
Codemap
Improving the Mental Model of Software Developers

through Cartographic Visualization

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

David Samuel Erni
Januar 2010

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz

Adrian Kuhn

Institut für Informatik und angewandte Mathematik

Further information about this work and the tools used as well as an online version of
this document can be found under the following addresses:

David Samuel Erni
Pappelweg 29
CH-3013 Bern
http://www.deif.ch/
http://scg.unibe.ch/codemap

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.
See http://creativecommons.org/licenses/by-sa/3.0/ for more information.

http://www.deif.ch/
http://scg.unibe.ch/codemap
http://scg.unibe.ch/
http://creativecommons.org/licenses/by-sa/3.0/

Abstract

Software is intangible and the knowledge about a software system and its architecture
is often implicit. Thus the developers’ mental model of their software system is an
important factor in software engineering.

We want to provide developers, and everyone else involved in software development,
with a shared, spatial and stable mental model of their software project. We aim to
reinforce this by embedding a cartographic visualization in the IDE (Integrated Devel-
opment Environment). The visualization is always visible in the IDE, similar to the
overview map found in many computer games. For each development task, related
information is displayed on the map.

In this thesis we present Codemap, an Eclipse plug-in that demonstrates the use of
software cartography in the context of an IDE. We perform an informal user study to
validate our assumptions about the usage of Codemap.

iii

iv ABSTRACT

Acknowledgements

I would like to express my gratitude to everyone that supported me during the time
I was working on this thesis. Only due to your support did I manage to successfully
complete his thesis!

First of all I want to thank Adrian Kuhn – this work would not have been possible
without him. He supported me by providing new ideas, input and motivation and by
taking a lot of time for discussing and working with me.

Prof. Oscar Nierstrasz for giving me the opportunity to write this thesis at the Software
Composition Group (SCG) and for his inspirational lectures and his support that
contributed a lot to my ongoing interest in computer science.

The whole SCG staff that contributed to this work with their smart or critical comments
or with interesting discussions and advice.

Everyone that participated in the user study for agreeing to be a guinea pig for my
work.x

All the students that accompanied me, not only during the time of this work but
during my whole studies, for the great time we had; be it over lunch, while learning or
working in the SCG student pool.

My friends for motivating and supporting me and especially my parents for their
unconditional support and for always believing in me.

Thank you!

Dave, January 2010

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Approach in a Nutshell . 2
1.2 Contributions . 4
1.3 Structure of the Thesis . 4

2 Related Work 5
2.1 Previous Work . 5
2.2 Other Approaches . 6

2.2.1 Desiderata for Spatial Representation of Software 7
2.2.2 Other Layout Approaches . 8
2.2.3 More Cartography and Spatiality Metaphors 10

3 Software Cartography 13
3.1 From Cartography to Software Cartography 13
3.2 On the Choice of Vocabulary . 14
3.3 The Cartography Pipeline . 16

3.3.1 Lexical Similarity between Source Files 16
3.3.2 Creating a Two-Dimensional Layout 17
3.3.3 Hill-shading and Contour Lines 18
3.3.4 Labeling . 19
3.3.5 Landscape Coloring and Overlays 20

3.4 On Different Layout Algorithms . 20
3.4.1 An Introduction to Multidimensional Scaling 21
3.4.2 High-Throughput Multidimensional Scaling 22
3.4.3 Isomap . 22
3.4.4 Metric Multidimensional Scaling 24

3.5 Codemap’s Two-Dimensional Reduction 25

vii

viii CONTENTS

4 Codemap 29
4.1 On the Choice of Eclipse and Java . 29
4.2 Supported Programming Tasks . 30

4.2.1 Code Navigation . 30
4.2.2 Test Coverage . 32
4.2.3 Searching the Code . 33
4.2.4 Searching References/Declarations 34
4.2.5 Browsing Call Hierarchies . 35
4.2.6 Collaboration . 37

4.3 Future Features . 38
4.3.1 Vocabulary View . 38
4.3.2 Vocabulary Search . 38
4.3.3 Further Eclipse Integration . 38
4.3.4 Labeling Schemes . 40
4.3.5 Elevation Schemes . 41
4.3.6 Finer Granularity . 41
4.3.7 Map Wizard . 41

5 Implementation 43
5.1 Architecture . 43

5.1.1 Concurrent Calculation Pipeline 43
5.1.2 Visualization Layers . 46
5.1.3 Eclipse Integration . 48

5.2 On Performance Improvements . 48
5.2.1 Fast Elevation Model . 48
5.2.2 Nearest Neighbor Lookup . 50
5.2.3 SWT Image Performance . 50
5.2.4 Translation of FORTRAN to JVM Bytecode 51

6 Case Study 53
6.1 User Study . 53

7 Conclusion 57
7.1 Future Work . 58
7.2 Lessons Learned . 59

A Codemap Quickstart 61
A.1 Obtaining Codemap . 61
A.2 Using Codemap . 61

A.2.1 Mapview . 62
A.2.2 Toolbar . 63
A.2.3 Search Bar . 64
A.2.4 Coloring Metrics . 64
A.2.5 Overlay Metrics . 64

B User Study Questions 69

CONTENTS ix

B.1 What is the Domain of Outsight? . 69
B.2 Which Technologies are used in Outsight? 70
B.3 Which is the Architecture of Outsight? . 71
B.4 Which Classes collaborate in a Feature? 72
B.5 Asses the Code Quality . 73
B.6 Fix a Bug . 74

List of Figures 75

Listings 77

Bibliography 79

x CONTENTS

Chapter 1

Introduction

Software is intangible and the knowledge about a software system and its architecture is
often implicit. Thus the developers’ mental model of their software system is important
because the most accurate documentation of a project often exists in the developers’
heads only. The goal of this thesis is to provide developers with a shared, spatial and
stable mental model of their software projects. We propose to embed a tool in the
environment of their daily work i.e. in their Integrated Development Environment
(IDE), to visually support their mental model. We propose this tool to be a cartographic
visualization of their software project.

Our goal is that developers arrive at a better mental model based on the spatial
representation provided by our tool rather than to visualize the developers’ current
mental model of their software systems. This decision is supported by the observation
that the IDE often influences the programmers’ mental model of software by the means
of its source code representation. Compare for example the mental model held by an
Eclipse developer with that of an emacs or vim user, or with the even more diverging
mental model of development in exploratory runtime systems such as Smalltalk and
Self [49]. We suggest our visualization to be always visible in the IDE, similar to
the overview map found in many computer games, to support the emergence of the
developers’ mental model.

The mental model can then be used to aid the programmer in various development
tasks, for example in code navigation. DeLine observes that developers are consistently
lost in source code. He noticed that using textual landmarks to ease the navigation
only places a large burden on the developers’ cognitive memory [18]. Based on these
observations he suggests the usage of new visualization techniques that address the
spatial memory of developers to help them navigate their code. DeLine proposes four
desiderata that should be satisfied by spatial software navigation [16]. In our most
recent work [31] we generalized and extended this list as follows:

1. The visualization should show the entire program and be continuous.

1

2 CHAPTER 1. INTRODUCTION

2. The visualization should contain landmarks that allow the developers to find
parts of the system perceptually, rather than relying on naming or other cognitive
feats.

3. The visualization should remain visually stable as the system evolves (both
locally and across distributed version control commits).

4. The visualization should be capable of showing global information overlays.

5. Distance in the visualization should have an intuitive and technically meaningful
interpretation.

In previous work, Loretan performed a feasibility study by implementing a prototype
of such a visualization called Software Cartographer [33]. It was shown that it is possible
to generate cartographic maps for a software system that satisfy above desiderata.
Previous work also provides a proposal for an algorithm that generates software maps
and furthermore shows that this algorithm has proven valuable in generating maps
for several software systems. That prototype however was not embedded into an
IDE.

In this work we demonstrate the use of software cartography in the context of an
IDE by implementing a tool called Codemap which aims at helping the programmer
establish a consistent mental model of his software project.

1.1 Approach in a Nutshell

In this thesis we apply software cartography in the context of an IDE (Integrated
Development Environment). We present a prototype called Codemap that aims to help
programmers and their software development teams to establish a stable mental model
of their software projects.

To achieve this goal, we must first propose a way to generate a stable visualization for
software. Previous work suggests such a visualization to be based on vocabulary [31].
This is based on the observation that vocabulary abstracts away from technical details
of source code [30] and that the vocabulary of an evolving software system is more
stable than its structure [2].

The construction sequence of the visualization is similar to previous work [33, 31]:

First we parse the vocabulary of source files into a term-frequency matrix. Then we
transform this term-frequency matrix using Latent Semantic Indexing (LSI) [15] to
reduce its complexity. Afterwards a composition of two algorithms is used to calculate
the two-dimensional embedding of the parsed source files. First, Isomap [59] is applied.
Then Multidimensional Scaling (MDS) [8] is used to embed all software artifacts on
the visualization pane. The application of Isomap is an improvement over previous
work in order to assist MDS with the global layout. The result from this first step is a
two-dimensional position on the visualization pane for each software entity.

1.1. APPROACH IN A NUTSHELL 3

In the next step, an elevation model is created. Each software entity contributes a
Gaussian shaped basis function to the elevation model according to its size. The
contributions of all software entities are summed up and normalized. The result of this
step is a pixel by pixel elevation model.

In the final step, we use cartographic visualization techniques to render a landscape
which is colored depending on the height of each pixel. Furthermore we add hill-
shading and contour lines to render a visually appealing landscape. Then, metrics and
markers are rendered in transparent layers on top of the landscape. Users can toggle
the visibility (on/off) of each separate layer and thus customize the map according to
their needs.

As described above, software cartography uses a spatial visualization of software
systems to provide software development teams with a stable and shared mental model.
Our cartographic visualization is most useful when it supports as many development
tasks as possible. Therefore we integrated software cartography in the Eclipse IDE so
that a map of the software system may always be present and may thus support as
many development tasks as possible.

At the time of writing, Codemap supports the following programming tasks:

• Navigation within a software system, be it for development or analysis. Codemap
is integrated with the package explorer and editor of Eclipse and linked to the
user’s current selection. Open files and the currently active file in the editor are
indicated on the map. Double clicking on the map opens the closest file in the
editor, right clicking on the map displays the default action menu for the current
selection. When using heat map mode, recently visited classes are highlighted.

• Comparing software metrics to each other, e.g. to compare bug density with code
coverage. Codemap is hooked into several Eclipse plug-ins in order to display
their results on the map alongside the regular views. The map displays search
results, compiler errors, and (given the Eclemma plug-in is installed) test coverage
information.

• Social awareness of collaboration in the development team. Codemap can connect
two Eclipse instances to show open files of other developers (given the Eclipse
Communication Framework plug-in is installed). Colored icons are used to show
the currently open files of the other developer, and the open files are updated
continuously.

• Exploring a system during reverse engineering. Codemap is integrated with
Eclipse’s structural navigation functions such as search for callers, implementers,
and references. Pins are shown for search results, arrows represent call hierarchies.
We apply the Flow Map algorithm [44] to avoid visual clutter by merging parallel
arrow edges.

4 CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis builds on previous work, in which we first proposed software cartography
for consistent layout of software visualizations [33, 31]. A first prototype of Codemap
(back then still called Software Cartographer) was implemented by Peter Loretan and
published at the WCRE 2008 conference1 [33]. This led to an extended journal version
that examined the stability of the software cartography algorithm [31].

The main contributions of this thesis are:

• Composite layout algorithm. Previous work presented a layout algorithm based
on Multidimensional Scaling only [31]. In this thesis we propose the use of an
improved algorithm that calculates the layout in two sequential steps. The first
step calculates a global layout and serves as input for the second step which
performs local optimizations.

• IDE embedding. Previous work presented a stand-alone analysis tool that was not
linked to the developer’s activities. We embed Codemap in an IDE, supporting the
programmer in various development tasks. We provide overlays for same visual-
ization that support different development tasks and thus help the programmer
to compare the visualizations of different kinds by addressing his spatial memory
of the system.

• Performance. Previous work was not optimized for performance due to different
requirements. In this work, we improved the algorithm greatly in performance
to guarantee a smooth user experience.

• User study. So far, there has been no validation of Codemap involving an user study.
In this work, we perform an informal user study to validate our assumptions
about the usage of the tool. We propose improvements to the tool that arose from
these studies.

1.3 Structure of the Thesis

Chapter 2 discusses other research in this area. Chapter 3 explains how software car-
tography renders the two-dimensional cartographic visualization. Chapter 4 motivates
why we integrate software cartography into an IDE and enumerates the of supported
programming tasks. Chapter 5 discusses more details on the implementation of the plu-
gin and gives an explanation of the performance improvements. Chapter 6 discusses
the results of our user study and Chapter 7 concludes.

Appendix A provides a quick start on installing and using Codemap and Appendix B
shows the questions designed for the user study.

1Working Conference on Reverse Engineering

Chapter 2

Related Work

There has been a lot of research in the field of software visualization. In this chapter we
enumerate a selection of the publications that have a significant relation to our work.
We compare them to our work by summarizing similarities and differences.

Section 2.1 describes Software Cartographer, the predecessor of Codemap and Section 2.2
compares our work to the state of the art in the field of software visualization.

2.1 Previous Work

This section gives a brief description of Codemap’s predecessor, Software Cartographer,
and explains the development steps taken since.

Kuhn and Loretan present a prototype of Software Cartography called Software Car-
tographer as depicted in Figure 2.1. Software Cartographer is a standalone prototype to
support the analysis of software projects. Software Cartographer is not embedded into
an IDE but an external tool rendering maps for a project after the corresponding folder
is selected from the file system.

Codemap is the successor of Software Cartographer and switches the focus from stand-
alone analysis to IDE integration. Codemap aims at helping the developers arrive at
a better mental model of their software project while working with the code. Thus
Codemap is embedded into the Eclipse IDE and linked with several development tasks.
Note that Codemap had to be ported from Smalltalk to Java to allow embedding in
Eclipse.

Furthermore with Codemap we improved the layout algorithm and the performance,
and we enabled linking with daily development tasks. Codemap is discussed in detail
in Chapter 4.

5

6 CHAPTER 2. RELATED WORK

Figure 2.1: Software Cartographer was developed as a standalone prototype to support
the analysis of software projects. It is not embedded into an IDE but renders
maps for a project after selection from the file system.

2.2 Other Approaches

In this section we present existing work related to software cartography. In Subsec-
tion 2.2.1 we first summarize the work related closest to software cartography, DeLine’s
work on software navigation. Then we compare our approach to other work per-
formed in the software visualization field. Subsection 2.2.2 enumerates other layout
approaches in software visualization and Subsection 2.2.3 lists other tools that have
adopted cartography metaphors.

Using dimensionality reduction to visualize information based on the metaphor of
cartographic maps is by no means a new idea. Topic maps, as they are called, have
a longstanding tradition in information visualization [66]. Our work was originally
inspired by Michael Hermann’s and Heiri Leuthold’s work on the political landscapes
of Switzerland [24].

Stable layouts have a long history in information visualization. As a starting point see
e.g. the recent work by Frishman and Tal on online dynamic graph drawing [22]. They
present an online graph drawing approach, which is similar to the pipeline presented in
this work. Please refer to Subsection 2.2.2 for a detailed comparison of graph drawing
and our approach.

2.2. OTHER APPROACHES 7

2.2.1 Desiderata for Spatial Representation of Software

This section summarizes DeLine’s work on software navigation. Most importantly an
extended list of five desiderata for spatial representations is given.

DeLine’s work on software navigation [16, 17] closely relates to software cartography.
His work is based on the observation that developers are consistently lost in code [18]
and that using textual landmarks only places a large burden on cognitive memory. He
concludes the need for new visualization techniques that allow developers to use their
spatial memory while navigating source code.

Software Terrain Map is, like Codemap, based on the metaphor of cartographic maps
[16]. It provides a continuous landscape that provides visual landmarks to keep the
users oriented. It mimics the continuous nature of cartographic maps by partitioning
the screen into tiles and assigning them to software components. It uses function call
analysis and file read-writes to measure the affinity of these components. The affinity is
then used to layout similar components closer to each other. However, it lacks stability
and locality and does not display labels for a better orientation [65].

DeLine proposes four desiderata [16] that should be satisfied by spatial software
navigation: 1) the display should show the entire program and be continuous, 2) the
display should contain visual landmarks that developers can find parts of the program
perceptually rather than relying on names, 3) the display should remain visually stable
during navigation [and evolution], and 4) the display should be capable of showing
global program information overlays other than navigation.

An ad-hoc algorithm that satisfies the first and fourth properties is presented in the
same work. As distance metric between software entities (here, methods) an arbitrary
chosen score is used.

Our work satisfies all above desiderata, and completes them with a fifth desideratum
that visual distance should have a meaningful interpretation. The scope of software
cartography is broader than just navigation. It is also intended for reverse engineering
and code comprehension in general. We can thus generalize the five desiderata for
spatial representation of software as follows:

1. The visualization should show the entire program and be continuous.

2. The visualization should contain visualization landmarks that allow the develop-
ers to find parts of the system perceptually, rather than relying on name or other
cognitive causes.

3. The visualization should remain visually stable as the system evolves.

4. The visualization should should be capable of showing global information over-
lays.

5. On the visualization, distance should have a meaningful interpretation.

8 CHAPTER 2. RELATED WORK

2.2.2 Other Layout Approaches

This section summarizes other layout approaches used in software visualization and
elaborates the differences to Codemap.

Most software visualization layouts are based on one or multiple of the following ap-
proaches: UML diagrams, force-based graph drawing, tree-map layouts and polymetric
views.

ThemeScape is the best-known example of a text visualization tool that uses the metaphor
of cartographic maps. Topics extracted from documents are organized into a visualiza-
tion where visual distance correlates to topical distance and surface height corresponds
to topical frequency [69]. The visualization is part of a larger toolset that uses a variety
of algorithms to cluster terms in documents. For laying out small document sets MDS
is used; for larger document sets a proprietary algorithm, called “Anchored Least
Stress”, is used. The digital elevation model is constructed by successively layering the
contributions of the contributing topical terms, similar to our approach.

UML diagrams generally employ no particular layout and do not continuously use the
visualization pane. The UML standard itself does not cover the layout of diagrams.
Typically a UML tool will apply an unstable graph drawing layout (e.g. based on
visual optimization such a reducing the number of edge crossings) when asked to
automatically layout a diagram. However, this does not imply that the layout of UML
diagrams is meaningless. UML diagrams are carefully created by architects, at least
those made during the design process, so their layouts do have a lot of meaning. If you
change such a diagram and re-show it to its owner, the owner will almost suddenly
complain, since he invested time in drawing the diagram a certain way! Alas, this
layout process requires manual effort.

Gudenberg et al. have proposed an evolutionary approach to layout UML diagrams in
which a fitness function is used to optimize various metrics (such as number of edge
crossings) [62]. Although the resulting layout does not reflect a distance metric, in
principle the technique could be adapted to do so. Andriyevksa et al. have conducted
user studies to assess the effect that different UML layout schemes have on software
comprehension [1]. They report that the layout scheme that groups architecturally
related classes together yields best results. They conclude that it is more important
that a layout scheme convey a meaningful grouping of entities, rather than being
aesthetically appealing. Byelas and Telea highlight related elements in a UML diagram
using a custom “area of interest” algorithm that connects all related elements with a
blob of the same color, taking special care to minimize the number of crossings [12].
The impact of layout on their approach is not discussed.

Graph drawing refers to a number of techniques to layout two- and three-dimensional
graphs for the purpose of information visualization [66, 27]. Noack et al. offer a good
starting point for applying graph drawing to software visualization [43]. Jucknath-John
et al. present a technique to achieve stable graph layouts over the evolution of the
displayed software system [26], thus achieving consistent layout, while sidestepping

2.2. OTHER APPROACHES 9

the issue of reflecting meaningful position or distance metrics.

Unlike our approach, graph drawing is concerned with the placement of vertices and
edges such that visual properties of the output are optimized. For example, algorithms
minimize the number of edge crossings or try to avoid that nodes overlap each other.
Even though the standard force-based layouts can consider edge weights (which can
be seen as a distance metric), edges with the same weight may have different lengths
on the visualization pane depending on the connectedness of the graph at that position.
Furthermore, the resulting placement is not continuous. The void between vertices is
not continuous a spectrum of metric locations, as it is the case with our layout.

Graph splatting is a variation of graph drawing, which produces visualizations that
are very similar to thematic maps [63]. Graph splatting represents the layout of graph
drawing algorithms as a continuous scalar field. Graph splatting combines the layout
of graph drawing with the rendering of thematic maps. Each vertex contributes to the
field with a Gaussian shaped basis function. The elevation of the field thus represents
the density of the graph layout at that position. Telea et al. apply Graph splatting in
their RE toolkit to visualize software systems [58]. However, they are not concerned
with stable layouts. Each run of their tool may yield a different layout.

Except for the use of graph splatting in RE Toolkit, we are unaware of the application
of topic maps in software visualization. And even in the case of the RE toolkit, the
maps are not used to produce consistent layouts for thematic maps, or to visualize the
evolution of a software system.

Treemaps represent tree-structured information using nested rectangles [66]. Though
treemaps make continuous use of the visualization pane, the interpretation of position
and distance is implementation dependent. Classical treemap implementations are
known to produce very narrow and thus distorted rectangles. Balzer et al. proposed
a modification of the classical treemap layout using Voronoi tessellation [5]. Their
approach creates aesthetically more appealing treemaps, reducing the number of
narrow tessels. There are some treemap variations (e.g. the strip layout or the squarified
layout) that can, and do, order the nodes depending on a metric. However, nodes are
typically ordered on a local level only, not taking into account the global co-location of
bordering leaf nodes contained in nodes that touch at a higher level. Many treemaps
found in software visualization literature are even applied with arbitrary order of
nodes, such as alphanumeric order of class names.

Polymetric views visualize software systems by mapping different software metrics
on the visual properties of box-and-arrow diagrams [36, 37]. Many polymetric views
are ordered by the value of a given software metric, so that relevant items appear
first (whatever first means, given the layout). Such an order is more meaningful than
alphabetic (or worse, hash-key ordering), but on the other hand only as stable as the
used metric. The System Complexity view is by far the most popular polymetric
view, and is often used as a base layout where our requirements for stability and
consistence apply (see e.g. [23]). The layout of System Complexity uses graph drawing
on inheritance relations, and orders the top-level classes as well as each layer of

10 CHAPTER 2. RELATED WORK

subclasses by class names. Such a layout does not meet our desideratum for a stable
and consistent layout.

2.2.3 More Cartography and Spatiality Metaphors

This section lists other visualization tools based on cartography or spatial metaphors.

A number of tools have adopted metaphors from cartography in recent years to visual-
ize software. Usually these approaches are integrated in a tool with in an interactive,
explorative interface and often feature three-dimensional visualizations. None of these
approaches satisfies DeLine’s desiderata.

MetricView is an exploratory environment featuring UML diagram visualizations [60].
The third dimension is used to extend UML with polymetric views [36]. The diagrams
use arbitrary layout, so do not reflect meaningful distance or position.

White Coats is an exploratory environment also based on the notion of polymetric views
[40]. The visualizations are three-dimensional with position and visual-distance of
entities given by selected metrics. However they do not incorporate the notion of a
consistent layout.

CGA Call Graph Analyser is an exploratory environment that visualizes a combination
of a function call graph and nested module structure [7]. The tool employs a 2 1

2 -
dimensional approach. To our best knowledge, their visualizations use an arbitrary
layout.

CodeCity is an exploratory environment building on the city metaphor [67]. CodeCity
employs the nesting level of packages for their city’s elevation model, and uses a
modified tree layout to position the entities, i.e. packages and classes. Within a package,
elements are ordered by size of the element’s visual representation. Hence, when
changing the metrics mapped on width and height, the overall layout of the city
changes, and thus, the consistent layout breaks.

VERSO is an exploratory environment that is also based on the city metaphor [34].
Similar to CodeCity, VERSO employs a treemap layout to position their elements.
Within a package, elements are either ordered by their color or by first appearance
in the system’s history. As the leaf elements all have the same base size, changing
this setting does not change the overall layout. Hence, they provide consistent layout,
however within the spatial limitations of the classical treemap layout.

Data Mountain is a 3D document management system that allows the user to place
documents at arbitrary positions on an inclined plane [47]. They use 2D interaction
techniques and common pointing devices for all the interactions. Data Mountain is
designed to specifically address the human spatial memory to assist with document
management. They provide a user study that shows that spatial memory plays an
important role in retrieving and localizing documents on the document storage plane.

2.2. OTHER APPROACHES 11

This tool is only loosely related to Codemap but it is interesting to see that the spatial
metaphor works in other areas.

Code Thumbnails provides two different thumbnail views to navigate source-code [17].
The Code Thumbnail Scrollbar supplements the document’s scrollbar with a thumbnail
image of the entire document and helps navigating within a file. The Code Thumbnail
Desktop supports navigation between files by showing a thumbnail image of every
source file on a desktop surface. Code Thumbnails address the spatial memory of the
developer by using the shape of the code itself as visual landmarks. Hence their layout
is strongly coupled to the coding style of the individual developer and easily broken
by reformatting the code or sorting class members. So unlike Codemap their layout
strongly depends on the (visual) structure of the code.

Code Canvas is a research prototype that focuses on the spatial representation of code,
oriented on developer’s drawings on whiteboards [48]. It represents code on a two-
dimensional infinite canvas. When zoomed out one one can see an UML overview of
the project, when zoomed in all the UML entities become source-code editors. The tool
uses the same canvas to visualize the directional relationships and the architectural
boundaries where it also allows editing of source code. To our best knowledge, it relies
on the developer to manually layout the source entities.

Microsoft Visual Studio 2010 uses a dependency graph visualization to draw an overview
of the application [54]. The dependency line thickness is given by the depth of the
dependency. Furthermore it displays an externals box to capture all the external
dependencies, thus it can also display references to code outside the current project.
Contrary to Codemap they use an arbitrary layout for their visualization, similar to the
layout of polymetric views.

12 CHAPTER 2. RELATED WORK

Chapter 3

Software Cartography

In this chapter, we present the main concept of software cartography. Section 3.1
discusses properties of traditional cartographic visualization. Section 3.2 presents why
we base the layout on vocabulary. Section 3.3 discusses how we create a visualization
inspired by cartography. Section 3.4 enumerates different approaches to create a
layout based on vocabulary whereas Section 3.5 discusses the approach taken by
Codemap.

3.1 From Cartography to Software Cartography

In this section we analyze properties of traditional cartographic visualizations. We seg-
regate two important properties that should also hold for software cartography.

Software visualization is an attractive method to abstract away from the complexity
of large software systems. A single visualization can represent a large amount of
information (e.g. the structure, collaboration, coupling, code ownership, code growth
. . .) about complex software projects [19, 28, 45, 56]. Unfortunately it is hard to
compare the great number of different visualizations of the same software project
since almost every visualization adopts its own layout. That way the visualizations
originally developed to abstract away from the complexity of software systems have
led to another source of complexity, their incomparability.

The maps found in a conventional atlas stand in contrast to the situation in software
visualization. Different information (e.g. population density, flow of trade, migration,
industry sectors, birth rate, . . .) is displayed on top of the same consistent layout, the
natural shape of the underlying landscape. Thus for the viewer it is easy to correlate
different visualizations concerning the same geographical location since they corre-
spond to the viewer’s underlying mental model of the landscape. This increases the
viewer’s understanding of the connections between the visualized information.

13

14 CHAPTER 3. SOFTWARE CARTOGRAPHY

When comparing multiple data-sets representing different information for one geo-
graphical location the viewer can focus on the same location in the visualization and
has just to process the visual change of the data representation.

This is possible because of the following reasons:

1. Two-dimensional representation: Geographic positions and distances can be easily
mapped to a two-dimensional layout. On a local scale the earth can be considered
as almost flat. On a global scale cartographic projections (e.g. the Mercator
projection) can be used for a natural mapping.

2. Cardinal directions: There is a convention for the directions on a map; north is
considered to be on the top.

On the other hand, software entities have no natural layout due to the lack of physical
shape and location. Thus distance and orientation have no defined natural meaning
for software entities. This is likely to be the cause for the big amount of different and
incomparable visualization layouts. An informal shallow survey of recent publications
at SOFTVIS and VISSOFT shows that most of their visualizations use an arbitrary layout.
Most common the visualizations base their layout on the lexical order of elements, e.g.
alphabetically or hash-key order1.

Based on these perceptions from geographic maps we suggest that a consistent layout
for software eases the comparison of visualizations that depict different information.
As a next step we need to find a basis for the position of software entities on a so called
“cartographic” software map. The requirements for that basis are that it must contain
a semantically meaningful notion of position and distance that can be mapped to a
two-dimensional visualization pane2.

3.2 On the Choice of Vocabulary

In this section, we propose the usage of vocabulary as the analogue to physical position
for software entities. We suggest to achieve a consistent, two-dimensional layout by
mapping an n-dimensional vocabulary-based position down to two dimension. The
distance between software entities is thus given by their lexical distance.

Why should we adopt vocabulary as distance metric, and not some structural property?

First of all, vocabulary can capture the key domain concepts of source code by abstract-
ing away from its technical details [30]. Software entities with similar vocabulary are
close by concept and topic. Another important point is, that vocabulary tends to be
stable over time. It is known that the vocabulary of a software system is more stable
than its structure [2] and that the vocabulary grows rather than changes over time [64].

1Hash-key order is what we get when iterating over a hash-based data structure e.g. Sets or Dictionaries
2Note that we do not require the representation to be two-dimensional initially. An n-dimensional

representation that can be mapped down to two dimensions later is sufficient as well.

3.2. ON THE CHOICE OF VOCABULARY 15

Consider, for example, programming languages where name overloading is applied.
Even though overloaded methods differ in their implementation strategy, they will
typically implement the same concept using the same vocabulary. Furthermore, lexical
similarity has proven useful to detect high-level clones [38] and cross-cutting concerns
[4] in software.

But what if programmers use the same name in a different context?

It is possible that semantically different scopes contain identical identifiers with differ-
ent meanings. Consider, for example, two functions having mostly identifiers such as i,
j, prev, next, end, stop, flag, . . . ; the one performs matrix computations, while the other
is a hash-table implementation. Without the application of Latent Semantic Indexing
(Subsection 3.3.1) the two would be classified as being very similar, but this is clearly
not the case from a developer’s perspective. Latent Semantic Indexing, however, can
identify words that have different meaning depending on their context. LSI has the
ability to resolve certain synonymy and polysemy [15].

What about operations during refactoring, that cause functionality to be renamed or moved?

Although refactoring causes code to be renamed or to be moved, the overall vocabulary
of a software system tends not to change, except as a side-effect of a considerable
growth of the project. Thus vocabulary remains relatively stable during changes.
Because of this vocabulary can be used to provide a stable, consistent notion of position
for software entities. Consider the example of a rename refactoring. Two effects may
occur. In the first case, all occurrences of a symbol are replaced with a new symbol.
This will not affect the map, since both lexical similarity and Latent Semantic Indexing
are based on statistical analysis only. Replacing all occurrences of one term with a
new term is, from the point of these technologies, a null operation. In the second
case, some occurrences of a symbol are replaced with another symbol which is already
used. This will indeed affect the layout of the map. Given that the new name was well
chosen by the programmer, the new layout constitutes a better representation of the
system. On the other hand, if the new name is a bad choice, the new layout is flawed.
However, what constitutes bad naming is not merely a matter of taste. Approaches
that combine vocabulary with structural information can indeed assess the quality of
naming. Please refer to Høst’s recent work on debugging method names for further
reading [25].

As a consequence, vocabulary offers an understandable notion of position that can
be used to provide a consistent layout for a system’s software entities, even when
given system is the subject of changes. The cartographic visualization presented in
this work can also be used to show maps based on other notions of position, such as
structural similarity. However, positions that are not based on vocabulary are likely
to be less stable concerning changes in the software system. Hence other notions of
position contradict our goal to help programmers establish a stable mental model of
their software system.

In Section 3.1 we concluded that geographic positions can be easily mapped to a (two-
dimensional) position and we required this to be the case for software entities in our

16 CHAPTER 3. SOFTWARE CARTOGRAPHY

cartographic software visualization as well. In this section we elaborated that software
entities, in fact contain an implicit notion of position and distance metric that arises
from their vocabulary. We suggest to analyze the vocabulary of software entities and
to determine their position by the term frequency in an n-dimensional space, where n
represents the number of terms in the whole software project. Furthermore we suggest
to apply Latent Semantic Indexing to handle synonymy and polysemy, this results
in an m dimensional term-document matrix (m << n). As a final step, in analogy to
geographic projections, we suggest to map these m dimensional positions down to two
dimensions, while trying to preserve their relative distances as well as possible.

The second observation made about cartographic maps is that they contain a conven-
tion for the cardinal directions i.e. that across different maps the same set of locations
are in the same place. Our cartographic visualization uses a distance based on lexical
similarity, hence under the assumption that software entities dealing with the same
domain contain similar vocabulary, they are located close to each other. The cardinal
directions of cartographic maps thus is represented in software maps as the positioning
of different software domains relative to each other.

3.3 The Cartography Pipeline

In this section we present the techniques that are used to achieve a consistent layout
for software maps. The general approach of software cartography, as illustrated in
Figure 3.1, is as follows:

1. We parse the vocabulary of source files into term-frequency histograms. All text
found in raw source code is taken into account, including not only identifiers but
also comments and literals.

2. We transform the term-frequency histograms using Latent Semantic Indexing
(LSI) [15], an information retrieval technique that resolves synonymy and poly-
semy.

3. We use the composition of two algorithms, Isomap and Multidimensional Scaling,
to map the the term-frequency histograms onto the 2D visualization pane. This
preserves the lexical co-relation of source files as well as possible.

4. We use cartographic visualization techniques to render an aesthetically appealing
landscape.

Each of the following subsections covers one step in above pipeline.

3.3.1 Lexical Similarity between Source Files

In this section, we explain how we extract term-frequency histograms from source files.
We explain further, how the rank of the extracted term-frequency matrices is reduced,

3.3. THE CARTOGRAPHY PIPELINE 17

Rendering

source files term-document matrix scatter plot thematic map

2-Dim
Reduction LSI

Figure 3.1: Software Cartography in a nutshell, from left to right: the raw text of source
files is parsed and indexed using Latent Semantic Indexing. Then the high-
dimensional term-document-matrix is mapped down to two dimensions
using a composition of Isomap and Multidimensional Scaling, and finally
cartographic visualization techniques are used to render the software map.

and how we resolve synonymy and polysemy.

As described in Section 3.2, the distance between software entities on the map is based
on their lexical similarity. Lexical similarity is an Information Retrieval (IR) technique
based on the vocabulary of text files. Formally, lexical similarity is defined as the cosine
between the term frequency vectors of two text documents. That is, the more terms (i.e.
identifiers names and operators, but also words in comments) two source files share,
the closer they are on the map.

First, the raw source files are split into terms. Then a matrix is created, which lists
for each document the occurrences of terms. Typically, the vocabulary of source code
consists of 500–20’000 terms. In fact, studies have shown that the relation between
term count and software size follows a power law [71]. For this work, we consider all
text found in raw source files as terms. This includes class names, methods names,
parameter names, local variables names, names of invoked methods, but also words
found in comments and literal values. Identifiers are further preprocessed by splitting
up the camel-case name convention which is predominantly used in Java source code.
Note that since our approach is based on raw text, in theory any programming language
that uses textual source files can be processed.

In a next step, Latent Semantic Indexing [15] is applied to reduce the rank of the term-
document matrix to about 50 dimensions. LSI is able to resolve issues of synonymy
and polysemy without the use of predefined dictionaries. This is advantageous for
the vocabulary of source code which often deviates from common English usage. For
more details on Latent Semantic Indexing and lexical similarity, please refer to Kuhn’s
previous work on software clustering [30].

3.3.2 Creating a Two-Dimensional Layout

In this section, we explain how the high-dimensional term-document matrix is mapped
down to two dimensions.

In order to visualize the lexical similarity between software entities, we must find a

18 CHAPTER 3. SOFTWARE CARTOGRAPHY

mapping that places source files (or classes, or packages, depending in our definition
of a document) on the visualization pane. The placement should reflect the lexical
similarity between source files.

We use the composition of two algorithms, Isomap and Multidimensional Scaling, to
map the the term-frequency histograms onto the 2D visualization pane. This preserves
the lexical co-relation of source files as well as possible.

Isomap [59], an algorithm similar to Multidimensional Scaling and Principal Compo-
nent Analysis, maps the previously created multidimensional term-document matrix
down to a two-dimensional layout. Given high-dimensional data, Isomap finds mean-
ingful low-dimensional structures that are hidden in such a way that they might be
invisible to Principal Component Analysis or Multidimensional Scaling. We call the
result of Isomap “global layout” since it is used to assist Multidimensional Scaling
with an initial configuration. That global layout is then refined further to a local layout
using metric Multidimensional Scaling as described in Subsection 3.4.4. Please refer to
Subsection 3.4.3 for a detailed explanation of Isomap and to Section 3.5 for a complete
explanation of the layout algorithm used by Codemap.

3.3.3 Hill-shading and Contour Lines

This section explains the usage of cartographic visualization techniques to render a
visually appealing map.

In Figure 3.1 we see an overview of the steps taken to render a software map. To make
our map more aesthetically appealing, we add a touch of three-dimensionality.

The hill-shading algorithm is well-known in geographic visualization. It adds hill
shades to a map [55]. The algorithm works on a distinct height model (digital ele-
vation model), where each pixel has an assigned z-value, its height, rather than on
trigonometric data vectors.

The digital elevation model of Codemap is is a simple matrix with discrete height
information for all pixels of the visualization plane. As illustrated on Figure 3.2, each
element (ie source file of class) is represented by the a hill whose height corresponds
to the element’s KLOC size. The shape of the hill is determined using a normal
distribution function. To avoid that closely located elements hide each other, the
elevation of all individual elements is summed up as illustrated in Figure 3.3.

The hill-shading algorithm renders a three-dimensional looking surface by determining
an illumination value for each pixel in that matrix. It does this by assuming a hypothet-
ical light source and calculating the illumination value for each pixel in relation to its
neighboring pixels.

Eventually, we add contour lines. Drawing contour lines on maps is a very common
technique in cartography. Contour lines make elevation more evident than hill-shading

3.3. THE CARTOGRAPHY PIPELINE 19

Figure 3.2: Construction steps: left) MDS placement of files on the visualization pane,
middle) circles around each files location, based on class size in KLOC,
right) digital elevation model with hill-shading and contour lines.

alone. Since almost all real world maps make use of contour lines, maps with contour
lines are very familiar to the user.

Figure 3.3: Digital elevation model: since classes might appear on the map very close
to each other, we have to prevent larger classes from hiding smaller classes.
Thus, the elevation model is built by summing up the volumes of all classes.

3.3.4 Labeling

This section introduces the labeling algorithm we use to annotate the landscape with
textual information.

A map without labels is of little use. On a software map, all entities are labeled with

20 CHAPTER 3. SOFTWARE CARTOGRAPHY

their name (class or file name).

Labeling is a non-trivial problem: we must make sure that no two labels overlap.
Also labels should not overlap important landmarks. Most labeling approaches are
semi-automatic and need manual adjustment. An optimal labeling algorithm does not
exist [55]. For locations that are near to each other it is difficult to place the labels so
that they do not overlap and hide each other. For software maps it is even harder due
to often long class names and clusters of closely related classes.

The examples given in this thesis show only the most important class names. Codemap
uses a fully-automatic, greedy brute-force approach. Labels are placed either to the top
left, top right, bottom left, or bottom right of their element. Smaller labels are omitted
if covered by a larger label.

3.3.5 Landscape Coloring and Overlays

This section presents two different ways in which software metrics can be displayed
on top of the map.

Codemap provides two different positions to place the overlays. First we allow the
landscape to be colored according to different metrics. This way of coloring enables the
visualization of the data directly on the landscape. This is analogous to visualizations
in geography where data like seismic activity, population size etc. can be shown as a
cartogram. Figure A.5 gives an example of landscapes that are colored according to
various metrics.

Secondly Codemap allows information overlays to be displayed on top of the generated
landscape. Two examples of such visualizations are given in Figure 3.4, an overlay
visualizing method calls and an overlay that shows search results. Since all overlays
are displayed on top of the same layout, these overlays can be compared to each other.
This might allow the user of Codemap to get a better understanding of the software
since the co-location of data presented in two or more such an overlays might yield
additional information.

3.4 On Different Layout Algorithms

This section enumerates different algorithms that can be used to map high-dimensional
data onto a lower dimensional space. This is done as a preparation in order to better
understand our final decision on the layout algorithm in Section 3.5.

During the development of Codemap we analyzed different algorithms to map our
high-dimensional data down on a two-dimensional pane. Our final decision was to
use a combination of two algorithms. The first step uses Isomap to compute a globally
optimal layout. The second step uses Multidimensional Scaling, with the results of the
first step as input, to compute a both globally and locally optimal layout.

3.4. ON DIFFERENT LAYOUT ALGORITHMS 21

Figure 3.4: Two example overlays of Codemap. On the left is visualized which software
components are called by a given method. The image on the right shows
the results of a file search performed. Each result is marked with a pin.

The remainder of this section provides an overview of layout algorithms, and the next
section (Section 3.5) motivates our choice of a combined algorithm. Subsection 3.4.1 first
gives an introduction to Multidimensional Scaling. Subsection 3.4.2 discusses HiT-MDS,
the MDS version we used in our previous work. Subsection 3.4.3 explains the Isomap
algorithm and Subsection 3.4.4 discusses metric Multidimensional Scaling.

3.4.1 An Introduction to Multidimensional Scaling

This section gives an introduction to Multidimensional Scaling by showing its origin
and enumerating different subtypes.

The term Multidimensional Scaling (MDS) is used to refer to a set of different statistical
techniques that are all used to visualize proximities in low-dimensional space. The
origins of Multidimensional Scaling lie in psychology where it helps to comprehend
people’s judgement on the members of an object-set. The first MDS method was
proposed by Togerson [61]. His work is also the origin of the term Multidimensional
Scaling. Nowadays Multidimensional Scaling is used across a variety of different fields
[50] such as marketing, sociology, physics, political science and biology.

The term Multidimensional Scaling is generic and includes different subtypes. A
distinction is made between [70]: Classical Multidimensional Scaling, Metric Multidi-
mensional Scaling, and Nonmetric Multidimensional Scaling. Of the three variants,
only classical and metric Multidimensional Scaling are of interest for us. However,
classical Multidimensional Scaling is equivalent to Principal Component Analysis and

22 CHAPTER 3. SOFTWARE CARTOGRAPHY

shall thus not be discussed separately as it is subsumed by the last step of the Isomap
algorithm.

All Multidimensional Scaling variants have in common that they project elements from
a high-dimensional space to a lower-dimensional space. The algorithms expect as
input a matrix of pairwise dissimilarities between the elements, and return coordinates
in the projection space for all elements.

3.4.2 High-Throughput Multidimensional Scaling

This section briefly explains HiT-MDS, the Multidimensional Scaling algorithm used
by previous work, and explains why it has proven to be a suboptimal choice.

In previous work, we used High-Throughput MDS (HiT-MDS3) as layout algorithm [33,
31]. HiT-MDS is optimized for speed. It uses a heuristic to speed-up the computation
time [57]. High-Throughput MDS was originally designed for clustering multi-parallel
gene expression probes. These data sets contain thousands of gene probes and the
corresponding similarity matrix dimension reflects this huge data amount. The price
paid for fast computation is less accurate approximation and a simplified distance
metric.

The heuristic HiT-MDS assumes that the input dissimilarities are not close to a constant
value. Unfortunately, we found that our input data has exactly that property. What we
observed was a “garbage in, structure out” effect. More recent versions of Codemap do
not use HiT-MDS anymore [32]. For more details please refer to Section 3.5.

3.4.3 Isomap

This section introduces Isomap by Tenenbaum et al., which is an approach to reduce the
dimensionality similar to Multidimensional Scaling and Principal Component Analysis
[59].

Isomap finds meaningful low-dimensional structures that are hidden in high-dimensional
data like global climate patterns or human gene information and might not be visible
to Principal Component Analysis and Multidimensional Scaling. Figure 3.5 illustrates
such a low-dimensional structure, the so called “Swiss roll”4. It represents a two-
dimensional plane that is embedded in a three-dimensional space in spiral form. When
measuring distances for that structure it is possible that the distance for two points is
completely different, depending on whether one measures the distance in the three
dimensional space or on the two-dimensional plane. In the figure, a dashed line indi-
cates the euclidean distance, the solid line represents the distance measured by Isomap.

3 http://dig.ipk-gatersleben.de/hitmds/hitmds.html
4Oddly this term is used in reference to a jelly roll that originates from Germany where it is known as

Biskuitrolle.

http://dig.ipk-gatersleben.de/hitmds/hitmds.html

3.4. ON DIFFERENT LAYOUT ALGORITHMS 23

Note that the distance measured by Isomap follows the two-dimensional, spiral plane
of the data set.

Figure 3.5: The “Swiss roll” data set illustrates how Isomap finds hidden low-
dimensional structure in high-dimensional data. The dashed line indicates
the euclidean distance whereas the solid line represents the distance mea-
sured by Isomap. Note that the distance measured by Isomap follows
the two-dimensional, rolled plane of the data set. (Illustration taken from
Tenenbaum et al. [59].)

Multidimensional Scaling and Principal Component Analysis, the classical approaches
for dimensionality reductions, fail to detect structures like the “Swiss roll”. Principal
Component Analysis transforms your high-dimensional data into space of lower
dimension and tries to best preserve the variance of the data in the high-dimensional
space. Multidimensional Scaling transforms the high-dimensional data into a lower
space and tries to preserve the distances between the points as measured in the higher
dimensional space.

Isomap however first analyzes the data in the high dimensional space and tries to detect
hidden structures. Isomap preserves the internal geometry of the lower dimensional
structure during the dimensionality reduction. Isomap guarantees to recover this true
dimensionality in the high-dimensional space even if it is highly folded. Since the
documents in a TDM are on a unit sphere around the origin of the space, and thus
embedded on a lower dimensional structure, Isomap is a very promising approach for
Codemap’s dimensionality reduction.

To accomplish the reduction, Isomap performs the following three steps:

• Construct a neighborhood graph. Connect point m and n in the data set if n is
among the the K nearest neighbors of m5.

• Compute the shortest path distances for all pairs of points in the neighborhood
graph.

5An alternative method would be to connect the point m to all points n that are closer than a given ε.

24 CHAPTER 3. SOFTWARE CARTOGRAPHY

• Perform classical Multidimensional Scaling i.e. find the best configuration in the
2-dimensional space given the distances on the neighborhood graph.

The only free parameter needed by Isomap is K, the number of nearest neighbors to
take into account for constructing the neighborhood graph.

3.4.4 Metric Multidimensional Scaling

This section introduces metric Multidimensional Scaling, an iterative approach to map
high-dimensional data to a space of lower dimensionality.

The task of MDS is to map a set of points from a high-dimensional to a low-dimensional
space by preserving their relative distances as good as possible. In our case, the high-
dimensional space is the term-document matrix produced by Latent Semantic Indexing
and the low-dimensional space is the two-dimensional visualization pane.

We refer to the set of points as configuration, we say that we are trying to find a good
configuration for our classes on the two-dimensional pane. To measure the distances,
MDS relies on dissimilarity values. Dissimilarity indicates how different two elements
are. A low number means that two elements are similar, a hight value denotes their
dissimilarity. A value of zero means that two elements are the same whereas the
dissimilarity can go up infinitely.

MDS tries to find a two-dimensional configuration where the proportions between the
dissimilarities are the same as in the space of higher dimension. Usually there is no
such solution, therefore Multidimensional Scaling tries to find a solution that matches
the dissimilarities as close as possible. To asses the quality of the two-dimensional
result, a function called Stress is used. Stress calculates the badness-of-fit for the two-
dimensional configuration. Clearly we want our result to have a small error, thus
to find a good embedding of the higher dimensional points on our two-dimensional
pane, we must minimize stress. In our case the least square method is used as an error
estimate.

In practice this minimization is performed with an iterative approach. The configu-
ration is refined with each pass, the algorithm stops as soon as a certain threshold is
reached. The most popular method is stress majorization [14], which is also used by
our implementation.

A function f which bounds another function g from above and touches g at one (or
possibly more) points is called a majorizing function. Stress majorization as proposed
by Leeuw [14] makes use of such majorizing functions to estimate the cost function
while re-positioning the elements of a configuration.

Iterative majorization works as follows: suppose we have a point p and an initial guess
for its coordinates. Now a majorizing function must touch the stress function at p’s
current location and must be located above it (or at most touch it again) at the other
locations. Once a valid majorizing function for p is found, p s new estimate location is

3.5. CODEMAP’S TWO-DIMENSIONAL REDUCTION 25

set to the minimum of the majorizing function because the stress at that point is lower.
In the next step, with a new majorizing function, the stress can be decreased again
by moving the estimate location of p to the minimum of the new majorizing function.
This process can be repeated iteratively until a satisfying result is found i.e. the stress
is low enough. Since the algorithm is monotone it provides better results with each
iteration.

The metric Multidimensional Scaling implementation used in Codemap is a manual
port from C++ to Java of the implementation of GGobi/GGvis [10].

3.5 Codemap’s Two-Dimensional Reduction

In this section we present the layout algorithm for Codemap that consists of two steps. In
the first step, we apply Isomap to calculate a global layout that assists Multidimensional
Scaling during the calculation of a local layout in second step.

The documents in a Term Document Matrix are on a unit sphere around the origin.
That structure is invisible to either Principal Component Analysis or Multidimensional
Scaling [59, 39], thus we use Isomap to calculate the global layout. The problem with the
TDM structure is, that the more classes there are in a system, the higher the probability
that in the term-document matrix produced by Latent Semantic Indexing two of them
do not have any terms in common. Documents that do not have any terms in common
have maximal pairwise distance. Using Multidimensional Scaling, this results in an
arbitrary global layout since Multidimensional Scaling cannot meaningfully interpret
input where many documents have maximal distance to each other. We call this
unpleasant behavior of MDS the simplex-problem since parts of the output data form a
simplex.

As described in Subsection 3.4.3 Isomap first analyzes the data in the high dimensional
space and tries to detect hidden structures. Isomap preserves the internal geometry of
the lower dimensional structure during the dimensionality reduction and guarantees
to recover this true dimensionality in the high-dimensional space. Since the documents
in a TDM are on a unit sphere around the origin of the space, and thus embedded on
a lower dimensional structure, Isomap is a very promising approach for Codemap’s
dimensionality reduction.

We use the term global layout to refer to a configuration that optimizes the global
relations between the locations. In a good global layout the locations containing
similar vocabulary are positioned closer to each other than locations with dissimilar
vocabulary. Isomap calculates a good global layout but it tends to form clusters of
locations. Furthermore Isomap tends to produce outliers that are responsible for the
clustering since they force the rest of the visualization to be displayed in a smaller
space. The global configuration calculated by Isomap is mathematically meaningful
but we need to perform one more step to achieve a better usage of the visualization
pane.

26 CHAPTER 3. SOFTWARE CARTOGRAPHY

For this second step we use Multidimensional Scaling which is not suitable to calculate
a meaningful global layout but has proven to be useful to calculate a visually appealing
local layout. We use Isomap’s output as initial configuration for Multidimensional Scal-
ing since once a valid global solution is found it is possible to apply Multidimensional
Scaling without running into the simplex problem. To the Multidimensional Scaling
algorithm any global solution is valid input. When provided with the Isomap layout
as an initial configuration, Multidimensional Scaling will only change the positions on
a local scale.

Figure 3.6 compares two maps of the same project. The layout on the left uses Isomap
only. The Layout on the right uses Isomap and performs an additional Multidimen-
sional Scaling to make better usage of the visualization pane.

Figure 3.6: A comparison of two maps of the open-source project Vuze (formerly
Azureus)6. On the left is a configuration using only Isomap, on the right
is a configuration using Isomap to calculate the global layout and Multidi-
mensional Scaling to calculate the local layout.

Figure 3.7 gives an overview of the rendering pipeline used by Codemap. Given the
Term Document Matrix (TDM), Codemap calculates a global layout using Isomap. Then
it applies Multidimensional Scaling using the global layout as initial configuration and
the TDM for the proximity values. This calculates the local layout resulting in the final
configuration.

3.5. CODEMAP’S TWO-DIMENSIONAL REDUCTION 27

TDM Isomap

global layout

initial configuration

MDS

local layout

final configuration

proximities

Figure 3.7: Given the Term Document Matrix (TDM), Codemap calculates a global layout
using Isomap. Then it applies Multidimensional Scaling using the global
layout as initial configuration and the TDM for the proximity values to
calculate the local layout resulting in the final configuration.

28 CHAPTER 3. SOFTWARE CARTOGRAPHY

Chapter 4

Codemap

In this chapter we describe the motivation to integrate Codemap into a development
environment. Furthermore we elaborate in what ways Codemap aims at supporting the
programmer by addressing his mental model of software during development.

As mentioned before, Codemap can be considered the successor of Software Cartographer
as it improves the layout algorithm and switches the focus from analysis to IDE
integration. We aim at supporting the developer in various daily development tasks
by providing a stable cartographic visualization of his software project. Therefore we
integrate software cartography into the Eclipse IDE so that a map of the project may
always be visible while working with the code.

Section 4.1 discusses why we chose Eclipse as the target platform for our plugin.
Section 4.2 discusses the programming tasks supported by Codemap and Section 4.3 dis-
cusses a set of features that have not yet been implemented but seem promising.

4.1 On the Choice of Eclipse and Java

In this section we discuss our decision to implement Codemap as an Eclipse plug-
in.

Eclipse is an extensible platform that allows tool integration and is used by millions
of developers worldwide [46]. Eclipse is used in a wide range of research projects all
around the globe1. This large user base is especially valuable when we want to find
early adopters for Codemap who provide us with early feedback. Furthermore when
performing an evaluation of Codemap it is easier to find industry developers already
familiar with Eclipse.

1http://wiki.eclipse.org/Eclipse_Research_Community

29

http://wiki.eclipse.org/Eclipse_Research_Community

30 CHAPTER 4. CODEMAP

The Eclipse Java Development Tools (JDT) project provides the Java specific Eclipse
plug-ins. It adds useful functionality like writing and navigating Java source code,
refactoring, code formatting, debugging and many more. Since all these tools are
already available they provide a good base for an IDE-extension like Codemap.

4.2 Supported Programming Tasks

The goal of Codemap is to provide developers with a shared, spatial and stable mental
model of software projects. To achieve this goal a cartographic visualization is embed-
ded in the IDE. This visualization is most useful when it supports as many development
tasks as possible. In this section we present a concrete selection of development tasks
that are supported by Codemap:

Codemap improves navigation within a software system since it is integrated with the
package explorer and editor of Eclipse. The selection of Codemap is linked to Eclipse’s
selection and vice versa.

Codemap is hooked into several Eclipse plugins such as Eclemma to display their results
on the map. This enables comparison of different software metrics to each other, e.g.
comparing error density to code coverage.

Codemap supports exploration of systems during reverse engineering as it is integrated
with Eclipse’s structural navigation functions such as search for callers, implementers,
and references. We display pins for search results and arrows to represent call hierar-
chies.

Codemap supports social awareness of collaboration in the development team by con-
necting two Eclipse instances and showing open files of other developers.

The following subsections give a feature centric overview of how Codemap supports
these development tasks. Each of the following subsections describes the feature, the
programming task and elaborates why the task is important and how it is supported
by the presented feature. Furthermore it presents how support for the given task is
added to Codemap and finally states how Eclipse supports the task without Codemap.
Please also refer to Section 4.3 for a description of the features that have not yet been
implemented.

4.2.1 Code Navigation

To help the developer navigate within a software system, Codemap is linked to Eclipse’s
navigation functionality. It is integrated into Eclipse’s package explorer and the source
code editor. Furthermore the selection of Codemap is linked to Eclipse’s selection and
vice versa. This section discusses in detail how Codemap improves the navigation
within Eclipse.

4.2. SUPPORTED PROGRAMMING TASKS 31

Developers navigate code, which means they browse, scan, search and seek code
within their current domain of interest, usually using tools that support them in their
intents. Navigating comes from the latin word navigare which means “sailing”, in other
words to bring a ship from a source position (where it is now) to its target position.
Usually the target position is well known, the sailor just needs to find the best path. In
our modern context, navigation means to find an object or location within a software
system. Thus in this section, we are particularly interested in the way developers
navigate through the source code to find an already known object.

Eclipse currently provides several navigation aides:

• Package Explorer/Project Explorer provides a tree-based navigation structure,
similar to many file managers.

• Open Type/Open Resource allows one to open any resource within Eclipse’s
scope by typing the file-name/object name.

• Editor Tabs, for each file loaded into the editor displays a tab (given that there is
enough space left). This allows quick access to the files the developer is currently
working on.

• Outline offers a structural overview of the file which is currently active in the
editor.

• Call Hierarchy displays a hierarchical view of the calls from/to the element
selected java member (see Subsection 4.2.5).

• Type Hierarchy displays subtypes and/or supertypes of a given type.

• Navigation History allows the user to navigate the previously opened files.

Unfortunately the number of files per project becomes more and more unmanageable
as the projects grow in complexity over time. As a matter of fact, DeLine’s work is
based on the observation that developers often are lost in code while navigating [18].
Codemap tries to address this problem by providing a visualization that eases code-
navigation. According to DeLine a visualization should contain visual landmarks to
ease the developer’s navigation within a system [16]. Codemap fulfills this requirement
as the algorithms used to calculate the layout and the elevation model generate an
unique landscape whose hills can serve as landmarks. Furthermore, Codemap is linked
to the Eclipse editor. It continuously updates a label indicating the file currently active
in the editor and also marks the open files on the map.

As a further navigation aid, it is possible to highlight recently visited classes. The
highlighting is achieved by changing the coloring-metrics of the landscape to display a
heat map where hot means that the file has been visited recently. Codemap builds a trace
of the files recently visited and changes the color of the landscape. While visualizing,
this trace is slowly faded from yellow (hot) to a darker color (cold) towards the end. In
Figure 4.1 you can see a heat-map used to trace the locations visited last. Furthermore
note that the currently active file is indicated with a text-label containing the name of
the class with the open files being marked with an icon representing their type.

32 CHAPTER 4. CODEMAP

Figure 4.1: Codemap uses various techniques to ease code-navigation. In this figure you
can see a heat-map used to trace the locations visited last. The currently
active file is indicated with a text-label containing the name of the class and
the open files are marked with an icon representing their type.

4.2.2 Test Coverage

To support software testing, which is crucial to software development, Codemap is
linked to the coverage metrics provided by the Eclipse plug-in EclEmma. This section
elaborates how Codemap aims to support testing.

Testing is crucial to software development and thus widely accepted as best practice.
Test coverage is one of the measures used in software development, reporting to which
degree the tests cover the code of a program. Miller and Maloney introduced test-
coverage in 1963 when they explained that for the development team to know if a
section of code executes correctly, this section must be executed by at least one test [41].
Regardless of the mixed results regarding the relationship between high test coverage
and better software reliability [9], code coverage has been incorporated as a predictor
for software quality [13].

Code coverage metrics for Eclipse are provided by the plug-in EclEmma2, which itself is

2http://www.eclemma.org/

http://www.eclemma.org/

4.2. SUPPORTED PROGRAMMING TASKS 33

based on EMMA. EMMA3 is a free code coverage toolkit to measure Java code coverage.
EclEmma displays code-coverage results as sortable list as illustrated in Figure 4.2.
Visual feedback on the coverage quality is available as a percentage and as a slide
bar.

Figure 4.2: EclEmma displays coverage results as a sortable list. Visual feedback on the
coverage quality is available as a percentage and as a slide bar.

Since testing is crucial and test coverage is a widely adopted metric we integrate
support to display test coverage into Codemap. We display the coverage metrics directly
on the island surface as illustrated in Figure 4.3 to leave place for other overlays and
text-labels. We added coverage metrics based on the fact that visual information is
processed much faster than textual information. Thus the programmer is provided
with a better global impression of the test coverage of his software system.

4.2.3 Searching the Code

To present an overview of their distribution in a software system, Codemap visualizes
search results by displaying pins on the map. This section explains in detail how the
Eclipse search tools are enriched by Codemap.

Searching for text within code a common task performed quite often while program-
ming [3]. Be it searching for code snippets online or searching code locally. Local
searches might be performed while exploring an existing software system, during
refactoring, and so on.

Eclipse provides different search plugins, ranging from generic text search to language
specific search mechanisms. The search results are presented as a tree or a list.

Codemap contributes to Eclipse’s search tools by visualizing the search results on the
map, as illustrated in Figure 4.4. This gives a brief overview of all the search results
at once. This gives a better overall impression of the distribution of the results than
the list provided by Eclipse. It can, for example, show in which part (in reference to

3http://emma.sourceforge.net/

http://emma.sourceforge.net/

34 CHAPTER 4. CODEMAP

Figure 4.3: Codemap’s coverage metrics are displayed directly on the hills to leave place
for other overlays and text-labels.

vocabulary) of the software the term searched for occurs the most. This visualizes how
the search results are distributed over a software project.

4.2.4 Searching References/Declarations

Searching for references and declarations is a customized search provided by Eclipse.
This section states how these searches are visualized by Codemap.

When programmers explore a system during reverse engineering they can rely on
utilities that navigate the system’s structure. We link Codemap to Eclipse’s specialized
search utilities that can find callers and implementers of given functionality.

While browsing code, the programmer is interested where something has been defined
or from where it is referenced. Eclipse provides utilities to search for references to
an identifier or declarations of that identifier in different scopes, among others in
project scope. This feature can be seen as a customized, language specific search, so the
description of Subsection 4.2.3 applies here as well. The results of a domain-specific
references/search are displayed the same way as the normal search results, as a list.
Thus, Codemap visualizes these results as shown in Figure 4.4, the same way it visualizes
the normal search results.

4.2. SUPPORTED PROGRAMMING TASKS 35

Figure 4.4: Codemap extends Eclipse’s search engine by displaying search results on the
map using a googleTMstyle pin.

4.2.5 Browsing Call Hierarchies

Browsing for call hierarchies is a useful operation, especially for reverse engineering.
This section explains how call hierarchies are visualized on top of the map.

Figure 4.5: Eclipse displays the call hierarchy as tree that can be expanded and collapsed
to show nested call hierarchies.

The call hierarchy enables the programmer to show calls to or from a method, con-
structor or field. This helps one understand the flow of the code and the complexity
of method chains. This allows the programmer to check several code-levels and to
explore many possible execution paths. Eclipse supports call-hierarchy exploration by

36 CHAPTER 4. CODEMAP

providing an entry “Open Call Hierarchy” in the right-click menu. Once clicked the
view as illustrated in Figure 4.5 appears. The tree displayed in the call hierarchy view
can be expanded and collapsed to show nested calls.

Codemap enriches these call hierarchies by showing an arrow based overlay (see Fig-
ure 4.6). For each node that is expanded in the call hierarchy view an arrow based
graph is added representing the calls of that node. This additional visualization helps
the programmer to understand which domain of the code calls which other domain.
The traces are not visualized as straight arrows, but using automatically generated
flow maps based on hierarchical clustering [44] to avoid visual clutter. These arrows
can be interpreted as roads or shipping routes connecting the islands. For a detailed
description of the algorithm please refer to Section 5.1.2.

Note that the distances have an interpretation in terms of lexical distance, so the lengths
of invocation edges are meaningful. A short edge indicates that closely related artifacts
are invoking each other, whereas long edges indicate a “long-distance call” to a lexically
unrelated class.

Figure 4.6: Codemap enriches call hierarchies shown by Eclipse by displaying an arrow-
based overlay. For each expanded location in the Eclipse call hierarchy view,
arrows representing the calls are shown.

4.2. SUPPORTED PROGRAMMING TASKS 37

4.2.6 Collaboration

In this section, we analyze how Codemap enriches collaboration by supporting collabo-
rative awareness in development teams.

Collaboration is one of the most important activities in software engineering since
software engineering projects are inherently cooperative. To produce a larger software
system, it requires many engineers to coordinate their efforts [68]. Awareness of
individual and group activities is critical to successful collaboration [20]. We propose
to ease the collaboration by adding a feature to Codemap that supports the awareness of
collaboration in the development team.

The Eclipse Communication Framework (ECF)4 supports development of distributed
Eclipse applications. ECF provides the library code needed to create distributed plugins
easily as well as some example plugins. These examples include shared editing and
instant messaging.

Building on ECF, we integrate collaboration support into Codemap. We chose to display
which files are currently edited by a peer, once the collaboration feature is enabled.
Collaboration is supported on top of popular protocols compatible to the Extensible
Messaging and Presence Protocol (XMPP) or similar. As depicted in Figure 4.7 once
sharing is enabled, a meeple is displayed for each file opened by remote collabora-
tors.

Figure 4.7: Codemap builds on the Eclipse Communication Framework, adding a collab-
orative overview. For each file that is opened by the remote collaborators, a
meeple is displayed at that location.

4http://www.eclipse.org/ecf/

http://www.eclipse.org/ecf/

38 CHAPTER 4. CODEMAP

4.3 Future Features

In this section we discuss future extensions that can be built for Codemap based on or
in addition to the current work. Some of the features listed below have not yet been
implemented due to limited time while others arose from questions or feedback during
presentations given or as a result of the interviews performed during the user study
as described in Section 6.1. In the following subsections we already propose some
solutions to issues or questions raised during the user study.

4.3.1 Vocabulary View

Since Codemap bases the proximity values of locations on the map on vocabulary it
is interesting to make the vocabulary used visible to the user. To achieve this we
can add an additional view to the Eclipse plugin, showing the vocabulary used by
Codemap. The vocabulary can be visualized using different algorithms, for example as a
tag-cloud or an ordinary sortable list. Furthermore the vocabulary view can be linked
to the currently selected items on the map or even listen to the selection provided
by Eclipse. This would allow the programmer to get a deeper understanding of the
way the different domains appear on the map. A possibility to extend the vocabulary
context even further is to provide search or filter mechanisms based on the vocabulary
used for the layout, see Subsection 4.3.2.

4.3.2 Vocabulary Search

As described in Subsection 4.3.1 the fact that Codemap’s layout is based on vocabulary
can be made more visible by providing utilities that base their operations on that
vocabulary. One interesting feature would be to extend Codemap’s current search-
bar and to provide additional search tools that search only within the vocabulary
the visualization is based on instead of searching the full source-code. This search
functionality should be coupled to the Vocabulary View as described in Subsection 4.3.1.
This could help the developer to further understand the spatial distribution of the
system’s domains on the map.

4.3.3 Further Eclipse Integration

Codemap aims at providing the developer with a stable mental model of his software
project by displaying a cartographic visualization in his IDE. We suppose that this visu-
alization’s usefulness grows with the development tasks it supports and present a brief
overview of further features offered by Eclipse that can be extended by Codemap.

4.3. FUTURE FEATURES 39

Type Hierarchy

Eclipse provides a tool that shows the hierarchy tree of a given type as depicted in
Figure 4.8. This tree displays subtypes and/or supertypes of that type. Codemap can
be extended by a feature that displays an overlay representing this hierarchy. The
functionality can be similar to the call-hierarchy plugin already implemented (see
Subsection 4.2.5) and visualization can look similar to Figure 4.6.

Figure 4.8: Eclipse provides a tool that shows the hierarchy tree of a given type, dis-
playing subtypes and/or supertypes.

Debugger Integration

Since all the navigation problems occur during debugging as well, Codemap is available
in the debug perspective, too. However, so far there are no debug-specific features
implemented. Two possible extension are to show the call stack on the map to improve
the developers’ orientation during debugging or to display the breakpoints on the
map since they represent the developers current points of interest and thus act as
landmarks.

Bookmarks

Eclipse provides bookmarks that let the developer mark important locations in his
code and get back to them quickly. The bookmarks view as depicted in Figure 4.9
then displays all these bookmarks as a list. Since the bookmarks represent the current
locations of focus of the developer, we suggest Codemap to display them as well.

Profiling

TPTP5 is the official profiling plugin available for Eclipse. TPTP allows profiling of Java
applications, including JUnit tests and web applications. The aspects that can be traced

5http://www.eclipse.org/tptp/

http://www.eclipse.org/tptp/

40 CHAPTER 4. CODEMAP

Figure 4.9: Eclipse allows the developer to set bookmarks in his code to be able to
quickly get back to these locations later.

include execution tracing (where the application spent time) and memory tracing (how
many objects are created).

Codemap can be extended with support for profiling by displaying profiling information
on top of the map, for example as a heat-map or by replacing the height-information
with the profiling information.

Revision Control Systems

As soon as a team of multiple people is working on the same project, the use of a
revision control system is inevitable. Codemap can display information regarding
revision control systems like local modifications, files that need updating and so
on.

Code ownership is defined as an approximation of the percentage of lines owned by an
author in a given revision [51]. Seeberger suggests that, since software systems change
over time, the knowledgeable developer for a file changes as well [52]. Seeberger
presents Chronia, a tool that implements an ownership map visualization to understand
when and how different developers interacted in which way and in which part of
the system [52]. Codemap can display code ownership information as well which is
especially interesting in combination with other revision control based overlays.

4.3.4 Labeling Schemes

Labeling of locations as described in Subsection 3.3.4 improves greatly the usability
of a map. Currently, Codemap labels all entities with their name i.e. the class or file
name. Optionally, labels can be disabled completely. These are not the only two
meaningful label schemes for Codemap. Another possibility for the labels is be to
generate them automatically, based on the vocabulary used in the underlying entities.
Kuhn proposes an automatic way to label and compare software components that
uses the log-likelihood ratios of word frequencies [29]. This can help the developers to
quickly understand the domain of the different software entities on the map.

4.3. FUTURE FEATURES 41

4.3.5 Elevation Schemes

When generating the elevation scheme as described in Subsection 3.3.3, we take in-
formation from all the entities on the map into account. For each element, a hill
corresponding to the element’s lines of code is generated. The generated hills are
summed up and thus a landscape emerges.

Of course, the height of a location can represent different information. To improve
navigation, it can take the place of a heat-map, where recently visited locations are
higher and locations not visited at all are merely above ocean level. Or it can be coupled
to the current selection, elevating only these entities that are under selection.

Another interesting concept is to add negative elevations, where certain entities are
represented by holes in the ground, reducing the height of the landscape instead
of increasing it. This requires a meaningful definition of a hole i.e. we need to say
which software entities cause holes and more importantly how a hole can be inter-
preted.

4.3.6 Finer Granularity

The smallest software entities that are directly represented in Codemap are classes, or
more precisely source files. Even for contributions that are linked to methods, the
visualization layer that represents these contributions only displays its elements in
relation to the hills on the map. Since these hills represent classes, there is so far no
meaningful representation for visualizations of finer granularity that take methods or
attributes into account.

We envision an extension for Codemap that finds a meaningful way to visualize methods
and attributes in the landscape. An idea that further develops the landscape metaphor
is to display buildings on the map as well. Their position can be determined by the
vocabulary of the method body in relation to the full vocabulary of the method’s class
or by the attribute name. Properties like the number of parameters or the length of the
method can influence the shape of these buildings. Furthermore method calls can then
be interpreted as roads connecting different buildings.

4.3.7 Map Wizard

In the current implementation, maps are directly linked to Eclipse projects. For the
reason of simplicity, Codemap is linked to the selection provided by Eclipse. As soon
as a new project is selected, the map representing that project is displayed in the
visualization, or a new map is automatically generated if the project has not been
selected before. Thus the user interface does not provide a possibility to generate a
customized map, even though this is in no way restricted by the underlying software
cartography algorithm.

42 CHAPTER 4. CODEMAP

We propose the implementation of a tool that enables the creation of customized
maps, a map wizard. Customization can include the files that are displayed on the
map and it can be possible to have one bigger map visualizing multiple projects at
once. One can think of one big project that has been split into a library project and
an application project using that library. Here, the developer might want to have a
common visualization for both of these projects. Of course this is not restricted to two
projects but can include an arbitrary number of projects.

Chapter 5

Implementation

This chapter dives into the implementation of Codemap. In Section 5.1 we have a look at
the model of Codemap and how we integrate it into Eclipse from a technical perspective.
Section 5.2 discusses the performance optimizations that reduced Codemap’s calculation
time drastically.

5.1 Architecture

This chapter describes the internal structure of Codemap and its three main architectural
parts.

A simplified UML overview of Codemap’s internal structure can be seen in Figure 5.1.
Codemap can be split in three main parts, as colored in Figure 5.1: A concurrent calcula-
tion model (red), the layered visualization (blue) and the view and interface to Eclipse
(yellow).

Each of the following subsections covers one of the core Codemap components. Subsec-
tion 5.1.1 explains the small framework we wrote to model the dependencies in the
calculation pipeline. Subsection 5.1.2 explains the layered visualization architecture
and finally Subsection 5.1.3 describes Codemap’s two main point cuts to Eclipse.

5.1.1 Concurrent Calculation Pipeline

This section describes the underlying calculation model of Codemap. The calculation
pipeline part is the heart of Codemap. Its input are Java source files from which it
calculates a two-dimensional configuration and a cartographic visualization.

43

44 CHAPTER 5. IMPLEMENTATION

Layered Visualizations

Concurrent Calculation Chain

Codemap View and
Interfaces to Eclipse

Eclipse Classes

mapValues
project

MapPerProject

elements
latentSemanticIndex
elevationModel
mapInstance
shading
labeling
background
...

MapValues

Layer

 layers
CompositeLayer

 offset
CodemapVisualization

buffer
Background

currentProject
cache

MapController

 canvas
MapView

<<Interface>>
Value<V>

ViewPart

ReferenceValue<V> TaskValue<V>

ComputeBackgroundTask

ComputeHillShadingTask

...

MapValue

MapSelectionsValue

...

<<Interface>>
IJavaProject

...

Figure 5.1: A simplified overview of Codemap as an UML class diagram. TOOL can be
split in three main parts, as colored in the Legend, a concurrent calculation
model (red), the layered visualization (blue) and the view and interfaces to
Eclipse (yellow). Classes that originate from Eclipse are colored violet.

To generate a map of a project’s code, many small steps need to be performed. A brief
overview of the calculation pipeline is given in Figure 3.1. The overview is kept simple
on purpose, since the underlying dependencies are far more complicated. Events
from the user interface trigger recalculations at different steps in the pipeline. For
example, when the size of the map changes, it must be rendered again, but the elements
(classes) displayed on the map remain the same. Hence the vocabulary of the map
remains untouched and the layout algorithm must not be re-run. However, if new
files are added to a project, the whole map needs to be recalculated. To take this set of
dependencies into account, a small framework was created. This section introduces
the framework used to model these dependencies, but does not enumerate all the
dependencies.

The underlying idea of the framework is to model dependencies as a dependency
graph. Each node contains a value which might change. Upon changes, each node can
fire events that trigger recalculations in the following nodes in the graph. Listing 5.1
shows the class AbstractValue which handles these dependencies and is responsible for
triggering the notifications upon changes.

5.1. ARCHITECTURE 45

Listing 5.1: The AbstractValue class can trigger notifications upon changes.

public abstract class AbstractValue<V> implements Value<V> {

private Collection<ValueChangedListener> listeners =
new ConcurrentLinkedQueue<ValueChangedListener>();

protected final void changed() {
EventObject event = new EventObject(this);
for (ValueChangedListener each: listeners) {

each.valueChanged(event);
}

}

public final void addDependent(ValueChangedListener listener) {
listeners.add(listener);

}

public final void removeDependent(ValueChangedListener listener) {
listeners.remove(listener);

}
...

}

As illustrated in Figure 5.1 the values stored in each node of the dependency graph can
either be simple references (e.g. an Integer representing the size the map) or they can
be the result of a calculation (e.g. Multidimensional Scaling). Note that nodes holding
primitive types have been omitted in the UML diagram since they are conceptually the
same as nodes holding references.

Listing 5.2 shows some lines of the TaskValue class. A TaskValue instance adds itself as
a dependent to each Value passed as constructor argument. Thus it receives change
events from all these values. Since a TaskValue can depend on more than one value,
it is required to delay the recalculation until all these values are available. Once all
dependencies are met the calculation of the value can start. But that calculation can
take some time, thus a TaskValue has to delay the update sent to its dependents until
the calculation is over. To meet these requirements, each TaskValue has an internal state
which can have one of the following values:

• Missing: indicates that the value is missing since the dependencies have changed.
A recalculation will be triggered upon the next request of the value.

• Waiting: indicates that the we are waiting for all dependencies to be met.

• Working: indicates that the new value is being calculated.

• Done: indicates that the new value has been calculated, and the dependencies
have not changed since.

46 CHAPTER 5. IMPLEMENTATION

Listing 5.2: A TaskValue instance adds itself as a dependent to each Value passed as
constructor argument. The computeValue method is called as soon as we
enter the working state.

public abstract class TaskValue<V> extends AbstractValue<V>
implements ValueChangedListener {

public TaskValue(String name, Value<?>... parts) {
this.name = name;
this.parts = parts;
this.requiresAllArguments = true;
for (Value<?> each: parts) each.addDependent(this);
...

}

protected abstract V computeValue(ProgressMonitor monitor,
Arguments arguments);

...
}

The Value API provides us with the tools needed to build the dependency graph for
Codemap’s calculation pipeline. Listing 5.3 shows a snippet of how the pipeline is put
together.

Listing 5.3: Defining the dependencies between the different calculation steps

public MapValues(MapValueBuilder make) {
IntegerValue mapSize = new IntegerValue(INITIAL_SIZE);
Value<MapScheme<Boolean>> hills = new

ReferenceValue<MapScheme<Boolean>>();

Value<LatentSemanticIndex> index = new
ComputeEclipseIndexTask(elements);

Value<Configuration> configuration = new
ComputeConfigurationTask(index);

Value<MapInstance> mapInstance =
ComputeMapInstanceTask(mapSize, index, configuration);

Value<DigitalElevationModel> elevationModel = new
ComputeElevationModelTask(mapInstance, hills);

...
}

5.1.2 Visualization Layers

Codemap’s visualization architecture is split into different layers. This section gives a
brief description of this architectural paradigm we used.

5.1. ARCHITECTURE 47

Since Codemap needs to support drawing of an arbitrary number of overlays, these over-
lays have been organized into layers. This allows them to be easily enabled/disabled
since every layer is responsible for exactly one visualization. Furthermore moving the
layer closer to the background or moving it towards the foreground is easy. Depth
changes can be important when the content of one layer shadows other content.

Codemap’s layers are implemented using the composite pattern and can thus be nested
arbitrarily. User events like mouse moves, mouse clicks, mouse drags and keystrokes
are propagated downwards the layer stack. Layers closer to the top receive these
events earlier and thus can handle or even cancel them before they reach layers further
down the stack. This is useful e.g. when multiple layers define behavior to handle
mouse-clicks, but only the topmost of these layers should be allowed to execute its
behavior.

Flow-Map Algorithm

One interesting layer built into Codemap is the call-hierarchy analysis layer. It displays
a flow-chart based overlay as used by cartographers to show the movement of objects
from one location to another [44]. This section gives a brief overview of the algorithm
that calculates these visualizations.

As mentioned in Subsection 4.2.5 the trace overlay does not visualize the connections as
straight arrows but groups arrows going in the same direction as depicted in Figure 4.6
to avoid visual clutter. This is achieved by making use of a flow map algorithm that
groups the arrows by hierarchical clustering [44].

To calculate its layout the algorithm performs the following steps before the graph is
rendered:

• Layout adjustment sorts all nodes according to their coordinates.

• Primary clustering uses the sorted nodes to find out about the spatial distribution
of the nodes.

• Rooted clustering uses the previously calculated primary clustering to generate
a flow-map with a given node r at the root. Furthermore it computes a weight
value for each cluster/node.

• Spatial layout calculates the position of the branching nodes. The position is
based on the weight of the child-clusters/nodes.

• Edge routing avoids intersections of edges by routing them around the bounding
boxes of the same clusters.

48 CHAPTER 5. IMPLEMENTATION

5.1.3 Eclipse Integration

This section describes how Codemap extends Eclipse i.e. how we gather source-file
information using the interfaces provided by the Eclipse Java Development Toolkit
(JDT) and how we register Codemap to Eclipse’s event interface.

Codemap’s part containing the interfaces to the Eclipse framework has two main inter-
faces as depicted in Figure 5.1.

The first interface accesses the project related information using the IJavaProject pro-
vided by the Eclipse-JDP API. We use the IJavaProject to access the underlying source
file resources from which the vocabulary can be extracted. These resources are then
injected into Codemap’s calculation pipeline, see Subsection 5.1.1.

The second interface is located where we integrate the view into Eclipse. To achieve this
we make use of an extension point1 provided by Eclipse. The two classes MapView and
MapController are the two most important classes in this aspect. The former handles
displaying the visualization for the currently selected project, the latter is responsible
for registering event handlers and processing events that are generated from Codemap
and Eclipse.

5.2 On Performance Improvements

This section describes the performance improvements we implemented in Codemap to
enable a smooth user experience.

Software Cartorapher [33], the predecessor of Codemap, did not focus on performance
as it was not embedded in an IDE and not used for live visualizations. Since Codemap
is supposed to help the developer while he is working, it needs to calculate and
update the visualization as quickly as possible. To achieve this, performance had to
be improved in several places. The following subsections cover the most important
performance optimizations.

Subsection 5.2.1 explains the performance improvements made during the calculation
of the elevation model. Subsection 5.2.2 elaborates how the lookup for the nearest
neighbor on the map was made faster. Subsection 5.2.3 explains how to create images in
a fast way using SWT and finally Subsection 5.2.4 describes why we use automatically
ported FORTRAN code for the eigenvalue decompositions.

5.2.1 Fast Elevation Model

This section describes the improvements implemented in the calculation of the elevation
model.

1An extension point allows the contribution of functionality to a specific plugin.

5.2. ON PERFORMANCE IMPROVEMENTS 49

As illustrated in Figure 3.3 Codemap builds the elevation model by calculating a normal
distribution for each class and then sums up the volumes of all classes. Since our
visualization is pixel-based, the elevation model must be recalculated once the size of a
map changes. Approached naively this operation is quite expensive as it includes a
pixel-wise rasterization of normal distributions. This means that Codemap would have
to calculate the elevation for each pixel within a circle around the center of the hill i.e.
the position of the class on the two-dimensional pane. The circle can be seen as an
approximation of when the elevation is below a given threshold such that the influence
it has on the elevation is not relevant any more.

Codemap optimizes the elevation model algorithm performance by not calculating the
whole 360◦ of the elevation for one class but only a piece of one eighth i.e. 45◦. This is
possible since the elevation for each hill is a normal distribution which is completely
symmetrical. We take one eighth since this especially eases the calculation of the full
elevation for one hill. The calculated piece can simply be mirrored along the two axes
and the two diagonals the two-dimensional coordinate system.

The calculation can be further optimized as follows:

The distance from each pixel in the triangle to the center of the approximated hill is
given as follows:

δ(m,n) =
√
m2 + n2

We then use the normal distribution formula to calculate the value for each pixel:

φ(x) = σe−
1
2x

2

where σ is used for scaling and x represents the distance to the center
of the distribution. Inserting the distance calculation we can rewrite the equation as
follows:

φ(m,n) = σe−
(
√

m2+n2)2

2

We can then omit the square root and the square:

φ(m,n) = σe−
m2+n2

2

The distance function itself can be simplified as well. Given the triangle we can calculate
the kth square number by summing up all the odd numbers:

k∑
i=1

2i− 1

The sums are helpful, since we can generate the distance function iteratively. Our final
formula is as follows:

φ(m,n) = σe−
(
∑m

i=1 2i−1+
∑n

i=1 2i−1)

2

50 CHAPTER 5. IMPLEMENTATION

5.2.2 Nearest Neighbor Lookup

This section describes the usage of kd-trees to gain a performance benefit when search-
ing for the nearest hill (nearest neighbor) given pixel coordinates on the map.

When the user clicks on the map, we need to find the nearest neighbor of the point
clicked. The naive approach, scanning the entire list of locations for the nearest neigh-
bor, has the time complexity O(N) where N represents the numbers of locations on
the map. We need better performance for the nearest neighbor lookup, since it is used
quite often i.e. during coloring, when processing mouse-clicks on the map and for the
tooltip displaying the current location below the cursor.

A kd-tree as introduced by Friedmann and Bentley [6, 21] is a data structure that
optimizes the search for nearest neighbors in a set of k dimensional vectors. A kd-tree
is a binary tree that is built by splitting the space of all entries in the set into smaller
subspaces. The root node represents the whole space. Each node in the tree represents
a subspace that results by splitting the (sub-)space of the parent node in the tree along
a hyperplane. The computation time required to build the tree is O(N logN), and the
expected search time for the nearest neighbor is O(logN) [21].

This work uses an implementation of the kd-tree algorithm proposed by Moore [42]
that supports insertion and deletion and chooses the splitting dimension depending
on the depth in the tree. For our two-dimensional case, this means that splitting is
performed by alternately choosing the x and y axis as the splitting dimension.

5.2.3 SWT Image Performance

This section describes the performance improvements we implemented to avoid some
drawbacks that occur when using an SWT2 graphics context for pixel-wise draw-
ing.

While rendering Codemap’s visualization we discovered that rendering using a Graphics
Context3 is quite slow. Codemap draws the visualization pixel by pixel, so repeated calls
to GC.drawPoint() were made. Our visualization has a default size of 512x512 pixels, in
which case 262’144 pixels need to be rendered and for each pixel redundant boundary
checks are performed.

One faster variant is not to use the Graphics Context but draw to the underlying
ImageData4 using ImageData.setPixel(). This method accesses the bitmap data directly,
but has to check the depth of the image for each call. Thus it is faster than to use the
Graphics Context, but there is still room for improvement.

2The Standard Widget Toolkit (SWT) is a graphical widget toolkit for the Java platform, provided as an
alternative to Java’s default UI toolkits.

3 Class documentation for org.eclipse.swt.graphics.GC
4 Class documentation for org.eclipse.swt.graphics.ImageData

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/graphics/GC.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/graphics/ImageData.html

5.2. ON PERFORMANCE IMPROVEMENTS 51

The even faster way is to create the bitmap data directly as byte array and then pass it
to the ImageData constructor. That way we avoid as much overhead as possible when
drawing pixel by pixel.

5.2.4 Translation of FORTRAN to JVM Bytecode

This section explains our decision to use classes originated in automatic translation
from FORTRAN JVM Bytecode to perform algebraic calculations.

Seymour and Dongarra present a FORTRAN-to-Java translator that translates FOR-
TRAN code to JVM bytecode instructions [53]. Codemap makes use of the automatically
ported FORTRAN packages ARPACK and LAPACK for eigenvalue calculations in the
Isomap algorithm. LAPACK is a software library to solve linear equations, eigenvalue
problems and singular value decomposition. ARPACK is a software library to solve
large scale eigenvalue problems based on the Arnoldi Method.

There is also a plain Java library that provides linear algebra functionality, JAMA5. We
use the translated FORTRAN classes since they scale better, as our input matrix (which
is the result of Latent Semantic Indexing) can be of quite high dimensionality.

5http://math.nist.gov/javanumerics/jama/

http://math.nist.gov/javanumerics/jama/

52 CHAPTER 5. IMPLEMENTATION

Chapter 6

Case Study

In this chapter we discuss the informal user study we performed to evaluate the
approach taken by Codemap.

Kuhn and Loretan performed a feasibility study by implementing a prototype of
software cartography called Software Cartographer [33]. They show the possibility to
generate cartographic maps for software systems and provide some example maps an-
alyzing different software systems. They provide an algorithm that generates software
maps and they show that the algorithm has proven valuable. This work demonstrates
the use of software cartography in the context of an IDE.

In this section we discuss the informal user study of Codemap we performed to validate
our assumptions about the usage of the tool.

6.1 User Study

To get further feedback about Codemap we decided to perform a user study with
professional developers and students. During this study we obstained considerable
feedback. Most importantly we noticed that our choice to base the visualization on
vocabulary had to be rethought. This section gives a detailed overview of the lessons
learned during that study. Furthermore, in Section 4.3 we discuss some features that
can be implemented based on the feedback from this study.

The study performed was not a controlled experiment but more an informal study
to see whether the tool but also the questions asked in the study can be improved.
This section gives an overview of the lessons learned during that study. Please refer
to Appendix B for the tasks given during the study. For the duration of the study,
the participants were asked to think aloud. That way the researcher supervising the
study could gather results not only about the final result of the tasks assigned to the

53

54 CHAPTER 6. CASE STUDY

participants, but also about their solution process which is actually more relevant for
our results.

As a scenario for the experiment we chose “first contact with a previously unknown
closed source system”. We chose Outsight, a commercial web-application which is
written in Java, as system for the study. The participants had limited time of 90 minutes
to solve 5 exploratory tasks and to fix one bug report.

The results from the study are mixed and challenge our assumptions on how the devel-
opers would use Codemap. It became apparent that our initial decision to use lexical
similarity as a distance metric for the cartographic layout must be rethought. Even
though the participants were aware of distance metric implementation of Codemap they
tended to interpret the visual distance as a measure of structural dependencies.

From the feedback that arose during from the study, we learned that the developers
intuitively expected that the map represents their mental model of the software that
they built from the system’s architecture. Even though east/west and north/south
directions on the map had a clear semantic interpretation the developers did not
navigate along these axes.

One participant reported: “When I see a big hill representing a class, I automatically click on
it because I think it is important given its size”. In fact, all participants tended to interpret
large classes to be the most important for the system since they are the ones best visible.
Another participant was biased by outliers i.e. classes that are peripheral on the map.
These outliers had no other classes in their close proximity and where thus better
visible than other classes that were part of a hill of multiple classes. On a similar note,
one participant requested that the tool should mark the important classes by adding
landmarks to the visualization. This is a difficult task since the definition of importance
varies from developer to developer and even depends on the task one is working on.
Hence automatically detecting important classes is not feasible. The confusion arising
from the hill size however can be diminished by providing different metrics for the
height the hills.

Another idea that originates from the study is to enable the map to focus on one hill
only. The visualization should then only elevate the focused class and its collaborators.
Additionally the collaboration can be visualized by displaying references and calls to
the class under focus. This leads to another interesting feature, namely visualizing all
collaborators of a given class.

Furthermore it was criticized that the maps are hard-linked to projects only. Indeed it
is desirable if e.g. one is working on a project which is split into multiple sub-projects
to have one common map for all these sub-projects. Another request was that the
map should somehow display the vocabulary of the underlying visualization. One
participant suggested to enrich the visualization with tag-clouds e.g. one cloud of the
vocabulary for each class.

Another observation was that inexperienced developers (i.e. students) are more likely
to find the map useful than professional developers. That was not unexpected, since for

6.1. USER STUDY 55

power users any new way of using the IDE is likely to slow them down, and conversely
for beginners any way of using the IDE is novel. The only exception to this observation
was Codemap’s search bar, a one-click interface to Eclipse’s native file-search, that was
used by all participants but one.

In general, participants reported that Codemap was most useful when it displayed
search results, callers, implementers, and references. A participant reported: “I found it
very helpful that you get a visual clue of quantity and distribution of your search results”. In
fact, we observed that that participants almost never used the map for direct navigation
but often for search and reverse engineering tasks.

Another participant concluded “This task could have been solved without Codemap, but it
was awesome to have visual feedback”. In general the participants that had experience with
other visualization tools appreciated that Codemap displays the visualization very fast
and does not take minutes for data extraction or the visualization preparation.

56 CHAPTER 6. CASE STUDY

Chapter 7

Conclusion

This thesis presents software cartography, a cartographic software visualization tool.
Our approach visualizes software entities using a shared, spatial and stable layout.
The layout is spatial since it is based on a map-like visualization and therefore uses the
cartography metaphor. It is stable because the position of software entities on the map
is based on their vocabulary, which is known to be more stable than structure [2] and
rather grows than changes over time [64]. Finally the visualization is shared since the
very same layout can be used by all developers and staff.

Software maps satisfy our five desiderata [31], which are a generalized and extended
version of DeLine’s four desiderata [16]:

1. Software maps show the entire program and are continuous.

2. Software maps contain landmarks that allow the developers to find parts of the
system perceptually, rather than relying on naming or other cognitive feats.

3. Software maps remain visually stable as the system evolves (both locally and
across distributed version control commits) since the layout is based on vocabu-
lary.

4. Software maps are capable of showing global information overlays.

5. Distance in the visualization is based on vocabulary and thus has a technically
meaningful interpretation.

The layout of software maps is based on the lexical similarity of software entities. Our
algorithm uses Latent Semantic Indexing (LSI) [15] to position software entities in a
multi-dimensional space. We present an improved composition of two algorithms to
calculate the two-dimensional embedding. First Isomap [59] is applied to compute
a globally optimal layout that is then used as input for the next step. The next step
applies Multidimensional Scaling (MDS) [8] to embed the software entities in a two-
dimensional visualization pane. Additionally we apply cartographic visualization

57

58 CHAPTER 7. CONCLUSION

techniques to render an aesthetically appealing landscape.

We present Codemap, a plugin for the Eclipse IDE that displays software maps for Eclipse
projects. Codemap aims to support the developer with a better mental model based
on a visualization of the software he is working on. Codemap provides support for
various development tasks ranging from code navigation over reverse engineering to
collaboration support and social awareness. The goal that the developer can use his
map-based mental model during these tasks while working in the IDE. In this way,
software maps reflect world maps in an atlas that exploit the same consistent layout to
depict various kinds of thematic information for geographical sites.

Since Codemap aims to support the developer during his daily work in the IDE, therefore
it needs to calculate and update the visualization as quickly as possible. To guarantee a
smooth user experience, performance was improved at several critical points in the
program.

We performed an informal user study with professional developers and students to get
more feedback about Codemap and to validate our assumptions. During that study, it
became apparent that our initial decision to use lexical similarity as the only distance
metric for the cartographic layout must be rethought. The participants tended to
interpret the visual distance as a measure of structural dependencies even though
they were aware of distance metric implementation of Codemap. This means that our
initial goal, to support developers with an intuitive mental model, has not been met
yet. Section 7.1 discusses possible future approaches to be taken to meet our goal and
help developers at a better mental model of their software projects.

7.1 Future Work

The Eclipse centric future work has already been discussed in Section 4.3 and won’t
be repeated here. As further future work, we can identify the following promising
directions:

• The user study revealed that programmers tended to misinterpret the layout
as a measure of structural dependencies. Based on this observation we suggest
an implementation of anchored multidimensional scaling such that developers can
initialize the map to their mental model. Once a map has been initialized to a
developer’s mental model, the map is more likely to start co-evolving with and
influencing the developer’s mental model. Anchored MDS allows the developer
to define anchors which influence the layout of the map [11]. Any software
artifact can be used as an anchor, even those not present on the map as for
example external libraries. With this future layout algorithm, developers may
e.g. arrange the database layer in the south and all UI layer in the north using the
respective libraries as anchors.

• Software maps at present are largely static. We envision a more interactive
environment in which the user can “zoom and pan” through the landscape to see

7.2. LESSONS LEARNED 59

features in closer detail, or navigate to other views of the software.

• Selectively displaying features would make the environment more attractive for
navigation. Instead of generating all the labels and thematic widgets up-front,
users can annotate the map, adding comments and waymarks as they perform
their tasks.

• Orientation and layout are presently consistent for a single project only. We
would like to investigate the usefulness of conventions for establishing consistent
layout and orientation (i.e. “testing” is North-East) that will work across multiple
projects, possibly within a reasonably well-defined domain.

• Once the layout issues are fixed we plan to perform an empirical user study to
evaluate the application of software cartography for software comprehension
and reverse engineering, but also for source code navigation in development
environments.

7.2 Lessons Learned

Lanza presents implementation recommendations and design guidelines that have
proven very helpful during the design and implementation of Codemap [35]. We would
like to contribute to this knowledge base by adding the most important lesson we
learned during the implementation of our tool.

When building a visualization tool, one must not forget for whom the tool is built. The
hypothetical user for the research prototype has a tremendous influence on some of
the fundamental decisions taken during development. In our case, we decided to base
the positioning of software entities on the map on their lexical distance. But during
the informal user study it arose that this decision was rather confusing for all the
participants. We learned painfully, that our very basic assumption, to use vocabulary to
determine the software entity’s position on the map, confuses the users. Our approach
was similar to the waterfall model, where a software project is first implemented and
then tested. First we built the visualization tool and then we performed an evaluation
with potential users. In our opinion this approach does not work well as it misses too
much early feedback!

Thus, based on our experience, we suggest to use an approach based on the agile
methodology. We suggest to perform user studies as soon as possible during the
development process of a (visualization) tool to learn more about the users and from
the users. We reason that with earlier user-studies, the researcher is able to adapt the
tool as soon as possible to the needs and to the understanding of its users and thus is
able to build a tool that performs its purpose even better.

60 CHAPTER 7. CONCLUSION

Appendix A

Codemap Quickstart

This Appendix provides a short introduction on how Codemap can be installed and on
how the implemented features can be used.

A.1 Obtaining Codemap

Codemap requires at least Eclipse 3.5 and Java 6. Codemap provides optional func-
tionality that depends on the Eclipse Communication Framework1 and Eclemma 2.
These plugins are not required, but recommended to enjoy the full functionality of
Codemap.

The Update Site for Codemap can be found at http://scg.unibe.ch/download/codemap.
Perform the following steps to install Codemap from the update site:

1. From your Eclipse menu select “Help”→ “Install New Software”. In the Install
dialog Figure A.1 enter http://scg.unibe.ch/download/codemap at the Work
with field.

2. Check the latest Codemap version.

3. Press “Next” and follow the steps in the installation wizard.

A.2 Using Codemap

After installing Codemap and after having restarted Eclipse a welcome screen appears
that explains some of the features of Codemap. For completeness, these explanations

1http://www.eclipse.org/ecf/
2http://www.eclemma.org/

61

http://scg.unibe.ch/download/codemap
http://scg.unibe.ch/download/codemap
http://www.eclipse.org/ecf/
http://www.eclemma.org/

62 APPENDIX A. CODEMAP QUICKSTART

Figure A.1: Install Codemap from the update site at
http://scg.unibe.ch/download/codemap . Select the latest Codemap
version, press Next and follow the wizard steps.

have been added to the Quickstart as well.

The main feature of Codemap is the Codemap View Figure A.4 displaying the actual
map of your code.

To activate Codemap View go to “Window”→ “Show View”→ “Other. . . ” and select
the view “Codemap View” in the category “Codemap” as depicted in Figure A.2.

In the following subsections, an introduction to each part of Codemap is given.

The Codemap View should appear in your Eclipse IDE like in Figure A.4.

A.2.1 Mapview

The Mapview (Badge 1 in Figure A.4) shows a map for the currently selected project. If
you want to get the map for a different project, just select another one in the Package
Explorer. Hills Represent Classes and their position on the map is determined by their
vocabulary. The size of a hill reflects the number of lines in the corresponding class.

http://scg.unibe.ch/download/codemap

A.2. USING CODEMAP 63

Figure A.2: To use Codmap select the view “Codemap View” in the category
“Codemap”.

If two hills are close enough, they melt together, and islands with complex shapes
appear.

A.2.2 Toolbar

Figure A.3: Use the Codemap toolbar to change landscape-colors, displayed overlays
and labeling.

Codemap’s toolbar (Figure A.3) offers the following actions:

• Colors: Change the metrics that color the landscape. See Subsection A.2.4 for
more details on the available coloring metrics.

• Layers: Show or hide different overlays. See Subsection A.2.5 for more details on
the available overlay metrics.

• Labels: Change the way the locations on the map are labeled.

• Link with Current Selection: If this toggle is checked the Codemap view automati-
cally reveals the Java element currently selected in other views or editors.

64 APPENDIX A. CODEMAP QUICKSTART

• Force Selection to Package Explorer: If this toggle is checked Codemap automati-
cally reveals the current selection in the Package Explorer.

A.2.3 Search Bar

The Search Bar is embedded in the Codemap View and provides quick access to
Eclipse’s search utility. Upon searching it runs a text-search in the scope of the project
associated with the current Codemap. The search results appear on the map under the
condition that the Search Overlay is enabled. Please read Subsection A.2.5 for more
information regarding the search overlay.

A.2.4 Coloring Metrics

The landscape itself can be colored according to different metrics. Figure A.5 shows
the metrics that are currently implemented. The coloring metrics can be changed using
the buttons provided in the toolbar, see Subsection A.2.2.

• Default: displays green islands in blue water.

• Color by package: Assigns a unique color to each package and colors the islands
according to the package of each class.

• Heat-map coloring: Displays a heat-map in the range from yellow (hot) to black
(cold). Hot means that the file was recently opened in the Eclipse editor.

• Coverage Coloring: Displays coverage information ranging from red (no cover-
age) to green (good coverage). Please refer to Section A.2.4 for more information.

Coverage Coloring

EclEmma is a Java code coverage tool for Eclipse. To enable the EclEmma overlay
set the Checkbox on “Color by Coverage” in the Colors overlays Section. If you
need instructions on how to use EclEmma, please refer to the EclEmma website:
http://www.eclemma.org/. Once the coverage overlay is selected the current coverage
is displayed. The coverage of a location on the map fades from red (no coverage) to
green (covered) depending on the procentual coverage of the class represented by that
location. The location is colored grey if no location-specific coverage information is
available.

A.2.5 Overlay Metrics

On top of this landscape different metrics can be displayed. These metrics can be
enabled/disabled on a per project level by using the buttons provided in the toolbar,

http://www.eclemma.org/

A.2. USING CODEMAP 65

Figure A.4: A Codemap of the project org.codemap. Visible on the map are some
search results, the currently opened and the currently active file. The
arrows represent a call hierarchy.

66 APPENDIX A. CODEMAP QUICKSTART

Figure A.5: The landscape generated by Codemap can be colored according to different
metrics. In this figure one can see these metrics applied to the same project.
Default coloring is displayed in the upper left. Coloring by package is
displayed the upper right. On the bottom left one can see a heatmap
coloring whereas the bottom right shows test-coverage.

A.2. USING CODEMAP 67

see Subsection A.2.2. Some of the metrics are linked with other eclipse views.

• Call Hierarchy Overlay: Eclipse provides a great tool to show callees and callers
of certain methods. To enable the Call Hierarchy Overlay set the Checkbox on
“Link with Call Hierarchy” in the layers section.

• Markers: Eclipse provides markers to annotate problems and general information
regarding your code in the source-files. To enable display of markers on the map
check Makers in the layers section.

• Search Result Overlay: Eclipse provides search functionality to search your code.
To enable display of search results on the map check “Search Results” in the
layers section.

• Show active File: Display the file that is currently marked active in the Eclipse
Editor.

• Show open Files: Display all files that are currently opened in the Eclipse Editor.

• Show Selection: Display or hide the elements that currently selected on the
codemap.

Collaboration Overlay

The Eclipse Communication Framework (ECF) supports development of distributed
Eclipse applications. ECF provides the library code needed to create distributed plugins
easily as well as some example plugins. These examples include shared editing and
instant messaging. Building on ECF, we integrate collaboration support for Codemap.
We chose to display which files are currently edited by a peer, once the collaboration
feature is enabled. Collaboration is supported on top of popular protocols compatible
to the Extensible Messaging and Presence Protocol (XMPP) or similar. As depicted
in Figure 4.7 once sharing is enabled, a meeple is displayed for each file opened by
remote collaborators.

If you need instructions on how to use or install ECF, please refer to the official website:
http://www.eclipse.org/ecf/

Once ECF is installed you need to connect to an existing instant messaging account
using ECF. The ECF-based menu contribution added to Codemap shows up as soon as
there are online buddies for the account you connected with.

To initiate sharing with your buddy, click on the Eclipse menubar icon (white triangle)
in the Codemap view, select the entry “Share open files” as depicted in Figure A.6 to
send a sharing request to your buddy. Once he accepts your request, his open files are
displayed on your map and vice versa, as illustrated in Figure 4.7.

http://www.eclipse.org/ecf/

68 APPENDIX A. CODEMAP QUICKSTART

Figure A.6: Codemap allows to share the files that are currently open by an editor given
that the Eclipse Communication Framework is installed and that the user
is logged in to an IM-network.

Appendix B

User Study Questions

B.1 What is the Domain of Outsight?

Find out what the purpose of the given application is and identify the main collabora-
tors. Take some time to explore the system and figure out its domain, and answer the
following questions.

1. What is the domain of Outsight?

2. List the main collaborators of the application.

3. Draw a simple collaboration diagram of the application (example below).

4. Speculate about the main feature of program?

Figure B.1: Sample collaboration diagram.

69

70 APPENDIX B. USER STUDY QUESTIONS

B.2 Which Technologies are used in Outsight?

We want to get an overview of the technologies in use by Outsight. For this we need to
identify the important technologies (like Ajax, XML, reStrucutedText, FTP,) that this
application uses.

1. List the main technologies used by Outsight.

B.3. WHICH IS THE ARCHITECTURE OF OUTSIGHT? 71

B.3 Which is the Architecture of Outsight?

In this task we are going to have a look at the architecture of Outsight given version
2004. Reverse engineer the architecture by answering the following questions.

1. Which are the main architectural components of Outsight?

2. How are these components related to one another? Which components should
not directly call each other? You may draw an UML diagram of the components
(example below).

3. Draw an UML diagram of the architecture: roughly at package level, only includ-
ing key classes, if at all.

4. Which architecture paradigms are used (e.g. pipes and filters, layers, big ball of
mud,)?

Figure B.2: Sample component diagram.

72 APPENDIX B. USER STUDY QUESTIONS

B.4 Which Classes collaborate in a Feature?

For each of the following feature descriptions list the classes that collaborate in the
given feature.

1. Inactive users are reminded after some months, and eventually deleted if they
don’t log in after a certain number of reminders.

2. Depending on the kind of user, a user can see and edit more or less data. Which
class(es) implement these permissions? Which class(es) define the permissions
for each kind of user? Which class checks the permissions when accessing data?

3. Active search: the system compares the curriculum vitae of the users with stored
searches of the companies and sends new matches to the company.

B.5. ASSES THE CODE QUALITY 73

B.5 Asses the Code Quality

In this question we want to asses the code quality of Outsight. Answer the following
questions regarding the quality:

1. Is the code-coverage ok? If you are not familiar with the eclemma code-coverage
tool please refer to the tutorial.

2. Are there Godclasses (definition below)?

3. Are the classes organized in the right packages? should certain classes be moved
to other packages? It’s good enough to list one or two examples.

Godclass A godclass is an class that knows too much or does too much. A godclass
contains most of a program’s overall functionality as an “all-knowing” object,
maintains most of the information about the entire program and provides most
of the methods for manipulating its data.

74 APPENDIX B. USER STUDY QUESTIONS

B.6 Fix a Bug

Your manager just told you to deal with the following bug report:

Issue Number 0015 (08-08-2004)
On the overview website of the company registration: a list of cities or
regions should be displayed instead of local-event names.

Try to figure out what he’s telling you and gather the knowledge to fix the bug. As a
reminder, you are not asked to actually perform the bug fix task, but just to acquire
the necessary knowledge of the system to describe how you would perform the bug
fix.

1. Describe how you would handle above bug report, e.g. how and where would
you change the system, which classes are involved in your bug fix.

List of Figures

2.1 Software Cartographer, the predecessor of Codemap 6

3.1 Software Cartography in a nutshell . 17
3.2 Software Cartography in a nutshell . 19
3.3 Digital elevation model . 19
3.4 Two Codemap overlays . 21
3.5 The “Swiss roll” data set, a classical example for Isomap. 23
3.6 Comparison of Isomap without and with an additional application of

Multidimensional Scaling to spread the layout 26
3.7 Calculation a Two-Dimensional Layout 27

4.1 A heat-map showing the last-visited locations 32
4.2 EclEmma displays coverage results as a sortable list 33
4.3 A sample coverage overlay . 34
4.4 Visualizing search results . 35
4.5 The Eclipse call hierarchy view . 35
4.6 Codemap’s call hierarchy overlay . 36
4.7 Codemap’s collaboration overlay . 37
4.8 Eclipse’s type hierarchy view . 39
4.9 Eclipse’s bookmarks view . 40

5.1 A simplified overview of Codemap as an UML class diagram 44

A.1 The Codemap update site. 62
A.2 Show the Codemap view . 63
A.3 The Codemap Toolbar . 63
A.4 A Codemap of the project org.codemap. 65
A.5 Four different metrics of Codemap . 66
A.6 Codemap’s collaboration support . 68

B.1 Sample collaboration diagram. 69
B.2 Sample component diagram. 71

75

76 LIST OF FIGURES

Listings

5.1 The AbstractValue class can trigger notifications upon changes. 45
5.2 A TaskValue instance adds itself as a dependent to each Value passed as

constructor argument. The computeValue method is called as soon as we
enter the working state. 46

5.3 Defining the dependencies between the different calculation steps 46

77

78 LISTINGS

Bibliography

[1] Olena Andriyevska, Natalia Dragan, Bonita Simoes, and Jonathan I. Maletic. Eval-
uating UML class diagram layout based on architectural importance. VISSOFT
2005. 3rd IEEE International Workshop on Visualizing Software for Understanding and
Analysis, 0:9, 2005.

[2] Giuliano Antoniol, Yann-Gael Gueheneuc, Ettore Merlo, and Paolo Tonella. Min-
ing the lexicon used by programmers during sofware evolution. In ICSM 2007:
IEEE International Conference on Software Maintenance, pages 14–23, October 2007.

[3] Sushil Bajracharya, Adrian Kuhn, and Yunwen Ye. Suite 2009: First international
workshop on search-driven development - users, infrastructure, tools and evalua-
tion. In Software Engineering - Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pages 445–446, 2009.

[4] Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, and Sushil K. Bajracharya.
A theory of aspects as latent topics. In OOPSLA ’08: Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, pages 543–562, New York, NY, USA, 2008. ACM.

[5] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for
the visualization of software metrics. In SoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, pages 165–172, New York, NY, USA, 2005.
ACM.

[6] Jon L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–
229, April 1980.

[7] Johannes Bohnet and Jurgen Dollner. CGA call graph analyzer — locating and
understanding functionality within the Gnu compiler collection’s million lines of
code. VISSOFT 2007. 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 0:161–162, 2007.

[8] Ingwer Borg and Patriuck J. F. Groenen. Modern Multidimensional Scaling: Theory
and Applications. Springer, 2005.

79

80 BIBLIOGRAPHY

[9] Lionel Briand and Dietmar Pfahl. Using simulation for assessing the real impact
of test coverage on defect coverage. Software Reliability Engineering, International
Symposium on, 0:148, 1999.

[10] Andreas Buja, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike
Hofmann, and Lisha Chen. Data visualization with multidimensional scaling.
Journal of Computational and Graphical Statistics, 17(2):444–472, June 2008.

[11] Andreas Buja, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike
Hofmann, and Lisha Chen. Data visualization with multidimensional scaling.
Journal of Computational and Graphical Statistics, 17(2):444–472, June 2008.

[12] Heorhiy Byelas and Alexandru C. Telea. Visualization of areas of interest in soft-
ware architecture diagrams. In SoftVis ’06: Proceedings of the 2006 ACM symposium
on Software visualization, pages 105–114, New York, NY, USA, 2006. ACM.

[13] Mei-Hwa Chen, M.R. Lyu, and W.E. Wong. An empirical study of the correla-
tion between code coverage and reliability estimation. Software Metrics, IEEE
International Symposium on, 0:133, 1996.

[14] Jan de Leeuw. Applications of convex analysis to multidimensional scaling. In J.R.
Barra, F. Brodeau, G. Romier, and B. Van Cutsem, editors, Recent Developments in
Statistics, pages 133–146. North Holland Publishing Company, Amsterdam, 1977.

[15] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990.

[16] Robert DeLine. Staying oriented with software terrain maps. In DMS, pages
309–314, 2005.

[17] Robert DeLine, Mary Czerwinski, Brian Meyers, Gina Venolia, Steven M. Drucker,
and George G. Robertson. Code thumbnails: Using spatial memory to navigate
source code. In VL/HCC, pages 11–18, 2006.

[18] Robert DeLine, Amir Khella, Mary Czerwinski, and George G. Robertson. Towards
understanding programs through wear-based filtering. In SOFTVIS, pages 183–
192, 2005.

[19] Stephan Diehl. Software Visualization. Springer-Verlag, Berlin Heidelberg, 2007.

[20] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared
workspaces. In CSCW ’92: Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, pages 107–114, New York, NY, USA, 1992. ACM.

[21] Jerome H. Friedman, Jon L. Bentley, and Raphael A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209–226, September 1977.

[22] Yaniv Frishman and Ayellet Tal. Online dynamic graph drawing. IEEE Transactions
on Visualization and Computer Graphics, 14(4):727–740, 2008.

BIBLIOGRAPHY 81

[23] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing live software
systems in 3D. In Proceedings of SoftVis 2006 (ACM Symposium on Software Visual-
ization), September 2006.

[24] Michael Hermann and Heiri Leuthold. Atlas der politischen Landschaften. vdf
Hochschlverlag AG, ETH Zürich, 2003.

[25] Einar W. Hoest and Bjarte M. OEstvold. Debugging method names. In Proceedings
of the 23nd European Conference on Object-Oriented Programming (ECOOP’09), LNCS,
page To appear. Springer, 2009.

[26] Susanne Jucknath-John and Dennis Graf. Icon graphs: visualizing the evolution
of large class models. In SoftVis ’06: Proceedings of the 2006 ACM symposium on
Software visualization, pages 167–168, New York, NY, USA, 2006. ACM.

[27] Michael Kaufmann and Dorothea Wagner. Drawing Graphs. Springer-Verlag,
Berlin Heidelberg, 2001.

[28] Holger M. Kienle and Hausi A. Muller. Requirements of software visualization
tools: A literature survey. VISSOFT 2007. 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pages 2–9, 2007.

[29] Adrian Kuhn. Automatic labeling of software components and their evolution
using log-likelihood ratio of word frequencies in source code. In MSR ’09: Pro-
ceedings of the 2009 6th IEEE International Working Conference on Mining Software
Repositories, pages 175–178. IEEE, 2009.

[30] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba. Semantic clustering: Iden-
tifying topics in source code. Information and Software Technology, 49(3):230–243,
March 2007.

[31] Adrian Kuhn, David Erni, Peter Loretan, and Oscar Nierstrasz. Software cartogra-
phy: Thematic software visualization with consistent layout. Journal of Software
Maintenance and Evolution (JSME), 2010. To appear.

[32] Adrian Kuhn, David Erni, and Oscar Nierstrasz. Towards improving the mental
model of software developers through cartographic visualization, 2010. Under
submission to NIER track of ICSE 2010.

[33] Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consistent layout for thematic
software maps. In Proceedings of 15th Working Conference on Reverse Engineering
(WCRE’08), pages 209–218, Los Alamitos CA, October 2008. IEEE Computer
Society Press.

[34] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Visualization-based
analysis of quality for large-scale software systems. In ASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering, pages
214–223, New York, NY, USA, 2005. ACM.

[35] Michele Lanza. CodeCrawler — lessons learned in building a software visualiza-
tion tool. In Proceedings of CSMR 2003, pages 409–418. IEEE Press, 2003.

82 BIBLIOGRAPHY

[36] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual ap-
proach to reverse engineering. Transactions on Software Engineering (TSE), 29(9):782–
795, September 2003.

[37] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-
Verlag, 2006.

[38] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept
clones in source code. In Proceedings of the 16th International Conference on Automated
Software Engineering (ASE 2001), pages 107–114, November 2001.

[39] J. W. Mcclurkin, L. M. Optican, B. J. Richmond, and T. J. Gawne. Concurrent
processing and complexity of temporally encoded neuronal messages in visual
perception. Science, 253(5020):675–677, August 1991.

[40] Cédric Mesnage and Michele Lanza. White Coats: Web-visualization of evolving
software in 3D. VISSOFT 2005. 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 0:40–45, 2005.

[41] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of digital
computer programs. Commun. ACM, 6(2):58–63, 1963.

[42] Andrew Moore. An introductory tutorial on kd-trees. Technical Report Techni-
cal Report No. 209, Computer Laboratory, University of Cambridge, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, 1991.

[43] Andreas Noack and Claus Lewerentz. A space of layout styles for hierarchical
graph models of software systems. In SoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, pages 155–164, New York, NY, USA, 2005.
ACM.

[44] Doantam Phan, Ling Xiao, R. Yeh, and P. Hanrahan. Flow map layout. In
Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on, pages 219–224.
IEEE Computer Society, 2005.

[45] Steven P. Reiss. The paradox of software visualization. VISSOFT 2005. 3rd
IEEE International Workshop on Visualizing Software for Understanding and Analysis,
page 19, 2005.

[46] BZ Research. 5th annual eclipse adoption study. November 2008.

[47] George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Robbins, David
Thiel, and Maarten van Dantzich. Data mountain: using spatial memory for
document management. In Symposium on User interface software and technology
(UIST ’98), pages 153–162, 1998.

[48] Kael Rowan. Code canvas, March 2009. http://blogs.msdn.com/
kaelr/archive/2009/03/26/code-canvas.aspx, archived at http://
www.webcitation.org/5mceC6NVX.

http://blogs.msdn.com/kaelr/archive/2009/03/26/code-canvas.aspx
http://blogs.msdn.com/kaelr/archive/2009/03/26/code-canvas.aspx
http://www.webcitation.org/5mceC6NVX
http://www.webcitation.org/5mceC6NVX

BIBLIOGRAPHY 83

[49] D. W. Sandberg. Smalltalk and exploratory programming. SIGPLAN Not.,
23(10):85–92, October 1988.

[50] Susan S. Schiffman, Lance M. Reynolds, and Forrest W. Young. Introduction
to Multidimensional Scaling: Theory, Methods, and Applications. Academic Press,
October 1981.

[51] Mauricio Seeberger. How developers drive software evolution. Master’s thesis,
University of Bern, January 2006.

[52] Mauricio Seeberger, Adrian Kuhn, Tudor Gı̂rba, and Stéphane Ducasse. Chronia:
Visualizing how developers change software systems. In Proceedings of 10th
European Conference on Software Maintenance and Reengineering (CSMR’06), pages
345–346, March 2006. Tool demo.

[53] Keith Seymour and Jack Dongarra. Automatic translation of fortran to jvm
bytecode. In JGI ’01: Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande, pages 126–133, New York, NY, USA, 2001. ACM.

[54] Cameron Skinner. Code visualization, uml, and dsls. In Professional Developers Con-
ference (PDC09), November 2009. http://microsoftpdc.com/Sessions/
FT08.

[55] Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard.
Thematic Carthography and Geographic Visualization. Pearson Prentice Hall, Upper
Saddle River, New Jersey, 2005.

[56] Margaret-Anne D. Storey, Davor Čubranić, and Daniel M. German. On the use of
visualization to support awareness of human activities in software development:
a survey and a framework. In SoftVis’05: Proceedings of the 2005 ACM symposium
on software visualization, pages 193–202. ACM Press, 2005.

[57] Marc Strickert, Stefan Teichmann, Nese Sreenivasulu, and Udo Seiffert. High-
throughput multi-dimensional scaling (HiT-MDS) for cDNA-Array expression
data. In Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja, and Slawomir Zadrozny,
editors, ICANN, volume 3696 of Lecture Notes in Computer Science, pages 625–633.
Springer, 2005.

[58] Alexandru Telea, Alessandro Maccari, and Claudio Riva. An open toolkit for
prototyping reverse engineering visualizations. In VISSYM ’02: Proceedings of
the symposium on Data Visualisation 2002, pages 241–ff, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[59] Joshua B. Tenenbaum, Vin Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,
December 2000.

[60] Maurice Termeer, Christian F.J. Lange, Alexandru Telea, and Michel R.V. Chau-
dron. Visual exploration of combined architectural and metric information. VIS-
SOFT 2005. 3rd IEEE International Workshop on Volume, 0:11, 2005.

http://microsoftpdc.com/Sessions/FT08
http://microsoftpdc.com/Sessions/FT08

84 BIBLIOGRAPHY

[61] Warren Torgerson. Scaling and psychometrika: Spatial and alternative representa-
tions of similarity data. Psychometrika, 51(1):57–63, March 1986.

[62] Jürgen Wolff v. Gudenberg, A. Niederle, M. Ebner, and Holger Eichelberger.
Evolutionary layout of uml class diagrams. In SoftVis ’06: Proceedings of the 2006
ACM symposium on Software visualization, pages 163–164, New York, NY, USA,
2006. ACM.

[63] Robert van Liere and Wim de Leeuw. Graphsplatting: Visualizing graphs as
continuous fields. IEEE Transactions on Visualization and Computer Graphics, 9(2):206–
212, 2003.

[64] Rajesh Vasa, Jean-Guy Schneider, and Oscar Nierstrasz. The inevitable stability of
software change. In Proceedings of 23rd IEEE International Conference on Software
Maintenance (ICSM ’07), pages 4–13, Los Alamitos CA, 2007. IEEE Computer
Society.

[65] Gina Venolia. Five attempts at spatializing code. In New Paradigms in Us-
ing Computers (NPUC), July 2009. http://research.microsoft.com/
projects/spatialcode/, http://research.microsoft.com/apps/
pubs/default.aspx?id=81655.

[66] Colin Ware. Information Visualisation. Elsevier, Sansome Street, San Fransico, 2004.

[67] Richard Wettel and Michele Lanza. Visualizing software systems as cities. In
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visualizing Software
For Understanding and Analysis), pages 92–99, 2007.

[68] Jim Whitehead. Collaboration in software engineering: A roadmap. In FOSE ’07:
2007 Future of Software Engineering, pages 214–225, Washington, DC, USA, 2007.
IEEE Computer Society.

[69] James A. Wise, James J. Thomas, Kelly Pennock, David Lantrip, Marc Pottier,
Anne Schur, and Vern Crow. Visualizing the non-visual: spatial analysis and
interaction with information from text documents. infovis, 00:51, 1995.

[70] Forrest W. Young. Muldidimensional scaling. In Kotz-Johnson Encyclopedia of
Statistical Sciences, volume 5. John Wiley & Sons, Inc., 1985.

[71] Hongyu Zhang. Exploring regularity in source code: Software science and Zipf’s
law. Reverse Engineering, Working Conference on, 0:101–110, 2008.

http://research.microsoft.com/projects/spatialcode/
http://research.microsoft.com/projects/spatialcode/
http://research.microsoft.com/apps/pubs/default.aspx?id=81655
http://research.microsoft.com/apps/pubs/default.aspx?id=81655

	Abstract
	Acknowledgements
	Contents
	Introduction
	Approach in a Nutshell
	Contributions
	Structure of the Thesis

	Related Work
	Previous Work
	Other Approaches
	Desiderata for Spatial Representation of Software
	Other Layout Approaches
	More Cartography and Spatiality Metaphors

	Software Cartography
	From Cartography to Software Cartography
	On the Choice of Vocabulary
	The Cartography Pipeline
	Lexical Similarity between Source Files
	Creating a Two-Dimensional Layout
	Hill-shading and Contour Lines
	Labeling
	Landscape Coloring and Overlays

	On Different Layout Algorithms
	An Introduction to Multidimensional Scaling
	High-Throughput Multidimensional Scaling
	Isomap
	Metric Multidimensional Scaling

	Codemap's Two-Dimensional Reduction

	Codemap
	On the Choice of Eclipse and Java
	Supported Programming Tasks
	Code Navigation
	Test Coverage
	Searching the Code
	Searching References/Declarations
	Browsing Call Hierarchies
	Collaboration

	Future Features
	Vocabulary View
	Vocabulary Search
	Further Eclipse Integration
	Labeling Schemes
	Elevation Schemes
	Finer Granularity
	Map Wizard

	Implementation
	Architecture
	Concurrent Calculation Pipeline
	Visualization Layers
	Eclipse Integration

	On Performance Improvements
	Fast Elevation Model
	Nearest Neighbor Lookup
	SWT Image Performance
	Translation of FORTRAN to JVM Bytecode

	Case Study
	User Study

	Conclusion
	Future Work
	Lessons Learned

	Codemap Quickstart
	Obtaining Codemap
	Using Codemap
	Mapview
	Toolbar
	Search Bar
	Coloring Metrics
	Overlay Metrics

	User Study Questions
	What is the Domain of Outsight?
	Which Technologies are used in Outsight?
	Which is the Architecture of Outsight?
	Which Classes collaborate in a Feature?
	Asses the Code Quality
	Fix a Bug

	List of Figures
	Listings
	Bibliography

