 4.11 and Figure 4.24 show the outcome of the three default benchmarks when
polymorphic inline caches are disabled but single inline caches are still in use. Table
4.13 shows the number of cache misses and cache hits. Table 4.12 shows the same
values with polymorphic inline caches showing a hit rate of very close to 1 for all three
benchmarks. Even though only single inline caches are used the hit rate is amazingly
high except for the dictionary benchmark. Thus the results can only be affected in the
percent range. The code used in the benchmarks does not have deep class hierarchies
and thus the overhead of a single lookup is not high. The dictionary benchmark has
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Benchmark Cache Misses Cache Hits Hit-Rate

Parser 6.051E+04 4.985E+07 0.99879

Dictionary 1.877E+03 6.199E+07 0.99997

Fibonacci 7.500E+02 3.191E+07 0.99998

Table 4.12: Cache misses with polymorphic inline caches for the three default bench-
marks

Benchmark Cache Misses Cache Hits Hit-Rate

Parser 2.808E+06 4.710E+07 0.94373

Dictionary 3.414E+07 2.786E+07 0.44935

Fibonacci 1.267E+05 3.178E+07 0.99603

Table 4.13: Cache misses with normal inline caches for the three default benchmarks

only such a high miss rate for single inline caches as the benchmarks consists of two
different parts. First the benchmark is run with normal PDictionary, then the base
benchmark (see Section 3.2) is run over the same code base. But this time a dummy
dictionary implementation is used to avoid any overhead introduced by the data struc-
ture itself. Of course with single inline caches the second run of the benchmark will
only hit already filled-in caches from the first run. Notably the caches are filled with
the PDictionary classes and not the dummy dictionary implementation leading to
the high number of cache misses without any significant effect on the final results.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 3.0703(12)s 2.9184(15)s 1.052

Dictionary 0.1589(15)s 0.1707(17)s 0.931

Fib 31 0.82532(62)s 0.82383(79)s 1.002

Table 4.14: Benchmark evaluation without any inline caches
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Figure 4.25: Performance impact with disabled inline caches

The following results in Table 4.14 and Figure 4.25 are created by disabling all
types of inline caches. Especially in the parser benchmark which should be mainly
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affected by the presence of inline caches there is no significant slowdown visible. This
leads to the assumption that inline caches – polymorphic or not – generally have only
little impact on the performance. From an optimization point of view this is not a
favorable property. But since inline caches can be further used for JIT compilation
the non-negative performance impact again is an advantage. Counting polymorphic
inline caches can be used to track the types of each send site. Next to counting the
occurrence it pays off to normalize the obtained type histogram and drop the types with
low probabilities. This way the JIT can react to changes in the code with recompiling
parts where new types occur.

Even though both types of benchmarks with simple inline caches in Table 4.11 and
without any inline caches in Table 4.14 did not present significant changes, we were
still interested in which parts of the system fail on polymorphic inline caches. Table
4.15 shows the selectors for the 10 topmost cache misses. The initialize cache
misses has its seeds in a megamorphic send site namely the new method. In most cases
new is never overridden thus for most object creations the very same method is used.
But in many cases the initialize method is overridden to perform custom actions
on object creation. Thus the initialize send in the new method is not bound to
a small set of specific types and thus can be considered as a megamorphic send site.
In this case polymorphic inline caches do not provide any advantage but rather a small
overhead. Instead of directly looking up a method dynamically the cached list of types
is traversed first – in most cases unsuccessfully.

Message Cache Misses

initialize 26664

parseOn: 25575

asParser 1602

= 896

class 892

asChildParser 761

initialize: 661

expression 141

identifier 140

primary 120

Table 4.15: Message names and the number of the 10 topmost cache misses for the
parser benchmark using polymorphic inline caches.

4.6.2 Issues
We have shown that single and polymorphic inline caches do not provide a signifi-
cant speed improvement. This low impact might be cause by the flawed nature of the
benchmarks used. Only the parser benchmark provides a setup with several classes
which inherit from each other. But even then the class hierarchy is comparably flat.
The maximum depth is 4, achieved by the AST nodes. Nevertheless, even with the
limited applicability of these benchmarks several issues can be observed with the dif-
ferent types of inline caches. Polymorphic inline caches work very well on the code
presented, resulting in less than 1% cache misses as shown in Table 4.12. Combined
with Table 4.15 we can deduce that only very few send sites are megamorphic. How-
ever for megamorphic send sites the inline caches pose some overhead as most type
lookups will fail. For the simple implementations used in the Pinocchio the overhead
is negligible. However the overhead grows with the complexity of the inline caches.
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For instance to render an inline cache fully usable for JITs it is required to count the
frequency of each encountered type. Furthermore the caches need to be cleared regu-
larly to allow for changes. In these cases it might be of advantage to define a threshold
of type misses and cache misses upon which the caching would be disabled in order
to reduce the overhead. Another issue arising from inline caches is their timeliness.
In a dynamic system such as Smalltalk methods can be removed, added or changed at
runtime requiring inline caches to be flushed or to be updated. At the moment Pinoc-
chio does not have such a feature. Once filled, inline caches keep their information
forever. In the Pharo VM this problem is solved by having only one global cache table
storing the class, selector and send site . Hence updating the cache is simple as there is
only one centralized storage place. For Pinocchio two procedures could be considered.
The first solution requires a full traversal of the AST nodes to find all affected caches
on method modification. Another possibility would be to store a reverse link on each
Class to the send sites. This way the affected send sites can be easily deduced from
the class to which modified method belongs to. The first solution will be rather slow
due to a potentially high number of AST nodes. The latter solution shifts the load to
the memory side and requires more changes to the sources. The important question
is how frequent methods are changed, added or deleted in such a system. If there is
only a low probability for method changes the overhead can be of course considerably
high and thus in favor of the first solution. In general inline caches only make sense in
the anticipation of a JIT where type information is required to create fast specialized
versions of methods or traces. If this is not the goal the inline caches mostly are an
unnecessary engineering task. In consideration of a dynamic system with changing
classes and methods it might make sense to even drop support for inline caches fully.

4.7 Unwrapping Values
Smalltalk features different special layout types to increase performance. One com-
monly used layout is the one for array objects. Arrayed objects have a reserved size
slot and a fixed number of elements stored. This can be of advantage in several ways.
First of all there is no need to add an instance variable to hold the elements and second
there is no need to create a size instance variable. By creating arrayed objects the ele-
ments can be directly accessed using the at: and at:put: selectors. In the case of
Pharo these two selectors are implemented as natives which directly check the bound-
aries of the passed-in index. Hence the VM is fully aware of the data structure and the
access can be optimized. Next to just implementing the accessor methods directly in
C, the structure itself can be adapted to better serve the low-level code. One possibility
is to store the size value directly as a C-level integer instead of a high-level SmallInt.
Thus there are no checks or conversions needed on C-level when accessing or checking
the boundaries. However accessing the size from within application-level code requires
a conversion back to the high-level integer representation. Whether it is an advantage
to store the unwrapped value in the data structure is the subject of mainly two factors.
Since the size of an array does not change at runtime the overall performance gain de-
pends on the ratio of size accessing and data accesses. If the code requires to know
the size of an array at many places the wrapping of the low-level size value is an over-
head. On the other hand if the number of accessor message sends outnumbers the size
accesses storing the low-level size value is an advantage.

As an example of an arrayed object the PBlock AST node of Pinocchio is pre-
sented in the following code excerpt.

PNode variableSubclass: #PBlock
instanceVariableNames: ’params locals threaded’
classVariableNames: ’’
poolDictionaries: ’’
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category: ’Pinocchio-Kernel-AST’

In Pharo the special layout is denoted by using variableSubclass: instead of
subclass: as the selector to create a new subclass. PBlock has three instance
variables – params, locals and threaded – but no explicitly mentioned variable
for storing the AST nodes of the body. Since PBlock is declared to be arrayed, values
can be directly stored on the object using the native accessors. The following example
illustrates this behavior by creating an PBlock AST node of size 1 and storing a
constant object in the body:

block := PBlock new: 1.
block at: 1 put: false_constant.
block size should be = 1.

By using an arrayed object we can simplify the code in Smalltalk. The basic behavior
for at:, at:put: and size work out of the box. Furthermore we can get a small
speedup as the VM is aware of the basic data structure. Let us examine the most basic
arrayed object the Array itself. Its C-level data structure is the following:

1 struct Array_t {
int size;

3 Optr values[];
};

The size itself is stored as a raw integer which makes writing natives slightly easier
and a bit faster. To validate the performance increase we have to be able to easily
interchange the two different size formats in the C sources. To do so we introduced
three different macros in Pinocchio: GET_SIZE and SET_SIZE for accessing the
size of an arrayed object and ARRAY_SIZE_TYPE for the type of the size property.
Using a single switch ARRAY_WRAPPED we can easily change the type at compile
time. The following code shows the different macro implementations:

1 #ifdef ARRAY_WRAPPED
2 #define GET_SIZE(array) \

((Array)(array))->size->value
4 #define SET_SIZE(array, value) \

((Array)array)->size = new_SmallInt(value);
6 #define ARRAY_SIZE_TYPE SmallInt size

#else //ARRAY_WRAPPED
8 #define GET_SIZE(array) \

((Array)(array))->size
10 #define SET_SIZE(array, value) \

((Array)array)->size = (value);
12 #define ARRAY_SIZE_TYPE uns_int size

#endif //ARRAY_WRAPPED

Both for GET_SIZE and SET_SIZE one pointer indirection more is necessary to
access the raw integer from C-level. By using tagged integers instead of real objects
this could be replaced with a bit mask operation checking if the lowest bit is set and
thus denotes an integer. The previously presented C-level structure for arrays can be
replaced by the following adapted version:

1 struct Array_t {
ARRAY_SIZE_TYPE;

3 Optr values[];
};

The ARRAY_SIZE_TYPE macro will expand to the appropriate type – either a raw
integer or a high-level SmallInt. The following subsection will cover the performance
difference by using the two different types for size on arrayed objects.
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4.7.1 Evaluation
Table 4.16 and Figure 4.26 show the impact of using wrapped integers for the size
value of arrayed objects. The results show no significant speed difference which is not
what was expected. Although the parser benchmark shows some small slowdown it is
still very little compared to the variation of the results. It seems that using SmallInts
does not pose a significant overhead. We expected that the double dereferencing in the
C-level for accessing the native value of a SmallInt would introduce more overhead in
total.

Benchmark Time without Optimization Time with Optimization Ratio

Parser 2.9702(16)s 2.9184(15)s 1.018

Dictionary 0.1731(18)s 0.1707(17)s 1.014

Fib 31 0.81136(72)s 0.82383(79)s 0.985

Table 4.16: Benchmark evaluation with wrapped SmallInt for arrayed objects
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Figure 4.26: Performance impact with wrapped SmallInt for arrayed objects

The only reason for the positive results must lie in the creation of SmallInts. In
a system like Pharo using tagged pointers to mark integers it is comparably cheap
to create a bulk of new integers. But in Pinocchio full objects need to be created
which should be fairly expensive if used in frequent places like arrayed-objects. Thus
the caching of SmallInts discussed in Section 4.5 must be the main source for these
unexpected results. To prove our hypothesis we run the same benchmarks with wrapped
values for the size of arrayed objects but this time without a SmallInt cache. Finally
the results in Table 4.17 and in Figure 4.27 show the expected behavior. Comparing
these results with the ones where only the SmallInt caches are disabled in Table 4.9 and
Figure 4.21 a significant difference can be observed. When additionally using wrapped
integers for arrayed objects the parser benchmark is another 60% slower, the dictionary
benchmark around 50% and the Fibonacci benchmark an additional 140%.

4.7.2 Issues
Using special layout objects to improve speed seems to be a reasonable choice in a
dynamic language VM. Doing so can improve the speed of the natives in a system as
less unwrapping and wrapping of values is needed. The choice for the special layouts
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Benchmark Time without Optimization Time with Optimization Ratio

Parser 5.7054(22)s 2.9184(15)s 1.955

Dictionary 0.2921(28)s 0.1707(17)s 1.711

Fib 31 0.81826(30)s 0.82383(79)s 4.635

Table 4.17: Benchmark evaluation with wrapped SmallInts for arrayed objects and no
SmallInt cache
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Figure 4.27: Performance impact with wrapped SmallInts for arrayed objects and dis-
abled SmallInt cache

depends on the usage of natives. If there is only a limited number of natives in use it
makes no sense to clutter the VM code with hard-coded checks for certain layouts. But
if the layout facilitates common operations like the at: and at:put: in the arrayed
layout there is room for a performance increase. In the case of arrayed objects we could
show that in combination with a sufficient SmallInt cache there is no need for this type
of layout. In combination with the cache, objects can be used with the default layout
and do not suffer from performance loss in Pinocchio. Hence there is no need to further
keep the arrayed layout in Pinocchio. Although you can argue in favor of the special
layout type if there are many natives depending on it. But for the arrayed-objects there
is only a limited set of natives which are faster than normal Smalltalk code. Since the
type of the elements stored in the arrayed object are not known upfront most operations
besides accessors require sending messages back to each element. This renders most
natives useless and mainly increases the C-level codebase which is generally harder to
maintain. In short, unwrapped values only pay off if there is a sufficient number of
natives which can directly use these values.

4.8 Future Work
The current version of Pinocchio still suffers from a full base system. Although we
can easily export parts of the existing Pharo images it involves several cleanup steps
to assure the usage of the proper protocols. So far we paid attention to cleanup the
exported code whenever possible. This is done by only exporting a minimal set of
methods necessary to make the code run. Refactoring the code and introducing new
protocols is somewhat cumbersome as it makes it harder to run the same code on top
of Pharo and Pinocchio. However this is still required for as long as the base system
is not mature enough to support decent file based sources or creating a new image. An
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important step would be to define a format to write Pinocchio in files. So far there is
only a generic syntax for creating new classes and installing methods. A compatible
solution would be to follow the file format of the non image based GNU Smalltalk2.
The following step to complete the base system would be to implement bindings for a
GUI library such as GTK or Qt and start building the tools necessary for development.

The current version of Pinocchio can be seen as partially image-based since the
bootstrapping is hard-coded in the image. However it would be nice to have support
for images to improve startup time. For instance the core classes could be stored in
the bootstrapped state in an image avoiding the necessity of creating them over and
over again on each Pinocchio launch. The same can be said for library code, instead
of compiling the code on each load it could be stored after the first compilation in an
image. In combination of the opcode execution scheme the question arises whether or
not the image format should be platform independent.

4.8.1 Compiler
One way to increase performance of Pinocchio is to extend the compiler and to make
it more intelligent. The current compiler could be extended with Static Single As-
signment (SSA)[1] and Three Address Code (TAC) transformations to support further
optimizations. Using SSA would allow the compiler to perform constant folding and
constant propagation. Although this might be applicable only in rare cases with the
current programming style in Smalltalk. Most methods have only very small bodies
and rather send various messages than directly having the code inline. In combination
with automatic inlining and thus growing body sizes optimizations can be of more help.

To support such intermediate formats the current compiler needs to be rewritten
completely. At the moment the compiler consists of three phases. First a Smalltalk
parser creates Smalltalk ASTs which then are converted in a second step to Pinoc-
chio AST nodes by a simple visitor. In the third and last step the Pinocchio AST is
flattened out to opcodes – again by a visitor-based implementation. Conceptually the
main difference between the Smalltalk and the Pinocchio code are the direct support
for message cascades in Smalltalk, which are converted to passing the receiver of a
cascade to a block in the current version of Pinocchio. For instance the basic following
basic example,

result := (Array new: 2) at: 1 put 2; yourself

is translated to code without cascades using an intermediate block:

result := [:value|
value at: 1 put 2.
value yourself] value: (Array new: 2)

This way of handling cascades is easy and straight-forward to implement but not very
efficient. It requires allocating an additional block, a block activation with an additional
message send. A more optimal form should use a temporary variable to avoid the block
at all:

tmp := (Array new: 2)
tmp at: 1 put: 2.
result := tmp yourself

Of course this is only a very simple example of how to improve our compiler and with
respect to the frequency of cascades with very limited performance increase. More
interesting would be to support inlining and then optimize the resulting code. However
inlining only makes sense if there is type information available. One way would be to
use runtime information and track the types on each send site. Another approach is to

2http://smalltalk.gnu.org/
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have type-aware AST nodes which could handle enforced types. In either case there is
additional compiler support needed with a pluggable architecture.

4.8.2 Runtime Optimizations
Depending on new intermediate formats like SSA and TAC in the compiler it would be
possible to drop most of the current VM’s stack usage – currently a significant over-
head. Pushing all calculated values first onto the stack and then later on removing
them again involves unnecessary decrementing and incrementing of the stack point-
ers. Although this is a fairly cheap operation it can happen multiple times in a single
AST node evaluation. So instead of pushing values temporarily on the stack, the stack
frame can be used directly. Values for temporaries and instance variables can be stored
directly in the proper location. To accomplish this change several changes to the evalu-
ation strategy of Pinocchio are necessary. Furthermore the opcodes have to be changed
in most cases to explicitly target the former AST visitor. Another possible optimization
is to have a dedicated return register which prevents further stack operations.

As already mentioned in the previous Section 4.8.1 the use of runtime information
can help to improve performance further. The main principle is to embed assumptions
at runtime. To do so we need a way to track the type of message receivers. The
use of inline caches – discussed in Section 4.6 – only helps to increase performance
marginally but allows for easy tracking of the receiver types. At the moment we track
the receivers in a very limited way and only fill in new types if there are still empty slots
available. The proper behavior would be to count the occurrences of a type and then
store the most often used ones. Next to counting there has to be a normalization over
time to be able to adapt to new situations where other types are used. Once reliable
type information is available we can start to recompile the methods. One approach is
to start inlining other messages, the other would be to record an execution trace and
compile that. Recording traces will require some changes to the VM if native support
is required. Another way would be to create a tracing interpreter on top of Pinocchio.
Although the stacked interpreter adds some overhead it would greatly simplify the
complexity and improve maintainability as all the code could be written in Smalltalk.
This tracing interpreter then needs to recompile traces to binary code when a certain
threshold is hit to compensate for the additional evaluation overhead.

4.8.3 VM Optimizations
As mentioned in Section 4.4 direct-threading is faster than an indirect-threaded ap-
proach. At the moment we store directly a sequence of function pointers as the main
evaluation data, compared to bytecodes or AST visitors a very fast and simple solution.
But at the moment each opcode modifies a program counter and returns after finishing
its calculations. By directly jumping to the following opcode address the overhead of
calling a function and returning from it can be avoided. The ultimate step in this se-
ries of optimizations is to directly copy over the native machine code into each method
body. This allows the branch prediction of the CPU to work more efficiently and avoids
dispatch overhead of opcodes completely.

Furthermore several initial ideas need to be fully completed in future versions of
Pinocchio. Stacked interpreters for instance are supported in a limited way but could
be further analyzed and improved. Another issue is the usage of slots in the system. In
the version discussed in this thesis slots are not yet supported. They are only used as
a placeholder for the name of the instance variables and are used to determine the size
of the object. However, the instance variable access is handled in the same way as in
Pharo by directly indexing into the object’s data. Future versions of Pinocchio should
support sophisticated slots with their own state and which can modify the instance
variable access. The ultimate goal is to have no overhead for default slots by compiling
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away the intermediate slot objects and directly accessing the stored data. Of course
this requires a much more elaborate compiler supporting basic dynamic changes to the
AST at compile time.
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5
Conclusion

This thesis sheds light on the different aspects of optimizations using the Pinocchio
Virtual Machine. Chapter 3 starts by explaining the low-level details of benchmarking
followed by presenting specific results in Chapter 4. The benchmark results in this the-
sis focus on optimizations useful in a high-level language VM. This is very different
from low-level optimizations which would directly apply to C code. Although such op-
timizations are important on a local scale in the VM sources, they generally contribute
only a small percentage to the final speed of a high-level language VM. The optimiza-
tions are dividable into two different abstract approaches. Non-transparent optimiza-
tions which require changes on the semantics of the interpreted language and transpar-
ent optimizations which can happen without such changes. Next to these two abstract
classifications we use two additional implementation-specific properties to separate
the optimizations. Optimizations that focus on embedding assumptions or on caching
data. By embedding assumptions the low-level VM implementation is made aware of
the high-level structures used in the interpreted language. These two groups of classi-
fication are not mutually exclusive.

Several non-transparent optimizations which were applied during the evolution of
Pinocchio are presented in Chapter 2. The second approach, extensively presented in
Chapter 4 are top-down, transparent optimizations. They are compatible with the eval-
uated language and thus impose no restrictions. Transparent optimization help to sepa-
rate language and VM design. Both types of optimizations require proper performance
estimation using benchmarks. It is important to tackle performance by eliminating the
bottlenecks identified by extensive benchmarking and analysis instead of following a
trial and error approach. For the optimizations presented in Chapter 4 we show the
performance impact by relying on a limited set of three benchmarks. With the in-depth
analysis we can show the contribution of each optimization to the overall speedup of
an order of magnitude presented in Figure 4.20.
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5.1 High-level Languages and Optimizations
High-level languages generally try to delay decisions as much as possible. This is done
by introducing indirections for instance using by encapsulating behavior and data in
objects rather than applying a set of functions on a memory location. But the flexibility
comes at a high price in terms of execution speed. Without extensive optimizations a
dynamic language such as Smalltalk is around one to three order of magnitudes slower
than a static C program. An example of how flexibility directly affects performance can
be seen in the evolution of Pinocchio presented in Chapter 2. Scheme Pinocchio, an
ancestor of Pinocchio features a very flexible execution scheme by encapsulating the
evaluation behavior directly on the AST nodes. Even though very interesting concepts
can be programmed with little effort, the inferior performance led to a more classical
approach. In this case the semantics of the language had to be changed completely.
AST nodes no longer directly hosted their own behavior but rather the VM had hard-
coded behavior for known nodes. This paradigm shift was clearly non-transparent and
had a high impact on the language run on the VM requiring it to change part of its
semantics. Later on resulting in the current version of Pinocchio other types of opti-
mizations were applied as discussed in Chapter 4. But in general these optimizations
were designed in such a way that there is no or only a minimal impact on the lan-
guage’s semantics. Thus we can clearly distinct two types of optimizations based on
their impact on the interpreted language:

Non-transparent Optimizations enforce semantic changes on the language running
on top of the VM. A possible example could be to restrict certain behavior to
work only with VM known types. An example for that is the boolean primitives
in Pharo which do not work with customize subclasses.

Transparent Optimizations do not enforce semantic changes on the language run-
ning on top of the VM. By contrast optimizations happen hidden from the lan-
guage transparently in the VM. A most prominent example of such an optimization
are just-in-time compilers. Even though they optimize code for certain types the
semantics naturally will not change at runtime.

Next to the impact of the optimization on the language we classify them upon certain
implementation details.

Embedding assumptions: This group of optimizations focuses on making the low-
level VM implementation aware of the high-level structures used in the inter-
preted language. By embedding the assumptions for common use cases into the
VM execution speed can be greatly improved. The goal is to reduce the overhead
introduced by the semantic mismatch of the VM definition language – generally
C – and the interpreted language. A common example is the replication of high-
level data structures on the C level.

Caching values focuses on avoiding the repeated calculation of the same values. An
example for frequently used caches are inline caches.

These four different categories are not mutually exclusive and the transparency prop-
erty in particular overlaps with the last two properties.

As mentioned before both of the two optimization types were applied during the
evolution of Pinocchio. But the non-transparent optimizations were only used in the
early stage of Pinocchio. At this point the design of the language was still under dis-
cussion and thus semantic changes were more likely to happen. It is of advantage that
we started with system that is more flexible than most common scripting languages
available. Sacrificing some flexibility still results in a VM supporting a very flexible
language. However if the only concern about a language is speed most certainly the
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semantics and syntax of a language will suffer. To assure a good language design we
suggest to separate it from the optimization concerns as far as possible. Of course
in certain situations it is inevitable to let some part of the optimizations influence the
language design. But this should only happen if a significant performance boost, po-
tentially more than an order of magnitude, can be achieved. This requires to clearly
order the optimizations by their performance impact. As shown in Chapter 4 not all
optimization resulted in the expected performance boost. All these results have been
obtained by evaluating several benchmarks. Relying on proper benchmark coverage
and evaluation is required to track the performance of a VM and to locate performance
bottlenecks. In order to provide useful benchmarks the following three core aspects of
benchmarking have to be respected:

Reproducible results: Benchmarks should work similar to unit tests and have to be
reproducible with a minimal effort.

Micro benchmarks: Focusing on micro benchmarks helps to identify performance
critical sections of a high-level language VMs. This is again similar to unit tests
which help to isolate bugs by writing tests for single features.

Statistical sound evaluation: The results from the benchmark runs have to be pre-
sented with respect to a basic statistical evaluation.

By using the PBenchmark framework presented in Section 3.2 we provide a set of
benchmarks which can be easily reproduced. Additionally the framework assures
proper evaluation and presentation of the benchmark results by respecting the statis-
tical background presented in Section 3.1. PBenchmark provides benchmark suites
which encourage writing of small micro benchmarks. Furthermore each suite provides
a summarized total run time of all the included benchmarks. This way there is no need
to write generalized benchmarks which provide only limited meaningful results.

Additionally to the three objective core requirements of benchmarks we can add a
fourth suggestion which states that benchmarks should be used in way similar to unit
tests. Unit tests focus on testing a small functionality to provide instant feedback on a
broken feature, which helps to locate erroneous code. Benchmarks work in a similar
fashion. Relying on micro benchmarks which test only part of an optimization provide
localized information about a possible performance bottleneck. Hence for developing
VMs, unit tests are as important as properly written benchmarks.

5.2 Make it Work, Make it Right, Make it Fast
While working on Pinocchio we spent many hours in figuring out how to optimize a
certain performance issue. Generally this was done on pure assumptions with limited
scientific support from a benchmark or proper evaluation. As mentioned in the previous
section the two main forces behind Pinocchio are speed and flexibility – and generally
they do not fit together very well. The temptation to start optimizing part of an imma-
ture system are big. For instance Pinocchio did not feature a valid error handling mech-
anism for several months whilst many man hours were invested in an optimized AST
evaluator. The more promising approach is to implement a version which works com-
pletely as soon as possible and only then start optimizing. Each optimization should be
accompanied with a proper benchmark. The idea behind this is similar to the unit test
approach. By writing benchmarks and tracking their progress, the overall influence of
an optimization can be better estimated. For instance in cases where there is no speed
measurable improvement an optimization can be undone and removed. This has been
shown in the case of unwrapped values in Section 4.7 where benchmarks are used to
reveal hidden relationships between the different optimizations.
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A.1 Default Benchmarks Sources

A.1.1 Dictionary
benchAtIfAbsentPut

1 to: self dictSize * 2 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchAtPut

1 to: self dictSize * 2 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchAtPutExisting

1 to: self dictSize do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchAtPutNew

dict size to: self dictSize * 5 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchDo

4 timesRepeat: [
dict do: [ :i| ]].

benchIncludes

1 to: self dictSize * 2 by: 73 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchIncludesKey

1 to: dict size * 2 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchIncludesKeyExisting

1 to: dict size do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchIncludesKeyNew

dict size to: dict size * 2 do: [ :i|
dict at: (self key: i) ifAbsentPut: (self value: i)].

benchKeysAndValuesDo

4 timesRepeat: [
dict keysAndValuesDo: [ :k :v| ]].

benchRemoveKey

1 to: dict size by: 73 do: [ :i|
dict removeKey: (self key: i) ].
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A.1.2 Parser
benchAnnotation

| string |
string := PEGStringScanner on: ’a

<abcdefghil>’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchBlock

| string |
string := PEGStringScanner on: ’a

� []’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchBlockWithArg

| string |
string := PEGStringScanner on: ’a

� [ :a| ]’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchBlockWithArgAndBody

| string |
string := PEGStringScanner on: ’a

� [ :a| a]’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchSmallMethod

| string |
string := PEGStringScanner on: ’a
� self’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchMediumMethod

| string |
string := PEGStringScanner on: ’initialize
internalConstantCode := PDictionary new.
internalConstantCode at: false put: #pushfalse.
internalConstantCode at: true put: #pushtrue.
internalConstantCode at: nil put: #pushnil.
internalConstantCode at: 0 put: #push0.
internalConstantCode at: 1 put: #push1.
internalConstantCode at: 2 put: #push2.’.
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self repetitionCount timesRepeat: [
methodParser match: string.
string reset.].

benchLongMethod

| string |
string := PEGStringScanner on: ’initialize
|c key bucketIndex values index internalConstantCode

custom1 custom2 custom3 custom4 custom5 custom6
custom7 custom8 custom9|

internalConstantCode := PDictionary new.
internalConstantCode at: false put: #pushfalse.
internalConstantCode at: true put: #pushtrue.
internalConstantCode at: nil put: #pushnil.
internalConstantCode at: 0 put: #push0.
internalConstantCode at: 1 put: #push1.
internalConstantCode at: 2 put: #push2.
values := Array new: size.
index := 0.
self do: [ :value |

values at: (index := index + 1) put: value ].
values := Array new: size.
index := 0.
self do: [ :value |

values at: (index := index + 1) put: value ].
c := 1.
buckets at: index put: bucket.
[ c <= bucket bucketSize ] whileTrue: [

key := bucket at: c.
bucketIndex := key hash \\ buckets size + 1.
bucketIndex = index

ifTrue: [ c := c + 2 ]
ifFalse: [

(self bucketWithRoomAt: bucketIndex)
newKey: key value: (bucket at: c + 1).

bucket removeAt: c ] ]
’.
self repetitionCount timesRepeat: [

methodParser parse: string.
string reset].

benchString

| string |
string := PEGStringScanner on: ’a
� ’’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789’’’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

benchStringNumbers

| string |
string := PEGStringScanner on: ’a
� ’’012345689’’’.
self repetitionCount timesRepeat: [
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methodParser match: string.
string reset].

benchSymbol

| string |
string := PEGStringScanner on: ’a
� #abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789’.
self repetitionCount timesRepeat: [

methodParser match: string.
string reset].

A.1.3 Fibonacci
benchFib

31 fib
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