
Compass
Flow-Centric Back-In-Time Debugging

Masterarbeit

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Julien Fierz

2009

Leiter der Arbeit
Prof. Dr. Oscar Nierstrasz

Dr. Adrian Lienhard

Institut für Informatik und angewandte Mathematik

ii

Abstract

Debugging object-oriented programs often is a difficult and time-consuming
task. Nearly all of today’s debuggers only show the current state of a failing
program. The user can see when the state is corrupted, but usually the root
cause that leads to that state occurs long before that. Back-in-time debuggers
address this problem by recording the execution history of a program run and
presenting it to the user for inspection of past states. Those debuggers have
proven useful as they help the developer to solve difficult problems better than
a standard debugger. However, most of those tools do not provide sophisticated
techniques to explore the collected dynamic data, which can make it hard to
track down the root cause of an error in large program executions. The ap-
proaches are state-centric, which means they provide the past state at different
points in time, but they provide no information on how objects were passed
around in the system. To address this problem we provide a flow-centric ap-
proach that focuses on the reference transfers of objects. We present a new
back-in-time debugger user interface that provides more efficient exploration of
the execution history. The debugger has views and functionality that help the
developer understand the failing system and let him explore how objects were
passed around. Our initial case studies show that it is possible to find complex
bugs more efficiently than with existing approaches.

iii

iv ABSTRACT

Acknowledgements

After a year of coding, reading, writing, hacking and dealing with happily
colored Squeak objects, it is time to give some credits to the people that helped
me with all this.

I would like to start with the people that work at the Software Composition
Group (SCG).

Many thanks go to Dr. Adrian Lienhard, the supervisor of this thesis. His
research was fundamental for this work and he supported me a lot with good
ideas and informative conversations.

Also thanks to Dr. Orla Greevy, who by supervising my Informatikprojekt
prepared me for the task of writing this thesis.

Thanks to Prof. Dr. Oscar Nierstrasz for giving me the opportunity to write
my thesis at the SCG.

Also thanks to all the other members of the SCG for many good pieces of
advice and ideas. Everyone in this group does not hesitate to help when asked
for advice.

Special thanks to the guys that were working with me in the SCG pool and
were always eager to bring some entertainment into it.

Finally I want to thank all my friends and family, at work and in my private
life, for always putting up with my grumpy mood when things did not go that
well.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Problems with Back-in-Time Debugging 2

1.1.1 Missing Flow of Objects 2
1.1.2 Limited Views . 5

1.2 Overview of Our Approach . 6
1.3 Thesis Structure . 7

2 State of the Art in Debugging 9
2.1 Back-in-Time Debugging . 9
2.2 Other Debugging Approaches . 12
2.3 Summary . 15

3 Approach 17
3.1 Exploring the Execution History 17

3.1.1 The Control Flow Space 18
3.1.2 The Object Space . 21
3.1.3 Mappings Between Spaces 24

3.2 Designing the Debugger User Interface 26
3.2.1 Method Trace . 28
3.2.2 Method Execution . 30
3.2.3 Control Flow Dependencies 30
3.2.4 Objects . 32
3.2.5 Side Effects Graph . 34

vii

viii CONTENTS

3.2.6 Navigation History . 35

4 Implementation 37
4.1 The Object Flow VM . 37

4.1.1 Motivations for extending the VM 38
4.1.2 Changes to the VM . 38

4.2 The Compass Debugger . 42
4.2.1 Debugger Details . 42
4.2.2 Source Code and Sub-method Pane 42
4.2.3 Fisheye Method Trace . 43
4.2.4 Side Effects Graph with Mondrian 46
4.2.5 Control Flow Dependencies 47

5 Evaluation 49
5.1 Object Flow Example . 49
5.2 Multithreading Example . 53

6 Conclusion 61
6.1 Compass revisited . 61
6.2 Future Work . 62

A User Guide 65
A.1 Installation . 65

A.1.1 Downloading Compiled VM and Prepared Image 65
A.1.2 Preparing Own Image . 66

A.2 Debugging with Compass . 67
A.2.1 Starting the Debugger . 67
A.2.2 Using the Debugger . 68

List of Figures 71

Bibliography 73

Chapter 1

Introduction

In object-oriented programs, a developer normally spends a significant amount
of time in debugging [Zell05]. With common debuggers, this usually works
somewhat like this. The debugger opens at the location where an error occurs.
The debugger provides the current execution stack and the current values of
variables. This information is often not enough to find the error, because the
source of it lies in a method execution that is not in the execution stack any-
more [Libl05]. Therefore the developer has to set breakpoints where he thinks
he might have to look for the bug, and restart the program. For trivial errors or
when the source of the error lies near to where the debugger stopped, this works
fine, but for more complex bugs, he has to restart several times. In programs
with large execution traces and lots of objects, the debugging process can be
tedious. The process can be especially difficult if the developer lacks detailed
knowledge of the system, which makes it hard to find out where breakpoints
have to be set. This is why lately much research has been conducted on al-
ternative debugging techniques like automated debugging [Zell01], query-based
debugging [Lenc97] or back-in-time debugging [Lewi03].

In our work we focus on back-in-time debugging because it bears potential to
become a very helpful tool to find complex bugs on the fly. In principle it
can just be used like any other debugger, only with more information. The
developer does not have to learn lots of new techniques or even change the way
how he is working. With back-in-time debugging, all the information needed to
find the bug is there. However, it can still be a challenge to find the root cause
of an error. The problem is that huge amounts of execution data gets collected,
which is difficult to explore efficienctly by the developer.

1

2 CHAPTER 1. INTRODUCTION

1.1 Problems with Back-in-Time Debugging

In this section we discuss the problems with back-in-time debugging in general
and what is missing in current approaches for an efficient search of bugs. A
big challenge of back-in-time debugging is how the collected information is
presented to the user, because the method traces and object histories can get
huge very quickly as programs get more complex. Navigating this data to
find bugs is not always convenient in existing approaches like the Omniscient
Debugger (ODB) [Lewi03] or Unstuck [Hofe06]. They provide the possibility to
find bugs more efficiently than with a standard debugger, but still, the developer
can be overwhelmed by the amount of data. Navigating this data can become
a complex task where one can get lost quickly.

1.1.1 Missing Flow of Objects

To illustrate limitations of current approaches, we start with an example.

Listing 1.1: A simple bank account example
BankAccount class>>example

| account |
account := self new.
account deposit: self getDeposit.
account addInterest.

BankAccount class>>getDeposit
↑ InputReader new readDeposit

BankAccount>>deposit
↑ deposit

BankAccount>>deposit: amount
deposit := amount

BankAccount>>addInterest
deposit := InterestCalculator new calculateNewDeposit: self deposit interest: 0.05

InterestCalculator>>calculateNewDeposit: deposit interest: interest
↑ deposit + (deposit ∗ interest) ”<− crash, because deposit is nil”

InputReader>>readDeposit
↑ nil ”<− implementation hidden, for simplicity”

1.1. PROBLEMS WITH BACK-IN-TIME DEBUGGING 3

The example uses the classes BankAccount, InterestCalculator and InputReader.
The BankAccount saves the deposit in a field and has the possibility to add an
interest of 5% to the deposit. The InterestCalculator is responsible for computing
and returning a new deposit, using the old deposit and the given interest. The
InputReader is used to read an amount for the deposit from the user. For
simplicity, the actual implementation of the InputReader class is hidden and
we just assume that for some reason (probably a bug) the method readDeposit
returns nil. The class method example is the main method, it creates an account,
sets the deposit, which it gets from the InputReader helper class, and adds
the interest. The sequence diagram in Figure 1.1 shows the execution of the
example. The flash indicates where the program breaks.

BankAccount a BankAccount an InputReader an InterestCalculator
example

getDeposit

readDeposit

nil

deposit: (deposit:nil)

addInterest

nil

deposit

nil

calculateNewDeposit (deposit : nil, interest: 0.05)

1

2

3
4

5

6

7
8

Figure 1.1: Sequence diagram of the crashing example

4 CHAPTER 1. INTRODUCTION

The error is that the InputReader returns nil, which is then assigned to the
deposit field of the account. This is why the program crashes later when the
InterestCalculator tries to compute the new deposit. The developer notices the
error when a message is sent to nil, then he has to find the source of it, which
lies in readDeposit. With a back-in-time debugger it is possible to search the
past execution for the error source. The question is what steps have to be taken
to achieve that. First the developer notices that the value of deposit is nil, so he
could reason about whether this value even is allowed for the deposit, because
if it is, someone may have forgotten to check deposit for nil. In this case he will
decide that nil is not a valid value (a deposit always should have an amount),
so he has to backtrack where nil came from. The following enumeration shows
how nil was passed from its source up to the failing code. Each step contains the
description how and where nil was referenced. Those steps are also illustrated
in the sequence diagram in Figure 1.1.

1. Originated in an InputReader>>readDeposit

2. Returned to BankAccount>>getDeposit

3. Returned to BankAccount>>example

4. Passed as argument to a BankAccount>>deposit:

5. Written into field deposit in a BankAccount>>deposit:

6. Read from field deposit in a BankAccount>>deposit

7. Returned to a BankAccount>>addInterest

8. Passed as argument to an InterestCalculator>>calculateNewDeposit:

This enumeration is the flow of the object nil in the context of our error. With
the previously mentioned ODB, it is possible to find the bug. The problem
is that in order to backtrack the nil value, it is necessary to investigate the
source code. The developer has to identify some of the steps we listed above
manually by additionally looking at the source code of executed methods. Of
course in this small example this takes not much time, but in more complex
applications where there are larger methods it is not always obvious how an
object was passed around. The ODB allows the developer to view the state
of an object, the history of its fields and where they were set, but it does
not provide information about how an object was passed to a specific location
in the execution. The possibility of stepping quickly through the flow of an
object is missing, and also jumping directly to the location where an object was

1.1. PROBLEMS WITH BACK-IN-TIME DEBUGGING 5

instantiated is not possible. This can make navigating the execution history an
exhausting task.

The Unstuck debugger already goes a step further by adding an object history,
which provides a list of everything that ever happened with a specific object.
This means, every access to an object, every time it was passed to a method,
every time it was written into a field and so on. This is already an improvement,
because it can be seen easily that the particular steps of nil in the above example
are part of this object history. In this particular example the history of nil is
even the same as the object flow we need to investigate to find the bug. But
in general the problem is that there is too much information in the history.
The flow of an object in a specific context is a subset of the object history,
but identifying it can be hard, because a lot that could have happened with an
object is not of interest for that flow. To clarify this point let us have a look
again at the flow of the nil object listed before. Between the write in 5 and
the read in 6 theoretically nil could be referenced thousands of times, and all of
these references would occur in the object history and disturb the search of the
origin of nil in the context of our error. So Unstuck does not provide the flow
of objects automatically either.

To summarize, the flow of objects is one very important element that is missing
in other approaches. We argue that letting the developer see these flows can
make the navigation of the execution data more efficient.

1.1.2 Limited Views

Another problem with current approaches is that they present the execution
data and in particular the method trace in inconvenient ways, which means if the
trace is big it is difficult to get a clear view on it. Figure 1.2 shows an example of
the method trace in Unstuck. The method traces are handled similarly in other
existing back-in-time debuggers. We need other views of the method trace that
make it easier for the developer to understand what happened in the underlying
execution. E.g., in Figure 1.2 it is not easy to visualize the flow of an object.
In general, existing back-in-time debugging approaches are lacking high-level
visualizations of the data that could in some situations support the general
understanding of the system, which can significally improve the detection of
bugs.

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Method trace view in Unstuck

1.2 Overview of Our Approach

With back-in-time debugging there is always the problem that masses of data
like huge method traces must be handled. As discussed in the last section,
we are focusing on improving techniques to navigate this data. The goal is
to always let the developer know where he is, and where he could go to get
closer to the source of the bug. That’s why we have given our implemented tool
the name Compass. We implemented Compass in Squeak, an object-oriented
Smalltalk dialect.

The goal of Compass is to be a back-in-time debugger that provides efficient
navigation through the large amount of data that is generated during program
execution. To achieve this objective, we define a different approach. Debug-
gers like the ODB are state-centric approaches, which provide the past state
at different points in time. We focus additionally on how objects are passed
around in the system, so Compass is a flow-centric back-in-time debugging ap-
proach. Therefore, the main contribution of our work is to provide the first
debugger that captures the flow of objects and makes this flow accessible to the
developer.

We separate the execution data into two main entities, the execution trace (exe-
cuted methods and statements) and all the objects created during the execution
and their state history. We create a navigation model that defines these two
entities as spaces. We research ways of how these spaces can be explored rea-

1.3. THESIS STRUCTURE 7

sonably, and what relationships between the spaces exist. The goal is to find
ways of navigating in and between those spaces such that the developer can
get an understanding of the execution data effectively, which is crucial for the
debugging process.

With this model in mind we can then explain how our debugger is built. It
consists of views that present the execution data and are linked in a way that
they satisify the navigation techniques proposed in the model. Besides standard
features like the source code of the selected method execution or the evaluation
panes for objects, the debugger introduces new views and functionality. The
method trace is shown as a tree in a fisheye view that improves the navigation
of the method trace. The flow of objects can be selected and viewed in different
ways. A graph shows how the relationships between objects changed during the
execution of a method to let the developer explore side effects of parts of the
execution. The control flow dependencies that had influence on an execution of
a method are also provided.

1.3 Thesis Structure

In Chapter 2 we present an overview of existing approaches and debugging
techniques. In Chapter 3 we research ways to navigate the execution history and
build a model for a debugger with them. Then we discuss our implementation
in Chapter 4. We validate our approach with several example scenarios for our
debugger in Chapter 5 and present conclusions and possibilities for future work
in Chapter 6. In Appendix A we provide a quick start guide for installing and
using our debugger.

8 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art in
Debugging

First we have a look at the recent progress in back-in-time debugging, then
we describe other debugging approaches that contain interesting ideas for our
work.

2.1 Back-in-Time Debugging

Different approaches have already been developed concerning back-in-time de-
bugging. We describe the most interesting approaches here.

Omniscient Debugger (ODB). The ODB is a debugger presented in 2002
which traces the execution of a java application by instrumenting the bytecode
at load time [Lewi03]. It allows the user to step through the generated trace
and to inspect the state of objects at any time. The user can step through
the history of fields of objects to see what values they had at certain points in
time and where they were set. So the debugger has the very basic functionality
each back-in-time debugger must provide. Figure 2.1 shows a screenshot of the
ODB.

Basically all information of the execution history is there, but as we already
have shown in Section 1.1, this information is not presented to the developer
in a way that allows efficient navigation. We called the ODB a state-centric

9

10 CHAPTER 2. STATE OF THE ART IN DEBUGGING

Figure 2.1: ODB

approach, that allows the developer to examine the state of objects and the
history of the state. But it is not possible to see automatically where an object
came from or to jump to its allocation. We also mentioned the problem of
missing high-level views that would ease the navigation of the execution data.
All in all the ODB has proven the concept of back-in-time debugging very well,
but does not provide very much additional help for navigation.

Unstuck. Unstuck is a back-in-time debugger developed in Squeak [Hofe06].
It is very similar to the ODB but adds features like a simple query language for
filtering execution events, the history of an object and the possibility to color
appearances of certain objects for better recognition. These features already
improve navigating the execution history, but we also have shown in Section 1.1
that Unstuck neither provides the flow of objects nor high level views.

Trace Oriented Debugger (TOD). This debugger was inspired by the
ODB but mainly addresses the problems of performance and high memory
requirements, because these are the main reasons why back-in-time debug-

2.1. BACK-IN-TIME DEBUGGING 11

ging is not established in commercial products yet [Poth07]. Pothier et al.
show that the scalability of such debuggers can be improved by using a high-
speed distributed database backend that allows effective storage and querying
of events.

Concerning the user frontend, the TOD provides some standard views, like
an object inspector or a control flow view. These views allow one to step
through the execution and to see where certain values of fields have been set.
Additionally, the developers already add a high-level view of the data. In
particular they created so called event murals, which are graphs that show a
number of events per unit of time. These events can be calls to methods of a
particular object or calls to a particular method. The goal of these murals is
to create a view out of a very large number of events that allows the developer
to identify abnormal behavior patterns.

The problems with the TOD are similar to the ones with the two previous
approaches, but at least it provides some high level views.

Reversible debuggers. The approaches presented up to now all work by
collecting events to present the user information from earlier states of the exe-
cution [Koju05, Lieb98], but they do not allow the developer to pick a point in
time where he wants to restart the execution, or only in a very limited way. The
objective of reversible debuggers is to go a step further and let the developer not
only explore the execution history, but rather let him go back to earlier points
in time to restart the execution from there. This is achieved by reverting step
by step every executed statement.

The problem with these approaches is that reverting the memory into a state
where the execution was before is rather tricky. Also, they do not really con-
tribute to efficiently navigating around an execution history.

Commercial back-in-time debuggers. There are already some commercial
products involving back-in-time debugging. CodeGuide is a commercial Java
developing environment which has integrated its own back-in-time debugger.
But the debugger is rather limited and does not provide many ways to navigate
the execution data. RetroVue is another commercial back-in-time debugger
that offers some more possibilities to view the data. It implements the most
common functions similar to those of the ODB. But neither of those debuggers
provides any more than these basic functionalities.

12 CHAPTER 2. STATE OF THE ART IN DEBUGGING

2.2 Other Debugging Approaches

Until now we have presented some existing approaches in back-in-time debug-
ging. Now we have a look at some other debugging techniques, some of which
might be very interesting to combine with back-in-time debugging and therefore
have inspired features of our approach.

Program Slicing. When an error occurs in a program execution, we always
have to search for its source. That means we have to go backwards from the
statement where the error occurred and search there for the possible sources.
But mostly a big piece of the source code does not even influence the infected
statement at all, so actually you wouldn’t have to search for the error in those
parts of the application. The problem is that for developers it is hard to see
which code is or is not affecting a statement.

This issue is addressed by a technique called program slicing [Weis81, Zell05,
Ko04], which for a particular statement (called the slicing criterion) finds a set of
other statements that might influence it, and therefore excludes the statements
that absolutely can’t affect it. This set of influencing statements is called a
slice. There are two possible ways of getting it. Static slicing uses no other
information than the underlying source code. This makes determining the slice
very hard, and usually the resulting slice of a slicing criterion tends to be very
big, because lots of statements might possibly influence it but do not necessarily
in an execution. Dynamic slicing does its analysis on an actual program run
[Kore88], which means it uses the execution trace to determine the slice, and
therefore we can get exactly the statements that influenced the slicing criterion
in the underlying program run. As in back-in-time debugging we record the
execution trace, we can use it to determine dynamic slices.

Mark Weiser has shown in a study that people break down code into slices when
they are debugging [Weis82], so it seems to make sense to design our debuggers
in ways that help people identify those slices more efficiently.

Automated Debugging. An other idea is to automate the debugging pro-
cess [Clev00]. This means the programmer should only have to do very few but
necessary steps to prepare the debugger, which then should use some algorithms
to automatically isolate the defective code statements. Andreas Zeller has in
particular developed an approach called delta debugging . The goal of this tech-
nique is to isolate defective code by comparing the program run that is failing

2.2. OTHER DEBUGGING APPROACHES 13

with one that has once worked. The debugger is automatically testing what
changes have led to the error until only a minimal set of changes remains. The
only thing the developer has to do is to provide a test function that indicates
if the error has occurred or not.

There are different applications of delta debugging on different domains of pro-
gram execution, e.g., input, code or program state. In the first one, an appli-
cation crashes with some input that worked in an older version (e.g., the gcc
compiler crashes when it tries to compile some source code). Now the debugger
isolates the part of the input that is responsible for the error by changing the
input bit by bit and always running the program and applying the test. The
result is a minimal subset of the input that makes the error happen [Zell02b].
Applying delta debugging to code is similar: there are two different versions of a
program, one that fails and one that used to work. Now the debugger incremen-
tally changes the code from one version to another and always executes it and
applies the test. The result here is a minimal subset of the code that makes the
test fail [Zell01]. Finally the same can be done with program state, comparing
the state of a passing and of a failing run and narrowing down the state to a
small set of variables that are responsible for the failure [Zell02a].

There are several problems with this approach: first you always need a version of
a program that once worked in addition to the current version. Second, it may
not always be that easy to write the test that checks if the bug occurs or not.
Another problem is that the automatic testing may take a long time, depending
on the complexity of the program and the number of differences of the two
versions. All in all automated debugging surely makes sense in some situations
and for some types of bugs, but there are also several drawbacks.

Query-Based Debugging. In large applications, there is a huge number of
objects, and their relationships can be very complex and therefore hard to un-
derstand for a developer. The approach of query-based debugging addresses
this problem by letting the developer explore the object space with queries
[Lenc97, Lenc99]. While running a program, the developer can define a search
domain and conditions that make up a query, which then returns all the ele-
ments of the domain for which the conditions hold true. For example, he can
define the domain as two classes and set a condition that returns true if the
two instances of those classes reference each other. The query then returns all
pairs of instances of the classes that satisfy the condition. This can help the
user find defect object relationships, e.g., when he knows that certain objects
should not reference others.

14 CHAPTER 2. STATE OF THE ART IN DEBUGGING

The problem with this approach is that you have to know what relationships
could be defective. When an error occurs the developer has to find the source
of the bug, but sometimes he does not know at all which object relationships
could be defective, so he has no clue what query he should write. Another
problem is that such queries can become slow if the search space is big; as there
are sometimes thousands of instances of some classes, testing the conditions for
all tuples of these classes can be very expensive.

Nonetheless query-based debugging can be a helpful tool for finding bugs, but
still needs to be combined with other tools to be effective. A very practical
application of it can be program understanding, where the user can use queries
to find out how the objects generally are related to each other. It can help the
developer to analyze frameworks by doing queries on applications of it.

Graph based debugging. There are other approaches that deal with object
relationships. Tools like the Data Display Debugger (DDD [Zell96]) or Fujaba
[Geig02] support debugging by allowing the developer to explore the program
state. They provide graphical front ends to present data to simplify debugging,
e.g., by visualizing the state with graphs. Sometimes with such graphs the
developer can see much better how objects are related to each other than with
common object explorers. Problems are of course the big amount of objects
normally existing in a system, so it is necessary to delimit what is actually
viewed.

Bug patterns. Another interesting approach allows the developer to search
for bugs even on the static level. The idea is that a lot of bugs follow a common
pattern [Hove04, Wasy07]. An example of a common bug pattern is that Java
developers often forget to override the hashCode() function when they override
the equals() function, because that way it is possible that two objects are equal
but their hashes are not, which can lead to problems, e.g., in maps. There are
a lot more of those patterns. With static analysis of the code (in some newer
approaches also dynamic analysis is used) and taking into account possible bug
patterns, some potential error sources that may be hard to find by hand can
be detected in large programs. An advantage of this approach is that it can be
used for finding potential errors in systems with large amounts of code, even if
the error has not yet led to a crash of the application. The disadvantage is that
it misses bugs that are complex or that do not satisfy a common pattern.

2.3. SUMMARY 15

2.3 Summary

We have presented several back-in-time debugging approaches in this chapter.
The problem of the ODB, Unstuck, the TOD and other approaches is that
although they provide all the necessary data to find bugs, navigating this data
is hard in large execution traces. This makes finding complex bugs a difficult
task. Even though Unstuck provides the history of every access to objects, it
has no information about how objects were passed to a specific location in the
execution. Furthermore, views like the method execution trace are not very
practical in all of these approaches.

We have looked at other debugging concepts. Dynamic slicing can be used
to reduce the trace to the statements that are of interest to the developer,
while query-based and graph based debugging reveal relationships of objects.
These and other concepts contain interesting ideas that can be integrated in
back-in-time debuggers.

To summarize, our key observation is that the existing back-in-time debug-
ging approaches are state-centric. This is the main problem we address in this
work.

16 CHAPTER 2. STATE OF THE ART IN DEBUGGING

Chapter 3

Approach

In Section 1.1 we discovered problems of state-centric back-in-time debugging
approaches. Exploring the data of the execution of a large object-oriented pro-
gram can be hard. In this chapter, we therefore develop new ways of exploring
this data.

To achieve our goal we investigate what kind of data is available when debug-
ging. In a first step we design a model which allows us to see how the different
data entites are related. This reveals what kind of navigation can be used to ex-
plore the data in order to find bugs. The next step is then to define a debugger
using this model, to create views from it, and to link the views intuitively.

3.1 Exploring the Execution History

First we have to think of what kind of information we get when debugging. On
one hand the executions of methods or even statements are recorded, which
define the control flow. On the other hand we have the objects, and how they
evolve during the execution. These are the two main entities that appear in a
programs execution. We look at those two entities as two different spaces, the
control flow space and the object space. First we search ways to navigate within
each of the spaces. Then we need also to find relations between them, to make
navigation between those two spaces possible. This is clarified in Figure 3.1.
The plane at the top represents the control flow space, showing the method
execution events. The bottom plane is the object space, showing the objects

17

18 CHAPTER 3. APPROACH

?

Control flow space

Object space

?

?

Figure 3.1: Two spaces: Control flow and objects

and how they are related. The figure points out again what our main objective
is, namely to find effective ways to explore the execution data.

In the following sections we have a closer look at each of the spaces.

3.1.1 The Control Flow Space

The control flow of a program run is defined as the order and nesting in which
the statements were executed. In our approach we mostly focus on the exe-
cutions of methods and the statements that influence the execution of other
statements. Figure 3.2 shows the control flow of the bank account example pre-
sented in Section 1.1. On the left the method execution trace is shown and on
the right there are the bytecode instructions of one of the method executions.
We show these two levels of detail separately because sometimes we are only
interested in the method execution trace rather than in the whole statement
execution trace.

So in the control flow space there are different entities like the execution of
methods and statements. Figure 3.3 shows more formally what those entities
in the control flow space are and how they are related. Method executions
are the dynamic part of the metamodel. They activate methods that consist of
statements. The methods and statements are the static part of the metamodel.

3.1. EXPLORING THE EXECUTION HISTORY 19

BankAccount class>>example

BankAccount class>>new

BankAccount class>>getDeposit

InputReader class>>new

a InputReader>>readDeposit

a BankAccount>>deposit

a BankAccount>>addInterest

InterestCalculator class>>new
a BankAccount>>deposit

a InterestCalculator>>calculateNewDeposit:interest:

nil>>*

pushLit: InterestCalculator
send: new
self
send: deposit
pushConstant: 0.05
send: calculateDeposit:interest:
popIntoRcvr: 0
returnSelf

Method execution trace
Bytecode statement trace

Figure 3.2: Trace of a program execution

Method

Statement

caller0..1

1

*

*
Parameter

*

1

ReturnConstant FieldRead FieldWrite

SendConditional

1

*Method Execution

*
1

Figure 3.3: Metamodel of the The control flow space

20 CHAPTER 3. APPROACH

For simplicity reasons they are not modeled as an abstract syntax tree here,
but simply as a list of statements per method.

One type of statement that has a special relationship to other statements is
a conditional statement, also called control flow statement. It influences the
continuation of a program by evaluating a condition and is therefore important
for the control flow. As methods are executed by the send statement, they are
also dependent on these control flow statements.

We now want to find out what possibilites there are to explore this execution
trace.

Stepping the trace. An obvious way to navigate the execution trace is to
simply step through it. That means step over statements (forward or backward)
or step into or out of method executions. In Figure 3.3 the possibility of stepping
into a method execution is given by the relationship of the send statement and
the method execution. Stepping out is defined by the method execution pointing
to its caller.

Stepping the trace gives the developer the possibility to reproduce what hap-
pened during the program execution. It is a feature that is provided by almost
every back-in-time debugger.

In our model we do not have the executed statements (we modeled the state-
ments statically). As we only have the method executions and the aliases, we do
not really step over statements, but rather over the aliases. That means when
we are stepping in our model, not really all statements that were executed are
taken into account, but only the ones that led to the creation of an alias or that
triggered a message send.

Control flow dependencies. We now propose to additionally use control
flow dependencies as a possible mean for navigation. This means we take into
account special statements that influence the control flow, the control flow state-
ments. In the metamodel in Figure 3.3 this is shown by a dependency from the
conditionals to the other statements. If the boolean value that was taken by
such a statement wouldn’t have had that value, a certain subtrace would not
have been executed. In some cases it may be of interest to show the developer
this dependency, so he can directly navigate from a method in the subtrace to
the method where the conditional statement was executed. Some bugs can be
found quicker using that kind of navigation, because if the value that is used

3.1. EXPLORING THE EXECUTION HISTORY 21

in a conditional statement is wrong because of an error, the developer doesn’t
have to check all the statements that were executed after the conditional and
the method he was looking at when he saw the dependency.

To view an example of this, remember the bank account example from Sec-
tion 1.1. The method InputReader>>readDeposit just returned nil (Which is
the source of the error), now let’s see a little modified version:

InputReader>>readDeposit
↑ self isReadyForInput

ifTrue: [self readInput]
ifFalse: [nil]

Let us assume that in the example isReadyForInput returns false because we
forgot to initialize the InputReader properly. We later try to send a message to
the nil object that is returned from readDeposit, which leads to the error. This
message send is dependent on the condition in readDeposit, because it controls
to which object we send the message later. By inspecting the dependency we
can get faster to the source of the error. This topic is related to dynamic
slicing introduced in Section 2.2. Often when a developer looks at a statement,
he wants to find the parts of the program that have influenced its execution,
namely he is interested in the particular dynamic slice, and one thing that
influences this dynamic slice are the conditionals mentioned before.

3.1.2 The Object Space

Next we introduce the object space. It is defined as the full object history,
which means it includes the current state of the objects and all states before
that. The space uses the alias model proposed by Lienhard [Lien06, Lien08a].
Additionally to the object history this model provides the flow of objects that
allows a developer to backtrack where an object came from at a certain location
in the program execution. The flow of objects is captured by the creation of
aliases. Aliases represent reference transfers of objects, e.g., when an object
is passed as an argument to a method, an alias is created representing the
argument reference. The aliases are chained, i.e., each alias points to its origin,
the alias that represented the previous reference. These chains make up the
flows of objects. Figure 3.4 shows the entities of the object space, namely
aliases and objects and how they are related. There are different kinds of
aliases for different kinds of references. The write alias is created when an
object gets stored in the field of another object. It points to its predecessor,

22 CHAPTER 3. APPROACH

Alias Object
value

*
0..1

origin *

WriteAlias

predecessor

*

0..1

1
*

1

ReadAliasReturnAlias

ArgumentAlias

LiteralAlias

Figure 3.4: Metamodel of the object space

the write alias of the object that was stored before in that field, which makes
it possible to retrieve the historical state of an object.

As we have defined the model of the object space we now find different ways to
explore it.

Object relationships. One way of navigating the object space is to inves-
tigate the relationships of objects, by exploring the field pointers of an object
to other objects. In the metamodel in Figure 3.4 this is defined by the rela-
tionship between objects and write aliases. By exploring object relationships
the developer can step by step reveal how they are connected to each other.
Often the user has some specific objects in his focus where he can concentrate
on. To facilitate this process there are techniques for exploring relationships
automatically, e.g., the developer may want to know if there exists a path from
one object to another. Another useful information is which objects have been
referenced in a certain time period. Figure 3.5 shows the relationships between
a bank, an account of that bank and some other objects.

Object state history. Another way of investigating the object space is to
track the changes of objects. In Figure 3.4 this is defined by the write aliases
that point to their predecessor. By using these predecessors the history of a
specific field can be explored. Using the history of all fields of an object, it can
always be reverted to its state at a certain point in time. The whole history of
the state of objects can be explored that way. Again, the developer will mostly

3.1. EXPLORING THE EXECUTION HISTORY 23

'John'

a BankAccount

2650

a Bank

account

owner

'Money Bank'

name

deposit
2500

deposit

predecessor

Current field reference
Old field reference
Predecessor

Figure 3.5: Object relationships and history

concentrate on one or more specific objects. For example he wants to know
how an object has changed between two points in time, which can be provided
automatically. Figure 3.5 shows an example of the object state history, as the
amount of the deposit changed there. The object 2650 was written into the
deposit field of the bank account and replaced the object 2500.

Object flow. The flow of objects defines how objects were passed around
in the system. In Figure 3.4 this is modeled with the alias pointing to its
origin alias, that is, its previous reference transfer. We can use this feature for
navigating in the object space. E.g., when the developer is looking at a field of
an object, he often is interested how this object got there; he wants to know
how it was passed around in the system before it was stored in the field. By
starting at the alias that is saved in the field and following the chain of origins
he gets exactly that information. What the developer does in this example is
to go backwards, by navigating in the opposite direction from where an object
came and following it to its root. We refer to the path he goes as the backward
flow . But going in the other direction is interesting too. At a certain point
in time the developer might be interested in what happened afterwards with a
specific object. The question is where that object did go after a certain point in
time. We call this the forward flow of an object. Of course the handling of the

24 CHAPTER 3. APPROACH

forward flow is somewhat more complicated than the handling of the backward
flow , because there is not just one single path of aliases but rather a tree. E.g.,
an object in a method execution can be passed as an argument to two other
method executions, which results in two paths that need to be examined if one
wants to know what happened to the object.

As an example concerning the flow of objects, we refer to the flow of nil in the
bank account example presented in Section 1.1.

3.1.3 Mappings Between Spaces

In the previous sections we presented possibilities to investigate the control flow
and the object space. The next important step is to find out how to navigate
between those two spaces. The goal is to get from one space into the other
by using reasonable mappings between the entities of the spaces. Figure 3.6
combines the two metamodels of the spaces and illustrates how the entities of
the two spaces are related. In the following we will explain the mappings.
Figure 3.7 illustrates the mappings with an object diagram of an executed
method and the aliases that were created during the execution.

Alias to method execution. As Figure 3.6 shows, one mapping from the
object space to the control flow space that comes naturally is a direct relation
of the aliases and the method executions, because every alias has a reference to
the method execution it was created in.

Figure 3.7 illustrates this. Two aliases were created during the execution: one
that represents the constant 2500 and one that represents the assignment. They
both are connected to the method execution.

Alias to statement. Aliases can even be mapped more precisely by directly
associating them with to statements that led to their creation. This means
that an alias can always be mapped to a statement, which is also shown in
Figure 3.6.

As each object flow is actually represented by a set of aliases, the flow can always
be mapped to a set of method executions, respectively a set of statements. By
examining the flow of objects one follows the method executions and statements
where the object was passed through. There may be other sets of aliases that
could be of interest to know their corresponding statements, like all aliases of

3.1. EXPLORING THE EXECUTION HISTORY 25

StatementParameter

ReturnConstant FieldRead FieldWrite

SendConditional

Alias Object
value

*
0..1
origin *

WriteAlias

predecessor

*

0..1

1
*

1

ReadAliasReturnAlias

ArgumentAlias

LiteralAlias
*

1

*

1

*

1

*

1

1

*

Method

caller0..1

1

*

**

1
1

*
Method Execution

*
1

1

*

Figure 3.6: Full metamodel

one object, which results in all the method executions and statements where
this object occurred.

In Figure 3.7, the aliases point to their corresponding statement, which are the
assignment statement for the write alias and the constant statement for the
literal alias.

Created aliases in method execution There are also meaningful mappings
from the control flow space to the object space. Each method execution can be
mapped to a set of aliases, namely the aliases which were created in it. In the
metamodel in Figure 3.6 this is defined by the relationship between the alias

26 CHAPTER 3. APPROACH

and the method execution. With this information one can see which objects
were referenced during the execution of a method.

In Figure 3.7 the method is connected to all aliases that were created during
its execution.

addInterest
 deposit := 2500

:WriteAlias

:LiteralAlias

deposit : Assignment

2500 : Constant

addInterest : Method :MethodExecution

:WriteAlias

predecessor

Figure 3.7: Relationships between control flow and object space entities

Side effects. What a developer often is interested in are the side effects of a
specific part of the trace. That means he wants to know how the relationships
(defined by field references) between objects changed during a certain time
period. Commonly it is good practice to select this period as the time interval
of a method execution. Then we can map the subtrace which consists of the
set of methods that were executed during that period to a set of objects and
aliases that represent the side effects during that time.

In Figure 3.7 the write alias that was created points to its predecessor, the value
that was saved in the deposit field before. So the side effect of the method in
the example is that the deposit field points to a new value.

3.2 Designing the Debugger User Interface

Now that we have elaborated techniques for exploring the execution data we
can come up with a design for our flow-centric debugger. We are going to define

3.2. DESIGNING THE DEBUGGER USER INTERFACE 27

several views that display the execution data and combine them to a functional
debugger. First we give an overview of the debugger by shortly introducing
each of its views shown in Figure 3.8.

1 8

2

4

6

5

3

7

9

Figure 3.8: Compass debugger frontend.

1. The top view is the visualization of the execution trace, representing the
method executions as circles.

2. This list shows the execution stack of the currently selected method exe-
cution.

3. This list contains each reference transfer of the flow of an object selected
by the developer. One way to select an object flow is by double clicking
on an alias in the sub-method statements list (see 5).

4. This pane shows the source code of the currently selected method execu-
tion and provides possibilites to step through the execution trace.

5. In the sub-method statements list the aliases and message sends are shown
that occurred during the method execution.

6. The four panes at the bottom let the developer view the values of vari-
ables.

28 CHAPTER 3. APPROACH

7. The dependency pane shows if the selected method execution is depending
on any control flow statements.

8. In the side effects graph pane, the changes of relationships of objects in
the subtrace of the selected method execution are shown.

9. The navigation history allows the developer to step back to method exe-
cutions he has been before, or to step forward again. It is also possible to
bookmark method executions in order to stick to important locations.

A very important characteristic of the debugger is the synchronisation of the
views. In most of the views the user can interact with the data, but the focus
is always exactly at a specific point in time, and all the views are adapted to
it. E.g., when the developer selects an alias in an object flow, the debugger
jumps to the method execution it was created in and selects the statement in
the source code and sub-method pane where the alias was created.

A feature that was motivated by the Unstuck debugger was the coloring of
objects. In several views there is the possibility to assign a color to an object.
Every time the object appears in a view, it is shown in the color that it was
assigned. This is a good visual aid for the developer that makes it sometimes
easier to understand the execution data.

All the views presented before and their correlations must be understood and
handled by the developer when debugging. We now have a closer look at each
of the views, how they are connected to each other and how they integrate the
navigation techniques we discovered in the previous section.

3.2.1 Method Trace

In a back-in-time debugger one must be able to navigate the method trace
quickly. In the problem section (Section 1.1) we mentioned that in other back-
in-time debugging approaches good visualizations of the method trace are miss-
ing. Generally they visualize the trace simply as a tree list, which becomes huge
when a large application is traced.

In Compass we decided to have two views to visualize the trace, one graphical
view that contains the full method trace (1 in Figure 3.8), and a list that shows
only a slice of the trace (2), namely the execution stack of the currently selected
method execution (this is actually the execution stack that is provided by stan-
dard debuggers). Figure 3.9 shows an example of the two trace views, applied
to a run of our bank account example (we slightly extended the example to get

3.2. DESIGNING THE DEBUGGER USER INTERFACE 29

a bigger trace here). The circles in the full method trace visualization represent
method executions. The edges connect them with their parent execution. The
elements are ordered from left to right by their start timestamp and from top
to bottom by their depth in the stack.

Figure 3.9: The method trace views

The idea of this visualization is to generally have every single method execution
on the screen, but to accentuate the part of the trace that is in focus at the
current point in time. That is why it is shown as a fisheye view. The focused
execution is in the center of the screen and is marked by a red border. Now the
distance on the time axis between two executions that lie nearer to the focus is
much bigger than distance between two executions that are far away from the
focus. The ones that are farther away also have a smaller size. The same holds
for the depth axis. That means that method executions with a small time and
depth difference to the focused execution are well visible on screen, while the
executions with a big time and depth difference are rather near the bounds of
the screen (but still visible). We will see how this visual representation can help
the developer when we cover the flow objects later in this chapter.

A disadvantage of this view of the method trace is that the labels of the method
executions are not shown, because there is not much space left for them. Hence
it cannot be seen directly which circle represents which method execution. We

30 CHAPTER 3. APPROACH

address this problem by showing the name of the method execution when the
mouse hovers above its circle. Another aid is the previously mentioned coloring
of objects. When an object has a color assigned and is the receiver of a method
execution, its circle is drawn in that color.

Another problem is that the parent of a method execution can be far away from
the current focus, but often it is important to see what the parent is. This is
why additionally to the full trace, the current execution stack is also shown in
another view. Like in other debuggers it is visualized in a list. That way the
developer can easily navigate the chain of parent executions.

By clicking on a circle in the full method trace or in the execution stack, the
currently focused method execution can be changed.

3.2.2 Method Execution

The next two views we are discussing are the source code pane (4) and the
sub-method pane (5), which represent the currently selected method execution.
The first pane shows the source code of the method, the second contains a
list of the aliases that were created during the execution (In our model this is
the created aliases in method execution mapping). When an alias is selected,
the corresponding statement in the source code is selected (this is the alias
to statement mapping). Additionally to the aliases, also the message sends are
contained in the sub-method list and are also highlighted in the code pane when
selected.

In the source code pane there are buttons to step through the execution trace.
We defined stepping the trace in our model in Section 3.1.1 (Stepping the trace).
The buttons let the developer navigate in and out of methods, and over state-
ments.

3.2.3 Control Flow Dependencies

We have now seen the basic possibilities to navigate the execution trace. In our
model we also identified the control flow dependencies. These are statements
that have influenced the control flow. In the dependency panel (7) there is a list
of control flow statements that have led to the execution of the currently selected
method. When clicking on a dependency, the debugger jumps to the method
execution where it was executed and selects the control flow statement in the
source code. There are two different kind of dependencies: direct and indirect

3.2. DESIGNING THE DEBUGGER USER INTERFACE 31

dependencies. In a direct dependency, the control flow statement is executed in
the execution stack of the method execution. In an indirect dependency, there
is a control flow statement that has influenced the object flow of the receiver
of the focused method execution. Indirect dependencies are included because a
control flow statement that has influenced the flow of the receiver is responsible
that exactly that object has been sent the message. Figure 3.10 illustrates
this. The method on the bottom right is the focused method execution we
need to get the dependencies. The arrow shows the flow of the receiver of the
method execution. In the stack where the receiver was coming from there is
a control flow dependency so we have an indirect dependency. Also, in the
execution stack of the focused method execution itself there is a control flow
dependency, which is a direct dependency. Let us review the example shown in
Section 3.1.1.

InputReader>>readDeposit
↑ self isReadyForInput

ifTrue: [self readInput]
ifFalse: [nil]

Here we have an indirect dependency, because the if-statement is responsible
that nil is returned and later used as receiver for a message, instead of another
object.

Indirect dependency

Direct dependency

Receiver flow
Focused method execution

Figure 3.10: Direct and indirect control flow dependencies

32 CHAPTER 3. APPROACH

3.2.4 Objects

In the model section we defined different possibilities to navigate the object
space. One was the exploration of the object relationships. The 4 panes at the
bottom of the debugger (6) show the state of the receiver object of the currently
selected method execution and the local variables. They allow the developer to
inspect the values and therefore to explore the object relationships. The states
of the objects are always reverted to the currently focused point in time, so the
object state history is taken into account. The history of a specific field in a
specific object can also be viewed.

Our approach is flow-centric, so one of the most important features of the de-
bugger is its ability to show the flow of objects (See object flow in the model
section). In different views that involve objects the developer can tell the debug-
ger to show how the object was passed to the current location in the execution
trace. There is a view that lists the single steps (aliases) of the object flow (3).
When selecting one of the aliases, the debugger jumps to the location where
it was created. Additionally the flow is visualized in the method trace view.
Figure 3.11 illustrates this by showing the flow of nil in the bank account ex-
ample. The green arrows show through which method executions the object

Figure 3.11: Object flow visualized in method trace

passed. One of the benefits of our representation of the method trace is that
this flow can be interpreted very easily. When an arrow connects two method
executions that are not in a parent-child relationship, this means that the ob-
ject was written into a field and then later read from it. When an arrow points
from a method execution to its parent, this generally means that the object

3.2. DESIGNING THE DEBUGGER USER INTERFACE 33

was returned. Often an object gets returned over several method executions,
like in the bank account example at the beginning. Finally, when an arrow
goes in the opposite direction, i.e., from a method execution to a child, this
generally means it was passed as an argument (In some rare cases, it could also
be an object written to a field and read from it in the child execution). In our
example this was nil that was written into the deposit field, and later read from
it. To summarize, we can say that with this visualisation, the developer can
get a good feel of how an object was passed through the system. This leads to
a better understanding in comparision to looking at the object flow as a list of
aliases.

The object flow covered before was the backward flow of an object. We also
defined the forward flow, which is used to determine what happened with an
object after a specific location in the execution trace. When the developer
chooses to see a forward flow of an object, a window pops up that contains the
aliases of the forward flow in a tree list view. At the beginning only the root
element of the tree is shown, which is the alias that represented the object at
the point in time the forward flow was shown. The developer then can expand
the tree to see what different paths the object has taken after that point in
time. When an alias in the tree is selected, the backward flow starting at that
alias is shown in the debugger. Figure 3.12 shows an expanded forward flow of
an object. After the object is instantiated and returned, it takes three different
paths. It is twice given as an argument and returned once.

Figure 3.12: Forward flow example

34 CHAPTER 3. APPROACH

3.2.5 Side Effects Graph

In the model section we have shown a mapping from a subtrace of the execution
to the object space, the side effects. These are the effects that a specific subtrace
has on objects, which means how the relationships of objects changed during
the execution of the subtrace.

Those changes are visualized by a graph, similar to the visualization of side
effects in [Lien08b]. The nodes of the graph are the objects that lead to the
side effects. There are differently colored edges, representing either a newly
existing field reference from one object to another, a field reference that is no
longer existing, or an object that was accessed from an existing field reference.
In the debugger, the side effects graph gets always updated for the subtrace of
the currently selected method execution.

Figure 3.13 shows an example of the side effects graph applied to the subtrace
of a method execution that added an interest to the deposit of a bank account.
The black edge points from the bank account to the newly computed deposit

Figure 3.13: Side effects graph example

(2650), the light gray edge points to the deposit (2500) that was saved before
and is now not referenced anymore by the account. Additionally, a blue edge
points from a bank object to the account. This means that during the execution
of the subtrace, the account object was read from a field of the bank object. We
added these read accesses to the graph because they can be helpful to reveal
relationships between objects. In this example we not only see that the amount
of the deposit of a account changed, but also that it is connected to the bank
to which it belongs.

The names of the fields themselves are not contained in the graph, but by right-
clicking on an object, all its newly set fields show up in a list, together with the

3.2. DESIGNING THE DEBUGGER USER INTERFACE 35

objects that were stored in them. By clicking on a field in this list, the debugger
jumps to the location where the field was assigned the new value.

Finally, viewing the side effects can be useful for a better comprehension of the
whole system, which leads to a more effective error search.

3.2.6 Navigation History

Lots of bugs can be found more easily with a back-in-time debugger compared
to a standard debugger. But sometimes the bugs can still be very complex, and
require the developer to do much exploration in the execution trace. Parts of the
execution that involve the error (as source or consequence) may be distributed
arbitrarily. To find the real source of the error, the developer must sometimes
check these parts to get understanding of the error. Hence he must move around
a lot in the execution trace, but has to remember important locations, so it is
easy to get lost. That is why Compass integrates a navigation history. It lets
the developer do simple things like going several steps backward (and forward
again), similar to a navigation in a web browser. By stepping back or forward,
the debugger does not only jump to the method execution that was selected
before, but also selects the statement that was selected when leaving the method
execution. As mentioned the developer has to remember some locations that
are important, so another feature is to bookmark method executions to quickly
get back there if necessary.

36 CHAPTER 3. APPROACH

Chapter 4

Implementation

In this chapter we discuss the implementation of our debugger. This involves
the altered Squeak VM (the Object Flow VM [Lien08c]), which is responsible
for gathering the execution data. This data is then analyzed and presented to
the developer by our debugger front-end written in Squeak. In the following
sections we cover details of the implementation of the virtual machine and the
debugger and some of its components like the fisheye trace view.

4.1 The Object Flow VM

The Compass Debugger is implemented in Squeak, an open source Smalltalk.
Common Squeak applications run on the Squeak Virtual Machine [Inga97]. Our
approach, however, needs an altered version of this VM, namely the Object Flow
VM [Lien08c]. This approach addresses the problem of the memory usage by
discarding information that is not needed anymore. It is implemented at the VM
level to make use of the garbage collector to efficiently delete unneeded historical
data. The VM captures and manages execution data in a very efficient way and
provides important data like the flow of objects, but lacks a user interface. For
this work we created such a user interface, but we also had to extend the VM to
add more detailed information required for our user interface. In the following
we have a closer look at this virtual machine.

37

38 CHAPTER 4. IMPLEMENTATION

4.1.1 Motivations for extending the VM

There are several reasons in favor of gathering execution data at the level of
the VM. An important point of working at this low level is that no source
or bytecode of the traced application needs to be modified in order to fetch
execution data, which means that no recompiling or bytecode manipulation
is needed. Moreover, the operations can be implemented directly and very
efficiently, which is favorable for performance reasons. Another benefit that
comes with the VM is that one can make use of the garbage collector to throw
away execution data that is no longer needed.

As Squeak is open-source, everyone has full access to the implementation of the
virtual machine and can change whatever is needed. A great feature is that it
is written in a subset of the Squeak language itself, which is then translated
to C. That means that also the implementation of the VM is mostly platform
independent, so the changes to the VM only have to be done once. The so
called Blue Book [Gold83] provides a detailed description of the design of a
Smalltalk-80 VM, which is mostly equivalent to the Squeak VM.

However, there are some difficulties one has to deal with when altering the VM.
The main disadvantages are that one has to know very well how the virtual
machine works, which is not always trivial, and that altering it can be very
tricky and produce bugs that are hard to track down. Every change to the VM
has to be evaluated carefully to check for possible unwanted side-effects.

4.1.2 Changes to the VM

In this section we summarize how the Object Flow VM works. For a more
detailed explanation see [Lien08c].

The Object Flow VM captures the execution history by implementing the alias
model. In the Squeak VM references to objects are implemented as direct
pointers to these objects. Now the main change to the VM is that such pointers
do not point anymore to the objects themselves, but rather to an alias object
which represents a reference to the object and has itself a pointer to the object.
Figure 4.1 illustrates how fields point to objects in a standard and in the altered
VM. In the Object Flow VM, the field points to a write alias, which is created
when an object is written to a field. The VM always creates aliases when an
object is referenced in some way, e.g., when an object is returned by a method
execution, not the object itself but rather a return alias that represents the

4.1. THE OBJECT FLOW VM 39

Object field Object

Object Object

Standard VM

Object Flow VM

Write Alias

field value

Figure 4.1: Object pointers in VM

reference to the object is returned. In Figure 4.2 there is an overview of how
aliases fit in the common object relationship model and Figure 4.3 shows all
kinds of aliases that can be created.

There are some properties that must hold in the VM. Firstly, the aliases should
be transparent at the application layer, which means e.g., they have to forward
the messages they receive to their corresponding object. The aliases exist only
in the VM to track execution history; in the application it seems as if they are
not there. So the aliases are not allowed to have any influence on the program
flow, but there are ways to access them later to reconstruct execution history.
A second property that must hold is that the old model of the VM still has to
work, so collecting the execution data and therefore the creation of aliases can
be turned off without causing any problems.

The aliases not only have a pointer to their corresponding object, they also
must contain information to model the history of object state and the object
flow. Basically each alias contains the timestamp of its creation, the method
or block execution it was created in and the program counter of the statement
that was responsible for the alias creation. As the aliases point to their method
execution, the method trace is given by all the method executions that are kept
in the system.

The state history is modeled with a special field used by write aliases that stores

40 CHAPTER 4. IMPLEMENTATION

Method Execution

context

Alias Object
value

*
0..1

origin

caller

0..1

fields or array slots

*

Write Alias
predecessor

*
0..1

*

1

Class

Method

target parameters

*

*

1

1

0..1

1

*

Figure 4.2: The object flow metamodel [Lien08c]

their predecessor, i.e., the object that was stored in the field before the new
object was written into it. That way, the state of an object can be restored at
any time by going through the predecessors of the aliases stored in the fields
of the objects and picking the predecessors that were stored at the desired
time.

Each alias additionally contains a field that stores its origin, the alias that was
there when the reference was transferred. Every alias has an origin except for
the allocation alias, which is created when an object is instantiated, and the
literal alias. With help of the origins the flow of an object can be reconstructed.
If the developer needs to know how an object was passed to a certain location in
the execution trace, he has to start at the given alias and backtrack the origins
up to the allocation alias, which eventually results in the full backward flow of
the object.

This implementation of the alias model allows the virtual machine to garbage
collect also data of the execution history. Because aliases are just normal ob-
jects, they get garbage collected as soon as there are no other objects referencing
them anymore. That means, as soon as an object in an application is not ref-
erenced anymore, all its aliases are not referenced either and they get garbage
collected and all their referenced predecessors, origins and method executions

4.1. THE OBJECT FLOW VM 41

Alias
*

0..1origin

CreationAlias

predecessor

0..1

0..1

AllocationAlias LiteralAlias ParameterAlias ReturnAlias

MethodAlias

FieldWriteAlias ArrayWriteAliasFieldReadAlias ArrayReadAlias

ReadAlias WriteAlias

Figure 4.3: The alias class hierarchy [Lien08c]

42 CHAPTER 4. IMPLEMENTATION

too, if they are not otherwise referenced. This decreases the amount of data
that must be kept in memory, which is also an advantage for our debugger, as
the amount of data we have to navigate is diminished.

Besides the changes to the VM itself, some additional code is needed in the
image that is used with the new VM. This code contains the definition of the
aliases and provides possibilites to access them.

4.2 The Compass Debugger

In this and the following sections we present some details of the implementation
of the Compass debugger. We describe the debugger itself and in detail the
implementation of some of its components that need more explanation.

4.2.1 Debugger Details

The Compass debugger inherits from the standard Squeak debugger, for several
reasons. As mentioned in Section 4.1.2, the method executions themselves are
used to keep the method trace in memory. The Squeak debugger can already
handle those method executions, which makes things easier for us. Moreover,
it already adds a source code pane and has possibilities to map byte code
instructions to the source code text. Additionally it has panes for evaluating
variables of the current method execution and its receiver. To summarize, there
are two main advantages of extending the standard debugger: firstly it spares
us some work, because it already provides views our debugger needs anyway
(with some adjustments), and secondly it makes a part of our debugger look
like the standard debugger, which is good for new users, as they see something
familiar.

4.2.2 Source Code and Sub-method Pane

In this section we discuss the implementation of the panes introduced in Sec-
tion 3.2.2. As mentioned before the source code pane is taken from the original
Squeak debugger. This pane shows the code of the currently selected method
execution. Compass adds another view that contains the sub-method data for
this method execution. This view is a list of the aliases and message sends that
have occurred during the execution of the method. To create this list, all aliases

4.2. THE COMPASS DEBUGGER 43

that point to the selected method execution are combined with all method exe-
cutions whose senders are the selected method execution and ordered by there
timestamps. When one of those aliases or sends is selected, the corresponding
statement in the source code pane is selected. This is done with the help of a
map provided by the Squeak debugger, which maps single byte code indexes of
a method to its corresponding source code text. As the aliases and method ex-
ecutions save the program counter where they were created respectively called,
this map can be used to get the selected source text.

4.2.3 Fisheye Method Trace

The method trace presented in Section 3.2.1 is a special view that displays all
method executions. The idea is to accentuate the currently selected method
execution and its neighbours but to not exclude completely the ones that are
farther away. This goal is achieved by introducing a fisheye view [Furn86]. The
method execution that currently is in the focus of the debugger is always in
the center of the viewing rectangle, and according to its position in time and
depth the positions and sizes of the other method executions are computed. In
Figure 4.4 there is an example of a fisheye projection.

Figure 4.4: Circular fisheye projection

Our view differs a bit from this classical fisheye projection, because the x values
are computed independently from the y values, as we will show in the follow-
ing.

In the method trace view, a circle represents a method execution and an edge

44 CHAPTER 4. IMPLEMENTATION

always connects it with its sender. The position on the x-axis represents the
point in time the execution of the method started, and the position on the
y-axis is the depth in the stack trace.

The position of an element is computed in the following way. Definition (4.1)
shows how a distance factor ft is computed that represents how far away a
method execution is from the focused method execution on the x-axis. The
variable tfocus is the time of the focused method execution and t is the time
of the method execution whose position we want to compute. Ct is a constant
with which we can control how quickly the method executions go towards the
border of the viewing rectangle.

ft = 1 − 1

|tfocus − t| · Ct + 1
(4.1)

Using this formula, ft is always in the interval [0, 1). The more ft tends to 0 the
nearer the method execution lies to the focus. If the factor was 1 it would mean
that the method execution would be infinitely far away, so it can actually never
take this value. In (4.2) the factor is now used to compute the exact position
on the x-axis of the viewing rectangle, whereas w is the width of this rectangle.

x =

w
2

+ ft · w
2

(t ≥ tfocus)

w
2
− ft · w

2
(t < tfocus)

(4.2)

To see an example of this, let us assume the viewing rectangle has a width
of w = 100 (which means that the x value of the focus is xfocus = 50), the
time of the focused method execution is tfocus = 10 and we have three other
method executions with times t1 = 8, t2 = 6 and t3 = 4. Let’s additionally
assume that Ct = 0.5. Applying the computations we get x1 = 25, x2 = 16.5
and x3 = 12.5, so the results show clearly that although the time differences
between the method executions are always the same, the distances between
them become much shorter as they are farther away from the center, and they
go rather fast towards the border of the viewing rectangle.

The computation of the y value of the position is computed analogously so we
do not show the formulas here. Instead of the time values simply the depth
values of the method executions are used to compute a distance factor and the
computations are done on the y-axis of the viewing rectangle. What still needs
to be computed is the size of the circles that represent a method execution. We

4.2. THE COMPASS DEBUGGER 45

simply take the distance factor of the time axis to compute the size, shown in
(4.3), where sfocus is the size of the focused method execution.

s = (1 − ft) · sfocus (4.3)

This equation simply means that the farther away a method execution is from
the focus, the smaller its size.

In the above equations we actually have two values that can be varied, the
constant Ct used in (4.1) and sfocus used in (4.3), which is actually also a
constant. Compass offers options to change those two constants, which allows
the developer to adjust the distance between two method executions and the
size of the method executions.

Figure 4.5: Fisheye trace view

We call our view a fisheye trace, but as mentionend, it is rather a pseudo fisheye
view because we do not actually use classical methods to compute it, and so
some other properties hold on our view. For example, it shows the whole space
of method executions, but additionally all method executions with the same
nesting level remain aligned on the y-axis. This is because the x and the y
values of the method executions are independent from each other, and so if the
depth of two method executions is the same, the y value of their center is the
same. In Figure 4.5 there are lines which show that method executions with
the same depth are always on the same line, other than in Figure 4.4, where
lines are projected as a curve.

46 CHAPTER 4. IMPLEMENTATION

4.2.4 Side Effects Graph with Mondrian

As shown in Section 3.2.5, the side effects graph is used to view side effects in the
subtrace defined by the currently selected method execution, i.e., it shows how
the relationship between objects changed during the execution of the method
and all its child method executions.

The graph is implemented using Mondrian [Meye06], a tool for scripting visu-
alizations in Squeak. We extended Mondrian to do the layout of the graph by
calling GraphViz1 externally. GraphViz is a tool that uses powerful algorithms
to do graph layouts with good performance. Mondrian then uses that layout
to draw the graph.

As the determination of the nodes and the edges and the computation of the
graph layout require quite some time for large subtraces, the generation of the
graph is done in a background process. The graph gets updated in the debugger
as soon as all computations are done.

The nodes of the side effects graph represent objects that are modified or pointed
to, e.g., objects that have new field references and objects that are now refer-
enced by fields are both contained in the graph. Edges represent either new field
references from one object to another, field references that do not exist any-
more or objects that were accessed through a field reference of another object.
The nodes and edges of the side effects graph are computed in the following
way.

• First the subtrace of the current method execution has to be determined.
We also need the start and the end timestamp of the subtrace. The start
timestamp is simply the timestamp of the selected method execution.
Concerning the end timestamp, the last method execution of the subtrace
must be determined and the timestamp of the last alias in this execution
is the desired end timestamp.

• To find out what new field references were created, all write aliases that
were created between the start and end timestamp are taken into account.
For each of these write aliases, two nodes are inserted in the object graph,
if they are not already in there. One node is the target object of the alias
which is the object that was written into the field. The other node that
is inserted is the owner of the field, which is the receiver of the method
execution of the write alias.

1http://www.graphviz.org/

4.2. THE COMPASS DEBUGGER 47

• Now one edge is definitely inserted, leading from one object to the other
object now contained in its field. Additionally, there’s a check if the write
alias has a predecessor. If yes, an edge is also created to this object with
a light gray color, to indicate that the object is not referenced anymore.

• As mentioned also the field read accesses of objects are included in the
graph. This is done by running through all read aliases between the start
and the end timestamp. Similarly to the write aliases, the read object and
the owner of the field are inserted into the object graph, if not already
there, and a blue edge is added pointing to the read object.

4.2.5 Control Flow Dependencies

In this section we show how values in conditionals and loops are detected that
have influenced if a method was executed (We introduced the control flow de-
pendency pane in Section 3.2.3). We only detect dependencies for complete
method executions, not for single statements, because finding those dependen-
cies inside of one method can be done rather easily.

In the following we describe the steps to find the dependencies of the method
execution that is in focus. The analysis starts at the parent method execution
of the focused method execution. This parent is searched for control flow state-
ments that have influenced the execution of the focused method. All found
dependencies are kept in a list. Then the same is repeated with the next parent
method execution and recursively for the whole chain of parent method execu-
tions. That way the direct control flow dependencies in the execution stack of
the focused method execution are collected.

We also defined indirect dependencies, which are the control flow statements
that influenced the receiver of the focused method execution. These dependen-
cies are found by traversing the object flow of the receiver. For each alias of
the flow its method execution is taken and the same procedures as described
above are applied to that execution. That way all indirect dependencies are
collected.

The execution data that is available to us does not suffice to find the conditional
dependencies. It only contains method executions and aliases, but no trace of
the executed statements is recorded. Therefore in order to find conditionals,
a static code analysis needs to be done. This analysis is done at the bytecode
level, by using the intermediate representation of the method provided by the
NewCompiler package. The intermediate representation contains all instructions

48 CHAPTER 4. IMPLEMENTATION

of the method, which we now search for JumpIf instructions, because those
jumps have influence on the control flow. E.g., if-conditions in the source code
are implemented with those jumps in the byte code, but also loops with while
conditions. Thus by analyzing directly on the intermediate level, we get all
control flow dependendencies by simply taking into account those jumps. When
such a conditional jump is found, it is checked if the child method execution
in question is affected by the jump, if yes, the conditional is added to the
list of dependencies. E.g., if a child method was executed in the block of an
if-condition, a dependency is added.

If a method execution is dependent on a control flow statement, then the method
executions in its whole subtrace are also dependent on that statement. In our
debugger it is possible to jump to that statement from every of those depending
method executions. Unfortunately, rather than only to jump to that statement,
we would rather like to directly select the aliases that were used to create the
condition. That way it would also be possible to automatically create a dynamic
slice, which could be used to mark code that has affected a certain method
execution. The way it is implemented now, the developer can jump to the
conditional, and then has to explore by himself what value was used by the
conditional statement.

Chapter 5

Evaluation

In this chapter we show two examples that demonstrate the capabilites of our
debugger for a efficient search of bugs. We solve the problems with the Com-
pass debugger and discuss what advantages we had in comparision to other
approaches.

5.1 Object Flow Example

This first example demonstrates how the object flow can be used effectively to
track down a bug where a defect object was passed around. We added a little
modification of a method in the NewCompiler package to infiltrate an error that
is hard to track down.

Problem. The IRBuilder of the NewCompiler package is used to generate byte-
code. We created a small example method buildTruncaterMethod that uses the
builder to generate a method that simply sends the message truncated to the
receiver. The code of the method is shown in Listing 5.1. After building the
method (1), the compiled method gets returned (2) and is used in the last
line to execute an example (3). We now modified the initialize method of the
IRBuilder so the created IRMethod is in a faulty state. This modification does
not have any consequences until the method is compiled (2), but then an error
occurs because a message was sent to nil. Examining the execution stack in a
common debugger does not reveal why the problem occurs.

49

50 CHAPTER 5. EVALUATION

Listing 5.1: Compiling a method with the IRBuilder

buildTruncaterMethod
| irMethod compiledMethod |

”1. Create intermediate representation of method”
irMethod := IRBuilder new

numRargs: 1;
addTemps: #(self);
pushTemp: #self;
send: #truncated;
returnTop;
ir.

”2. Compile method”
compiledMethod := irMethod compiledMethod.

”3. Use method”
↑ compiledMethod valueWithReceiver: 3.5 arguments: #()

Figure 5.1: Opening the debugger after error occured

Solution. When we run buildTruncaterMethod, an error occurs and we open
our debugger. 237 method executions and 625 aliases were recorded during

5.1. OBJECT FLOW EXAMPLE 51

the execution. Figure 5.1 shows the initial state in the method trace. We see
that doesNotUnderstand was sent to UndefinedObject (nil). When we step out of
doesNotUnderstand, we get to the parent method execution and see in the code
and submethod pane (Figure 5.2) that absorbJumpsToSingleInstrs: was sent to
nil, which obviously is an error. We now want to know what the reason was
that nil was there to take the message instead of another object. Therefore we

Figure 5.2: Method execution where error occured

tell the debugger to show how the object was passed to this statement. We do
this by right clicking on the message send statement and selecting the flow of
the receiver from the menu that pops up. The debugger visualizes the flow of
nil in the method trace and in a list (Figure 5.3). In the flow list we can see

Figure 5.3: The flow of nil

the complexity such a flow can have. The object was stored in more than one

52 CHAPTER 5. EVALUATION

field and passed several classes. We can now step back through the flow. When
we look at the flow, what attracts our attention is that the root of the flow was
a field write in a new method. This means that nil was written into an instance
variable of an object at the time the object was created. This is the standard
initialization of an instance variable. So we can conclude that the nil object
we are dealing with results from an instance variable that was not properly
initialized. The next thing that happened to nil in the flow was that it was
read from that uninitialized instance variable in the initialize method execution
of the object that contains the variable. As this is the first time the instance
variable is used, we jump to that statement and try to see if we get some clues
in the method execution of the statement. In Figure 5.4 a part of the method
is shown. As the statement of the flow is selected, we see that currentSequence
is the variable in question. We also see that this variable gets assigned a value
one line below, and this is actually the reason for the error. The variable gets
assigned its value too late, for the program to work correctly, the two lines must
be exchanged.

Figure 5.4: Defective method

Discussion. This first example shows how the object flow can ease the task
of debugging when provided automatically. Between the source of the error
and where the syptom occurs, more than 200 methods are executed. With a
normal stack-based debugger, the developer must read code without any further
information or restart the debugger with breakpoints. With our debugger, when
one wants to know where an object originates from, like in this case nil, he
can quickly browse the flow. In the example nil was written and read from
three instance variables and was passed through three different classes before
it arrived at the error’s location. This is what makes the example harder to
debug with other approaches, because to get to the origin of nil, one has to

5.2. MULTITHREADING EXAMPLE 53

do a lot more manual investigation. In other debuggers (e.g., the ODB), when
the error occurs, the developer sees that the value was read from an instance
variable and then can ask where it was assigned, so the first step back he can
do very easily too. But then he has to find out where the value came from, so
he has to read the code. Then he will find out that it was read from another
instance variable and goes to the assignment of it, and so on. Step by step he
can reconstruct the object flow, but firstly he needs time for that, and secondly
he can not go to the root of the flow directly, which was essentially the key for
solving this problem.

As seen in this example, it can be effective to go directly to the root of an object
flow. In this case this revealed the problem rather quickly, and there are likely
lots of other problems where this is the case too. So it might be recommended
to first have a look at the root of the flow, but of course the problem can lie
somewhere else in the flow, so when nothing is found at the root, we have to
traverse the object flow to go on with our search. The question is then, if it is
better to start at the end of the flow or at the root. Probably the developer has
to evaluate by himself what way he wants to go. E.g., when the flow is very
long because the object in question is used very frequently without causing
problems, it might be better to start at the end of the flow because the error
is probably rather local. But in the end it is always the developer who has to
measure where he wants to start with the error search.

To summarize, Compass and especially the object flow gives the possibility
to find the error quickly in this example. Nevertheless we need to add some
remarks. Even with the flow, if the developer does not focus on the right parts
of it, he may need the same amount of time as with another approach. And
finding the error source can be a lot harder than in this example. Let’s say
we didn’t exchange the two lines of code but rather just delete the assignment.
Without further knowledge of the NewCompiler the developer would have found
that the variable was unassigned, but he would not be able to fix it without
further analysis.

5.2 Multithreading Example

When more than one process was traced, the method trace simply has more
than one root method execution. The flow of objects still can be visualized in
the method pane and therefore reveals how objects are passed around between
processes. The following example demonstrates an error that occured in a real

54 CHAPTER 5. EVALUATION

multithreaded application. We created a simpler example of it that contains
the same error.

Problem. The application is used to download software updates from the
internet and install them concurrently. This task is handled by two classes, the
UpdateDownloader, which downloads the updates from the internet, and the
UpdateLoader, which installs the downloaded updates in the Smalltalk image.
The UpdateDownloader is started in its own process. When it has downloaded
an update, it puts the code that is needed to install the update into a shared
queue. The UpdateLoader, which is running in another process, reads from the
queue and waits until an element is added. When this happens, it reads the
element from the queue and uses the provided code to install the update. This
is done until the downloader puts a special delimiter symbol into the queue,
meaning that everything has been downloaded. The two following listings show
the code of the two processes.

Listing 5.2: The update loader process
[this := docQueue next.

nextDoc := docQueue next.
nextDoc ∼= #finished] whileTrue: [

Compiler evaluate: nextDoc.
docQueueSema signal].

Listing 5.3: The downloader process
self getUpdates withIndexDo: [:code :i |

aSemaphore wait.
aQueue nextPut: i.
aQueue nextPut: code].

aQueue nextPut: ’’.
aQueue nextPut: #finished

The symptom of the error in this example is the update loader process indef-
initely waiting on the empty queue. The application is frozen as long as the
update loader is waiting for a new element in the queue. By interrupting the
current process a debugger can be opened. Examining the current execution
stack shows simply where the update process is stuck. Somehow the down-
load process seems to have stopped putting anything into the queue, but when
completing the last download, it should have put the delimiter symbol into the
queue. The question is now why the download process did not conform to the

5.2. MULTITHREADING EXAMPLE 55

expected protocol. Examining the stack and reading the source code does not
help reveal the problem.

Solution. We start Compass, about 1000 method executions and about 3000
aliases were recorded. In the beginning, the debugger shows the last execution
of next, where the process is waiting for an element in the queue. We step out
and get to the method execution where the updates are loaded. The code and
submethod panes of this execution are shown in Figure 5.5. Looking at the

Figure 5.5: Execution of the update loader

executed statements (only a part of them are shown in the figure), we discover
that the queue is read four times. After that, the method waits indefinitely on
the queue. To know why nothing is put into the queue anymore, we take a look
at the other process, so we have to get into a method that was executed in the
other process. Before we do that we bookmark the current method execution,
because it is one of the important locations in this execution trace and we
might want to come back here. To get into the other process, we can show the
object flow of an element that was read from the queue, because we know it
was put in there by the other process. The flow of such an element is shown in
Figure 5.6. Following back this flow, we get into the other process, until we

Figure 5.6: Object flow of a element in the queue

are in the execution of withIndexDo:. This is the loop of the retrieved updates
which should put them into the queue (by evaluating the provided block). In
Figure 5.7 the source and submethod pane are shown. Here we see that the

56 CHAPTER 5. EVALUATION

Figure 5.7: Loop on downloaded updates

fifth update is retrieved, as it is in the array (i−read ’5+5’), but then the block
is not evaluated anymore, and therefore nothing is put into the queue. Now we
must conclude that something definitely must be wrong with the downloading
process, because the method withIndexDo: should absolutely not stop abruptly.
So we assume that the process was terminated somehow. By investigating what
was done in this process, we do not find out anything. We see that the updates
simply were put into the queue; nothing more happened. An assumption we
can make is that another process somehow must have terminated this process,
so we go back to the method execution that executes the updating code by
clicking on the bookmark we made before.

Looking back at Figure 5.5 we see that every piece of code that is read from the
queue is evaluated by the compiler. So we can step into those evaluations and see
what happened (actually we have to step through several methods until we get
to the DoIt method that executes the code). When we arrive in the DoIt method
execution of the update code UpdateLoader cleanup, we remark something in the
side effects graph, shown in Figure 5.8. In the graph we see that after the

Figure 5.8: Side effects of the executed update code

execution of the code, the UpdateLoader does not have an instance variable
anymore pointing to the UpdateDownloader and the UpdateDownloader itself
has no instance variable anymore pointing to its process. They both have new

5.2. MULTITHREADING EXAMPLE 57

references to nil, so we immediately see that their instance variables were nilled
out. We know now the problem lies in this part of the code. Stepping further
into it we discover that the called method cleanup does terminate the process
and additionally nils out the downloader (Figure 5.9). It does that because
this update cleans up the image and by doing so inadvertently terminates the
process. That is why nothing is put into the queue anymore and so we have
found out that this update accidentally stops the download process.

Figure 5.9: Cleanup method that stops process

Alternative solution. In this particular example, there are other ways of
finding the error. Some of the above steps, like looking at the execution trace
of both processes to find out that the process suddenly stopped, are probably
necessary for understanding the problem. But to get to the code that stops the
process, there are faster ways than looking at the evaluation of the compiler.
In the UpdateLoader, the downloading first gets initialized and started with the
following code:

Listing 5.4: Initializing of download process
retrieveUpdatesOntoQueue: aQueue withWaitSema: aSemaphore

self downloader ifNotNil: [
self downloader terminate].

self downloader: (UpdateDownloader new
initializeWith: aQueue with: aSemaphore).

self downloader start

In the start method of the UpdateDownloader actually starts the process. When
we suspect something is wrong with the downloader process, we might want to
investigate what happened with the downloader object instantiated here. So
we use another feature of Compass, the forward flow explorer, which is shown
for the downloader object in Figure 5.10. In this forward flow we see that
after storing the object in the instance variable, much later it gets read from it

58 CHAPTER 5. EVALUATION

Figure 5.10: The forward flow of the downloader object

again. When we go the that location where the downloader object was read, we
are immediately in the method execution where the downloading process gets
terminated. The downloader gets read there from the instance variable and is
told to terminate its process. Now inspecting the stack we find out that this
code is executed as part of a previous update, so we go somehow the opposite
way as in the previously presented solution.

Discussion. As the error in the example was not trivial and we had to handle
a large trace, we needed several features of the debugger to find the source of
the bug. In this case the debugger was very useful to understand the system,
which was necessary to identify the cause. We have shown the use of the
object backward flow (Where did an object come from?), the forward flow
(Where did an object go to?), the object graph and the bookmarking of method
executions.

The example also makes clear that with our debugger more than one way exists
to solve the problem. In this example we have presented two possibilities to
detect the source of the error. The second solution was more effective, but
there is no obvious reason why one should explore the forward flow of the
downloader object. But if someone gets stuck somewhere he just has to try
out some things with objects that seem important to the problem, like in this
case the downloader object. What the developer does next also depends on his
knowledge of the domain, the better this knowledge is, the better he chooses his
next step. The important thing is that Compass provides enough functionality
to help the developer with each of those steps.

In the beginning of this section we mentioned our debugger is not designed for
handling more than one process, but in this example we have seen it works
not too bad already. Nonetheless, the support for multithreaded programs
could be heavily improved. Right now, the method trace is a bit confusing
as processes switch from time to time. Showing the trace of every process
separately could help improve that, but then also ways must be found to handle
the visualization of object flows that involve more than one process, i.e., objects

5.2. MULTITHREADING EXAMPLE 59

being passed between processes. To summarize, by separating the different
processes more clearly, navigation of multithreaded applications would become
more convenient.

60 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

In this work we presented Compass, a flow-centric back-in-time debugger with
the objective to make navigation of the execution data more efficient. We
combined classical features of back-in-time debuggers with new ideas. In this
chapter we summarize what our concepts contribute to debugging and what
future work can be done.

6.1 Compass revisited

We developed a model that revealed how the different entities of the execution
history of a program are related and how they can be navigated efficiently.
Compass is based on that model. The next list contains the navigation concepts
we implemented in our debugger.

• Stepping the trace

• Control flow dependencies

• Object relationships

• Object history

• Object flow

• Alias to method execution mapping

• Alias to statement mapping

• Created aliases in method execution

61

62 CHAPTER 6. CONCLUSION

• Side effects

The most important contribution that distinguishes our debugger from the other
approaches is the accessibility of the flow of objects. Other interesting contri-
butions are the side effects graph and the control flow dependencies. The other
navigation concepts listed before are in some way also contained in other ap-
proaches. In the following we discuss in more detail our contributions.

Other approaches do not provide the flow of objects. To find out where an
object came from the developer has to read and understand code to see how
an object was passed around in the system. With the object flow the steps an
object has taken can easily be followed and the developer can understand what
happened with it in the system and focus on finding out what went wrong.
We have shown in our examples that this makes finding bugs much easier if a
defective object has been passed a long road to where the error occured.

We introduced a new visualization for the method trace, the fisheye method
trace. Together with the other views in our debugger this trace view has proven
very useful, as it helps the developer to get a good understanding of the un-
derlying trace. There are possibilites to visualize different components in this
trace, like we did with the object flow, that can easily be interpreted when seen
in the trace.

The side effects graph helps the developer to understand how objects are re-
lated. As it shows the side effects of the currently selected method execution,
it provides additional visual information to understand the part of the code
the developer is investigating. When an error in the relationships of objects is
suspected, this can be especially useful.

The control flow dependencies allow the developer to see quickly if the execution
of a method depended on a conditional statement executed elsewhere in the
trace. This can help the developer a lot to get a good understanding of the
system. For example, by examining direct dependencies the user could quickly
see if a method execution is part of a code that was executed in a loop.

6.2 Future Work

Firstly, there are possibilities to improve the method trace view. Lots of other
visual aids could be integrated, e.g., using colors for the circles to indicate
attributes of it. Also, there are disadvantages that should be addressed too, e.g.,
it would be nice to have a good way of labelling the circles, so the developer can

6.2. FUTURE WORK 63

recognize better which circle represents which method execution. Also, other
high-level views could be added. The idea is to use views of dynamic data
and integrate them into the debugger. There exist lots of ways to visualize the
dynamic data on a high level (e.g., for reverse engineering). The question is
if using those views while debugging back-in-time can improve the effciency of
bug detection.

The problem with the current implementation of the side effects graph is that it
can get very big for large subtraces, and if it is too big it is not useful anymore
at all. So for small subtraces this graph works very well and can be useful, but
for large subtraces improvements are necessary. One idea is to do something
similar like we did with the method trace, which means, show the full graph but
accentuate parts of it the developer is interested in. It is a bit more complex
to realize than the fisheye method trace, but could make the side effects much
more useful

The control flow statements as they are implemented in our debugger are useful
for understanding the system. But the initial goal was to let the developer skip
the examination of big parts of the execution trace if values taken by the control
flow statements were infected. We have shown in the bank account example that
this can help sometimes, but it seems that this is only useful for a very specific
type of error. It could be that often the developer is misguided when examining
those dependencies. However, the idea behind it was to involve dynamic slicing
in a back-in-time debugger, but with the control flow statements we only provide
a part of the dynamic slice. We could improve this by letting the developer
choose a statement, computing the full dynamic slice and then highlighting the
code that affected the statement. This would help the developer to focus on
the code that really influenced the code he is interested in.

The above paragraph points out something else that might be considered,
namely hiding parts of the execution data that seems not to be important to
the issues the developer focuses on. Our approach deals with the full execution
trace and how it can be navigated, but it could help to additionally reduce the
data that must be navigated. The idea is to have in principle all the execution
data, but to not display all of it depending on what the developer is interested
in, so the knowledge of the developer about the problem can be taken into ac-
count. This is what is done with the dynamic slice, where the developer focuses
on a specific statement and wants to accentuate the code that influenced the
statement. There are other possibilites to filter out parts of the execution data.
E.g., the developer can choose to exclude the method executions that come
from specific packages or classes.

64 CHAPTER 6. CONCLUSION

Appendix A

User Guide

This appendix gives instructions on how to install the necessary components to
run the Compass Debugger. What is needed is an Object Flow VM, an image
that has some packages installed for the special VM to work properly, and of
course the packages of Compass and its dependencies. Additionally, Compass
requires Graphviz to be installed on the machine, because it needs it to create
some graph layouts. After all the installation instructions there is a guide which
explains the usage of the debugger.

A.1 Installation

A.1.1 Downloading Compiled VM and Prepared Image

The easiest way to obtain a ready-to-run version is to download the virtual
machine and demo image from the following website:

http://scg.iam.unibe.ch/Research/ObjectFlow/

The download is a zip archive that contains the compiled VM for the appropriate
platform (currently available are VMs for Mac OS X Intel and Ubuntu Linux)
and a prepared image. At the time of this writing the provided pre-compiled
VMs have been tested on Mac OS X 10.5.5 for the Intel processor, and Ubuntu
8.04 (Hardy Heron).

65

http://scg.iam.unibe.ch/Research/ObjectFlow/

66 APPENDIX A. USER GUIDE

A.1.2 Preparing Own Image

Loading FlyingObjects

The Object Flow Debugger requires some support code in the image (for exam-
ple, the definition of the class Alias and extension of the class Process). To make
your own image ready to be run on the Object Flow VM do the following:

1. After backing up your image, start it up using a standard Squeak VM.

2. In the Monticello browser add the following SqueakSource repository.

MCHttpRepository
location: ’http://www.squeaksource.com/FlyingObjects’
user: ’’
password: ’’

Load the package FlyingObjects and then save and quit.

3. Start the image using the Object Flow VM.

4. Load the package FlyingObjectsUI from the same repository as in step 2
and save your image.

5. To test your installation, run the tests in the package FlyingObjects−Tests.
All tests are expected to pass.

Loading Compass

If you have correctly installed the Object Flow VM along with its support
packages, you should now be able to install Compass. As Compass has many
dependencies, we provide an installation script for speeding things up. Here is
what you have to do:

1. In order to make the object graph work, you need to install GraphViz on
your computer. You can get it here: http://www.graphviz.org/

2. In an image working with the Object Flow VM, add the following Squeak-
Source repository to the Monticello browser.

MCHttpRepository
location: ’http://www.squeaksource.com/OmniCompass’
user: ’’
password: ’’

http://www.graphviz.org/

A.2. DEBUGGING WITH COMPASS 67

3. Load the package CompassInstaller.

4. To load all the required packages, execute the code

CompassInstaller bootstrap

A.2 Debugging with Compass

This section provides a quick guide to get started with Compass.

A.2.1 Starting the Debugger

There exist two ways of recording a program execution and starting the debug-
ger.

The first way of recording data is to use the flyDuring: method implemented in
the class Object. For instance, to trace the bank account example, execute the
following code:

self flyDuring: [BAAccount example]

The execution of the block is recorded. Now the Compass debugging interface
can be started by executing

CompassDebugger start

The debugger will then show the recorded data. When closing the debugger,
the traced data gets deleted. If an error occurs while tracing the code, as usual
a small debugger window appears. In addition to the default buttons the new
button labelled ‘Compass’ opens the Compass debugger at the location where
the error occurred.

The second way to debug is to use unit tests. We extended SUnit to re-run a
failed test and record its execution before the failure is shown in the debugger.
Whe re-running a test, as usual the small debugger window pops up, and as
discussed above the Compass debugger can be started by clicking the ‘Compass’
button.

68 APPENDIX A. USER GUIDE

A.2.2 Using the Debugger

Figure A.1 illustrates the Compass debugger user interface. This section gives
an overview of the different views and actions provided by Compass.

1 8

2

4

6

5

3

7

9

Figure A.1: Compass debugger frontend.

1. Execution trace. This view shows the execution trace as a tree in which
nodes represent executed methods and block closures. Lines represent the caller
relationship from top to bottom right. Nodes are ordered from left to right by
the start timestamp of their execution and from top to bottom by their depth
on the call stack. The trace can be navigated by clicking on the circles. The
thick green arrows represent the flow of the object that was selected in one of
the other views (see below).

2. Execution stack. This view shows the execution stack as it existed at
the time when the selected method execution was started.

3. Object flow. This panel shows the flow of a specific object. The list
contains the transfers of a reference of this object (e.g., argument, return, field

A.2. DEBUGGING WITH COMPASS 69

write, field read, etc.). This allows one to backtrack the flow of the object to
find out how the object was passed into this method. The flow given by this
list is the same as the one shown graphically in the execution trace (1). By
selecting a reference transfer from the list, the focus of the debugger changes
to the method execution in which this transfer took place. One way to select
an object flow is by double clicking on an alias in the sub-method statements
list (5).

4. Source code. This is the source code of the method of the selected method
execution.

5. Executed program statements. This list shows the reference transfers
(aliases) and method sends that occurred during the execution of the selected
method or block execution. When an item is selected the corresponding source
code statement in the source code pane (4) is highlighted. Additionally, impor-
tant actions can be executed from the context menu (right-click on an item).
The available actions depend on whether an alias or a message send is selected.
The most important action is to show the flow of an object. When choosing
this action, the flow is shown in the previously described object flow pane (3)
and it is drawn in the execution trace (1). You can also choose to explore the
forward flow, which brings up a window that shows a tree of how the object
was transferred starting at the current selection.

6. Variables. These four panes are the same as in the original debugger.
They allow one to inspect the fields of the receiver and of local variables of the
selected execution context with respect to the point in time of the current focus.
By right-clicking on a variable, similar actions can be triggered as in pane (5),
e.g., selecting an object to highlight its object flow.

7. Dependencies. This list shows the control flow dependencies of the cur-
rently selected method execution (that is, the list of control flow statements
that were responsible that the selected method was executed). By clicking on a
dependency, the debugger jumps directly to the method execution and selects
the control flow statement in the source code pane (4).

8. Side effects graph. The side effects graph summarizes the side effects
that the execution of the currently selected method and all transitively called

70 APPENDIX A. USER GUIDE

methods produced. A black arrow between two objects indicates a field or ar-
ray slot update. The black arrow points from the updated object to the newly
assigned object. To support the understanding of this graph, the following ad-
ditional information is provided to show the connection between the different
objects in the graph. A light gray arrow indicates the previous value of a mod-
ified field and a blue arrow indicates a field or array read event (dereference).
By right-clicking on an object, a menu with a list of the new field values comes
up. By selecting a value, the debugger jumps to the location where the object
was written into the field.

9. Navigation history. Like in a web browser, the navigation history can
be used to go step by step back- and forward. In our case, the steps are
the context switches (changes of focus in the Compass user interface). If the
context is changed, by clicking on the back button you get to the previously
selected context. Also bookmarking is supported to be able to quickly jump to
bookmarked locations in the execution history.

List of Figures

1.1 Sequence diagram of the crashing example 3
1.2 Method trace view in Unstuck . 6

2.1 ODB . 10

3.1 Two spaces: Control flow and objects 18
3.2 Trace of a program execution . 19
3.3 Metamodel of the The control flow space 19
3.4 Metamodel of the object space 22
3.5 Object relationships and history 23
3.6 Full metamodel . 25
3.7 Relationships between control flow and object space entities . . . 26
3.8 Compass debugger frontend. 27
3.9 The method trace views . 29
3.10 Direct and indirect control flow dependencies 31
3.11 Object flow visualized in method trace 32
3.12 Forward flow example . 33
3.13 Side effects graph example . 34

4.1 Object pointers in VM . 39
4.2 The object flow metamodel [Lien08c] 40
4.3 The alias class hierarchy [Lien08c] 41
4.4 Circular fisheye projection . 43
4.5 Fisheye trace view . 45

5.1 Opening the debugger after error occured 50
5.2 Method execution where error occured 51
5.3 The flow of nil . 51
5.4 Defective method . 52
5.5 Execution of the update loader 55

71

72 LIST OF FIGURES

5.6 Object flow of a element in the queue 55
5.7 Loop on downloaded updates . 56
5.8 Side effects of the executed update code 56
5.9 Cleanup method that stops process 57
5.10 The forward flow of the downloader object 58

A.1 Compass debugger frontend. 68

Bibliography

[Clev00] Holger Cleve and Andreas Zeller. “Finding Failure Causes through
Automated Testing”. In: Proceedings of the Fourth International
Workshop on Automated Debugging, Aug. 2000.

[Furn86] George W. Furnas. “Generalized Fisheye View”. In: Proceedings
of CHI ’86 (Conference on Human Factors in Computing Systems),
pp. 16–23, ACM Press, 1986.

[Geig02] Leif Geiger, Ag Softwaretechnik, Technische Universität Braun-
schweig, Albert Zndorf, Ag Softwaretechnik, and Universität Pader-
born. “Abstract Graph Based Debugging with Fujaba”. 2002.

[Gold83] Adele Goldberg and David Robson. Smalltalk 80: the Language and
its Implementation. Addison Wesley, Reading, Mass., May 1983.

[Hofe06] Christoph Hofer. Implementing a Backward-In-Time Debugger. Mas-
ter’s thesis, University of Bern, Sep. 2006.

[Hove04] David Hovemeyer and William Pugh. “Finding bugs is easy”. SIG-
PLAN Not., Vol. 39, No. 12, pp. 92–106, 2004.

[Inga97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. “Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself”. In: Proceedings of the 12th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA’97), pp. 318–326, ACM Press, Nov. 1997.

[Ko04] Andrew J. Ko and Brad A. Myers. “Designing the whyline: a debug-
ging interface for asking questions about program behavior”. In:
Proceedings of ACM CHI 2004 Conference on Human Factors in
Computing Systems, pp. 151–158, 2004.

73

74 BIBLIOGRAPHY

[Koju05] Toshihiko Koju, Shingo Takada, and Norihisa Doi. “An efficient
and generic reversible debugger using the virtual machine based ap-
proach”. In: VEE ’05: Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments, pp. 79–88,
ACM, New York, NY, USA, 2005.

[Kore88] B. Korel and J. Laski. “Dynamic program slicing”. Information
Processing Letters, Vol. 29, No. 3, pp. 155–163, 1988.

[Lenc97] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. “Query-
Based Debugging of Object-Oriented Programs”. In: Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented programming
(OOPSLA’97), pp. 304–317, ACM, New York, NY, USA, 1997.

[Lenc99] Raimondas Lencevicius, Urs Hölzle, and Ambuj Kumar Singh. “Dy-
namic Query-Based Debugging”. In: R. Guerraoui, Ed., Pro-
ceedings of European Conference on Object-Oriented Programming
(ECOOP’99), pp. 135–160, Springer-Verlag, Lisbon, Portugal, June
1999.

[Lewi03] Bill Lewis. “Debugging Backwards in Time”. In: Proceedings of
the Fifth International Workshop on Automated Debugging (AADE-
BUG’03), Oct. 2003.

[Libl05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.
Jordan. “Scalable statistical bug isolation”. In: Proceedings of the
2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), pp. 15–26, ACM, New York, NY,
USA, 2005.

[Lieb98] Henry Lieberman and Christoper Fry. “ZStep 95: A reversible, an-
imated source code stepper”. In: John Stasko, John Domingue,
Marc H. Brown, and Blaine A. Price, Eds., Software Visualization
— Programming as a Multimedia Experience, pp. 277–292, The MIT
Press, Cambridge, MA-London, 1998.

[Lien06] Adrian Lienhard, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nier-
strasz. “Capturing How Objects Flow At Runtime”. In: Proceed-
ings International Workshop on Program Comprehension through
Dynamic Analysis (PCODA’06), pp. 39–43, 2006.

[Lien08a] Adrian Lienhard. Dynamic Object Flow Analysis. PhD thesis, Uni-
versity of Bern, Dec. 2008.

BIBLIOGRAPHY 75

[Lien08b] Adrian Lienhard, Tudor Gı̂rba, Orla Greevy, and Oscar Nierstrasz.
“Test Blueprints – Exposing Side Effects in Execution Traces to Sup-
port Writing Unit Tests”. In: Proceedings of the 12th European
Conference on Software Maintenance and Reengineering (CSMR’08),
pp. 83–92, IEEE Computer Society Press, 2008.

[Lien08c] Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. “Practi-
cal Object-Oriented Back-in-Time Debugging”. In: Proceedings
of the 22nd European Conference on Object-Oriented Programming
(ECOOP’08), pp. 592–615, Springer, 2008. ECOOP distinguished
paper award.

[Meye06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. “Mondrian: An
Agile Visualization Framework”. In: ACM Symposium on Software
Visualization (SoftVis’06), pp. 135–144, ACM Press, New York, NY,
USA, 2006.

[Poth07] Guillaume Pothier, Éric Tanter, and José Piquer. “Scalable Om-
niscient Debugging”. Proceedings of the 22nd Annual SCM SIG-
PLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’07), Vol. 42, No. 10, pp. 535–552,
2007.

[Wasy07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. “De-
tecting object usage anomalies”. In: ESEC-FSE ’07: Proceedings of
the the 6th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of
software engineering, pp. 35–44, ACM, New York, NY, USA, 2007.

[Weis81] Mark Weiser. “Program slicing”. In: ICSE ’81: Proceedings of the
5th international conference on Software engineering, pp. 439–449,
IEEE Press, Piscataway, NJ, USA, 1981.

[Weis82] Mark Weiser. “Programmers use slices when debugging”. Commun.
ACM, Vol. 25, No. 7, pp. 446–452, 1982.

[Zell01] Andreas Zeller. “Automated Debugging: Are We Close”. Computer,
Vol. 34, No. 11, pp. 26–31, 2001.

[Zell02a] Andreas Zeller. “Isolating cause-effect chains from computer pro-
grams”. In: SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of software engineering, pp. 1–
10, ACM Press, New York, NY, USA, 2002.

76 BIBLIOGRAPHY

[Zell02b] Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolating
Failure-Inducing Input”. IEEE Transactions on Software Engineer-
ing, Vol. SE-28, No. 2, pp. 183–200, Feb. 2002.

[Zell05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debug-
ging. Morgan Kaufmann, Oct. 2005.

[Zell96] Andreas Zeller and Dorothea Lütkehaus. “DDD — a free graphi-
cal front-end for Unix debuggers”. SIGPLAN Not., Vol. 31, No. 1,
pp. 22–27, 1996.

	Abstract
	Acknowledgements
	Contents
	Introduction
	Problems with Back-in-Time Debugging
	Missing Flow of Objects
	Limited Views

	Overview of Our Approach
	Thesis Structure

	State of the Art in Debugging
	Back-in-Time Debugging
	Other Debugging Approaches
	Summary

	Approach
	Exploring the Execution History
	The Control Flow Space
	The Object Space
	Mappings Between Spaces

	Designing the Debugger User Interface
	Method Trace
	Method Execution
	Control Flow Dependencies
	Objects
	Side Effects Graph
	Navigation History

	Implementation
	The Object Flow VM
	Motivations for extending the VM
	Changes to the VM

	The Compass Debugger
	Debugger Details
	Source Code and Sub-method Pane
	Fisheye Method Trace
	Side Effects Graph with Mondrian
	Control Flow Dependencies

	Evaluation
	Object Flow Example
	Multithreading Example

	Conclusion
	Compass revisited
	Future Work

	User Guide
	Installation
	Downloading Compiled VM and Prepared Image
	Preparing Own Image

	Debugging with Compass
	Starting the Debugger
	Using the Debugger

	List of Figures
	Bibliography

