
Explicit Connectors for Coordination of
Active Objects

Masters Thesis
of the Faculty of Science

University of Berne

by Manuel Günter
20.3.1998

Supervisors:
Dr. Stéphane Ducasse

Prof. Dr. Oscar Nierstrasz
Institute of Computer Science and Applied Mathematics

2

Contents

1 Introduction 11
1.1 Overview . 11
1.2 Structure of the Thesis . 13
1.3 How to Read the Thesis . 14

2 Multi-Object Coordination Support 15
2.1 Problems with Traditional Coordination Approaches 15
2.2 Constraints and Goals . 16

2.2.1 Modeling Activities as Active Objects 17
2.2.2 Coordination Goals . 17
2.2.3 Constraints of the Rule Based Approach. 20

2.3 Coordination Goals and Further Extensions. 20

I The Model 21

3 The Paradigms of the FLO/C Model 23
3.1 Components and Connectors. 23

3.1.1 Components . 23
3.1.2 Connectors: an Overview . 24
3.1.3 Separation of Concerns between Connectors and Components.. 24

3.2 Explicit Connectors . 25
3.2.1 Static Properties . .. 25
3.2.2 Dynamic Properties . 25
3.2.3 A First Example of a Connector Declaration 26

4 Connector Behavior 29
4.1 Syntax and Elementary Semantics of Interaction Rules 29
4.2 The Semantics of the Operators . 30

4.2.1 Balking Conditional Synchronization:permittedIf 31
4.2.2 Blocking Conditional Synchronization:waitUntil 31
4.2.3 Push Style Temporal Ordering of Execution:implies 32
4.2.4 Pull Style Temporal Ordering of Execution:impliesBefore 32
4.2.5 Asynchronous Communication:impliesLater 32
4.2.6 Evaluation . 33

4.3 Collaboration of Connectors / Fusion of Rules . 33
4.4 Group Management . 35

3

4 CONTENTS

4.4.1 Role Semantics . 35
4.4.2 Roles in the Dining Philosopher Example. 35
4.4.3 Specificators . 36
4.4.4 Relative Roles . 37

4.5 Special Features . 37
4.5.1 Self Controlling of Connectors .. 37
4.5.2 FLO/C’s Additional Exception Mechanism 38
4.5.3 Propagation of Computation Results . 38

4.6 Categories for the Expressive Power of Connectors 39

5 An Illustrating Example: The Gas Station 41
5.1 The Participants . .. 41
5.2 The Connectors . 42

5.2.1 Managing Races . .. 43
5.3 A Complete Simulation . 44
5.4 Example Evaluation . 45

6 Component Hierarchy 47
6.1 Declaration of Composite Object Classes . 48
6.2 Inheritance of Composite Object Classes. 52
6.3 Evaluation + Limitations . 53

7 Discussion of the FLO/C Model 55
7.1 FLO/C Fulfills its Requirements . 55
7.2 Limited Pull-Style Support .. 56
7.3 The Polling of thewaitUntil Operator . 56
7.4 Tradeoff between Connector and Component Responsibilities. 57

II Formal Approach 59

8 Formal Specification of FLO/C 61
8.1 Notations . 61
8.2 System Entities . .. 62
8.3 System State Transitions . 63

8.3.1 Local Transition Firing Order .. 64
8.3.2 Two Requirements for FLO/C’s System Transitions 65

8.4 Functions . 66
8.5 Analyzing Possible Execution Orders of an Example System 68

8.5.1 The Start Transition and a Function Trace. 69
8.5.2 Execution of the Consequences . 70
8.5.3 Evaluation of the Example . 71

9 Properties of the Formal FLO/C Model 73
9.1 Execution Properties of the Operators .. 73

9.1.1 Theimplies Operator. 74
9.1.2 TheimpliesBefore Operator. 76
9.1.3 The Guard Operators. 77

CONTENTS 5

9.1.4 TheimpliesLater Operator. 77
9.2 Liveness Properties of the FLO/C Model . 78

9.2.1 Deadlock . 78
9.2.2 Livelock . 78
9.2.3 Operator Loops 80

9.3 Limitations of the Formal Approach . 80
9.4 Summary . 81

III Implementation 83

10 Implementation Overview 85
10.1 Layering of the Implementation . 85
10.2 Technical Data of the FLO/C Implementation . 86
10.3 Choice for an Open and Reflective Environment 86

10.3.1 SMALLTALK . 86
10.3.2 NEOCLASSTALK . 87

10.4 Meta-Level Programming . 88
10.4.1 Explicit Meta-Classes . 88
10.4.2 Meta-Objects . 88

11 The FLO/C Kernel 89
11.1 Implementation of Active Objects . 89

11.1.1 ACTALK ’s Asynchronous Message Passing System. 89
11.1.2 FLO/C’s Asynchronous Message Passing System 89
11.1.3 Message Interception . 91

11.2 Controller . 92
11.3 Connector . 93

11.3.1 Responsibility of ClassMetaConnector 94
11.3.2 Responsibility of ClassConnector . 94

11.4 Collaboration of Controllers and Connectors . 95
11.5 Composite Objects . 96

11.5.1 Responsibilities of the Composite Object Class and Meta-Class. 96

12 Visual Programming Tools 99
12.1 The FLO/C Workspace . 99
12.2 The Composite Object Class Browser . 101

13 Performance Optimizations 105
13.1 Problems with the First Implementation . 105
13.2 Optimizing the Rule Lookup. 106
13.3 Caching Consequence Messages . 107

13.3.1 Working Principle . 107
13.3.2 Value of Arguments . 108
13.3.3 Caching in a Dynamic Implementation . 110

13.4 Evaluation of the Optimization . 111

6 CONTENTS

14 Implemented Examples 113
14.1 The Vending Machine . 114

14.1.1 Description . 114
14.1.2 Solution . 114
14.1.3 Evaluation . 118

14.2 Synchronized Movements . 119
14.2.1 Description . 119
14.2.2 Solution . 119
14.2.3 Evaluation . 120

14.3 An Unstable Server for a Client . 120
14.3.1 Description . 120
14.3.2 Solution . 120
14.3.3 Evaluation . 121

14.4 The Decrementor . 122
14.4.1 Description . 122
14.4.2 Solution . 122
14.4.3 Evaluation . 123

14.5 Workers and Tools . 123
14.5.1 Description . 123
14.5.2 Solution . 124
14.5.3 Explicit Locks and Processor Yields . 125

14.6 The Binary Adder with Logical Switches . 125
14.6.1 Description . 125
14.6.2 Solution . 125
14.6.3 Evaluation . 127

14.7 The Dining Philosophers . .. 127
14.7.1 Description . 127
14.7.2 Solution . 128
14.7.3 Evaluation . 129

14.8 Administrator and Workers . 129
14.8.1 Description . 129
14.8.2 Solution . 130
14.8.3 Evaluation . 132

14.9 The Electronic Vote . 132
14.9.1 Description . 132
14.9.2 Solution . 133
14.9.3 Evaluation . 134

14.10The Sleeping Barber . 134
14.10.1 Description . 134
14.10.2 Solution . 135
14.10.3 Evaluation . 139

14.11Evaluation of the Examples . 139

CONTENTS 7

IV Finale 143

15 Related Work 145
15.1 Coordination . 145

15.1.1 Explicit Entities for Multi-Object Coordination 145
15.1.2 Factoring Out Per-Class Coordination . 146

15.2 Architectural Design . 147
15.2.1 Formal Approaches for Architectural Design 147
15.2.2 Connectors at Run Time . 147

15.3 Active Object Models . 148

16 Conclusion 149
16.1 Future Work . 150

8 CONTENTS

Acknowledgments

First and foremost I want to thank my supervisor Dr.Stéphane Ducassefor his inspiring energy and
enthusiasm and his lovely wife Florence for her patience listening to my French.

I enjoyed writing my thesis within the Software Composition Group (SCG) founded by Prof. Dr.
Oscar Nierstrasz. I thank him for bringing new impulse to the Institute of Applied Mathematics of
Berne. Within a short time he formed a successful international research team that is comfortable,
informative and productive to work with.

The following thanks go to the SCG group. I want to thank

� Franz for sharing the C++ student crash course with me.

� Isabelle for occasional cakes.

� Jean-Guy for the SCG basketball domination.

� Juan for his marvelous presentation of FLO/C during the lecture.

� Markus for fueling the discussions at the group meetings.

� Matthias for teaching me how to juggle.

� Patrick for being "on my side".

� Rob for sharing cokes with me.

� Sander for visiting the derniere of a fine musical ensemble.

� Serge the SMALLTALK guru for finally having told me about the connection between dictionar-
ies andhash.

� Tamar for English support.

Furthermore I want to thank my fellow students:

� Daniel for uplifting discussions on the structure of scientific revolutions.

� Tob for playing the ace of spades (when I got the queen).

A special thanks goes to my family for their endurance in supporting me.

9

10 CONTENTS

Chapter 1

Introduction

1.1 Overview

The trend to interconnect software systems increased the pressure on object oriented (OO) program-
ming languages toincludeconcurrency control features. Thread packages that are not integrated into
programming languages tend to be hard to use [Lea97]. Thus for example JAVA , a recent OO program-
ming language introduces a small and consistent set of object synchronization primitives. However,
Bloom [Blo79] already pointed out the need offactoring outsynchronization code (in non OO con-
text). This was also reflected in OO synchronization approaches like the generic synchronization
policies [McH94] or the D-language [LK97]. Such approaches feature separation of concerns and
high level synchronization abstractions instead of built-in primitives. However their declarations af-
fect only single class declarations therefore they do not cover the field ofmulti-objectsynchronization,
where different kind of objects share resources concurrently. The management of such dependencies
between otherwise independent objects is calledcoordination. Our FLO/C model is situated in this
context: we want to introduce an OO model that factors out high-level coordination abstractions. Our
model is situated in the same area as the synchronizers of Agha and Frølund [FA93]. We both use
rules to enforce interaction behavior. However, in FLO/C the rules are supported by explicit coordi-
nator objects that allow us to achieverun-time flexibilitylike the dynamic exchange of coordination
policies.

Instantiating coordination in specialized objects has a tradition in the domain ofsoftware archi-
tecture design. There the distinction betweencomponentsandconnectorswas introduced to address
the need of decouplingdomain specific designfrom collaboration design[SG96]. Architectural con-
nectors represent design decisions concerning the collaboration of software components. Allen and
Garlan [AG94] present a specification language for connectors, which has descriptive andanalytical
properties such as component substitutability or dead-lock detection. Unfortunately, when such valid
designs are implemented in a traditional programming language, design decisions concerning object
interactions get lost because languages have no appropriate construct for connectors.

A similar problem occurs, when high level coordination abstractions such as transactions are
implemented in languages which feature only low level synchronization constructs as in JAVA . The
domain specific code is interleaved with synchronization code, which is hard to validate, to document,
and sometimes impossible to reuse (inheritance anomaly [MA93]). Furthermore, the composition of
software pieces that are coordinated at a low level of abstraction can lead to hard predictable liveness
problems like the nested monitor problem.

In this masters thesis we introduce the FLO/C model which takes up the software architecture

11

12 CHAPTER 1. INTRODUCTION

design idea of separating components from connectors and applies the idea to the implementation
level of concurrent object-oriented programming. Our explicit connectors [DBFP95]implementthe
interaction of components, therefore they are the ideal location formulti-object coordinationcode.
A connectorrestricts the freedom of the coordinated objects by controlling message passing. The
control done by a connector depends on the state and the history of the coordination. A connector
specifies constraints on themethod execution order. FLO/C’s connectors areabstractlydefined, they
only rely on the interfaces of the objects. Thus, they are areindependentfrom the implementation
of the coordinated components. This allows clearseparation of concerns: A connector defines coor-
dination between a group of components which it refers to by theroles they play in the interaction.
Components only define their proper functionality therefore they are independent of other compo-
nents’ interaction behavior. The components in FLO/C encapsulate the concurrency of activities in
an object oriented way by encapsulating their own threads. FLO/C’s components are represented as
active objects similar to those in Briot’s ACTALK [Bri89], which use asynchronous message passing.

Thus, FLO/C takes up ideas of architectural software design to contribute the following achieve-
ments to the area of object oriented concurrent programming:

� The FLO/C model maps architectural connectors to run-time entities, thus preserving the design
at the implementation level.

� The FLO/C model offers constructs to declare high-level coordination.

– High-level coordination patterns such as transactions, multi-object constraints and syn-
chronized joint actions are feasible without expert knowledge. Instead of keywords hid-
den and sprayed all over the code FLO/C instantiates run-time entities that handle the
component interactions.

– Coordination declarations can be added incrementally with a minimal risk of liveness
problems.

– Coordination code is not wired to a components’ class declaration.

– A group of components can be coordinated as one.

– Coordinated components can be composed to a component again, thus supporting object
hierarchies.

� The separation of concerns in FLO/C supports the reuse, maintenance and evolution of the
coordinated- as well as of the coordination code.

� Since coordination code is encapsulated in connector objects, FLO/C features run-time flexi-
bilities like dynamic exchange of coordination policies.

In part II of the thesis we present a formal model of FLO/C as a basis to analyze the coordi-
nation of a given FLO/C program. The formalism also provides requirements for a FLO/C model
implementation and is used to prove liveness properties of FLO/C systems.

FLO/C has been implemented in NEOCLASSTALK a new SMALLTALK implementation provid-
ing explicit meta-classes [Riv96a]. We implemented eleven coordination examples (six taken from
the coordination literature) to evaluate the model. All the material presented in this thesis is freely
available at the author’s web pages.http://www.iam.unibe.ch/˜mguenter/ .

1.2. STRUCTURE OF THE THESIS 13

1.2 Structure of the Thesis

The next chapter will explain why the current support for multi-object coordination in OO languages
is insufficient. It will also define what we understand by the term "coordination" and to which aspects
we will constrain our work. The rest of the work is divided in four parts. Part I describes the model,
part II takes a formal approach, part III describes the implementation of the model and its validation
by coordination examples and part IV concludes.

The following list summarizes the context of each part and chapter.

Part I - the FLO/ C model This part describes the FLO/C model from an object-oriented point of
view.

3 Here we justify why the FLO/C model distinguishes two kind of objects: the components
and the connectors.

4 After the conceptual view we introduce the behavior of FLO/C mainly focusing on connec-
tors, because they are the entities that implement coordination.

5 This chapter is dedicated to an example where FLO/C is used to coordinate objects that simu-
late the concurrent activities at a gas station. The example will illustrate how FLO/C uses
active objects to implement domain specific behavior and connectors to model interaction
as well as coordination. A connector is added to solve the race-condition inherent in the
example and described in [NACO97].

6 Here we will present how encapsulatedobject hierarchiescan be declared in the FLO/C

model.

7 limitations of the model, like its push-style preference are discussed.

Part II - FLO/ C’s formal base model Here we formally specify FLO/C’s active object coordina-
tion.

8 We formally describe how FLO/C rules guide the interactions between concurrently running
objects. We demonstrate how a given FLO/C program’s coordination can be analyzed.

9 This chapter contains proofs about execution properties of a system that is constrained with
different types of FLO/C rules. Furthermore, it proves properties of the FLO/C model as
such e.g. the impossibility of deadlocks.

Part III - implementations Here we explain the implementation of the FLO/C model using SMALL -
TALK .

10 This chapter gives an overview of the SMALLTALK language extensions, and the meta pro-
gramming techniques used to implement FLO/C.

11 Here we present the architecture of the implementation kernel.

12 We present two visual tools that support the programming in FLO/C.

13 This chapter describes our various efforts to optimize the performance of the FLO/C imple-
mentation.

14 An important part of our implementation work consists of a collection of FLO/C solutions
to different coordination problem examples. We present this collection here.

Part IV - finale This part summarizes the achievements of FLO/C.

14 CHAPTER 1. INTRODUCTION

15 Here we compare our approach to recent approaches in similar areas.

16 The achievements are summarized and the future development of FLO/C towards dis-
tributed systems is sketched.

1.3 How to Read the Thesis

The thesis addresses most of the authors work when developing FLO/C. Therefore, it contains a lot
of material that might distract the reader from the core of the FLO/C model. Here is our suggestion
for a short-cut through the thesis.

Finding the core of the thesis. The chapters that immediately follow are strongly recommended.
First they treat the context, constraints and goals of the model and then they describe it. From section
4.4.4 on the rest of chapter 4 describes features less central to the model therefore these sections can be
skipped. When reading chapter 4 we recommend to peek into the example presentation of chapter 5.
The chapter 6 is about the object hierarchies of FLO/C and should be read but the limitations (chapter
7) at the "far end" of the model can be omitted. We recommend to skip the formal specification of
FLO/C in part II but to read its summary (section 9.4). Then the implementation part III can be
skipped except from the beginning and the last section of chapter 14 which describe and evaluate ten
implemented coordination examples. Finally the conclusion of section 16 is crucial. Here is a short
notation describing where the core of FLO/C is found:
([2 - 4.4.3] , [6 - 7[, 9.4 , [14 - 14.1[, 14.11 , 16)

Chapter 2

Multi-Object Coordination Support

Malone and Crowston suggested the following definition for coordination:

Coordination is managingdependenciesbetweenactivities[MC94].

In this chapter we discuss why coordination support in traditional object oriented coordination lan-
guage is insufficient (section 2.1). In section 2.2 we list the constraints we put on our model to keep
it simple for implementation but general enough for extensions. We restrict FLO/C to use a simple
model ofactive objects(section 2.2.1). Furthermore, FLO/C does not cover the complete area of
coordination described by the above definition. Section 2.2.2 refines which coordination tasks FLO/C

addresses. Then section 2.2.3 discusses the constraints coming from FLO/C’s simple rule semantics
using the meta-level. Finally in section 2.3 the coordination goals of the FLO/C model are summa-
rized, and further extensions discussed.

2.1 Problems with Traditional Coordination Approaches

Traditional OOCP languages offer little support for the synchronization of concurrent objects [FA93].
JAVA for example, which is a recent OO language that was designed for use in concurrent settings,
models coordination at a very low level of abstraction. In JAVA Threadsmodel concurrent activities.
They communicate through unprotected, shared memory. Dependency managing constructs are the
synchronized keyword, to protect data, and the messagesnotifyAll(), wait() to synchronize activities
on activity raised events. While the set of constructs is in theory sufficient to solve any coordination
problem, in practise only experts are able to handle non trivial tasks. The lack of higher level coor-
dination support is documented by the fact that JAVA users tend to rely on design pattern collections
like Doug Lea’s "Concurrent Programming in Java" book [Lea97] to solve common coordination
problems. But even with such pattern based approaches, protocols used for establishing the coordi-
nation between different groups of activities are hard-coded into parts of the activities, resulting in
poor abstraction facilities like composition and evolution of the coordination policies [LK97]. When
discussingatomic transactionsinvolving different kinds of objects, Lea says:

One of the principal disadvantages of transactional techniques is that conformance to a
transaction protocol impacts themethod signaturesandimplementationsof every partic-
ipant class. This often spreads in turn through most classes in an entire application or
framework. Worse, it is often troublesome at best to make a set of classes using one
set of standardized transaction interfaces to work with those using another. And because

15

16 CHAPTER 2. MULTI-OBJECT COORDINATION SUPPORT

"transactionality" tends to infiltrate the details of ground-level code, these problems resist
smoothing over via Adapters and the like [Lea97]. (p.259)

Later on in the same book, another multi-object synchronization abstraction is discussed. Thesyn-
chronized joint actionsare guarded methods that involve conditions among multiple participating
objects. In respect to the presented JAVA solution Lea says:

The combination of direct coupling and the need to exploit any available constraints to
avoid deadlock accounts for the high context dependence of many joint action designs.
This in turn can lead to classes with so much special purpose codethat they must be
marked asfinal [Lea97]. (p.284)

We can conclude that without explicit coordination support, complex concurrent designs can crip-
ple basic object oriented features as object interfaces (quote 1) and inheritance (quote 2).

We categorize the main problems using traditional approaches for coordination, and give a hint
how FLO/C will address them.

� Absence of abstraction.As we just showed, object oriented languages need high-level coor-
dination abstractions. There must be means to declaratively specify coordination. FLO/C uses
rules to declare per-object coordination.

� No separation of concerns.Expressing coordination abstraction is difficult because the code
that manages the coordination is closely tied to the implementation of the coordinated objects.
This hampers the maintenance as well as the reuse of the code. FLO/C introducesconnectors
as run-time entities that are independent of the object they control. By reusing components
separately of all synchronization, connectors can even avoid the infamous inheritance anomaly
[MA93].

� Do it yourself. This problem refers to the fact that the programmer has to manually implement
all the mechanisms that will support the coordination. This task is particularly difficult and
error-prone. Doing so the programmer should first focus on the tools and mechanisms instead of
just expressing his wished coordination. With its commitment to architectural software design
FLO/C offers means to directly map a valid design onto code.

� Lack of flexibility. When coordination is not explicitly and abstractly expressed, it is difficult
to modify and to customize the coordination policies. Furthermore, if the coordination is per-
class, objects cannot change their coordination policy at run-time. FLO/C’s connectors can
coordinate dynamically changing groups of active objects.

� Lack of composability. Composing different coordination policies is difficult without changing
the code of the coordinated objects. Furthermore the composition of already synchronized
components can lead to liveness problems (nested monitors, deadlocks). FLO/C is a model with
minimal liveness problems as shown in section 8. It supports the composition of coordination
policies (connectors) as well as the composition of components.

2.2 Constraints and Goals

The next three subsections discuss the focus of FLO/C in the wide area of coordination covered by the
definition of Malone and Crowston. We argue why and how we model "activities" and "coordination",
and what kind of rules we use to coordinate such activities.

2.2. CONSTRAINTS AND GOALS 17

2.2.1 Modeling Activities as Active Objects

Usually, the activities are modeled as threads or processes. Since these concepts cross object borders,
several different approaches mapped threads to objects, thus enforcing object encapsulation: Actors
[Agh86], ACTALK [Bri89] and more recently ATOM [Pap96], CodA [McA95] allow the definition of
activity enhanced objects, so calledactive objectsthat possess their own thread(s) and communicate
asynchronously.

Because ACTALK has been designated to be a minimal open testbed for active objects [Bri89], we
have chosen a variant of its active object notion to model an activity.

In ACTALK, an active object consists of abehavior object, anactivity objectand aqueue. The
behavior object is a normal object, encoding a domain specific behavior. It is the logical target of
messages coming from other active objects and the sender of new messages. But all messages to the
behavior object are redirected to its queue (asynchronism). The activity object running in its own
thread accesses the queue. It decides what messages should be executed (what method of the behavior
object should be called). The activity object is responsible for intra-object synchronization. It is the
only object to access the behavior object in a synchronous way.

In our approach the activity does not fork new threads. Therefore, the active object does not have
intra-object concurrency. This model directly maps the coordination of activities to coordination of
active objects. Thus,a FLO/C system features as many concurrent activities as it contains active
objects. Not to have intra-object concurrency is not a severe limitation, because FLO/C offers a way
to compose active objects into a composite object that behaves like an active object again (see section
6). Such an object features intra-object concurrency, since it contains several active objects.

Our active objects differ from the ACTALK model in their initialization and termination. At instan-
tiation time, an object is still passive (no own thread) until it receives an explicit activation message.
Once activated it is possible to gracefully terminate an active object.

2.2.2 Coordination Goals

According to Carriero and Gelernter [CG90], we can build a complete programming model out of two
pieces - the computational model and the coordination model. FLO/C uses active objects (respec-
tively their methods) to express computation and connectors to implement coordination. Carriero and
Gelernter state that a coordination language must provide the "glue" to bind separate active pieces into
software systems. Such "glue" must allow these independent pieces tocommunicateandsynchronize
with each other. For the multi-object coordination of FLO/C this includes the following tasks:

� Communication. Connectors must provide ways for active objects to communicate with each
other or eventually withgroupsof other active objects (e.g. multi-casting).

� Synchronization. There are two tasks here. One task is themutual exclusionof object groups,
the other theconditional synchronization.The problem is that the conditions might depend on
the state of more than one active object.

From the point of view of a single active object, it can accept requests for computation, check if it
is in the right state and then compute, thereby changing the state as shown in figure 2.1. Furthermore,
upon failure of the state checks, a request can bedenied(balking guard), orblockedin order to be
tried again later1.

1The retry-policy is a design dimension itself.

18 CHAPTER 2. MULTI-OBJECT COORDINATION SUPPORT

State’

Computation

State

Condition

Figure 2.1: A single object’s conditional state change.

Generalized to groups of objects, the state of the group is defined by the states of its objects. A
group of objects can accept requests according to its global state. Therefore, guards on several objects
must succeed, in order for several computations to lead to a consistent global state again (see figure
2.2). State transitions can bepushedor pulled. A push style request pushes the next computations
in order to render the object group consistent again. A pull style request pulls the computations that
must be accomplished before in order to reach a consistent group state. We said that according to
Malone and Crowston coordination is managing dependencies between activities. Note that the order
of state transitions and the guards reflect such dependencies. A single computationdependson other
computations and on different objects’ (guards’) states.

Inconsistent group state

Synchronized multi-object joint actions

Consistent group state 2Consistent group state 1

StateB1StateA1 StateA2 StateB1 StateA2 StateB2

[Multi-object constraints]

[Constraints]
ComputationB

[Constraints]

ComputationA

Figure 2.2: Multiple object’s conditional state change.

We call this abstractionsynchronized multi-object joint actions, or simply joint actions. We can
derive the following coordination requirements for the abstraction:

� In order to stay consistent, the group must be access protected when evaluating the guards.

� The group must be access protected when executing state changing computations.

� There must be ways totemporary order computation, since intermediate computations could
rely on other computations’ results or object states.

FLO/C shall provide constructs to easily compose such multi-object joint actions, which we be-
lieve to be powerful enough to solve any coordination problem in this area. When we compare to
the coordination definition of Carriero and Gelernter, the multi-object joint actions can be used to
achieve their coordination tasksmutual exclusionandconditional synchronization.Conditional syn-
chronization is already reflected by the guards for the state transition. Mutual exclusion of a resource
can be modeled as object groups, each containing the resource, and each accessing the resource by
multi-object joint actions. Since we said that such actions protect the group from third-party access,
figure 2.3 shows that mutual exclusion is for free.

2.2. CONSTRAINTS AND GOALS 19

ResourceObject1 Object2 Resource’Object1’ Object2

Joint actions on Object1 and on the Resource

Figure 2.3: Mutual exclusion of two objects on a resource.

Multi-object joint actions Communication

aspects styles aspects
guards balking transition request

blocking data-flow
computation ordering push multi-casts

pull

access protected asynchronous

Figure 2.4: Coordination abstractions.

Hereobject1 exclusively computes on the resource which is in the same group, excludingobject2
from accessing the resource.

Therefore, according to the definitions of Carriero and Gelernter the multi-object joint actions
abstraction will suffice to express multi-object coordination.

Note that single-object synchronization is just a special case of the abstraction, where the group
only contains one object. Note furthermore that multi-object joint actions can be used to model
pessimistic transactions: Guards check if all participants are in a proper state or ask them directly
if they can commit to a certain transaction. Then protected computation on different objects do the
commitment.

FLO/C provides ways to specify such joint-actions plus a low level asynchronous communica-
tion mechanism to offer the possibility to program light-weight solutions. Table 2.4 summarizes the
coordination abstractions addressed in FLO/C.

However, the two mechanisms do not cover all possible "dependencies" covered by the Malone
and Crowston’s definition of coordination. The FLO/C model does not address:

� Optimistic transactions. FLO/C does not offer mechanisms to automatically preserve domain
specific object states, therefore it cannot performroll-backson executed computations.

� Low-level, close to the machine responsibilities.Real-time support, or conversion of language
specific data-formats (usability dependencies) are not supported.

� Real Distribution. Currently, FLO/C does not feature the physical distribution of active ob-
jects, although the model is designed for such an extension, which we consider future work.

20 CHAPTER 2. MULTI-OBJECT COORDINATION SUPPORT

2.2.3 Constraints of the Rule Based Approach.

FLO/C achieves coordination of components by rules over their message passing and message execu-
tion. Connectors control the message passing of their components and ensure that a set of rules holds.
The schema of the control process is simple. Before a component is about to execute, the connec-
tor checks, if this is consistent with the rules. The connector can inhibit the execution, trigger other
executions and propagate other messages. This connector behavior can be achieved by changing the
meta-object protocol for message passing [Duc97a]. FLO/C thus uses the constructs of the base object
model, changing only the message passing protocol. Real-time features are therefore only available
if they are supported by the base model. On the other hand, FLO/C can be put on any OO language
with an open meta- object protocol like Open C++ [CM93], Meta-Java [Gol97], Clos [KdRB91] and
NEOCLASSTALK (SMALLTALK) [Riv96b].

2.3 Coordination Goals and Further Extensions.

FLO/C is an object oriented model for multi-object coordination. It eliminates fundamental problems
(nested monitor problem, inheritance problem) that occur when manually coding high-level coordina-
tion abstractions, such as transactions and joint actions. It does so by factoring out coordination and
interaction code as stand-alone objects. FLO/C is a highly dynamic run-time object-oriented model
using one powerful coordination abstraction and allows composition and encapsulation of component
groups in a transparent way. While we constrain FLO/C’s collaboration support to collaboration of
concurrent threads written in a single language, we believe that the model can be used as a basis for
extensions towards real distributed components implemented in different languages as discussed in
section 16.1.

As the next section will show, FLO/C enables the developer to preserve design decisions in the
implementation, because it maps to the component/connector view of software architecture design.

Part I

The Model

21

Chapter 3

The Paradigms of the FLO/C Model

In software architecture design, Allen and Garlan [AG94] differentiate between components and con-
nectors. Each piece of software carries implicit expectations how to interact with it. Architectural
connectors offer the possibility to factor out these constraints and reason about them.

In the area of parallel programming Carriero and Gelernter [CG90] differentiate between com-
putation and coordination. Furthermore, in concurrent programming Bloom [Blo79] pointed out the
need to factor out synchronization code.

The FLO/C modelunifiesthese concepts. Therefore connectorsimplement all interaction between
the components, thereby coordinating them. Synchronization code is contained solely in connectors.

The unification of the concepts is possible because the distinction between interaction and coor-
dination is a fuzzy one. Note that if a designer thinks to know the difference and wishes the further
separation of pure interaction from coordination code, then the simple collaboration protocol of con-
nectors allow him/her to use separate connectors for each category.

In this section, we present FLO/C’s concept of components and connectors. We will mainly focus
on connectors, because their responsibility for interaction includes thecoordinationof the compo-
nents.

3.1 Components and Connectors

3.1.1 Components

FLO/C components are responsible for modelingdomain specificentities. Unlike for example com-
ponents of open coordination component frameworks [CTN98]no FLO/C component is concerned
about its coordination with others. Since FLO/C is object-oriented, its component model is based
on anactive objectmodel [FA93, Bri89] (see section 2.2.1), which on its turn is based on an object
model. A component is an active object or a group of components that is composed by connectors.
Such composite groups must provide an interface like the objects of the base object model1. In section
6 we will explain FLO/C’s concept of component hierarchies.

Since connectors are responsible for the interaction between components, the components should
keepno referencesto each other. Only if this requirement holds, the connectors can make the indi-
vidual interaction constraints transparent. Components are considered as complete and stand-alone
units that are separated from each other and run in different threads. However, components also

1In our implementation using SMALLTALK , the interface specification is only a set of selectors.

23

24 CHAPTER 3. THE PARADIGMS OF THEFLO/C MODEL

have responsibilities, they model domain entities by carrying their functionality and data. This re-
sponsibility can be delegated to passive helper objects of the base object model. Since there is no
intra-object concurrency, these helper objects need no synchronization, the communication between
an active object and its passive helpers is synchronous. In order to keep consistency, the helper objects
must be contained by the component, so that the outside world can only interact with them through
the component. According to Lea [Lea97](p.44) such structural isolation of helper objects avoids
synchronization problems and is a style often seen in traditional concurrent programming. Note that
the object model of FLO/C is hybrid; it contains active and passive objects. One advantage is that a
FLO/C program can interact with any object of the base object language.

3.1.2 Connectors: an Overview

The understanding of FLO/C’s connectors is essential to this thesis, since they encapsulate coordina-
tion. Therefore, their description requires its own chapters (section 3.2 and the following). FLO/C’s
connectors are specialized active objects that are responsible for theinteraction between the other
components. But they do not only offer communication channels for components. Connectors rather
enforceinteractions between some components. Since FLO/C’s connectors are activeobjects, they
can be manipulated at run-time, therefore we classify them asexplicit connectors. Connectorsimple-
mentdesign decisions concerning the interaction of components.

3.1.3 Separation of Concerns between Connectors and Components.

On one hand different recent approaches of coordination [LK97][McH94] acknowledge the fact that
separation of concerns (coordination vs. domain specific behavior) improves the components reusabil-
ity. In object oriented programming on the other hand the law of demeter [LH89] was introduced to
improve reusability and software evolution. The law restricts method calls in methods. A method
should only call methods ofself, of its argument objects or methods of objects that were created by
the method itself.

In the FLO/C model we go even further and demand that the components at no point in time keep
references to each other. Therefore, they cannot send messages to each other but only toself and to
helpers that must be private and passive. Thus no component is "polluted" by assumptions on how
it must coordinate with other independent software pieces. It contains only its domain functionality,
using close helpers. A component can be used to collaborate in another environments by attaching it
to different connectors. We claim that our extreme version of the law of demeter will ease reuse and
code evolution even more than the original one.

The reader may wonder how components may coordinate when they cannot communicate. Con-
nectors are the answer. They implement the components’ interactions by controlling the components
internal activities and coordinating them.

An example. To illustrate the separation of concerns between components and connectors, we in-
formally describe the example that we will present in section 5.

A gas station has several pumps where customers can pump fuel. To do so, a customer decides to
pay an amount of money to the cashier. Only then can the customer pump fuel. Customers, cashier
and pumps are modeled as active objects, because they represent domain entities.

Customers interact with the cashier to pay for fuel, and they interact with pumps to get fuel,
while the cashier interacts with the pumps to prepare them for pumping. Moreover, as discussed in
[NACO97] race conditions between customers can occur: A fast customer can pump the fuel that

3.2. EXPLICIT CONNECTORS 25

another one payed for. In section 5 we model the various interactions and the race prevention by two
specialized connectors.

While the customers are responsible for their proper behavior (when to pump, how much to pay),
the connectors enforce the interaction policies (correct amount of fuel and race regulation). Therefore,
e.g. the customer is not polluted by assumptions about cashiers or pumps.

3.2 Explicit Connectors

After this intuitive view of connectors, we focus on the specific properties of explicit FLO/C connec-
tors, mainly that: (1) a connector refers to the components of the interaction, called itsparticipants, by
rolesof the interaction theme2, and (2) a connector controls its participants by followinginteraction
rulesover the message passing.

3.2.1 Static Properties

A connector implements an interaction theme. The components that are involved in this theme are the
connectorsparticipants. The participants playroles in the theme. The connector description refers to
the participants by means of the roles they play. A group of components can play one role, while one
component can play different roles in the same connector. Furthermore, a component can participate
in different connectors. Since we model connectors as active objects their description is located in a
class.

Figure 3.1 illustrates a simplified arrangement of components and connectors in the gas station
example. APaymentConnector instance connects twoCarDriver and aCashier instance in order
to implement the payment interaction between customers and a cashier.

Susan

Jack

John

aPaymentConnector

roles:

customer 1..n
cashier 1..m

rules:

customer pay implies ...

PaymentConnector

customer

customer

CarDriver Cashier

cashier

Figure 3.1: A system snapshot of a connector and its components.

3.2.2 Dynamic Properties

Connectors in FLO/C are user-defined active objects so they are instantiated and destroyed dynami-
cally. They are dynamically attached to active objects, or detached from connected ones. A connector

2A single connector can implement several interaction themes, but it is better style to use one connector per interaction
theme.

26 CHAPTER 3. THE PARADIGMS OF THEFLO/C MODEL

is attached to a component by association of the component with one of the roles defined in the con-
nector. A connector is independent of its participants, and the participants remain unaware of the
connector.

Connector Lifetime. After its definition a connector passes by three stages: (1) instantiated, (2)
activated and (3) terminated.

1. An instantiated connector can be attached to active objects, but it does not yet influence them.
When the connector has at least one participant per role, it can beactivated.

2. When activated a FLO/C connector enforces the interaction behavior on its participants. There-
fore, it will activate3 its participants if they are still passive (see section 2.2.1) and itself. While
activated, the connector can add (and activate) or remove participantsdynamically. For each
new participant, the activated connector can run a user defined initialization script.

3. There are several ways to terminate a connector. When participants are detached, it can happen
that there are no more players of a particular role. This causes the connector to terminate,
in order to prevent inconsistency. On the other hand a connector can explicitly be caused to
terminate, allowing two options. Either the connector also terminates all its participants or it
leaves them active.

Note that during all the stages, connectors can refuse to attach participants for different reasons
(e.g. participant is missing proper interface to play its role, participant is not an active object).

Connector Behavior. In order to implement an interaction pattern (including coordination), the
connector intercepts the internal messages of its participants (reactive), and it processes its own ones
(proactive in the sense of CLF rules [AHM96]). It decides, if methods of the participants (and which
ones) should be invoked. The basis for decisions is a connector specificset of rulesand the history of
the interactions.

3.2.3 A First Example of a Connector Declaration

The definition4 of the connector presented in figure 3.1 is the following one.

(1) Connector subclass: #PaymentConnector;
(2) withRoles: ’customer cashier’;
(3) withBehavior: ’
(4) customer payment: amount. implies cashier receiveCash: amount. endRule’

A connector definition extends the SMALLTALK class definition with connector specific informa-
tion (lines 2 to 4). Line 2 defines the roles of the connector, herecustomer andcashier. Lines
3 to 4 define the behavior. Note that this really simple connector defines only a single interaction
rule. It specifies how to deliver money from the customers to the cashier. The example of section 5
will show connectors that implement more complex types of interactions. Furthermore, in section 14
eleven coordination problems are implemented in FLO/C. The examples document the division of
responsibilities between connectors and components.

3Activate = provide the object with a thread and start message redirection to its message queue.
4For now, to ease the understanding, we slightly changed the syntax of the connector definition. In section 14 when we

have presented the concept of explicit meta-classes we will use the syntax that is also used in our implementation.

3.2. EXPLICIT CONNECTORS 27

In this chapter we outlined why and how FLO/C enforces a strong separation of concerns. FLO/C

integrates the separation concept of architectural software design and the one of concurrent program-
ming in a single paradigm: The separation between (hybrid) stand-alone active objects and explicit
connectors.

The next chapter will show how the user can specify a connector’s behavior, and how the behavior
collaborates with the behavior of other connectors.

28 CHAPTER 3. THE PARADIGMS OF THEFLO/C MODEL

Chapter 4

Connector Behavior

A connector coordinates the interaction between its participants. Like many other coordination ap-
proaches based on rules (CLF [AHM96], Coordination Policies [MU97] and Synchronizers [FA93]),
FLO/C usesinteraction rules. Rules on message sending and dispatching yield the expressive power
needed for coordination tasks. The advantage of rules are their high level of abstraction, their incre-
mentability through composition and the ability to reason about them.

In section 3.2 we said that the behavior of a connector is described in its class by user-encoded
interaction ruleson message passing. First we will introduce the syntax of the rules and then we will
present the semantics of the rules and how they can enforce coordination.

4.1 Syntax and Elementary Semantics of Interaction Rules

As shown by the following syntax, a rule is composed by aprecondition, an operator and conse-
quences. A preconditionidentifies which message should be intercepted. A message consists of a
role that refers to a receiver of the message, aselector, andcalling arguments.

When a message sent to a participant is intercepted by the connector1, it handles theconsequences.
They consist of a list of messages. Roles optionally use aspecificatorfor the management of object
groups (see 4.4).

Rule ::= Precondition Operator Consequences
Precondition ::= Message
Consequences::= Message+ endRule
Message ::= RoleSelector Args.
Role ::= Rolenamej Rolename_select_Specificatorj

Rolename_select_Specificator_as_Rolename
Operator ::= impliesLater j implies j impliesBefore j

permittedIf j waitUntil

Note that roles can be seen as formal parameters for participants. Furthermore, the arguments in
the rules are formal (only symbols).

1The connector only conceptually intercepts messages, the implementation uses other entities to do so.

29

30 CHAPTER 4. CONNECTOR BEHAVIOR

Rule triggering. Rules are declared in connectors that observe their participants. Each time a par-
ticipant is about to execute a method, its connectors check if there is a rule to trigger, and if so they
handle the consequences. All rule triggering involves the following symbol replacement steps where
the formal arguments of the messages in the rules are replaced by actual arguments.

1. If a participant is about to execute a method, the connector checks, if it has a rule for this
participant for the given method selector. In order to do so, it looks up what role this participant
plays, and matches it with the role in the precondition of the rules.

2. If there is a rule that triggers, the connector evaluates the consequence messages. In order to
do so it must replace the roles and formal argument of the consequence messages. For each
consequence message it looks up what participant plays the role. Furthermore, it values the
formal arguments of the consequence messages with the actual arguments it has got from the
rule-triggering method. The operator of the rule declares, what the connector has to do with the
consequence messages (see section 4.2).

In section 3.2.3 we saw a connector with the following rule.

customer payment: amount. implies cashier receiveCash: amount. endRule’

customer payment: amount is the precondition message, wherecustomer is the role,pay-
ment: the message selector andamount the formal argument. After the operatorimplies the rule
contains one consequence message. The consequence message also uses the argumentamount.
Therefore, when a message triggers the rule then its actual argument is used for the consequence mes-
sage. For example if an objecto1 plays the rolecustomer and an objecto2 plays the rolecashier
ando1 receives the messagepayment: 10 then a consequence message will beo2 receiveCash:
10.

The operator defines the semantics of the rule, therefore understanding the operators is crucial for
the understanding of FLO/C.

4.2 The Semantics of the Operators

The precondition message of a rule is a request for an object to do some computation. The con-
sequences are messages that reflect a certain reaction to this event. According to section 2.2.3 the
reaction is limited to inhibition, method execution and reissuing requests. On the other hand, the op-
erators should offer the possibility to compose the coordination abstractions specified in section 2.2.2.
Let us recall table 2.4 that summarized the required coordination abstractions:

Multi-object joint action Communication

aspects styles aspects
guards balking transition request

blocking data-flow
computation ordering push multi-casts

pull

access protected asynchronous

Since multi-object joint actions are a high-level abstraction, FLO/C uses four operators to com-
pose them: ThepermittedIf and thewaitUntil operator express guards; thepermittedIf operator sup-
ports balking style, thewaitUntil operator supports blocking style. Theimplies and impliesBefore

4.2. THE SEMANTICS OF THE OPERATORS 31

operators enforce computational ordering; Theimplies operator supports pull style, theimpliesBe-
fore operator supports push style. All four operators protect their participants (objects of the pre-
condition message and the consequence message) from third-party access, as argued for in section
2.2.2

The low-level communication tasks are met by theimpliesLater operator that featuresasyn-
chronous consequence sending. It can be used to send request that start multi-object joint actions.
It can also carry data, but only in requests’ arguments. Multi-casting is not directly supported. It is
part of thegroup-managementof FLO/C, which is described in section 4.4.

Let us now present each of the five FLO/C operators in more detail. For each operator we factor
out what coordination aspects it addresses. A mini-example, consisting of a single rule, is intended
to give a taste of the semantics and the use of the operator. Note that these one-line examples are for
demonstration purpose only, they are not fully worked-out. Some rules are inspired by the "dining
philosopher" problem. In section 14.7 we present the complete FLO/C solution to this problem.

4.2.1 Balking Conditional Synchronization: permittedIf

ThepermittedIf operator guards the computation on one object by a condition potentially involving
another object. The consequence part of the rule is interpreted as a predicate message2 set. Upon
reception of a request matching the precondition of the rule the predicates are evaluated. If a predicate
fails (the evaluation returnsfalse), the precondition message is ignored (no computation), and an
exception message is sent to the target object of the precondition message. A more detailed view of
the exception mechanism is presented in section 4.5. As mentioned previously, when checking the
guard the participating objects (targets of the precondition and the consequence messages) are access
protected. This is obviously necessary, because neither the guard object nor the guarded object should
change between the success (evaluation totrue) of the guards and the computation of the request.
Consider the rule:

point moveTo: p. permittedIf screen isInRange: p. endRule

The example rule enforces a point to stay in the range of a screen.

4.2.2 Blocking Conditional Synchronization:waitUntil

ThewaitUntil operator enables the declaration of blocking style guards. The consequence part of the
rule is a predicate message set. Upon reception of a request matching the precondition of the rule, the
predicates are evaluated. If a predicate fails, the execution of the precondition message isdelayed. The
delaying policy is to asynchronously resend the precondition message, which is equivalent to polling.
Section 7.3 discusses this limitation. Again, the guard and the guarded object are access protected
during computation. Consider the rule:

chopstick pickedUp. waitUntil chopstick isFree. endRule

In this mini-example a chopstick can only be picked up if it has not already been picked by someone
else, which is reflected by theisFree predicate message. If the predicateisFree is false, thepickedUp
request is delayed. The guard will be checked later again, until the chopstick can be "picked". Thus,
thewaitUntil operator is not just blocking, but also polling. This has its disadvantages for liveness, as
discussed in section 8 and disadvantages performance wise as discussed in section 7.3.

2Predicate messages are expected to return a boolean value.

32 CHAPTER 4. CONNECTOR BEHAVIOR

4.2.3 Push Style Temporal Ordering of Execution:implies

The implies operator can order executions by telling what else has to be executedafter a certain
method was executed. The execution of the preconditionpushesthe execution of the consequences.
The participant objects are access protected, because we want to model multi-object joint actions,
where the computation depends on the state and computation of other objects as argued in section
2.2.2. Consider the following rule:

philosopher eat. implies chopsticks release. endRule

After a philosopher has eaten (eat was executed for a philosopher), the chopstick is released, in order
to be available for another philosophers. Note that theimplies operator makes the result of the precon-
dition message execution available for the consequence messages, thereby supporting dependencies
on computation of other objects. This is described in detail in section 4.5.

4.2.4 Pull Style Temporal Ordering of Execution: impliesBefore

The impliesBefore operator can order executions by telling what has to be executedbeforea certain
method is executed. Before the precondition message executes, the consequence messages arepulled.
Again, the participants are access protected. Consider the rule:

philosopher eat. impliesBefore chopsticks pickedUp. endRule

This example rule enforces that the chopsticks must be picked up before a philosopher can eat.
We will refer to the consequences of the ordering operatorsimplies and impliesBefore as the

sequential consequencessince they order messages into a sequence.

4.2.5 Asynchronous Communication:impliesLater

In section 2.2.2 we argued for an asynchronous communication mechanism that can request multi-
object joints and transport data. However, this would not necessarily have to be a rule operator, but
could be done in a statement from within the components. FLO/C uses a rule operator because of
two reasons: 1) FLO/C’s paradigm is to factor outall interaction between components as argued in
section 3.1.3. 2) FLO/C should be uniform therefore we will address light-weight request propaga-
tion with rules, too. A rule based asynchronous communication support, can again be push or pull
driven. TheimpliesLater operator is (its name already gives a clue) apushstyle operator. After the
execution of the precondition message, a consequence message is asynchronously sent, which can
carry data in its arguments. The data is carried from the arguments of the precondition message to the
arguments of the consequence messages by argument matching. As seen in section 4.1 the argument
matching mechanism also applies to the other operators. In section 7.2 we will explain, why pull style
asynchronous communication is not featured in FLO/C. TheimpliesLater operator is not intended to
compose a multi-object joint action. Its purpose is light-weighted communication. Therefore, it offers
no access protections. Consider the rule:

producer produced: a. impliesLater consumer consume: a. endRule

Assume that after each completion of a product, the producer stores it using the messageproduced:.
The connector containing the presented rule will intercept the message, match the arguments, and
asynchronously sendthe consume: message to the consumer. Thus, the message carries the fresh
product in the argument. Later, the consumer receives the request to consume the new product.

4.3. COLLABORATION OF CONNECTORS / FUSION OF RULES 33

4.2.6 Evaluation

The following table maps the five preceding operators to their coordination purpose.

Multi-object joint action Communication

purpose styles operator styles operator
guard balking permittedIf push impliesLater

blocking waitUntil
computation push implies
ordering pull impliesBefore

access protected asynchronous

The introduced operators allow request propagation and the declaration of the basic elements
of synchronized multi-object joint actions that trigger upon requests. As seen in section 2.2.2 this
is the coordination abstraction that we want to achieve with the FLO/C model. As shown there,
the coordination abstraction is powerful enough to model transactions, multi-object constraints and
mutual exclusion on shared resources in a straight forward way.

Up to now it is not obvious how multi-object joint actions arecomposedwith rules using these
operators. A composition is achieved by declaring several rules using guards or ordering operators on
the same objects. The rules can even be located in different connectors. The following section shows
how FLO/C composes simultaneous triggering rules at run-time, and fusions them to multi-object
joint actions in a uniform way.

4.3 Collaboration of Connectors / Fusion of Rules

This section presents how multi-object joint actions are composed upon a request for a single exe-
cution. All triggering rules and their consequences are explored and fused into one global behavior.
Figure 4.1 illustrates this process.

message

Reservation

Evaluation of guards

Execution

Release Reservation

Sending

pr
ot

ec
te

d
by

 r
es

er
va

tio
n

object
1

In
te

rc
ep

tio
n

C
ol

le
ct

in
g

Ph
as

e

sequential consequences

message

guards

asynchronous consequences

if not fail

1

Figure 4.1: A message triggering multiple rules.

The sending of a rule triggering message (request) to a connected active object leads to the inter-
ception of the message. Then the FLO/C model’s global reaction covers three phases; (1) the conse-
quence collecting phase (2) the protected execution phase and (3) the unprotected sending phase.

In theconsequence collecting phase, all the connectors attached to the active object start to col-
lect consequences. Sequential consequences3 get special treatment. Because they will be directly

3Consequences of theimplies and theimpliesBefore operator.

34 CHAPTER 4. CONNECTOR BEHAVIOR

executed,each of their messages must be checked for further consequences. Thus, the total of the
consequences of consequences of an intercepted message is collected tooneordered list of sequential
consequences4. The final list consists of three different kind of messages: the sequential ones (in-
cluding the intercepted message), their guards, and their asynchronous consequences5. Note that the
consequences can be cached instead of collected as long as the connectors do not dynamically change
(see section 13.3).

The next phase is theprotected execution phase. This is in fact the phase that executes the multi-
object joint actions. It starts with theinternal reservationof all the participants, that are target of a
guard message or a sequential consequence message (participants of the joint actions). The FLO/C

model guarantees that at any time, at least one complete reservation succeeds. During the joint-actions,
the reservation protects the participants from being accessed by other active objects.

Now the guards are evaluated. According to what type of guard failed, the triggering message
is delayed or deleted, thus the joint-actions are aborted. Ifall guards succeed, the sequential conse-
quences (the interdependent computations) are executed. Since all consequences of these executions
are already calculated, no connector needs to check the execution for consequences again. When the
execution phase is finished, the object reservations are cancelled.

At last, in theunprotected sending phase, the asynchronous consequences of all the methods, that
were previously executed, are sent asynchronously in order to trigger new multi-object joint actions.

Consistent declaration of joint actions. To declare a set of multi-object joint actions, guard rules
can be declared to ensure the right state of the object group in order to change state. A consistent way
to change the single objects in order to reach a consistent group state can be reflected by rules using
the ordering operators. Then, rules using theimpliesLater operator can trigger new multi-object joint
actions. Thus the participants of joint actions are implicitly declared by rules: (1) Each rule using
a guard or an ordering operator declares all involved object to be participants and (2) the ordering
operators connect actions to joint actions. Therefore, extending a given joint action is simply done
by using new rules that define additional guards (possibly on other objects, extending the group), or
order new computation on new objects in between the existing computation chains.

Pessimistic transactions. Pessimistic transactions are composed by ordering the commitments in
push or pull style, starting from a message that is intended to trigger the transaction. For every
execution that has a constraint, a guard rule is used. At run time, upon interception of the triggering
message FLO/C will check all the guards first, then atomically execute the transaction if the guards
were successful.

Cycles in the sequential consequences.The sequential ordering operators as well as theimplies-
Later operator can be used to declare message cycles. However, cycles in sequential consequences
would be vicious therefore they are automatically broken at run-time. Otherwise such cycles would
cause an endless collecting phase. Here the shortest possible rule declaration of a loop:
obj1 m1. implies obj1 m1. endRule Note that cycles are allowed and even useful in rules with
asynchronousconsequences.

This section gave an overview of FLO/C’s rule fusion mechanism. Many aspects (recursive
lookup of sequential consequences, the cycle breaking mechanism) were not be explained in detail

4In fact, the indirect consequences form a tree (messages to execute before, and messages to execute after a given one)
that is linearized by an in-order traversal.

5Asynchronous consequences are the consequences of rules with theimpliesLater operator.

4.4. GROUP MANAGEMENT 35

because section 8 will formally specify the semantics of the operators and the fusion of rules and
address the open questions of this section. Moreover, it will enable us to prove execution and liveness
properties of FLO/C systems.

While we have now discussed how FLO/C rules enable coordination, we have neglected how
connectors manage their components through roles. The elaborated role group management of FLO/C

is discussed in the next section.

4.4 Group Management

FLO/C connectors refer to their participants through roles. This indirection not only allows connector
definition to be independent from components, it also allows one-to-many relationships. Agroup6

of objects can play a single role known to a connector. This improves the flexibility of FLO/C con-
nectors. It allows connector definitions that are able to coordinate a dynamically changing number
of participants. Furthermore, the number of rules decreases drastically, if not every participant needs
its own role and thus its own rules. Therefore, the expressive power of FLO/C improves with what
we call itsgroup management features. We present the refined semantics for roles, concerning the
management of participant groups.

4.4.1 Role Semantics

FLO/C considers a role as representing a non-empty, ordered7 group of active objects. We will refer
to such a group as therole group.

A role can be used in two different parts of a rule: in the precondition part or in the consequence
part (see 4.1).

� In the precondition part of a rule, the role is used to determine if the rule triggers. The rule is
triggered when the target object of an intercepted messageis a memberof the role group (and
the message selectors match).

� In the consequence part, when a role is used as receiver of a message, it representsall the objects
of the group. The message ismulti-casted, i.e. applied toall members of the role group.

Note that the distinction between precondition- and consequence role is transparent if only one
participant is associated with each role. However, if a role group contains several participants, a
restriction to multi-casting limits the expressive power. Therefore, FLO/C introducesspecificatorsto
select a subset of a role group.

4.4.2 Roles in the Dining Philosopher Example

The well-known dining philosopher problem features two roles, namely philosophers and connectors.
Philosophers sit around a table and mutually exclude each other on shared chopsticks. Without role
groups each philosopher and each chopstick would have to be represented by a separate role. There-
fore, either a connector has to feature as many roles as there are philosopher and chopsticks or there
are as many connectors as there are philosophers. Both solutions lack flexibility and duplicate a lot of

6These are groups from the point of view of a connector. Do not confuse such groups with the participants of multi-object
joint actions, which are only conceptual groups.

7The order of the group reflects the temporal order of the attachment.

36 CHAPTER 4. CONNECTOR BEHAVIOR

code. With the group management of FLO/C only one connector can handle an arbitrary number of
philosophers and chopsticks. While the complete and fair FLO/C solution to the dining philosopher
problem is documented in section 14.7 we present a simplified solution here:

(1) chopstick pickedUp. waitUntil chopstick_select_REC isFree. endRule
(2) philosopher eat. impliesBefore

chopstick_select_LeftNRight_as_myChopsticks pickedUp. endRule
(3) philosopher think. impliesBefore myChopsticks putDown. endRule

Here we assume, that the philosophers default behavior is to alternate between eating and think-
ing. Furthermore the chopsticks can be notified when they are picked or released by a philosopher
(messagespickedUp andputDown). A chopstick can be asked if it is currently picked up by sending
isFree.

The presented set of rules is capable of enforcing mutual-exclusion on the chopsticks foran arbi-
trary number of participants. The rules roughly enforce the following: (1) Only one philosopher can
use a chopstick, (2) Before a philosopher eats it will pick up the chopstick to its left and the one to its
right. (3) Before a philosopher starts to think it will release the chopsticks it currently holds. In rule
one we notice the syntactical extension_select_REC to the role. Here we use a role specificator.

4.4.3 Specificators

Each role in the consequences can optionally use a specificator. When an intercepted message trig-
gers a consequence containing such a role, its specificator selects a subset of the role group, and the
consequence message is multi-casted to this subset, instead of the whole role group. A specificator
defines apolicy to select objects from the role group. It uses the intercepted message as a context. In
fact, the reified rule-triggering message is the context. It contains dynamic history information about
the multi-object joint actions it belongs to, thus supporting complex selection policies.

In guards, for example, it is often necessary to check the condition of just one certain participant.
This is what we presented in rule (1) of the dining philosopher example.

(1) chopstick pickedUp. waitUntil chopstick_select_REC isFree. endRule

Thus the rule says that a chopstick cannot be picked up, until it is free. When the message
pickedUp is intercepted forany of the chopstick objects, this rule is triggered. As there are more
than one objects playing the role of a chopstick, we need to select the chopstick that received the mes-
sagepickedUp. By using the context information, thereceiver specificatorREC selects the receiver
of the request for the messagepickedUp.

FLO/C provides the following built-in specificators:

Rolename_select_REC Selects the receiver of the intercepted call.
Rolename_select_Others Selects all players of the role, excluding the

receiver of the intercepted call.
Rolename_select_RND Selects a random player of the role.
Rolename_select_Next Selects the object of the group that is next8 to

the previously selected one. If none was ever selected yet,
it selects the first one of the group.
The successor of the last object is the first.

4.5. SPECIAL FEATURES 37

Note that as FLO/C is an open-implementation, users can define their own specificators, as long
as they only refer to the provided context information.

4.4.4 Relative Roles

In our dining philosopher example specificators should not only select appropriate chopsticks but
associatea participant with a subset of a role group, so that the association is available later. In the
example a philosopher picks two chopsticks and only releases them before (s)he starts to think. We do
not want to store the selection in a philosopher, because this is against our paradigms stated in section
3.1. It would be possible to explicitly store the selection in the connector by declaring additional
rules and connector methods to do so (see next section). However, FLO/C also offersrelative rolesas
syntactic sugar to express the association between a shared resource and its current owner.

The optional role appendix_as_relativeRoleNamecauses the specificator toassociateits particu-
lar selection with the receiver of the intercepted message, and to map the association toRelativeRole-
Name. This name can now act as arelative rolein other rules, where it is used in consequences. When
these consequences are triggered later, the receiver of thecurrently intercepted method is used to look
up the particular selection.

Our presented dining philosopher example used a relative rolemyChopsticks in rule 2 and 3.

(2) philosopher eat. impliesBefore
chopstick_select_LeftNRight_as_myChopsticks pickedUp. endRule

(3) philosopher think. impliesBefore myChopsticks putDown. endRule

Before a philosopherphilo1 eats, it picks its chopsticks that are selected by the user-defined
specificator LeftNRight. The selection is mapped to the relative role namemyChopsticks. Thus
myChopsticks is an association of a chopstick withphilo1. The second rule, triggered later, ex-
presses that before thesamephilosopher starts to think,his/herchopsticks, referred by the relative
role myChopsticks, are put down on the table.

Note that it makes no sense to use relative roles in the precondition. The use of specificators in
the precondition would also be useful but is not implemented yet. Furthermore, consequences with
relative roles should9 always trigger after their corresponding rule with the_as_nameappendix.

4.5 Special Features

In order not to confuse the reader, we factored out some special but useful features of FLO/C into this
section. It explains connector rules that refer to the connector itself, the exception mechanism and the
keywordresult for the propagation of sequential computation results.

4.5.1 Self Controlling of Connectors

The connector can use its own state or even computation to influence the behavior of its controlled
object. In fact, the connector is an active object that can bear state and operations and that controls
itself. Note that together with its operations connectors can therefore develop proactive behavior as
found in CLF [AFP96].

The connector is accessible for its own rules by the keywordconnector. The keyword is used
like any other role. If we want to introduce a connector that represents the fact that its participants

9Our implementation cannot check this because it is not statically known.

38 CHAPTER 4. CONNECTOR BEHAVIOR

are not allowed to display on a screen at a given moment (e.g. for a screen-lock, or screen saver), we
could introduce a connector with setter methodsvisibilityOn andvisibilityOff and a testing method
isVisibilityOn. The connector would carrying the rule:

object display. permittedIf connector isVisibilityOn. endRule

Then we connect the relevant visible objects to the roleobject and the connector enforces the behavior,
using its own state. Thus a connector can represent the state of the coordination in its own state and
it can host computation that belongs to the coordinated group but not to a participant of the group. A
simple example for such code isconversionof values between participants.

4.5.2 FLO/C’s Additional Exception Mechanism

The base model’s built-in exception mechanism cannot express exceptions that are raised by failing
guards. Therefore, in FLO/C each active object understands the messagesmethodWasForbidden:
and methodWasDelayed:. When apermittedIf guard fails, the target object of the joint actions
request receives themethodWasForbidden: message with the method selector of the forbidden
message as argument. If awaitUntil guard fails, themethodWasDelayed: is sent. Note that the
exception message is not raised in the sender of the request. Since all requests are sent asynchronously
none of the senders expects a return value. Instead it is the starting point of the joint actions that is
notified since it is here that a request was refused. It is also here that any exception handling takes
place.

The previous example could be extended to register each illegal display request.

object display. permittedIf connector isVisibilityOn. endRule
object methodWasForbidden: m. implies connector registerIllegalRequest: m. endRule

When sendingdisplay to an object that is controlled by the connector which currently enforces that
the visibility be turned off, the guard will fail, and the object will not display. InsteadmethodWas-
Forbidden: with the selector #display as argument is sent to the object that received the display
request. Now this triggers the second rule, which calls a method of the connector that can registers
the forbidden request.

Note that the exception mechanism can be used to break livelocks as we will demonstrate in
section 7.3

4.5.3 Propagation of Computation Results

In the multi-object joint actions abstraction, computation may depend on other computations. In
FLO/C style programming, method’s return values are usually transmitted via an indirection: At the
end of a calculation, and object writes the result using an accessor method. This accessor method then
triggers a rule, and the result is transfered via the arguments (see section 4.1), thus reaching the next
object about to compute. In section 7.4 we will discuss this FLO/C idiom for asynchronous propa-
gation. In this section we will present the keywordresult which eases the propagation of results of
sequentialpush-style computations. For thepull-style of execution ordering which does not offer. the
result keyword, the idiom is quite ugly In pull style the last calculation is triggered first, pulling the
results of its predecessors. For example a computationcomp2 ono2 could be triggered, implying first
a computationcomp1 ono1, this computation would write its result using an accessor messageres:,
which in turn would trigger a rule that causes, the result to be used in the computationcomp1with:

4.6. CATEGORIES FOR THE EXPRESSIVE POWER OF CONNECTORS 39

arg. The following rules would implement this pull-style ordering:

o2 comp2. impliesBefore o1 comp1. endRule
o1 res: r. implies o2 comp2With: r. endRule

Now in push style, FLO/C offers the convenient keywordresult, to propagate the method results.
The keywordresult can be used in the consequences, instead of an argument of a message. When
the consequences start to execute, FLO/C will value the keyword argument with the result from the
execution of the precondition (see section 13.3.2). This simplifies the previous example to the push-
style rule:

o1 comp1. implies o2 comp2With: result. endRule

In the section 7.2 we will discuss why the keyword is not available for pull-style ordering, and why
push-style is generally better supported in FLO/C.

4.6 Categories for the Expressive Power of Connectors

We presented the coordination support and group management features plus the special extensions of
FLO/C showed in the previous section. Now we want to classify these features according to their
expressive power.

Since FLO/C relies on a computationally complete object model, connectors need only little ex-
pressive power to bridge the gap10 between components in order to render FLO/C computationally
complete again. TheimpliesLater operator that models asynchronous communication between com-
ponents will provide such a bridge. Therefore, this section we are interested in completeness of the
model, but in analyzing, how the other FLO/C features raise the abstraction level, and increase the
expressive power of a connector. As we will see in section 8 thewaitUntil operator differs from the
others, because it can cause liveness-problems, thus increasing the expressive power of a connector.

As seen in section 4.4 the use of role groups also increases the expressive power of a connector.
Furthermore, a connector can refer to its own state. At an even higher abstraction level, a connector
can beprogrammed, using its knowledge about its participant, and history information it possibly
saved. For example FLO/C’s fair solution to the "dining philosopher" problem (see section 14.7)
logs the time, when each philosopher has eaten the last time and uses this information to hinder
greedy philosophers. At the highest level of abstraction a connector uses the dynamics of the FLO/C

model. It dynamically creates11 connectors on the fly in order to control subtasks. An example of
such a technique is illustrated in the "sleeping barbers" example of section 14.10. Note however that
connector programming removes interaction responsibilities from rules, thus hiding some interaction
behavior inside of its methods. But this conflicts with the paradigm of using a clear policy of rule
fusion in order to keep transparent the global behavior of a FLO/C system.

We can split the connector features in three orthogonal categories: involved operators, role usage
and usage of the keywordconnector (self usage). The following table shows the resulting categories
with each entry being more expressive than the one before:

10Components should not keep references to each other as stated in section 3.
11This is done in a method of the connector, thus it involves connector programming.

40 CHAPTER 4. CONNECTOR BEHAVIOR

involved operators role usage self usage
only impliesLater single objects only not usingconnector
no waitUntil group of objects using connector’s state
all operators using specificators using connector programming

using relative roles dynamically install new
connectors

Now we have completed the presentation of the FLO/C model. The next chapter will present the
model in its application on an example.

Chapter 5

An Illustrating Example: The Gas
Station

In this chapter we present a complete FLO/C solution to an example bearing coordination problems.
The gas station example [HL85] is well-known in the software architecture design community. Re-
cently it was used to demonstrate automatic analysis of race-condition problems [NACO97].

We want to present this example here because it is small enough for complete presentation but
large enough to emerge non-trivial coordination problems. We can illustrate FLO/C’s coordination
solutions and its separation of concerns as well as most of FLO/C’s special features on the example.
Note that in chapter 14 there are many other examples implemented in FLO/C.

Problem description. We already described the example in section 3.1. It is a simulation of car
drivers that tank their vehicles at a gas station. First they pay the cashier, then they pump fuel from
one of several pumps. The example bears several coordination problems.

1. Client-server interaction: The customer accesses the cashier to get authorization to access a
pump. Money and fuel representations flow between the participants.

2. Shared resources: the pumps are shared by customers.

3. Race: If two customers pay to get fuel from the same pump, the one who is faster can get the
fuel for both.

5.1 The Participants

In the real world cashiers an drivers are autonomous entities that have their own will and act concur-
rently. Active objects are well fit to cover such aspects. The pump is an independent resource that is
shared, therefore it is an active object itself and not a helper object of another active object. Now we
have identified the actors of the example. Following the separation of concerns in FLO/C each of the
participants has its proper behavior but no assumption on how to interact with the other participants.
Figure 5.1 shows the UML class diagram of the participants. It gives an overview of the functionality
of each participant.

The cashier can receive money and (s)he stores it. The pump acts as a fuel server. The cashier can
prepare it to release an amount of fuel (usingload: amount). The server methodreleaseLoad will
then return the loaded fuel. The car driver object stores money and fuel. Its methods call each other

41

42 CHAPTER 5. AN ILLUSTRATING EXAMPLE: THE GAS STATION

Cashier

cash: Money

receiveCash(a: Money)

tank: Fuel
cash: Money

useFuel()
payment(a:Money)
pump()

CarDriver Pump

tank: Fuel

load(l: Litre)
releaseLoad(): Fuel
free(): Boolean
free(b: Boolean)

free: Boolean

Figure 5.1: Participant classes of the gas station example.

thus forming the life cycle1 illustrated in figure 5.2. It can "drive around", using up its fuel. If it has
no fuel but still money, it can use this money to pay for new fuel. Then it pumps as much as possible
and drives on.

useFuel()[tank not empty]

[no cash available]

payment(a)[cash available]pump()

useFuel()[tank empty]

Figure 5.2: UML state diagram of the car driver.

Note that the car driver does not have to know, how to pay a cashier, or how to pump on a certain
pump. (S)He only knows that (s)he wants to pay and pump. Therefore, theCarDriver implementation
can run on its own, his/her behavior is independent. However, when (s)he is not connected, (s)he
gets no new fuel, thus stopping soon. It is the following connector’s responsibility to implement the
concrete interactions, namely the correct transfer of money and fuel at the appropriate time.

5.2 The Connectors

() Connector subclass: #GasStationConnector;
() withRoles: ’customer cashier pump’;
() withBehavior: ’
(1) customer payment: a. implies cashier receiveCash: a. connector calcFuelFor: a. endRule
(2) connector calcFuelFor: a. implies pump_select_Next_as_myPump load: result. endRule
(3) customer pump. impliesBefore myPump releaseLoad. endRule
(4) pump releaseLoad. implies customer_select_REC tank: result. endRule’

TheGasStationConnector defines the three rolescustomer cashier andpump. The connector
behavior is defined by four rules.

Rule 1: When the customer pays the amounta, the cashier gets the money. As a second sequential
consequence, the connector2 calculates the amount of fuel, the customer payed for. Conceptu-

1In fact this graph represents how the methods call methods of the same class. We refer to this self-calling graph as
"life-cycle" because in FLO/C it is often cyclic.

2A connector can trigger messages to itself using the default roleconnector (see section 4.5).

5.2. THE CONNECTORS 43

ally, this could have been done by the cashier as well, but in other cases, it is not obvious, where
to put such conversion code. So the example shows, how connectors can host the conversion in
such cases.

Rule 2: This calculation leads to the association of a pump to a customer through the relative role
myPump (see section 4.4.4)3. The use of the Next-specificator guarantees that there are no
two customers selecting the same pump, when there are less customers than pumps. The pump
is loaded with the amount of fuel that the connector has calculated using the keywordresult
(see section 4.5).

Rule 3: This rule starts a new set of multi-object joint actions. Before the customer executes its
pump method, the pump that was selected for it in rule 2, releases its load. This releasing
action triggers the next rule.

Rule 4: The tank of the pumping customer is filled with the amount of fuel released by the pump,
again using theresult keyword.

5.2.1 Managing Races

The rules 1,2 and rules 3,4 form two sets of joint actions. The first one handles the payment and
preparation of the pump, the second one the real pumping. The global process is divided, because
it is the customers free choice, when it wants to pay, and when it wants to pump. Because of the
unprotected gap between the two sets of joint actions, this connector is unable to prevent a race. If
there are more customers than pumps, it is possible that two customers pay to pump from the same
pump. The customer that pumps first, will receive the fuel for both. To prevent this kind of problem,
the following connector ensures that a pump is not loaded twice. It uses the pump’sfree instance
variable as a lock. When a pump already is loaded, further loading requests must wait.

() Connector subclass: #PumpLockConnector;
() withRoles: ’pump’;
() withBehavior: ’
(1) pump load: a. implies pump_select_REC free: false. endRule
(2) pump load: a. waitUntil pump_select_REC free. endRule
(3) pump releaseLoad. implies pump_select_REC free: true. endRule’

ThePumpLockConnector only defines the rolepump.
Rule 1: When a pump is loaded, it is not free any more.
Rule 2: The loading of a pump must wait until it is free.
Rule 3: When the pump has released the load, it is free again.

The connector bridges the gap between the two sets of joint actions of theGasStationConnector.
It comes in, when the payment actions end, and ends, where the pump actions finish.

By adding thePumpLockConnector to the example we can demonstrate how synchronized
multi-object joint actions can be extended. The new guard in rule 2 locally protects the loading of
the pump. But it also extends thepaymentjoint actions of theGasStationConnector since the load-
ing of the pump is a part of it. Therefore rule 2 adds a new constraint to these joint actions and rule 1
adds a new action to it. Rule 3 on the other hand extends thepumpingjoint actions.

3Note that the pump is associated to a customer an not to the connector. This is because the association is bound to the
target of the request that lead to these joint actions.

44 CHAPTER 5. AN ILLUSTRATING EXAMPLE: THE GAS STATION

The extended payment joint actions will therefore explicitly wait for the selected pump to be free,
and explicitly reserve it when the payment succeeds. The extended pump joint actions will explicitly
release the pumps after successful pumping of fuel. Therefore each pump only load fuel for one
customer at once andno race can occur.

5.3 A Complete Simulation

It follows a sketch of a SMALLTALK script, correctly running the gas-station example with two cus-
tomers, a cashier and a pump.

| customers pumps cashier gasStation lock |
"Create active object groups:"

customers := OrderedCollection with: CarDriver new with: CarDriver new with: CarDriver new.
pumps := OrderedCollection with: Pump new.
cashier := Cashier new. "Only one cashier."

"Instantiation of the two connectors:"
gasStation := GasStationConnector new.
lock := PumpLockConnector new.

"Attachment of the participants to the connectors:"
gasStation objects: customers playRole: ’customer’.
gasStation objects: pumps playRole: ’pump’.
gasStation object: cashier playRole: ’cashier’.
lock objects: pumps playRole: ’pump’.

"Activate connections now:"
gasStation activate.

"Enable race prevention now:"
lock activate.

"Start customer behavior."
customers do: [:c | c useFuel].

... later ...
"Terminate one connector. This also ends the participants,"
"which will then lead to the end of ’lock’:"

gasStation end.

The script instantiates the participants and connectors, prepares the role groups, connects them
to the connectors and then activates the connectors. The activation of the connectors enforces the
coordination policy. Then the active objects’ proper behavior is started (by sendinguseFuel to them).
Note that the race prevention (thelock connector) could also be enabled after the start of the participant
behavior. Such a script would first show collaboration but maybe also race. Then, when thelock
connector is activated, the race is suppressed.

5.4. EXAMPLE EVALUATION 45

5.4 Example Evaluation

The FLO/C solution works for an arbitrary number of customers and pumps4, thus it demonstrates
how FLO/C allows flexible solutions. Furthermore it demonstrates how FLO/C’s group managing
specificators yield expressive power.

We can dynamically add a connector, to enforce a new interaction policy, which guarantees race-
freeness. This demonstrates theincrementabilityof FLO/C. The example illustrates FLO/C’s separa-
tion of concerns. The autonomous entities are factored out in active objects that behave concurrently.
Their interaction code is factored out into theGasStationConnector and a race preventing policy is
factored out into thePumpLockConnector.

Furthermore, the example showed the FLO/C solution techniques to the following non-trivial
coordination problems.

Problem Solution
Client-sever Implies-operators carry data in
interactions. the arguments or even propagate the return value of

the precondition. Conversion can be done in
connector methods.

Managing of Specificators map resources to
shared resources.participants, joint actions protect resources from

inconsistent access.
Avoiding races. joint actions work together with user-defined locks.

4With a minor extension, it would also work for an arbitrary number of cashiers. But this would not add interesting
complexity to the example, therefore we presented the "single cashier" version.

46 CHAPTER 5. AN ILLUSTRATING EXAMPLE: THE GAS STATION

Chapter 6

Component Hierarchy

The FLO/C model as described up to now was not modular. All active objects and their connectors
reside at the same conceptual layer. Since one of FLO/C’s goals is to offer the possibility to implement
architectural design decisions (see section 3.1.2), it must offer a way of declaring the composition of
active objects into a composite active object. Since active objects should keep no reference to each
other (see section 3.1.3), this way of composition is ruled out. From a composition construct for
FLO/C we require the following:

� A composite active objectencapsulatesactive objects, which are interconnected by connectors
that are encapsulated, too.

� From outside, a composite active object should behave like a plain active object1. This also
includes that it can be connected and composed again.

Composite active objects represent a group of active objects that fulfill a well-defined task doing so
by collaborating in non-trivial ways. If the collaboration is trivial (e.g. host and a helper), then the
whole task can be implemented in a plain active object that eventually uses private and passive helper
objects (see section 3.1.3).

For the reader’s convenience, we will refer to composite active objects ascomposite objects.
FLO/C offers the possibility to declare composite object classes. This bears the following advan-
tages.

� The composite object class declaration describes the encapsulated component by its class.
Therefore, at run-time the components and connectors objects cannot be referenced, they are
truly encapsulated.

� When instantiating a composite object, the connectors and components are automatically cre-
ated, connected and initialized. Otherwise this work has to be done by the programmer, leading
to long and redundant code as sketched in the code example 5.3.

Figure 6.1 shows an instance of a composite object. The instantiation process delivers only an
interface object, but in the background it creates and activates the participating components and con-
nectors as a black box (conceptual composite object). For the world outside, the interface objectis
the composite object, because it is the instance of the composite object class. The composite object’s
behavior, however is located in its participating components and connectors. The interface object can

1An active object that is not composed by other active objects.

47

48 CHAPTER 6. COMPONENT HIERARCHY

act as if it was the complete composite object, because aninterface connector2 triggers the appropriate
collaboration of the hidden components.

interface object

conceptual composite object

components

interface connector

connectors

Figure 6.1: Instance of a composite object.

The next section shows how composite object classes are declared in FLO/C.

6.1 Declaration of Composite Object Classes

In order to instantiate a new composite object, the user has to define a composite object class, provid-
ing it with the particular composition information. These static informations are:

� The interfaceof the composite object. It is located in the interface object, and is defined like
the interface of an active object.

� The participatingcomponent classes. They are needed to instantiate the hidden components of
a concrete composite object.

� The participatingconnector classes.

� Theconnection schema. It declares for each connector, which component will play which role.
The role is referred by its name, the components and connectors by numbers. The numbers
represent the position of their class in the composite object declaration.

An example: the binary adder simulation. To document the composition of active objects, we
preview the binary adder simulation of section 14.6. There, composite objects implement logic units
that take two binary entries and compute a logical function likeand, or andxor. The elements receive
their inputs asynchronously through the messagesinA: bool and inB: bool. They synchronize on
both channels then sending the result of the logical function by invokingoutA: res. In the example
we build a binary adder. Therefore, we compose units in order to calculate the carry bit and the sum of
two entry booleans and one input carry bit. Then we can compose aSum and aCarry unit to form an
Adder unit, which in turn can be wired to a complete binary adding machine by connecting outputs to
carry inputs. Figure 6.2 shows how units are wired together to form an adder element and a complete
binary adder.

2The interface connector is a user-defined connector that uses the default roleinterface. At the instantiation of a
composite object, the interface object is automatically attached to play this role.

6.1. DECLARATION OF COMPOSITE OBJECT CLASSES 49

adder element
Binary

inA inB carry

outB outA

adder element
Binary

inA inB carry

outB outA

adder element
Binary

inA inB carry

outB outA

Binary Adder

inA inB carry

outA

inBcarry inA

Binary adder element

outBoutA

inA inB carry

outA

Sum Carry

Figure 6.2: An adder element with sum- and carry units and the wiring between adder elements

The sum- and the carry calculating units are composed of synchronized logical components. Given
that the logical components already exist, we can declare both calculating units as composite objects.
Let us have a look at the carry calculating unit, since it is a little bit more complicate. We can
follow the previous list declaring the static properties: Theinterfaceof the new composite object
contains three methods. We use a naming convention and call theminA:, inB:, carry: andoutB:3.
Inside the carry element the carry bit must be calculated with logical operations. Whenever two input
bits are set to one (the incoming boolean istrue), the carry bit is one. Therefore, we can useand
operations between each entry and demultiplex their outputs withor operations to calculate the carry
bit. Figure 6.3 describes how the carry bit can be calculated. Furthermore, the procedure for the
sum-bit calculation is designed.

AND

inA inB

outA
AND

inA inB

outA

AND

inA inB

outA

inA inB

outA
OR

inA inB

outA
OR

XOR

outA

inA inB

XOR

outA

inA inB

inA inB carry

Sum calculating element Carry-bit calculating element
inBinA carry

outB

outA

1

2

1 2

3

Figure 6.3: Using logical operations to calculate sum- and carry bit.

Now we have identified thecomponents’ classesfor the carry-bit calculating composite object. We
use three times theAND class and two times theOR class. We furthermore use twoconnector classes.
An interface connector directs the input from the interface to the participants and the output from the

3We follow the design in figure 6.2 therefore we don’t call the messageoutA:.

50 CHAPTER 6. COMPONENT HIERARCHY

participants to the interface. An inner connector connects in- and outputs of the participants between
each other. Since the logical units are synchronized already, the connectors do not have additional
coordination responsibilities. They use asynchronous consequences for data flow. Figure 6.3 labels
the elements with numbers. We use them for the role names. Thus the wiring shown in the figure
shows which connections must be established. The ins and outs of the components must be connected
appropriately. The following code shows the declaration of a composite object to implement a carry-
bit unit.

(1) MetaCompositeObject new
(2) superclass: CompositeObject ;
(3) withComponentClasses: ’
() AndElement AndElement AndElement OrElement OrElement ’ ;
(4) withConnectorClasses: ’
() CarryInterfaceConnector CarryConnector ’ ;
(5) withConnectionSchema: ’
() connector: 1 role: and1 object: 1
() connector: 1 role: and2 object: 2
() connector: 1 role: and3 object: 3
() connector: 1 role: or2 object: 5
() connector: 2 role: and1 object: 1
() connector: 2 role: and2 object: 2
() connector: 2 role: and3 object: 3
() connector: 2 role: or1 object: 4
() connector: 2 role: or2 object: 5’ ;
() installAtName: #CarryElement

The following list will explain this composite object class declaration by the line numbers indi-
cated in the code.

(1) Here we instantiate a new composite object class from the composite object meta-class. FLO/C

uses meta-classes because all new composite object classes have common object instantiation
code. The instantiation protocol must create all the inner active objects in the background.
Using meta-classes is more an implementation than a model issue. For more information about
meta-classes see 10.4 and aboutMetaCompositeObject see 11.5.

(2) All composite objects inherit from the base classCompositeObject.

(3) Here we declare the participants classes. As already mentioned, we use threeAND components
and twoOR components.

(4) The declaration of the connector classes.

(5) The connection schema holds the information which connector refers to which object by which
role. Here both connectors use a simple naming convention for their role names. The numbers
indicate positions in the declarations of line 3 and 4. Thus the first line of the connection schema
reads: The connector that was declared first (aCarryInterfaceConnector) maps the roleand1
to the object that was declared first (anAndElement). Note that the interface connector does
not have to know the roleor1. Figure 6.4 shows the connectors and their connections.

On line 4 we refer to two connector classes that connect the participants inside of theCarryEle-
ment. We will now present them. TheCarryInterfaceConnector and theCarryConnector contain
rules that propagate output results from units to input messages from others. Again we follow the

6.1. DECLARATION OF COMPOSITE OBJECT CLASSES 51

design presented in figure 6.3. Here the declaration of the connectors. The interface connector propa-
gates messages to and from the interface.

MetaConnector new
superclass: Connector ;
withBehavior: ’
interface inA: a. impliesLater and1 inA: a. and3 inA: a. endRule
interface inB: a. impliesLater and1 inB: a. and2 inA: a. endRule
interface carry: a. impliesLater and2 inB: a. and3 inB: a. endRule
or2 outA: a. impliesLater interface outA: a. endRule’ ;

installAtName: #CarryInterfaceConnector

The inner connector handles the composite object’s intern communication.

MetaConnector new
superclass: Connector ;
withBehavior: ’

and1 outA: a. impliesLater or1 inA: a. endRule
and2 outA: a. impliesLater or2 inB: a. endRule
and3 outA: a. impliesLater or1 inB: a. endRule
or1 outA: a. impliesLater or2 inA: a. endRule ’ ;

installAtName: #CarryConnector

The final arrangement of connectors and components for the carry-bit calculating element, and for
the sum-bit calculating element are sketched in figure 6.4

XORXOR

Interface

ou
tA

ou
tB

ca
rr

y
in

B
in

A

Interface

ou
tA

ou
tB

ca
rr

y
in

B
in

A

AND AND AND OR

OR

Carry-bit calculation element

Inner connector

Interface Connector

Interface Connector

Sum calculation element
or1

and2 and3

an1 or2

and2 and3

or2an1

Inner connector

xor1 xor2

xor1 xor2

Figure 6.4: Composite objects to calculate sum- and carry bit.

Once we have declared composite objects to calculate the carry-bit and the sum bit, we can com-
pose them again to anAdderElement. Like shown in figure 6.2, the inputs to this element are redi-
rected to both the sum- and the carry calculating component, their output are propagated separately.
Having the classAdderElement, we can connect instances of it at run time to form a binary adder for
arbitrary numbers of bits. Figure 6.5 sketches this layered object hierarchy.

In the presented solution an additional object hierarchy layer is used to compose theSumElement
andCarryElement together to form theAdderElement. However, the adder element has almost the
same interface than the carry element, and half of its task is the same. Therefore, it can be convenient
to inherit the declarations of theCarryElement when declaring theAdderElement. The next section

52 CHAPTER 6. COMPONENT HIERARCHY

in
A

in
B

ca
rr

y

ou
tA

ou
tB

interface

Carry Element Sum Element

Adder Element

Adder Element Adder Element

Binary Adder Connector

Adder Element
Connector

Figure 6.5: A binary adder object hierarchy.

shows how FLO/C supports inheritance of composite object declarations.

6.2 Inheritance of Composite Object Classes

The inheritance of composite objects can bring two benefits.
(1) A possibly elaborated connection schema can be reused.
(2) The inheritance hierarchy offers a way to structure code.

According to [WZ88], an inheritance mechanism must take care, that a subclass’ instance can
alway safely be used where a superclass’s instance was expected. As far as the interface is concerned
this is already ensured by the standard inheritance mechanism. A subclass of a composite object class
automatically understands all messages that the superclass understands.

Therefore, the only further restriction we will meet is thatthe whole connection schema of the
superclass is inherited, and cannot be changed. Thus, the inheritance is incremental; no component
or connector can be removed (this would be dangerous, because connections could be defined for
them in the inherited connection schema). But object-, and connector classes can bereplacedby
others (provided that they are able to play the role in the inherited connections). The user can also
include new object-, and connector classes and define new connections between new or inherited
objects and new or inherited connectors.

The following example demonstrates a definition of an inherited composite object class using the
previous example.

() MetaCompositeObject new
(1) superclass: CarryElement ;
(2) withComponentClasses: ’
() super super super super super XorElement XorElement’ ;
(3) withConnectorClasses: ’
() AdderInterfaceConnector super SumConnector’;
(4) withConnectionSchema: ’
() connector: 1 role: xor1 object: 6
() connector: 1 role: xor2 object: 7
() connector: 3 role: xor1 object: 6
() connector: 3 role: xor2 object: 7 ’;
() installAtName: #AdderElement

6.3. EVALUATION + LIMITATIONS 53

Explanation of the example following the line numeration of the listing.

1. The new class is a subclass ofCarryElement (compare to its declaration in section 6.1).

2. The first five participating object classes of this new class are specified in the superclass (key-
word super). They are used to calculate the carry-bit. Two new participant are added in order
to add the functionality of calculating the sum bit. See figure 6.3 for the "wiring" of the sum
calculating logical units. Thus twoXorElements are the participants of this composite object.

3. In order to demonstrate overloading, the first connector of the superclass, namely theCarryIn-
terfaceConnector is overloaded by aAdderInterfaceConnector. This connector must be an
extension of theCarryInterfaceConnector in the sense that is must define the same (or more)
roles. The second connector is inherited from the superclass. It connects the components that
calculate the carry. The third connector is a new one, it connects the components that calculate
the sum.

4. Here the new role connections are defined. Note that all connections declared in the superclass
are inherited. The new connectors refer to the new components by the rolesxor1 andxor2. The
inherited connector (on position 2) does not have to know the new participants.

Using inheritance to declare theAdderElement saves us from defining an additional object hier-
archy layer to compose the sum and the carry calculation.

6.3 Evaluation + Limitations

When we instantiate an object of a composite object class, the instance will offerwell defined access
to a fully instantiated and connected group of active objects. A composite object can be used like a
plain active object. It can receive messages and it can be connected again. Furthermore, it can be
a participant of a new composite object. This is important; it offers the possibility of hierarchically
compose components. It maps ideally to bottom-up or top-down design processes.

Composite object classes can save code, when FLO/C’s dynamics is not needed. If the "gas
station" example (see section 5) had been implemented in a composite object class namedGasSta-
tionExample, it can be used like this (compare to example 5.3).

| station|
station := GasStationExample new.

"The active objects are created, activated and connected."
"Then, the interface object is stored in the variable ’station’."

station run.
"This message to the interface will trigger a user defined interface"
"connector that lets all customers start to use their fuel."

... later ...
station end.

"All active objects terminate."

When we compare this activation code to the code example 5.3, we can conclude that composite
object declaration can improve the quality of code, since it encapsulates the tedious and error-prone
activation protocol.

54 CHAPTER 6. COMPONENT HIERARCHY

Limitations. The declaration of the connection scheme is tedious and inflexible. FLO/C’s visual
tools help to ease this limitation (see section 12).

The inheritance mechanism of composite objects would be of higher value if there was an in-
heritance mechanism for connectors, too. In the sequential FLO language, such an inheritance was
evaluated [Duc97b]. Therefore, connector inheritance was no primary goal of FLO/C.

In the current version of FLO/C composite object classes use afixed numberof components
(one per each class). Therefore, composite objects do not exploit the possibilities introduced with
specificators (see section 4.4). It would be an easy and small extension to add protocol that enables
component class declaration to beparameterized. At instantiation time, fore each component classes
a parameter would indicate the number of instances. For exampleGasStationExample new: # (3 2
1) would instantiate a composite object hiding three drivers, two pumps and one cashier.

FLO/C’s composition concept is influenced by the base language it is built upon. Our imple-
mentation uses SMALLTALK . Composition variants other than only keeping references, e.g. full
containment as seen in languages like C++ leave FLO/C’s scope, they are not discussed here.

Chapter 7

Discussion of the FLO/C Model

7.1 FLO/C Fulfills its Requirements

The FLO/C model is an extension of an object oriented base model, namely of actors (see section
2.2.1). It factors out object interaction in stand-alone run-time entities called connectors. This in-
creases reusability and preserves architectural design decisions in the implementation (see section 3).
The FLO/C model’s main purpose is to provide high-level coordination support. Therefore it features
asynchronous communication and multi-object joint actions. As stated in section 2.2.2, these two
abstractions allow to easily and consistently implement the following coordination abstractions:

� Conditional synchronization on multiple objects.

� Mutual exclusion of multiple objects.

� Pessimistic transactions.

Therefore FLO/C supports coordination at a high-level in an object-oriented way. Furthermore,
FLO/C’s connectors provide group management not only to keep connector declarations indepen-
dent of the components, but also independent of thenumberof involved components. FLO/C exploits
its dynamics culminating in programmable connectors that install and destroy other connectors at
run-time.

We conclude that the FLO/C model solves problems of traditional concurrent object oriented
programming (see section 2.1). It offers easy ways to create extendible solutions to non-trivial coor-
dination problems. Furthermore it allows to map design decisions concerning the coordination and
interaction inside the implementation, which is not possible in traditional approaches. In the conclu-
sion of chapter 16 contributions of FLO/C are discussed in more detail.

However, the FLO/C model also encountered some limitations. We will summarize them now,
and discuss whether they can be fixed. Note that here we do not want to address the restrictions of the
model that were put on in advance in section 2.2. There we said that constraints like the exclusion of
data-format conversion (see section 2.2.2 are due to time limitations of this work but can be treated in
future work. The next two sections will concern the emerging limitations of the introduced operators
that are due to the constraints of our reflective model that uses rules on message passing (see section
2.2.3). The last section of this chapter discusses the division of responsibilities between components
and connectors in FLO/C. Problems arise when a component has too little or too much internal
behavior.

55

56 CHAPTER 7. DISCUSSION OF THEFLO/C MODEL

7.2 Limited Pull-Style Support

FLO/C is based on message passing control that triggers rules upon interception of a precondition
message and then handles several consequence messages. This constraint (see section2.2.3) favors
push-style approaches. While it is easy to realize theimpliesLater operator that way, it is much
harder to think what an asynchronous pull-style operator should do. AnimpliesSomewhenBefore
operator would have to store the precondition message, send the consequence message, and then after
this was executedresend the precondition message again, but this time not controlling it any more.
Unlike in the case of theimpliesLater operator, this cannot be done in one step, it involves storing of
messages and waiting for the appropriate time for resending. Therefore such an operator would call
for an unacceptable large extension of the message control mechanism, therefore it was omitted in
FLO/C.

The other pull-style limitation concerns the keywordreturn. Although consequences of theim-
pliesBefore operator are sequentially executedbefore the precondition message, the precondition
message cannot directly access the results. The reason for that is illustrated in the following two rules.

objectB secondCalcWith: result. impliesBefore objectA1 firstCalc1 endRule
objectB secondCalcWith: result. impliesBefore objectA2 firstCalc2 endRule

The calculation inobjectB could rely on the fact that several other calculations in other objects
were done before. This is no unusual case. However, here thesecondCalcWith: is specified to use
the results ofboth its predecessors. It is not determinable in this situation, which result will be used,
therefore such a construction is ambiguous and omitted in FLO/C.

Since limited pull-style support is available and the push-style support is well elaborated, we
believe this limitation to be minor.

7.3 The Polling of thewaitUntil Operator

Upon failure of awaitUntil guard, the whole set of multi-object joint actions will be tried again later.
FLO/C models this by asynchronously resending the request. For guards who fail most of the time,
this leads to considerable overhead. Worse, a system that is otherwise idle can eventually poll all
the time, because the guard will never change. Thus the system can livelock. The FLO/C model
presents no built-in solution for that problem. Note however that exactly the same problem occurs
with Frølunds synchronizers [Frø96]. The following extension of FLO/C could ease the problem:
When awaitUntil guard fails, the request is not automatically resent, but put in a special queue of the
guard object that implements the failed predicate message. Now each time a guard object changes,
it asynchronously resends all the messages in its special "wait until" queue. In such an approach,
requests are only retried, when they actually have a chance to succeed. Therefore, less retries are
necessary. However, the design can still livelock and this time it can even deadlock.

If a developer knows that a certain message can livelock (s)he can use FLO/C’s exception mech-
anism (see section 4.5.2) and connector programming to introduce a connector that takes evasive
actions, if the guarded object is looping on a request for too long. For example as shown in the
following set of rules, the connector can kill the guarded active object, which will break the livelock.

(1) obj possibleLivelock. waitUntil guard couldAlwaysBeFalse. endRule
(2) obj possibleLivelock. implies connector resetCounter. endRule
(3) obj methodWasDelayed: p. implies connector killIfTooMany. endRule

7.4. TRADEOFF BETWEEN CONNECTOR AND COMPONENT RESPONSIBILITIES 57

The first rule represents the possible livelock loop. For every time the guard fails, rule (3) checks
if the loop should be broken by killingobj1. If however the guard eventually evaluates to true, the
methodpossibleLivelock can execute and rule (2) notifies the connector that the loop has ended.

Nevertheless, polling is a computationally intensive form of blocking. Since it is not amongst
FLO/C’s goals to model high-performance but to provide high-level abstractions, we believe the
polling waitUntil operator to be a tolerable solution.

7.4 Tradeoff between Connector and Component Responsibilities

The paradigm of the FLO/C model is separation of concerns by factoring out interaction code into
connectors (see section 3.1). In traditional programming we find no or little interaction code factored
out. Section 3 pointed out that this is clearly an undesirable state. The other extreme would be
to factor outall interaction code of components. However, such components would be reduced to
data containers and collections of stand-alone methods2. Thus we lose the benefits of object-oriented
design and programming.

In our FLO/C model we steer a middle course for this tradeoff between components and con-
nectors responsibilities. Active objects (components) hold a restricted collection of operations. The
operations in a collection can call each other (they contain restricted interaction code). Furthermore
they can use private and passive helper objects’ methods. But they cannot call methods of other active
objects. An active object represents a stand-alone domain entity with its data and functionality. Active
objects do not keep references to each other, therefore they are not polluted with assumptions of other
active objects’ behavior.

Nevertheless, any inner activity of an active object can obscure its interactions with other active
objects. For example we often3 use a particular FLO/C idiom to asynchronously propagate compu-
tation results. The method that produces the result (e.g.produce) stores it on a particular instance
variable by calling an accessor method (e.g.self produced: res). The propagating connector uses
the knowledge of this internal behavior of the active object. When the producer stores the result, the
connector triggers a rule that asynchronously propagates the result.

producer produced: a. impliesLater consumer consume: a. endRule

But in this idiom the interaction chain betweenproduce andconsume: res is obscured, because
the calling ofproduced: a is hidden. Unfortunately there is no other way to asynchronously propa-
gate computation results in FLO/C. But since a single method call is a simple interaction and since
the possible targets of the call are limited toself we believe that a comment in the connector suffices
to ease the problem. We also recommend that rules that trigger a relevant computation are placed im-
mediately before the rule that asynchronously propagates the result. Note that thanks to the keyword
result this problem does not occur for sequential propagation (see section 4.5).

The idiom demonstrates just one case where connectors hard-wire assumptions on internal behav-
ior of active objects. Therefore, the design problem to identify the proper objects in OO programming
is augmented to the design problem toidentify the proper active objectsin FLO/C. One relevant
problem is to decide which parts of a behavior a component should activateitself (self calls or helper
calls) and which parts should be activated by the connector. When the designer puts too muchself and
helper method calls into a component, we showed that important parts of the interaction design can

1Each connector has the possibility to kill its participant. The simplest one is by killing itself.
2Methods that solely use their local variables and their arguments.
3Chapter 14 presents ten coordination examples implemented in FLO/C.

58 CHAPTER 7. DISCUSSION OF THEFLO/C MODEL

get lost. This is exactly what we wanted to avoid with FLO/C. Therefore, we propose that an active
object should have asimpleself-calling graph (for example one life-cycle). Note that the "sleeping
barbers" example of section 14.10 will present a design of such simple self-calling graphs of active
objects. All methods that are important for constraining or activating other active objects must be
implemented as stand-alone methods. If a particular components internal interaction behavior is not
simple, the component must be implemented as composite object (see chapter 6) where it is internally
split into active objects and connectors.

We claim that the identification of active objects and their proper behavior is an open issue that
demands future research (see section 16.1).

Part II

Formal Approach

59

Chapter 8

Formal Specification of FLO/C

The following section precisely specifies how FLO/C models the concurrency of active objects and
how it uses rules on message passing to coordinate active objects. With this formal base, we want to
prove properties of the operators as well as of FLO/C systems as such. We describe the activities of a
FLO/C system by its concurrent, rule guided message passing. The semantics of a method execution
is considered as computation thus it is a part of the underlying object model and not a subject here.
Since here we are interested in interaction between the objects, we simplify a method execution to
an atomic system step which uses no time1 and returns no value. While we are not interested in the
execution of methods as such, we look atall possible ordersin which the executions of methods can
occur in a given system. Concurrency is expressed as possible variations of execution orders. The
formal specification of FLO/C systems enables us to analyze all possible execution orders of a given
system independently of the semantics of the methods. This will be demonstrated on an example in
section 8.5. The effort of the formalization pays off in chapter 9 where we can prove properties like
deadlock freedom of the FLO/C model. The formalism allows the definition and prove of properties
of operators (see section 9.1), as well as other liveness properties that hold for any FLO/C system (see
section 9.2).

The formalism simplifies the complete FLO/C model in the following aspects: a single rulebase
instead of connectors, abstraction of method execution, omitting of exception handling and dynamic
connector activities. The impact of these limitations is discussed in section 9.3. Finally section 9.4
collects the results of part II into one table.

8.1 Notations

Let IN be the set of all natural numbers, and� the set of all symbols2. We declare the FLO/C

system entities in terms of tuples and subsets of these sets. Lists are expressed as binary tuples
(head;RestList), where[] is the empty list. Our formalism only allowsfinite lists. We use the system
entity definitions to define a FLO/C system state. Then, we can describe the dynamic behavior of
FLO/C as eight possible kinds of atomicsystem state transitionsthat can occur in arbitrary order. The
transitions use helper functions that lookup FLO/C rules and do the list processing. Thus, after having
formally described the FLO/C system we can start to reason about it.

1Therefore, our model does not cope with methods that use an infinite amount of time to terminate.
2Symbols are unique character strings.

61

62 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

8.2 System Entities

Message and message lists.LetM be the set of all messages. Amessageis a tuple of a natural
numberi and a symbols:
m = (i; s) m 2M; i 2 IN; s 2 �:

Explanation: The number represents the target of the message, the symbol represents the message
selector3.

A message listM is either the empty list or a tuple consisting of a message and a message list.
M = (m 2M;M 0) j []

Consequences. Let C be the set of all possible consequences to a message. Aconsequenceis a
five-tuple consisting of a symbol and four message lists.
c = (t;W; P; Y;A) t 2 �; W; P; Y;A message lists.
Explanation:t is the consequence triggering selector,W is the list ofwaitUntil consequences,P is
the list of permittedIf consequences,Y is the list of sequential consequences (consequences of the
operatorsimplies andimpliesBefore) andA is the list of the asynchronous consequences (operator
impliesLater).

Queue. A QueueQ is either the empty list or a tuple consisting of a symbol and a queue.
Q = (s 2 �; Q0) j []

Explanation: The queue stores method selectors that were sent to it.

Active objects. Now, we can define the setO of all active objects. Anactive objectis a four-tuple
consisting of a natural number, a queue, a consequence and a set of natural numbers.

o = (i;Q; c; L) o 2 O; i 2 IN;Q queue; c consequence; L
finite
� IN

Explanation: An active objecto is identified byi. It has a message queue4 Q, and a consequencec
that represents the currently treated message. The setL represents the currently locked (sometimes
we also say "reserved") other objects, using their identifiers. For simplicity we will sometimes note
oi for an object with the identifieri.
Definition. an active object isidle when the lists in the consequence and the locks (reservations)
are empty:
o = (i;Q; c; L) is idle$ c = (t; []; []; []; []) ^ L = ;

Rule-base. The set of FLO/C operators
 is defined as follows:

 = f!; ;;; j; kg

Explanation: each of the symbolic elements of the set represents a FLO/C operator:

! implies impliesBefore
; impliesLater j permittedIf
k waitUntil

LetR be the set of all rules. A rule is a triple, containing a message, an operator and a message.
r = (mp; op;mc) r 2 R;mpmc 2M; op 2

3We omit the arguments, because they don’t influence the execution order, thus are of no interest in liveness problems.
4The queue holds only the message selector, because the target object of messages in the queue is the object holding the

queue.

8.3. SYSTEM STATE TRANSITIONS 63

Explanation: Every rule has a precondition messagemp to which a consequence messagemc is
related, according to the operatorop.

System. The setS of all FLO/C system states consists of a finite set of active objectsO and a finite
set of rulesR. The set of active objects is restricted: the object identifiers have to be unique.

S = (O;R) S 2 S; O
finite
� O; R

finite
� R Furthermore:

oi 2 O ^ o
0
i 2 O =) oi = o0i

Explanation: Since messages find their target object by identifying natural numbers, these identifiers
must be unique.
Definition: Initial states of a system. In order forS = (O;R) to be a validinitial state all active
objects inO must be idle:

Sinit = (O;R); O
finite
� O; (i;Qi; ci; Li) 2 O) Li = ; ^ ci = (ti; []; []; []; []) Note that the

queues do not have to be empty. In fact an initial state can only show behavior if there are messages
in the queues.

8.3 System State Transitions

We describe possible system state transitions from the stateS to S0 by eighttransition rules5 of the

form S
h actioni
�! S0. System transitions are atomic, but can fire in arbitrary order.

A system transition changes objects of the system state. It can fire, when one or several objects
meet the precondition. Most transitions change only one object of the system state, only one tran-
sition changes two objects. Therefore, to simplify the notation of transitions, we will put only the
relevant objects and constraints in the transition formula, instead of the whole system state. Instead of

(O;R)
h actioni
�! (O0; R) we will write e.g.o

h actioni
�! o0 assuming thato 2 O is replaced byo0 2 O0.

In order to specify the relevant objects’ state change in the transition, the objects are noted in their full
tuple form.

A system state transition models an activity of an active object. The concurrency of FLO/C’s
active objects is expressed by the indeterminism which transition rule is firing on which object. The
system transitions follow a global scheme: all active objects can pull messages from their queues.
Then, they collect the consequences of this message and try to execute them. Consequences involve
guards, sequential consequences and asynchronous consequences.

Thus in the first system transition, a message is taken from the queue. To start the consequence
execution, it is necessary that all relevant objects involved in the consequences are not already re-
served. Then, the functionfrules(i; s) calculates the global consequences, and the necessary objects
are reserved. Note that the functionfrules(i; s) performs the only access of the rule baseR. It delivers
a consequence(five-tuple). After the definition of the state transitions, the function and its helpers
will be discussed in detail in section 8.4.

(i; (s;Q); (t; []; []; []; []); ;)^

8j(j;Qj ; cj ; Lj) 2 O (freserv(frules(i; s)) \ Lj = ;)

h Start reactioni
�!

(i;Q; frules(i; s); freserv(frules(i; s)))

(8.1)

5Not to be confused with the FLO/C rules.

64 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

Once the consequences are calculated, the guards are evaluated. Both types of guards (waitUntil
andpermittedIf) can evaluate to true or false. It follows the two cases of thewaitUntil operator: The
message(j; g) from thewaitUntil list is handled. If it evaluates to true, the message is simply taken
out of the list (since it was evaluated). If it evaluates to false, the original selectort, that was used
to calculate the consequences, is appended to the queue. This way the selector will be handled again
later (the request is blocked but not deleted). The consequences however are deleted (filled with empty
lists).

(i;Q; (t; ((j; g);W); P; Y;A); L)
h g on j is truei

�! (i;Q; (t;W; P; Y;A); L) (8.2)

(i;Q; (t; ((j; g);W); P; Y;A); L)

h g on j is falsei
�!

(i; fappend(Q; t); (t; []; []; []; []); ;)

(8.3)

The two cases of thepermittedIf operator: If the guard evaluates to true, the reaction can go on
like for thewaitUntil operator. If it evaluates to false, all the consequences are simply deleted.

(i;Q; (t;W; ((j; g); P); Y;A); L)
h g on j is truei

�! (i;Q; (t;W; P; Y;A); L) (8.4)

(i;Q; (t;W; ((j; g); P); Y; A); L)
h g on j is falsei

�! (i;Q; (t; []; []; []; []); ;) (8.5)

The sequential consequences (implies andimpliesBefore operators): When all guards are evalu-
ated (their lists are empty), the execution of the sequential consequences can start.

(i;Q; (t; []; []; (s; Y); A); L)
h executes on ii

�! (i;Q; (t; []; []; Y;A); L) (8.6)

The release of the object reservations: When all guards and sequential consequences are executed,
the reservation of the involved active objects is released.

(i;Q; (t; []; []; []; A); L)
h release reservationsi

�! (i;Q; (t; []; []; []; A); ;) (8.7)

The sending of the asynchronous consequences (impliesLater operator): When all guards and
sequential consequences are executed, the asynchronous consequences can be sent, by appending
them to the proper queues.

(i;Q; (t; []; []; []; ((j; s); A)); L) (j;Qj ; cj ; Lj)

h sends to ji
�!

(i;Q; (t; []; []; []; A); L) (j; fappend(Qj ; s); cj ; Lj)

(8.8)

Note: this is the only system transition rule involving two objects of the system state since it
involves the sender and the receiver object of the message.

8.3.1 Local Transition Firing Order

The state transitions represent the fusion of rules as discussed in section 4.3. From the point of view
of a single active objecto, the transitions can only happen in certain orders. This is illustrated in the
state diagram of figure 8.1.

8.3. SYSTEM STATE TRANSITIONS 65

Load consequences and start.
[Locks can be reserved]

[Message in queue] and Send asynchronous
consequences and
release locks.

Evaluate guards.

(2),(4)

[All guards are true.]

(1)(7),(8)

(6)

(3),(5)
Delete consequences.
[A guard is false.]

Execute sequential
[Guards are true.]

consequences.

Idle

Sending Checking

Executing

Figure 8.1: Process state changes of an object.

Object is idle. Transition (1) represents the collection and the reservation phase as an atomic step
starting from the idle object state. The functionfrules(i; s) returns all the consequences, and the
functionfreserv(c) is used for the reservation of the relevant objects. Transition (1) can only trigger,
when there is a message in the queue ofo and when the reservation can succeed.

Object is checking the guards. Transitions (2),(3),(4),(5) represent the guard evaluations. When
reasoning about the system, it is not generally determinable, if a guard will evaluate to true or false.
Thus the four transitions can generate all possible cases. Note that there is no order between the
waitUntil and thepermittedIf guards. In some cases it could be more useful to evaluate allpermit-
tedIf guards before starting with thewaitUntil guards, since they are more restrictive. As FLO/C is
implemented in an open way (see section 11.2), such behavioral extensions are feasible.

Object is executing methods. Transition (6) represents the executions taking place in the execution
phase. It can only trigger whenall guards are evaluated(when the two guard lists are empty).

Object is sending and releasing. When all executions have taken place (when the sequential con-
sequence list is empty), the reservation set is emptied in transition (7). Note that from this moment
on, other transitions can execute methods of this object. Transition (8) sends an asynchronous con-
sequence message. It can trigger only after all sequential consequences are executed, but eventually
before transition (7). Note that an object can receive an asynchronous message at any time. Only after
the last asynchronous consequence is sent, the object can treat a new message of the queue.

We see that the transitions handle message reception and execution and sending in the order al-
ready described in section 4.3 in the model part of this work. In fact system transitions (1) to (7) in the
transition cycle (see figure 8.1) represent one set ofsynchronized multi-object joint actions(described
in section 2.2.2). Transition (8) represents the propagation of requests.

The state changing from a per-object point of view is simple. However the state changes of
different objects can conflict with each others.

8.3.2 Two Requirements for FLO/C’s System Transitions

In order to prove statements about properties of a FLO/C systems, we must add two requirements to
the firing of transitions. The requirements enforceprogressof FLO/C’s internal mechanisms that are
described by the system transitions.

66 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

Requirement 1: Progress of objects. In a FLO/C system withn objects, each object is given a
chance to participate in a transition after at leastm transitions,m >= n.

If this requirement does not hold, an active object can stay passive, even if system transitions could
fire. Therefore, a FLO/C system intrinsically guarantees progress, if progress is possible. Note that
m < n would be an impossible demand. If alln objects are able to participate in an object transition,
afterm transition there would still be at least one object left that could not participate in a transition
although it was able. However,m = n is possible, and it is the way the implementation of FLO/C

treats the transitions (see section 11.2).
If the object’s lists are not completely empty then for almost any object state there is a transition

that can fire. The only transition that uses the states of more than one object as precondition is the
transition (1). The transition is trying to lock a number of other active objects, but maybe they are
locked already by another transition (1). Therefore, different transition (1) can conflict, possibly
starving each other.

Requirement 2: Fairness for transition (1). In a system stateS with n objects andr rules, if an
objecto is only missing the locks in order to participate in transition (1) it will fire transition (1) after
at mostr + 3(n� 1) system transitions.

We saw in section 8.3.1 that transitions do reservation, consequence treatment and release of
reservation. When each other object beside ofo has completed such a pass (one set of synchronized
multi-object joint actions), at mostr consequences were treated6. The original message was executed
at mostn � 1 times, at mostn � 1 reservations and releases occurred. Therefore after at most
r + 3(n� 1) system transitions objecto is waiting the longest for every reservation, it has to do.

Evaluation of the requirements. When an implementation of the FLO/C model meets the two
requirements it can rely on the results of section 9. Requirement 1 ensures progress of an active object
that is about to treat some consequences. The factorm represents the speed of the slowest of the
objects. After at mostm transitions the slowest object will try to do something. The requirement 2 is
more elaborate. In order to meet it, an implementation can use an algorithm like described in [CM84]
for thedrinking philosopher problem. The algorithm describes how objects can acquire sets of shared
resources in a fair way.

Note that the requirement reflects the fact that the active objectsinternal mechanismsdo progress.
It does not say that the external behavior, namely the execution transitions always do so. However,
in section 9 we can use the guarantees of the requirements to prove liveness issues of the external
behavior. In section 11.2 we will describe how our implementation meets the requirement stated here.

The next section will explain how functions do the rule lookup.

8.4 Functions

The transition (1) uses functions in order to read from the rule base. We start two well known list
manipulation functions: appending and concatenation that are used as helper functions.

List manipulating functions. The function to append an element to the end of a list:

6There cannot be more thanr consequences because no rule is triggered twice. This is because only one request per
object is treated and because no rule can trigger for two different objects.

8.4. FUNCTIONS 67

fappend((x;L); y) = (x; fappend(L; y))

fappend([]; y) = (y; [])

The function for concatenation:

fconcat(L1; (y; L2)) = fconcat(fappend(L1; y); L2)

fconcat(L1; []) = L1

Simplified list notations. Some of the following functions iterate through lists and append or con-
catenate the results. For the readers convenience we will use a simplified notation for lists, using the
square brackets as list delimiters and the comma as a concatenation operator. For example the list
fconcat(fappend(L1; e1); L2) whereLi are lists ande1 is an element is noted:L1; [e1]; L2

Helper functions to identify the necessary locks. The following function calculates the set of
objects that must be reserved for a given consequence five-tuple. The resulting set contains all the
objects, that are target to a guard or a sequential execution. This is because these are the participants
of one set of joint actions. As argued in section 2.2.2 they should not be changed by third-party access
during intermediate states.

freserv((c;W;P; Y;A)) = ftargets(W) [ftargets(P) [ftargets(Y)

The function uses the following helper function to collect the target identifiers:

ftargets((i; s); L) = i [ftargets(L)

ftargets([]) = ;

Functions for the recursive rule lookup. We start top down, with the functionfrules(i; s) that
takes an object identifier and a selector and returns a complete consequence five-tuple:

frules(i; s) = (s; fconsFor(ffindSync(i; s); k); fconsFor(ffindSync(i; s); j);

ffindSync(i; s); fconsFor(ffindSync(i; s);;))

Basically, the functionffindSync(i; s) recursivelylooks up the sequential consequences list, while
fconsFor(M;op) works on the resulting list, finding the consequences for the given operator for any
message in the list. Thus, the resulting tuple contains the complete lists of consequences of the
consequences, ordered by operators. Note howfconsFor(M;op) accesses the rule baseR.

fconsFor(((i; s1); L); op) = fasList(f(j; s2) j ((i; s1); op; (j; s2)) 2 Rg) ; fconsFor(L; op)

fconsFor([]; op) = []

The functionfasList(M
finite
� M) converts the given set of consequence messages into a list. FLO/C

does not specify a particular order here, as long as:m 2M , m is in list fasList(M) .
The sequential consequences (implies and impliesBefore) and their consequences of conse-

quences can be seen as a binary tree. Each node (a message) can have a branch to a list of nodes

68 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

that express what should happen before the node (itsimpliesBefore consequences) and a branch to
a list that expresses what should happen after the node (itsimplies consequences).ffind(i; s;H)

linearizes the tree by an in-order traversal. The setH contains history information of the traversal (a
set of the father nodes). Once a new node is traversed that is already in theH set, a cycle is detected
and the recursion stops. The functionffindSync(i; s) starts the recursion, with an empty set as history
information.

ffindSync(i; s) = ffind(i; s; ;)

ffind(i; s;H) =

(
[] if (i; s) 2 H
fcollectFor(i; s; ;H) ; [(i; s)] ; fcollectFor(i; s;!;H) otherwise

In theffind(i; s;H) function we see how the father node(i; s) is appended after allimpliesBefore
consequences, then allimplies consequences are concatenated to build the well ordered result.

ThefcollectFor(i; s; op;H) collects the consequence list of either of the two branches (depending
onop). It uses theffindList(M;H) function that recurs toffind(i; s;H), passing each message of its
list as argument. Note thatfcollectFor(i; s; op;H) updates the history information.

fcollectFor(i; s; op;H) = ffindList(fconsFor(((i; s); []); op);H [(i; s))

ffindList(((i; s); L);H) = ffind(i; s;H) ; ffindList(M;H)

ffindList([];H) = []

The next section presents the functions’ application on a given FLO/C rule-base.

8.5 Analyzing Possible Execution Orders of an Example System

Before we start to use the formalism to prove liveness properties, we present a step-by-step example.
We will evaluate all possible state transitions of a given FLO/C system.

Let Sinit = (O;R)

O = fo1; o2g = f(1; Q1; c1; L1); (2; Q2; c2; L2)g ando1; o2 are idle

R = f(1;move) ! (2;move);
(2;move) (1;move);
(2;move) j (1;allow);
(2;move) ; (1; turn);
(2; turn) ! (1; turn)g

Thus, the initial system state consists of two idle objects (no reservation, empty consequence lists),
and five rules. The objects know the methodsmove and turn, one of them additionally knows the
predicate messageallow. Roughly, the rules compose two sets of joint actions. The first set orders the
moving executions:o1 moves beforeo2. The moving is constrained by theallow method ofo1. The
joint actions can be requested by sendingmove to o1 as well aso2 because the rules form a sequential
cycle. This example will show in detail, how the cycle is broken. After the successful joint actions, a
request toturn will be sent too1 which starts a new set of joint actions that turns both objects.

8.5. ANALYZING POSSIBLE EXECUTION ORDERS OF AN EXAMPLE SYSTEM 69

In order to start the analysis we need to know the contents of the queues of both objects. If the
queues are empty, no transition can apply at all. Therefore, letQ2 be empty butQ1 = (move; []).
Now we can generate all possible orders of system transition. Furthermore, we will show a full trace
of the role lookup functions.

8.5.1 The Start Transition and a Function Trace

From Sinit only the transition (1) can trigger ono1. It collects the consequences of the message
move, using the functionfrules(1;move), which in its turn essentially usesffindSync(1;move), which
collects and orders allimplies andimpliesBefore consequences.

ffindSync(1;move) =
fcollectFor(1;move; ; ;); [(1;move)]; fcollectFor(1;move;!; ;)

This is a list starting with theimpliesBefore consequences and their further implications, fol-
lowed by the actual message(1;move) followed by theimplies consequences and their further im-
plications. Let’s trace theimpliesBefore part first. It will return an empty list, because there are no
impliesBefore consequences for(1;move), but for completeness, we shall spawn this trace.

fcollectFor(1;move; ; ;) =

ffindList(fconsFor([(1;move)];); f(1;move)g) =

ffindList([]; f(1;move)g) = []

More interesting is theimplies consequences branch of(1;move) it will not only have a consequence,
but this will have a consequence again, that even leads to a cycle.

fcollectFor(1;move;!; ;) =

ffindList(fconsFor([(1;move)];!); f(1;move)g) =

ffindList([(2;move)]; f(1;move)g) =

ffind(2;move; f(1;move)g) =

fcollectFor(2;move; ; f(1;move)g); [(2;move)]; fcollectFor(2;move;!; f(1;move)g)

The fcollectFor(2;move;!; f(1;move)g) branch will return an empty list, for the same reason
already seen before: there are noimplies rules inR for the message(2;move). Therefore, let’s
investigate the other branch:

fcollectFor(2;move; ; f(1;move)g) =

ffindList(fconsFor([(2;move)];); f(1;move); (2;move)g) =

ffindList([(1;move)]; f(1;move); (2;move)g) =

ffind(1;move; f(1;move; (2;move))g) = []

The cycle in the sequential consequences is broken, because the history list argument
f(1;move); (2;move)g contains the function argument(1;move). Now we can collect the results:

ffindSync(1;move) = []; [(1;move)]; []; [(2;move)]; [] =
[(1;move); (2;move)]

In order to get the result of the main functionfrules(1;move), we need to feed the result list
of ffindSync(1;move), namely[(1;move); (2;move)] into thefconsFor() function using the opera-
tor that we are interested in. Because up to now, we only took care of theimpliesBefore and im-
plies consequences. But all of them can cause consequences of other operators that must be taken

70 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

into account. ThefconsFor() function will check for each entry of the sequential consequence list
[(1;move); (2;move)], if they imply further consequences for the given (up to now neglected) opera-
tor.

fconsFor(ffindSync(1;move); k) = []

fconsFor(ffindSync(1;move); j) = [(1;allow)]
fconsFor(ffindSync(1;move);;) = [(1; turn)]

Thus the complete consequence and the reservation set are:

frules(1;move) = (move; []; [(1;allow)]; [(1;move); (2;move)]; [(1; turn)])
freserv(frules(1;move)) = f1; 2g

Note that both objects are engaged in a sequential consequence (both have tomove), therefore
they must both be reserved.

With the complete results of the functions we can determine, if the first system transition can fire
or not. It can, because the both objects are idle (therefore hold no reservation). This leaves us with
the new system stateS0 holding the object setO0 = fo0

1
; o2g where

o01 = (1; []; (move; []; [(1;allow)]; [(1;move); (2;move)]; [(1; turn)]); f1; 2g)

8.5.2 Execution of the Consequences

In the current stateS0 there is still no transition foro2 possible. The only possible transitions foro01
are the ones that evaluate the guard (transitions (4) and (5)). From our abstract view of the system we
cannot tell if the guard would fail or not, therefore we have to consider both possibilities. Let us first
assume that the guard would fail. This is represented by the transition (5).

(1; []; (move; []; [(1;allow)]; [(1;move); (2;move)]; [(1; turn)]); f1; 2g)

h allow on1 is falsei
�!

(i; []; (move; []; []; []; []); ;)

Clearly, after this transition no other transition can fire anymore. But maybe, instead of transition
(5) transition (6) could have fired. This represents the case, where the guard evaluates to true.

(1; []; (move; []; [(1;allow)]; [(1;move); (2;move)]; [(1; turn)]); f1; 2g)

h allow on1 is truei
�!

(1; []; (move; []; []; [(1;move); (2;move)]; [(1; turn)]); f1; 2g)

Since both guard queues are empty, the execution of the sequential consequences can start (tran-
sition (6)). This transition can fire twice, while no other transition can fire.

(1; []; (move; []; []; [(1;move); (2;move)]; [(1; turn)]); f1; 2g)

h executemove on1i
�!

(1; []; (move; []; []; [(2;move)]; [(1; turn)]); f1; 2g)

(1; []; (move; []; []; [(2;move)]; [(1; turn)]); f1; 2g)

h executemove on1i
�!

(1; []; (move; []; []; []; [(1; turn)]); f1; 2g)

8.5. ANALYZING POSSIBLE EXECUTION ORDERS OF AN EXAMPLE SYSTEM 71

In the resulting system state, two transitions can fire. The asynchronously sending transition and
the reservation release transition. It is unimportant, which one fires first. When the asynchronous
sending happens first, the release will be the only further option7 and vice versa.

(1; []; (move; []; []; []; [(1; turn)]); f1; 2g)

h sendturn to 1i
�!

(1; [turn]; (move; []; []; []; []); f1; 2g)

(1; [turn]; (move; []; []; []; []); f1; 2g)

h Release reservationsi
�!

(1; [turn]; (move; []; []; []; []); ;)

Only now, when the object reservations are released, the sentturn message can be treated in
transition (1). The consequences contain no guards, no asynchronous consequences. They only order
the twoturn executions.

(1; [turn]; (move; []; []; []; []); ;)

h Start reactioni
�!

(1; []; (turn; []; []; [(1; turn); (2; turn)]; []); f1; 2g)

The only possible transitions are the execution of the messages, and then the release of the reser-
vations.

(1; []; (turn; []; []; [(1; turn); (2; turn)]; []); f1; 2g)

h executeturn on1i
�!

(1; []; (turn; []; []; [(2; turn)]; []); f1; 2g)

(1; []; (turn; []; []; [(2; turn)]; []); f1; 2g)

h executeturn on2i
�!

(1; []; (turn; []; []; []; []); f1; 2g)

(1; []; (turn; []; []; []; []); f1; 2g)

h Release reservationsi
�!

(1; []; (turn; []; []; []; []); ;)

After this transition, no further transition is possible.

8.5.3 Evaluation of the Example

The tracing of the possible state transitions reveals the possible execution orders. There are two main
paths, they represent the truth value of theallow guard, and there is an effect-less variation between

72 CHAPTER 8. FORMAL SPECIFICATION OFFLO/C

start

[allow = false]

o1 move o2 move

send turn to o1

o1 turno2 turn
release

release

release

[allow=true]

start

send turn to o1

Figure 8.2: The system transitions as state diagram.

asynchronous sending and release of the reservation. This leads to the transition order represented in
figure 8.2.

The guard transitions show at which stage a guard method is executed, and the execution transi-
tions show other method executions. Thus the transitions reveal all possible execution orders:
(1;allowfalse) or
(1;allowtrue); (1;move); (2;move); (1; turn); (2; turn).
We see that heavy use of sequential operators (opposite to the use ofimpliesLater operator) almost
completely sequentializes the behavior. The small bit of concurrency that is still left in the example
would show, if at the starting statebothobjects would have hold amove message in their queue. Still,
the behavior is similar: One of the two possible transition (1) would fire, which would lead to the
execution or failure of one of themove joint actions. It is not determinable ifo1 or o2 fire transition
(1) first. But both movement requests will lead to separate joint-actions thatmove the objects, and to
separate joint actions thatturn the objects.

7This is because both objects of the system are still reserved.

Chapter 9

Properties of the Formal FLO/C Model

As the former example showed, the formal approach did already prove itself for analyzing possible
execution orders of a given FLO/C system. This section will prove someexecutionbehavior of the
different operators, and then of the model as such. It will rely on the requirements for system transition
firing put up in section 8.3.2.

9.1 Execution Properties of the Operators

Here we are interested in statements about theexecution ordergiven a rule with a certain operator,
and statements aboutactuality of object statesof objects involved in rules with a given operator.
We analyze all those properties by reasoning on the order of state transitions. Usually, we assume
the presence of an ordered list of transitionsT that is either long enough for the analysis, or that
ends because it lead to a system state, where no further transition is possible. The list contains the
system transitions in an order they can occur for a given system.T contains the execution transition
of the precondition of the rule with the operator of interest. Given such aT we are then able to
conclude statements of the form: "sinceT contains the execution of the precondition message it must
(or must not) contain the execution of consequence message in between a calculable distance of the
preconditions execution transition. To ease the notation, the elements of a transition listT are labeled
(e.g withTp, Tq, etc).

Ordering property. The ordering property of an operator expresses that if the precondition message
was executed in a given transition sequence, thenthe consequence message execution must also be in
that sequence within a certain distance. Note that the property can also be specialized to define if the
precondition execution has to be before or after the consequence execution.

Actuality property. Given an operator with the ordering property, the actuality property expresses
that between the execution of the precondition- and the consequence message both these participants
are protected from third-party access. We call this "actuality" because in between the two executions
the state of the participants stay "actual".

We will show that both guard operators (permittedIf, waitUntil) and sequential ordering opera-
tors (implies, impliesBefore) have both properties, and that theimpliesLater operator has neither.
Note that these results reflect the purpose of the operators. The operators to compose synchronized
multi-object joint actions must fulfill the properties, while the light-weighted communication operator
should not (see section 2.2.2).

73

74 CHAPTER 9. PROPERTIES OF THE FORMALFLO/C MODEL

To prove the ordering property we will use the definition of the functionfrules(i; s) which orders
the consequence lists. Together with requirement 1 (presented in section 8.3.2) that ensures progress,
the transition firing order will then prove the ordering property. The proof of the actuality property is
based on the fact that the reservations are not released between the execution of the precondition and
a consequence.

Before we start the proofs of the properties we have to analyze FLO/C’s cycle breaking mech-
anism for sequential consequences, because they make the reasoning on such consequences more
complex. For a given rule-baseR containingr rules, we define the set of allindirect sequential
consequencesof a message ISC(i; s1) recursively as the union of the set of all direct sequential con-
sequences and their indirect sequential consequences. The size of the set of indirect sequential conse-
quences is limited byr + 1, which is the number of consequences that are available in the rule-base
R and the original message. Therefore, the following algorithm collects them in at mostr recursions.

collectIndSeqCons(message,ISCSet,Rules) [
list := collectDirectCons(message,R)
for list do: [anElement |

if anElement is not in ISCSet then: [
ISCSet add anElement
collectIndSeqCons(anElement, ISCSet, Rules)
]

]
]

The algorithm is started withISCSet containingmessage, since the starting message is also part of
the joint actions.

Properties of the indirect sequential consequences.The set of indirect sequential consequence
ISC(i; s) for a message(i; s) contains exactly the same messages than the sequential consequence
list Y loaded by the functionfrules(i; s), since they both recursively collect each possible sequential
consequence. However, the ISC set is (per definition) unordered. Letfrules(i; s) = (t;W; P; Y;A)

then we can say:(j; s2) 2 Y , (j; s2) 2 ISC(i; s)
The ISC set can be used to determine, if two messages sequentially imply each other. Thus we

can check if two messages form a sequential cycle. Namely when both are in each others indirect
sequential consequence set:(i; s1) 2 ISC(j; s2) ^ (j; s2) 2 ISC(i; s1). Now we have a mean to
discuss the properties of the operators, separating the special case of sequential cycles.

9.1.1 Theimplies Operator.

Given a FLO/C system with a rule-baseR with r rules where one of them has animplies consequence
for the message(i; s1) that is not cyclic to(i; s1). LetT be possible state transition path that contains
the execution of(i; s1):

R = (:::; (i; s1)! (j; s2); :::)

(i; s1) =2 ISC(j; s2)

T = (:::; (ok
h executes1 on ii

�! o0k)p; :::)

Note that ISC(i; s1) contains(j; s2) because of the rule with theimplies operator. Therefore, if
ISC(j; s2) also contains(i; s1), (i; s1) and(j; s2) are cyclic to each other. Note also thatok is the

9.1. EXECUTION PROPERTIES OF THE OPERATORS 75

object that is running the joint actions. Now we can start to reason about what happens with the
consequence message(j; s2) in T .

Theorem 1 Ordering property ofimplies . If (i; s1) is not an indirect sequential consequence of
(j; s2) (in which case there would be a cycle), theFLO/C model guarantees that the execution of the
consequence(j; s2) must follow inT :

9q with Tq = (o�k
h executes2 on ji

�! o
0�
k) andp < q � p+ rm

Note that the execution of(j; s2) must notimmediatelyfollow the one of(i; s1) for two reasons:
Other sequential consequences can be in theY list of ok, ordered between them, or transitions of
unrelated objects can be ordered in between the two executions.

Prove. If Tp = (ok
h executes1 on ii

�! o0k) this means thatok has loaded the consequences for
a message in its queue, which has also lead to the adding of(1; s1) into the sequential consequences
list. Therefore, at this transition the helper function was called as follows:
[fcollectFor(i; s1; ;H); (i; s1); fcollectFor(i; s1;!;H)]. Now the implies branch (!) of this list
must return a list containing(j; s2) because this sequential consequence is in the rule baseR:
fcollectFor(i; s1;!;H) = [:::; (j; s2); :::]. The only possibility that the function could return the
empty list is the case where the history setH already contains(j; s2), and thus a cycle was broken.
But since(i; si) is not an indirect sequential consequence ISC(j; s2), this case is ruled out. Therefore,
we can say that the complete list of the sequential consequencesY of ok, after the transitionTp must
have looked like that:Yk = [:::; (i; s1); :::; (j; s2); :::]. Since(i; s1) was executed at system transition
p, we can conclude thatok stays able to fire further execution transitions. Now requirement 1 requires
that at least everym transitionsok is given a chance to fire again. TheY list can carry at bestr � 1

consequences between(i; s1) and(j; s2), therefore execution of(j; s2) is guaranteed to take place in
betweenmr transition steps:

) Tq = (o�k
h executes2 on ji

�! o0�k) andp < q � p+ rm

Therefore, the rule(i; s1)! (j; s2) enforces thatafter the execution of(i; s1) the execution of(j; s2)
mustfollow after a finite amount of transition steps. We call this theordering propertyof the implies
operator.

If we would not demand the cycle freeness between the two messages, the reasoning would not be
that easy. The execution of(i; s1) at stepp would not necessarily lead to the later execution of(j; s2),
because in a given system(j; s2) might already have been executed before, causing the execution of
(i; s1) atp. Nevertheless, with more detailed analysis of the cases, we can conclude that either one or
the other must follow, therefore the two messages always form pairs with maximum distance ofrm

transition steps.
Let us now discuss what can happen in between such pairs, that are caused by animplies operator.

Theorem 2 Actuality property ofimplies .

Given
R = (:::; (i; s1)! (j; s2); :::)

T = (:::; (ok
h executes1 on ii

�! o0k)p; :::; (o
00
k

h executes2 on ji
�! o000k)q; :::)

q Nearest occurrence of(j; s2) to p

76 CHAPTER 9. PROPERTIES OF THE FORMALFLO/C MODEL

For any transitionTo in betweenp andq holds that if it is executing something onoj or oi it must be
a transition (more precisely the execution transition(6))on the objectok1.

Prove. If this was not so, a transition stepTo; p < o < q would be a transition on another
objectol l 6= k. But thenol would hold locks for which everoi or oj it is changing in transitionTo.
Since both of these locks must also be held byok there is a contradiction to the precondition of the
transition (1), which requires the exclusive reservation of all necessary locks, therefore this situation
is impossible.

Now we can conclude thatoi andoj are protected from access by executions caused from tran-
sitions applying to another object thanok. In fact, the only thing that can happen tooi andoj when
they are executed sequentially is that they can receive asynchronous messages, or that the joint actions
going on onok include different actions (method executions) on them. Therefore, as expected, the
implies operator can be used to build synchronized multi-object joint actions, where the participants
are protected against interleaved state change. The rule(i; s1)! (j; s2) enforces that at the execution
of (j; s2) the objectoi is still in the state the method(i; s1) left it. We call this propertyactuality of
(i; s1) for (j; s2).

9.1.2 TheimpliesBefore Operator.

This operator behaves symmetrically to theimplies operator. Given a FLO/C system with a rule base
R with r rules, where one of them has animpliesBefore consequence for the message(i; s1), which
is not cyclic to(i; s1).

Theorem 3 Ordering property ofimpliesBefore .

Let T be a possible state transition path that contains the execution of(i; s1)

R = (:::; (i; s1) (j; s2); :::)

(i; s1) =2 ISC(j; s2)

T = (:::; (ok
h executes1 on ii

�! o0k)p; :::)

The FLO/C model guarantees that the execution of the consequence(j; s2) must be inT some when
beforethe execution of(i; s1).

9q with Tq = (o�k
h executes2 on ji

�! o
0�
k) andp� rm � q < p

The proof of this property is analog to that of theimplies operator. TheimpliesBefore operator has
the sameorderingproperty only inverting the order of the precondition and the consequence.

Theorem 4 Actuality property ofimpliesBefore .

The very same argumentation as with theimplies operator leads to the conclusion that theimplies-
Before operator also has theactualityproperty.

1Like mentioned beforeok is the object that held(i; s1) and(j; s2) in its Y list.

9.1. EXECUTION PROPERTIES OF THE OPERATORS 77

9.1.3 The Guard Operators.

The guards that belong to a set of joint actions are all executed before the start of the execution of the
sequential consequences. Given

R = (:::; (i; s1)(j or k)(j; s2); :::)

T = (:::; (ok
h executes1 on ii

�! o0k)p; :::)

The FLO/C system guarantees, thepositiveevaluation of the guard(j; s2) must be inT some when
before the execution of(i; s1).

Theorem 5 Ordering property of the guard operators.

9q with Tq = (o�k
h s2 on j is truei

�! o
0�
k) andp� rm � q < p

Again, the proof follows the pattern used for theimplies operator. Only this time, the consider-
ation of cycles is irrelevant, because guards cannot form a cycle, they are not collected recursively.
Since the execution of(i; s1) was inT , (i; s1) must have been in the list of sequential consequences
ffindSync(). But then, one of the guard lists must have contained(j; s2) since the guard lists are calcu-
lated withfconsFor(ffindSync(); guardOp) and(j; s2) is a predicate message of(i; s1) in R. Before
(i; s1) can be executed, the guard lists must be empty (see definition of transition (6)). In order for
(i; s1) to stay in the execution listY (not being erased) and being executed, the guard lists must be
emptied by transitions that represent positive guard evaluation. We showed that the guard lists contain
at least the message(j; s2). Therefore, if the execution of(i; s1) is in T, the positive evaluation of
(j; s2) must be there before.

Theorem 6 Actuality property of the guard operators.Theactualityproperty holds for the guard
operators.

The proof follows the previous patterns of actuality proves. It relies on the fact that the guard objects
are reserved. The actuality property is important for guards, since the execution of(i; s1) should only
take place, when the guard is true, which cannot be guaranteed whenoj can be changed from outside
in between the guard evaluation and the execution of the guarded message.

9.1.4 TheimpliesLater Operator.

Theorem 7 Neither the ordering nor the actuality property holds for theimpliesLater operator.

Given
R = (:::; (i; s1); (j; s2); :::)

T = (:::; (oi
h executes1 on ii

�! o0i)p; :::)

This only guarantees that(j; s2) will be sent some when later.

9q with Tq = (o�i ; o
�
j

h sends2 to ji
�! o

0�
i ; o

0�
j) andp < q � p+ rm

Thus(j; s2) is sent after at mostrm steps. Again, this is because the sum of sequential and asyn-
chronous consequence messages to a message cannot be bigger than the number of rulesr. However,
when(j; s2) eventually gets treated by transition (1) onoj, it is possible that a guard forbids its ex-
ecution. Therefore, the ordering property does not hold. Furthermore, the actuality property cannot
hold, becauses2 might queue behind other messages tooj . One of these other messages could trigger
transitions that change the state ofoj or evenoi .

78 CHAPTER 9. PROPERTIES OF THE FORMALFLO/C MODEL

9.2 Liveness Properties of the FLO/C Model

Here we discuss three liveness issues:deadlocks, livelocksandmessage loops. We prove liveness
properties that hold for any FLO/C system depending on which kinds of operators are used there. In
order to prove the properties we analyze the local transition firing order (see section 8.3.1) together
with the progress ensuring requirements for transitions (see section 8.3.2).

9.2.1 Deadlock

If no transition can fire in a given systemS, it is calleddead. Although this is a pessimistic sounding
attribute of a system, there are legitimate versions of such states, like the graceful termination. In this
section however we are interested in the states, where not "everything" was treated, but the system is
dead. Messages that reside in lists can be seen as requests. If such requests don’t lead to any external
behavior, the system is deadlocked.
Definition: Emptiness. An objectoi is empty, when it is idle (the consequence lists are all empty,
it holds no locks) and it has no message in its queue:
oi is empty$ oi = (i; []; (t; []; []; []; []); L)

Definition: Deadlock. A deadlock is a system state, where noexecution2 occurs anymore but not
all objects areempty.

Clearly this is an undesirable state. When an object is not empty, it means that it is still engaged
in some coordination. However:

Theorem 8 According to this definition everyFLO/C system is deadlock free

Prove. (by contradiction of the negation.) If a FLO/C system deadlocks, there is at least one
objectoi that is not empty. Now we have to consider all different cases of non-emptiness.

1. First we consider the case where one of the consequence lists is not empty. If this is a guard
list, then we can conclude with requirement 1 that transactions (2 to 5) will fire, leading to an
execution (evaluation of a guard). Thus the system is not deadlocked. Otherwise when the guard
lists are empty but the sequential consequence listY is not, then the execution transition (6) will
fire. If The guard lists andY are empty but the asynchronous consequence listA contains at
least a message then transaction (8) can fire, which is not an execution but leads to the next
case.

2. If there is an objectoj with messages in its queue, according to requirement 2 the transition (1)
will fire after a finite time of transitions, loading the consequences of for example(j; s2). The
transition will load at least the message(j; s2) itself into the execution listY . According to the
case 1, this must lead to either the execution of a guard or(j; s2) itself. Therefore, no deadlock
can occur,qed.

9.2.2 Livelock

A livelock is the case where a request keeps on trying, but is never handled but always delayed. In the
FLO/C model, this translates to methods that are always underway but never executed.
Definition: livelock A FLO/C systemS livelocks, if there exists a particular message(oi; s) that
forever resides in a queue or any of the consequence listsP , W or Y without ever being executed.

2Executions are: executions by transition (6) and evaluation of guards by transitions (2)(3)(4)(5).

9.2. LIVENESS PROPERTIES OF THEFLO/C MODEL 79

Note that every message in one of these lists is waiting to be handled, whereas for example the
asynchronous consequence listA or the reservation setL do not contain requests in that sense, there-
fore they are not of interest here.

Theorem 9 According to this definitionnot every FLO/C system is livelock free.

Consider the rule((i; s) k (i;alwaysEvaluatingToFalse)). In a system containing this rule, and
wheres is in the queue ofoi, there is a livelock. The consequences of(i; s) contain awaitUntil guard
that always evaluates to false. According to transition (3), the requests is put back in the queue and
the execution lists are emptied. Therefore, this particular requests for objecti will never be executed,
but it will stay in the system, either inQi or in Yi.

Using thewaitUntil operator can livelock a system, but what happens when we don’t use it?

Theorem 10 EveryFLO/C systemS that contains no rules using thewatitUntil operatork) is live-
lock free.

Prove. Let (i; s) be the message that stays in the system, but never gets executed. We differ the
cases wheres is in the queue ofoi and when(i; s) is in an execution list.

1. (i; s) can not be inW , since there are nowaitUntil consequences thereforeW is always empty.

2. If (i; s) is in P , the execution list of thepermittedIf consequences then after at mostrm tran-
sitions, the transitions (4) or (5) applies on the message(i; s). In both cases, the message gets
evaluated, therefore there is no livelock.

3. If (i; s) is in the list of the sequential consequencesY , there are two cases to be considered: if
theP list of the guard lists is empty, after at mostrm transitions, the transition (6) applies, so
(i; s) is executed. Note that the list of thewaitUntil consequencesW must be empty, because
there are no rules with thek operator. If however theP list is not empty, we must separately
investigate the cases, where a guard fails, and where all guards succeed.

� If (i; s) is permitted by apermittedIf guard, then, as seen in the case with empty guard
lists, (i; s) will be executed after at mostrm system transitions.

� If (i; s) is not permitted by apermittedIf guard (transition 5), then the consequence lists
are emptied, and(i; s) is not executed. But now, after at mostrm system transitions this
particular(i; s) message does not reside in the system any more.

4. In the last caseoi is idle ands is in the queue ofoi at positionp. After r + 3(n � 1) system
transitions (requirement 2) the transition (1) onoi will load the consequences for the next re-
quest. For thep � 1 other messages in the queue the consequences are treated before it is the
turn of (i; s). The treatment of the consequence for one request is done in at mostm(r + 3)

transitions because there can ber consequences that need one transition each, and the original
message plus the loading and the releasing transition. Therefore, after a finite amount of transi-
tions, eachs in Qi will be removed from the queue, and put in theYi list, where it gets treated
as discussed above in case 2, not leading to a livelock,qed.

This theorem gives us a way to ensure that a given FLO/C program is livelock free. We must sim-
ply use no rule with awaitUntil operator. In section 14.2 we present an example that synchronously
moves graphical objects. The example does not use thewaitUntil operator therefore it is livelock

80 CHAPTER 9. PROPERTIES OF THE FORMALFLO/C MODEL

free. In examples that do use thewaitUntil operator we must analyze the possible execution orders as
demonstrated in section 8.5 when we want to be sure about liveness. We claim that the presented for-
malism can serve as a base for the development of methods and tools to analyze the liveness properties
of a given FLO/C system. We consider such development to be future work (see section 16.1)

9.2.3 Operator Loops

The previous prove does not preclude the queues from getting fuller and fuller. Consider a FLO/C

system with four rules:
R = ((1; s); (1; s)); ((1; s) ; (2; s)); ((2; s) ; (1; s)); ((2; s) ; (2; s))

Although the liveness of this system is guaranteed ((1; s) and(2; s) will be executed after at most5m
transitions), the queues ofo1 ando2 grow with each execution. Each time after a message is executed,
two asynchronous consequences are sent. Therefore the asynchronous consequence can multiply
requests. Only one other operator has (a limited) possibility, to reproduce the request by resending it,
namely thewaitUntil operator. Therefore, both thewaitUntil and theimpliesLater operators can be
used to form anasynchronous loop, e.g. by the following rules:
((1; s); (1; s)) respectively
((1;alwaysEvaluatingToFalse) k (1;alwaysEvaluatingToFalse))

ThepermittedIf operator is unable to produce a loop, theimplies andimpliesBefore could loop,
if it was not for the cycle breaking mechanism.

Theorem 11 A FLO/C system without rules containing thewaitUntil or the impliesLater operator,
will be dead after a finite amount of transitions.

Prove. None of the other operators cause the putting of messages into a queue. Thenmessages
already in the different queues take at mostn(r+3) transitions to be treated, then the objects are empty.

Therefore, FLO/C systems that only use rules with the operatorspermittedIf implies and im-
pliesBefore do not loop, and as seen in section 9.1 have strong concurrency restricting properties.
Note that these are the operators inspired by the synchronous FLO model [Duc97b].

The next section shows the simplification made between the full FLO/C model as described in
Part I and this formal FLO/C approach, and how these simplifications impact on the previous results.

9.3 Limitations of the Formal Approach

The main goal of the formal approach was to unambiguously describe the rule fusion and give a mean
of reasoning about possible execution paths. Non of the upcoming limitations will break the previous
results, but still affect them:

� In the full FLO/C model, rules are spread in connectors, and address their participants not the
objects themselves. Participants can be groups of objects. In the full model, rules can have
more than one consequence. All these generalizations can be neglected, because a given set of
connectors and participants of the full model can easily be translated to the simplified form of
the rule base used in the formal approach. In fact, when the implementation of FLO/C caches
consequences, it also reduces away the connectors and role groups (see section 11.4 and 13.3).

� When a message is executed in the formal model, this is done atomically. However, the method
could send other messages. If these messages do not trigger rules it is okay to ignore that
fact, since according to the paradigm stated in section 3.1, the object only calls helper methods

9.4. SUMMARY 81

on itself. If an execution sends a sub-message that is precondition to a rule, FLO/C sends
the sub-messageasynchronously. That way, the state transitions can treat the sub-message
consistently without breaking the actuality properties (see section 9.1). However, this provides
another way to write endless loops of asynchronous messages, without using thewaitUntil or
the impliesLater operator.

� The exception handling mechanism of the full FLO/C model (see section 4.5) is not integrated
into the formal model. The exception handling mechanism catches not permitted messages,
thus allowing the programmer to let an object, possibly a connector try to save the situation.
The following rules show how the concept can be abused to form a loop, even worse a livelock.

object livelock. permittedIf guard alwaysReturnFalse. endRule
object methodWasForbidden: m impliesLater object livelock. endRule

Upon sending oflivelock to whatever object plays the roleobject, the guard gets evaluated, and
fails. Then the exception mechanism callsmethodWasForbidden: #livelock. This in turn will
lead to the resending oflivelock. In fact, the two rules simulate the rule:

object livelock. waitUntil guard alwaysReturnFalse. endRule

which livelocks. The only difference is that thewaitUntil version uses less message sending
and can be optimized in an implementation of the model. Furthermore, both operators have an
independent exception mechanism.

� The dynamicsof the full FLO/C model is not reflected in the formal model. The fact that
connectors (dis-)connect at run-time, would translate in changing the rule base of a FLO/C

system between system transitions. Therefore, between two consequence-loading transitions
(transition (1)) of the same object3, changes in the rule base might not be properly reflected.
Namely a new rule could be introduced, but still the old consequence are executed. In practise
when dynamically changing connectors while participants are working is indeed unsafe in the
sense that the programmer does not know, when exactly the rules are enforced on the still
working participants.

When we specially take into account the dynamics of the connectors, the helper message calls,
and the exception handling situation of a given full model FLO/C system, we are still able to use the
previous conclusions. The last section of this chapter will resume them.

9.4 Summary

The introduced formal FLO/C model as specified in section 8 offers ways of analyzing theexecution
behaviorof a given FLO/C system. This has been done for an illustrating example in section 8.5. The
formal model reflects the indeterminism that comes from the concurrency of active objects, and from
the inability to predict the concrete evaluation result of a guard.

In section 9.1, we analyzed execution properties that describe the semantics of operators. Given
that a precondition message of a rule was executed, we were able to prove statements about the
execution of the consequence message, depending on the operator of the rule. Theordering property

3= In the midst of some joint actions.

82 CHAPTER 9. PROPERTIES OF THE FORMALFLO/C MODEL

limits the distance between the execution of the precondition and the execution of the consequence
in terms of system transitions. Theactuality propertyensures that in between the two executions, no
third party request can change the state of the involved objects.

Section 9.2 started to analyze liveness properties that hold foreveryFLO/C system, although there
are some simplifications to the full FLO/C model (described in part I of this thesis) as discussed in
section 9.3.

The following table shall summarize the found and proven execution properties, with respect to
which entity they hold, and what limitations must be considered.

entity property restrictions

Deadlock free
Livelock possible

model Livelock free, if nowaitUntil op-
erator used.

Exception handling forper-
mittedIf operator.

Only the impliesLater and the
waitUntil operators can cause
asynchronous message loops

Helper messages and self
calls that trigger new rules.

implies & impliesBe-
fore operators

Actuality and ordering property. Dynamic connector activi-
ties.

permittedIf & waitUn-
til operators

Actuality and special ordering
property: guard evaluated to
true.

Dynamic connector activi-
ties.

impliesLater operator No actuality or ordering prop-
erty.

Part III

Implementation

83

Chapter 10

Implementation Overview

The FLO/C model as presented in part I and formally analyzed in part II is fully implemented using
SMALLTALK . This chapter gives an overview of the implementation. First, in section 10.1 we show
how the implementation is layered to give an impression of the global structure of the implementation
and in section 10.2 we present the size of different parts of the implementation. Then section 10.3
evaluates the choice of the base languages SMALLTALK and NEOCLASSTALK. Section 10.4 will ex-
plain the meta-class and meta-object concepts and point out their use for the FLO/C implementation.

10.1 Layering of the Implementation

During the development of FLO/C in SMALLTALK we had to implement different services ranging
from low-level issues like an asynchronous message passing protocol to high-level issues like a visual
programming tool for FLO/C. Figure 10.1 shows how the implementation is layered. Each layer uses
the services provided by the layer below.

Smalltalk

NeoClasstalk

Asynchronous message passing system

Active Objects with Connectors

Composite Objects

Visual Programming Aid

Base programming language

Implements explicit Metaclasses

Base for active objects

Basic Flo/c

Encapsulation

Design support

Fl
o/

c

Purpose:Layers:

Figure 10.1: The layering of the FLO/C implementation.

On top of SMALLTALK we used NEOCLASSTALK, which is a reflective extension that allows the
declaration of explicit meta-classes. NEOCLASSTALK eases the control of the message passing which
enabled us to we implement active objects similar to Briot’s ACTALK [Bri89] but put them on top of
a more elaborate asynchronous message passing system. We did this to study different interception
policies for message passing. The basic FLO/C implementation defines the classes and meta-classes
used to program in FLO/C. Composite objects are an extension, FLO/C can be programmed without

85

86 CHAPTER 10. IMPLEMENTATION OVERVIEW

using them. The visual FLO/C tool is a VISUALWORKS 2.0 application that allows one to graphically
connect active objects and to send messages to them.

The basic FLO/C implementation and the higher support features deserve their own discussions
in separate chapters. The next section presents the technical numbers of the implementation.

10.2 Technical Data of the FLO/C Implementation

We classify the implementation source code into four categories: kernel-, helper-, visualization-
and example code.Kernel code includes all classes that represent FLO/C abstractions, their meta-
classes and their meta-object classes, for exampleConnector, MetaCompositeObject and Con-
troller. Helper code includes the classes that are used to decompose functionality - for example
group-management and data containers. Classes for this category are for exampleCall (reified mes-
sage),RndSpecificator andInteractionRule. Thevisualizationcode includes the VISUALWORKS

2.0 application to support visual FLO/C programming. Theexamplecode holds the examples de-
scribed in section 14. It contains the FLO/C programs written to solve particular coordination prob-
lems in order to prove FLO/C’s expressive power.

category code classes methodscode/class methods/class
kernel 64 KB 13 217 4.9 KB 16.7
helper 39 KB 22 155 1.8 KB 7.1
visual 70 KB 9 167 7.8 KB 18.6
examples 83 KB 70 226 1.2 KB 3.2
total 256KB 114 765 2.3 KB 6.7

For SMALLTALK style programming [SKT96] [Bec97] some classes carry too many methods.
The FLO/C implementation packs a lot of functionality into the few kernel classes. The classes of the
visualization code are also overloaded. This problem is not FLO/C related but identified in [How95].
The high number of methods in the visualisation classes reflects the many user-interaction ways. The
size of the code is also due to graphics (icons and layout). Note that only the kernel uses explicit meta-
classes, namely two. The examples use 31 connectors and 11 composite object classes. More statistics
for these classes will be presented in section 14.11. After this quick overview of the implementation,
the next section justifies the choice of the base languages.

10.3 Choice for an Open and Reflective Environment

This section justifies our choice of the base language SMALLTALK [GR83], VISUALWORKS 2.0
[Par95] to be more precise. It explains why the extension NEOCLASSTALK [Riv97] was needed.

10.3.1 SMALLTALK

SMALLTALK was chosen as base language for the FLO/C implementation for the following reasons:

� The language is reflective [Riv96b]. Big parts of its system behavior is coded in SMALL -
TALK and available in the repository for inspection and changes, therefore SMALLTALK can be
adapted to the needs of FLO/C.

� The language supports rapid prototyping, because it allows short life cycles. This is ideal to pro-
totype new models like FLO/C that can change quickly. Furthermore, the debugging features
are excellent (e.g. recompiling flawed methods at debugging time).

10.3. CHOICE FOR AN OPEN AND REFLECTIVE ENVIRONMENT 87

� SMALLTALK truly decouples message passing from method execution. Therefore, it is easier
to control message passing.

VISUAL WORKS 2.0. For our implementation we used VISUALWORKS 2.0 [Par95] as SMALL -
TALK environment. VISUALWORKS 2.0 is a fully object-oriented environment for constructing ap-
plications, using SMALLTALK as the scripting language. It enables application developers to build
graphical user interfaces rapidly. Furthermore, VISUALWORKS 2.0 provides convenient linkages
to many popular databases. The implementation of a visual programming aid for FLO/C took the
most advantage of VISUALWORKS 2.0 by using its application framework based on the model-view-
controller paradigm [How95].

Limitations of SMALLTALK . SMALLTALK offers only low-level concurrency constructs. Pro-
cesses (threads) can be forked and they have a priority. Semaphores are provided to synchronize
processes. Unfortunately SMALLTALK is not preemptive. If a process is active and running, it must
yield the control explicitly. The concurrency supporting code and the scheduler code is available for
browsing, however most of the code relies on built-in primitives, thus cannot be modified easily.

The fact that FLO/C is implemented in the VISUALWORKS 2.0 environment with little concur-
rency features and residing on a single processor machine, simplified the implementation. We will
show in section 16.1, how the architecture could be extended to be used in real distributed systems.

10.3.2 NEOCLASSTALK

NEOCLASSTALK [Riv96a] is a SMALLTALK extension that is even more reflexive than SMALLTALK .
NEOCLASSTALK is inspired by the OBJVLISP object model proposed by Cointe [Coi87][Coi90].
NEOCLASSTALK version 1.2 is available for free on the world-wide web under the URL
http://wfn.emn.fr/dept_info/neoclasstalk/ . The following list shows some of the
important improvements of NEOCLASSTALK over SMALLTALK .

� In NEOCLASSTALK each object can dynamically change its class without taking care of the
number of instance variables.

� In NEOCLASSTALK dynamically changing the class hierarchy is simplified.

� NEOCLASSTALK features multiple inheritance.

� In NEOCLASSTALK the message application is reified. This enables method execution control.

� NEOCLASSTALK does not distinguish between classes and meta-classes. It offersexplicit meta-
classes.

For the implementation of FLO/C we used explicit meta-classes in order to declare enhanced
connector classes and provide component classes with a special instantiation protocol. We also used
the message application reification in order to control th message passing.of our active objects. The
rest of the features (e.g. multiple inheritance and dynamic class changes) were not used.

Note that NEOCLASSTALK does not improve the concurrency or coordination support of SMALL -
TALK .

The next section will explain why and how meta-classes are used, and what meta-objects are.

88 CHAPTER 10. IMPLEMENTATION OVERVIEW

10.4 Meta-Level Programming

Meta-objects and meta-classes have almost only the word "meta"1 in common. We treat both concepts
in this section because they both go beyond "regular" programming. Therefore, these concepts must
be introduced before we can explain the implementation of FLO/C’s kernel in section 11.

10.4.1 Explicit Meta-Classes

In OBJVLISP everything is an object and instance of a class. Therefore, classes are objects too.
They are instances of a classes, namely of meta-classes. Just like any class the meta-class declares
operations and instance variables that their instances have in common, the only difference being that
the instances are classes themselves [Coi87]. SMALLTALK ’s meta-classes areimplicit. They are
accessed via theclass protocol of their instances and each implicit meta-class has only one instance.
In NEOCLASSTALK meta-classes are declared like any other class. A standard meta-class understands
thenew message, since this message is sent to a class. In section 6.1 we saw that composite object
classes have an unconventional instantiation protocol. This can be implemented by declaring a meta-
class that instantiates all composite object classes (see section 10.4).

Connectors of one class all share the same rules. Therefore it is a waste of memory to store them in
each instance. A meta-class of connector classes can be used to declare a rule-store for each connector
class. In SMALLTALK this could have been done in a class-variable, using theimplicit meta-classes
of SMALLTALK .

10.4.2 Meta-Objects

Kiczales [KdRB91, Kic92] proposed the separation of base-language programs frommeta-language
programs. The meta-language program can customize particular aspects of theunderlying systems’
implementationso that it better meets the needs of the base-language program. Ameta-objectin-
stantiates an aspect of the underlying system’s implementation. In FLO/C meta-objects are used
to instantiate aspects of the message passing system. The most important meta-object of FLO/C is
the controller (see section 11.2). It instantiates the message handling policy of a single active ob-
ject [Fer89]. Since FLO/C is based on message passing control (see section 2.2.3), an extension
or customization of the FLO/C implementation can be achieved by changing the FLO/C controllers.
Meta-objects for message passing control were successfully used in other approaches like for example
Open C++ [CM93].

After this first contact with the "meta" concepts used in the FLO/C implementations, the next
section will explain the architecture of the FLO/C kernel thereby showing theuseof the concepts.

1Meta "beyond"

Chapter 11

The FLO/C Kernel

The FLO/C kernel includes the the two main entities of this thesis: connectors and active objects.
The active objects use asynchronous message passing and they collaborate with connectors. The
next section explains the implementation of these two aspects of the active object architecture. The
controller as part of an active object acts as meta-object. It implements FLO/C’s message control
strategy, therefore controllers will be discussed in detail. Then we explain the implementation of
connectors. Finally we introduce the architecture for the composite objects.

11.1 Implementation of Active Objects

Before implementing FLO/C, we experimented with different asynchronous message passing styles.
We knew that we wanted to intercept the messages at different stages of their propagation (received,
handled, sent). Therefore we changed the ACTALK model [Bri89] refining the asynchronous sending.

11.1.1 ACTALK ’s Asynchronous Message Passing System

In ACTALK, an active object consists of abehavior object, anactivity objectand aqueue. The behavior
object implements the domain specific behavior. It sends and receives messages. But all messages to
the behavior object are redirected1 into the queue of the active object (asynchronism). The activity
object that is running in its own thread, accesses the queue. It decides what messages should be
executed (what method of the behavior object should be called). Figure 11.1 shows an active object
in ACTALK.

11.1.2 FLO/C’s Asynchronous Message Passing System

As we mentioned in section 2.2.1 our implementation is similar to the ACTALK architecture but ex-
tends the asynchronous message passing. Furthermore the live-cycle of our active objects differs from
ACTALK, for example our implementation features graceful termination of active objects.

In our implementation thebehaviorobject’s class must be subclass ofActiveObject. In order to
be used as an active object it has to be encapsulated in a hull (classHull) that connects it to the message
queue(classInQueue2) and theactivity which we callcontroller (classFloInController). Our active
objects can use arouter (classRouter) to send asynchronous messages. The active object sends the

1Briot used message interception by overloading theObject»doesNotUnderstand: message.
2The queue is implemented using classSharedQueue provided by SMALLTALK .

89

90 CHAPTER 11. THEFLO/C KERNEL

Actalk’s active object

Activity (controller)

Behavior object

Reified message

Mailbox (queue)

Figure 11.1: An active object in ACTALK.

message to the router which will deliver it to the appropriate queue. We introduced the router in order
to have more control points where we can get hold of messages and to be able to gracefully terminate
all active objects at once. The router turned out to be unnecessary for FLO/C, but it is still useful
since it can be extended to simulate real distribution. It can do so by delaying asynchronous messages
or even loosing some. It can also simulate name-space problems.

Until this point our implementation does not need message capturing, because the asynchronous
messages are sent by methods of the classActiveObject that use the router. Therefore our asyn-
chronous message passing system is stand-alone. In order to render the system compatible with pas-
sive objects, we added message capturing (see section 11.1.3). Any message sent to the behavior
object will be intercepted and put in the in-queue. Together with a FLO/C compatible controller our
active object implementation is fit to model FLO/C’s active objects.

We show now step-by-step how asynchronous messages flow through our active object implemen-
tation. Figure 11.2 illustrates these steps and numbers them. The following enumeration follows the
numbers in the figure.

Router

controller

Active object

Behavior object

in-queue

1
2

3

4

5

6

Hull

Figure 11.2: The lean active Object.

1. All messages that are sent to the behavior object are intercepted and redirected to its meta-
object. Message capturing will be the subject of section 11.1.3.

2. A simple version of the controller can just execute the message on the object, and return the

11.1. IMPLEMENTATION OF ACTIVE OBJECTS 91

result of the evaluation. This is equal to synchronous message passing.

3. But the controller can also use asynchronous sending. It uses the asynchronous sending features
of the active object. If the controller uses this way to re-sendevery callcoming in at 1), the
active object shows heavy asynchronous behavior. It is not able to provide return values.

4. The router will lookup the target of a reified message, and put the message in the appropriate
queue.

5. The controller pulls the messages out of the queue one by one. If it is a simple controller, it will
just execute the message on the object.

6. The object sends synchronous messages to other objects. If the target object is an active object,
point 1) applies there.

Note that here are two ways to send a message to an active object. One is to directly send it to the
inner object (which will lead to message capturing). The other way is to put a reified message into the
queue (ev. by the aid of a router). Note that all messages to active objects pass the controller, before
being executed. Therefore, the controller is the entity, where FLO/C can put "the foot in the door".
But first we discuss how the messages intended for the behavior object are redirected to the controller.

11.1.3 Message Interception

In order to intercept messages sent to objects, NEOCLASSTALK allows the dynamic recompilation of
classes. The implementation we use recompiles a given class so that when a message is looked up in
this class, the message is redirected to the meta-object by calling its method:
Controller»control: receiver method: compiledMethod withArgs: args
The argumentreceiver holds a reference to controlled object, thecompiledMethod holds the method
that was called. Per default each active object has a controller that simply performs the compiled
method:

control:receiver method: compiledMethod withArgs: args
^compiledMethod valueWithReceiver: receiver arguments: args.

The methodvalueWithReceiver: executes the compiled method without a method lookup, therefore
it is not controlled again. The controller simply executes the controlled message. Therefore whether
a not yet activated active object is controlled or not is transparent.

It is the responsibility of a connector to activate the active object (see 11.3.2). When establishing
a new connection the connector checks if the new participant is already active. If not it checks if it is
already controlled. It recompiles its class and replaces the default controller by a FLO/C controller.
This new controller does not simply execute the compiled method but it can also negotiate with other
controllers and use the asynchronous message passing system (see section 11.2).

The message passing control we use is of low granularity, sinceeachmessage sent to a controlled
object will go to the meta-object. Worse, every object of the same class will be controlled. Note that
NEOCLASSTALK would also enable the implementation of other message capturing techniques that
allow interception on a per-message and even per-instance basis.

By introducing a dummy controller, the controlling of the unwanted objects is made transparent.
Furthermore the moment of establishing control is separated from the active object activation and
both are reversible. A clear advantage of the message capturing we use is that the control is nicely

92 CHAPTER 11. THEFLO/C KERNEL

integrated in the NEOCLASSTALK environment. The browsers indicate that a class is controlled, but
the source code is presented as if it was an uncontrolled classes.

Problems. Beside of performance overhead we encountered two problems using this message pass-
ing control in the FLO/C implementation:

� As we will see in section 11.2 we sometimes need a way to send messages to controlled ob-
jects that shouldnot be intercepted. To do so our implementation provides a back-door for the
controller. It can directly look up the compiled method of the class.

� When changing or file-in/out a controlled class it gets compiled again, therefore it is not con-
trolled anymore. Usually a connector will recompile it when needed. However, if asuperclass
was changed, the superclass must also be controlled. Therefore the connector must browse the
inheritance hierarchy of a participant when connecting it. Thereby it must take care not to con-
trol classes of the FLO/C kernel. Otherwise this can lead to endless loops. For example if the
Connector class was controlled a message to the connector would be redirected to a controller.
Per default (as seen in the next section) the controller will send a request to connectors to see
if there are rules for this message. But these messages will be redirected to the controller again
and so forth.

Note that message passing control can also be implemented in pure SMALLTALK . The different
techniques are described and classified in [Duc97a]. We will now proceed to the meta-object that
controls the message passing: the controller.

11.2 Controller

The FLO/C controller represents the activity object of the ACTALK model. The activity object loops
in its own thread, trying to pull messages out of the queue, blocking when the queue is empty. FLO/C

enhances the activity object and calls it controller. The controller works together with the connectors
that connect the active object. Therefore it has to keep references to them. The controller can get
messages in two ways. Either it pulls one out of the queue, or it receives one that was directly sent
to the active object and intercepted. In the later case, the controller checks with the connectors if
there are rules triggering on this message.If not, the message will be executed right away and its
return value is returned.Such an execution represents synchronous interaction with helper objects as
mentioned in section 3.1. It represents the inner computation of the conceptual active object. Such
computation is done in a sequential way, because from the outside it is treated as one atomic operation.
If the intercepted message triggers rules it is put in the queue. That way the controller can assume that
all relevant messages (non-helper messages) come from the queue.

If a message is pulled from the queue it is considered to be an interaction that involves active object
interaction. Whenever the controller treats a message from the queue it asks all of the connectors that
connect the active object whether they have consequences for this message. The controllerfusions
the consequenceslike described in section 4.3. The formal specification of part II of this work has
already described most of the tasks of the controller. We will subsequently refer to this part for more
details. The controller implements the system transitions presented in the formal part in section 8.3.
The controller’s tasks are:

� Collection of consequences.The controller must collect consequences by asking the connec-
tors. This includes a recursive collection of thesequential consequencesand the cycle breaking

11.3. CONNECTOR 93

mechanism. The implementation follows the specification of the functionfrules(i; s) seen in
section 8.3. Note however that the controller must communicate with other controllers to do so,
because it does not know all connectors involved in the consequences. The controller does not
keep references to all other controllers. Instead it knows the target objects of the consequence
messages and can thus find their meta-objects (controllers).

� Reservation. To reserve the appropriate objects for execution, the controller also contacts the
other controllers to negotiate reservations. This can be done with elaborate algorithms as pro-
posed in section 8.3.2. However, we simplified our FLO/C implementation to achieve a small
and elegant solution. On the down side our solution does not exhaust the full amount of con-
currency possible in the FLO/C model. Every time a controller handles a message it does so
without yielding the processor (see SMALLTALK limitations section 10.3.1). This is equivalent
to the reservation ofall active objects, thus it constrains concurrency in an unnecessarily se-
vere manner. When the controller has finished the consequences, it yields the processor. Since
all controllers run at the same priority, and SMALLTALK uses first-in first-out queues to store
runnable processes that wait for the processor,each controller gets a chance to handle a mes-
sage. Therefore, our implementation fulfills the requirements for the state transitions postulated
in section 8.3.2. Thus the liveness properties guaranteed in section 9 hold for the implemen-
tation: e.g. no deadlock and no livelock without thewaitUntil operator. The downside of the
simplified implementation is reduced concurrency, which renders some of the examples too
"well-behaved". As we will state in section 14 we added some processor yields to some exam-
ples in order to increase concurrency and produce visible conflicts in the examples. However,
this embellishment is not due to a limitation of the model but a limitation of the implementation.

� Execution of consequences.The sequential consequences must be executed. The controller
must execute the guards and sequential consequences appropriately. A problem here is that the
executions should not be controlled again, since in the collecting phase all consequences were
already recursively collected. Therefore the controller needs a way to execute methods on other
objects without interception and redirection to other controllers. Furthermore, when sequential
consequences are executed, the controller has to take care of the return values. As seen in
section 4.5 the keywordreturn can indicate that a consequence argument must be valued by a
previous return value.

� Asynchronous sending of consequences.To asynchronously send consequences or a delayed
message, the controller can rely on the asynchronous message passing features of the active
object it belongs to.

This list shows that the controller is the hidden "heart" of the FLO/C implementation that has to
provide the role fusion which relies on communication and negotiation with other controllers and with
connectors. The next section shows what responsibilities are left to the connectors and how they are
implemented.

11.3 Connector

We saw that connectors have roles and interaction rules. Both are specified when declaring a con-
nector class. Note that in our implementation only the rules are declared explicitly. The roles are
parsed from the rule definition thus they are declared implicitly. In order for all connector classes
to understand FLO/C specific declarations, we introduce a meta-class namedMetaConnector. By

94 CHAPTER 11. THEFLO/C KERNEL

sending the messageMetaConnector»withBehavior: string to this class, a new connector class
can be instantiated with the behavior declared in the argumentstring. The string contains the rule
declarations.

Every connector class inherits from an abstract classConnector in order to share behavior like
the initialization protocol. Since every connector is also an active object,Connector inherits from
the classActiveObject. Instances of connector classes can then be individually connected to coor-
dinate active objects. Figure 11.3 shows the inheritance/instantiation graph of the FLO/C connector
architecture.

MetaClass

Active object

Object

is subclass of

is instance of

Legend:

GasStationConnector

MetaConnector

Connector

Flo/c kernel

NeoClasstalk

User defined classes

A connector instance

Figure 11.3: The architecture of the connector implementation.

To clarify the design, the next two subsections show the responsibilities of the connector class and
meta-class.

11.3.1 Responsibility of ClassMetaConnector

The meta-classMetaConnector declares what all connector classes have in common:

� MetaConnector declares instance variables that can hold representations ofrulesandroles.

� Instantiation methods providing the rule- and role declarations are implemented inMetaCon-
nector. Thus a little parser for the rule syntax defined in section 4 is implemented there. In
fact the methodMetaConnector»withBehavior: string leads to the parsing ofstring which
extracts the rule and role definitions of a connector class.

� Since the rules are stored in the connector class, theMetaConnector implements therule
lookupand some general role management features.

11.3.2 Responsibility of ClassConnector

This abstract superclass of all connector classes implements the commonalities of connector instances.

� Every connector has a table with itsactual participantsand a mapping to the current role they
play.

11.4. COLLABORATION OF CONTROLLERS AND CONNECTORS 95

� The classConnector provides operations toadd and removenew participants, which includes
activating them if necessary and activate the message passing control as seen in section 11.1.3.
It also includes compatibility checks: A participant is only connected as player of a role, if it
can understand all possible messages that this role uses in the rules. The methods to connect
a single active object or a role group group areConnector»object:playsRole: andConnec-
tor»objects:playRole:. The method to disconnect an object from a connector isConnec-
tor»releaseActiveObject:.

� The classConnector provides operations toinitialize a connector, for example mapping itself
to the default roleconnector (see section 4.5). Upon activation of the connector, there is also
default code to initialize the participants (Connector»startingState). When a connector starts
the coordination of participants it may want to force the participants to an initial state. A user-
defined connector can do this by overloading thestartingState method.

� The classConnector features also code for the gracefulterminationof connectors, either termi-
nating (methodConnector»end) the participants along with itself or letting them alive (method
Connector»decouple).

� TheConnector class includes the entry point for the role lookup that is used by controllers. It
usessymbol replacementmechanisms in order to exchange participants by roles when calling
the rule-lookup method of the meta-class. Then it must replace roles by participants again,
and also exchange the formal arguments with the actual arguments before it can send back the
consequences to the controller. The replacement of arguments and roles was already sketched
in section 4.1.

11.4 Collaboration of Controllers and Connectors

The FLO/C system is managed by the collaboration between controller themselves and between con-
trollers and connectors. As we will see in chapter 13 the controllers have a cache so that they do not
have to contact the connectors every time. We will now list the interactions between the FLO/C con-
trolling entities, which in turn will establish coordination between the active objects. As illustrated in
figure 11.4 we will list these interactions step by step from the point of view of an active objecto1.

1. As already described in section 11.2 the controller ofo1 pulls a message out of its queue.

2. It asks its cache if the consequences of that message are already known.

3. If the consequences are not known, all connectors are contacted, passing the message from the
queue as argument. The connectors check if the objecto1 plays a role. If so they look up if
rules should trigger. If so they translate the symbolic consequences message (coded with roles)
to consequence messages for active objects and deliver these message lists. The controller will
then recursively traverse the lists and contact the connectors again in order to findall indirect
sequential consequence messages. Because of the cycle breaking described in section 8.4 this
collection phase terminates.

4. The controller ofo1 contacts all controllers of active objects that are targets ofsequentialcon-
sequence messages orguardmessages in order to negotiate reservation. In our implementation
this does not happen explicitly (see section 11.2). Instead the controller does not yield the
processor to another thread.

96 CHAPTER 11. THEFLO/C KERNEL

Router

cache
controller

Behavior object

in-queue

Connector

reified message

2

3

4

5

5

6

1

Active object o2

Active object o1

Figure 11.4: An overview of the interaction between the control entities.

5. The controller executes guards and - if they succeed - it executes the sequential consequences
on the objects involved. Since these are all consequences of a message in the local queue, at
least one sequential consequence is the message itself.

6. The asynchronous consequence messages are sent.

The next section treats the next higher layer of FLO/C. It shows the meta-class design to imple-
ment composite objects which is similar to the one used to implement the connectors.

11.5 Composite Objects

To support composite objects, FLO/C includes the meta-classMetaCompositeObject, that is respon-
sible for the creation of new composite object classes as introduced in section 6. All composite objects
inherit their common behavior from the classCompositeObject, which is a subclass ofActiveOb-
ject, since composite objects are also active objects. See figure 11.5 for the inheritance/instantiation
graph of the composite object framework.

11.5.1 Responsibilities of the Composite Object Class and Meta-Class

Again the meta-class implements instantiation methods. They allow the declaration of the additional
static properties needed in a composite object class, like the participating component- and connector
classes and the connecting schema (see section 6.1). These static properties are stored in the com-
posite object class. When a composite object is instantiated, methods of the meta-class take care to
properly instantiate objects of the components- and connector classes and to connect them accord-
ing to the schema. Furthermore the inheritance mechanism (see section 6.2) for composite objects is
implemented in the meta-class. Component- and connector classes are inherited or extended. Illegal
subclasses (for example subclasses that have less components) cannot be created.

The abstract superclassCompositeObject has only little responsibilities. Again it takes care of
the initialization anddestructionof composite objects. These operations should not only treat the in-

11.5. COMPOSITE OBJECTS 97

MetaClass

MetaCompositeObject

Object

AbstractCompositeObject

Carry Element Sum Element

Adder Element

interface
is subclass of

is instance of

Legend:

ActiveObject

AdderElement User defined classes

Flo/c

NeoClasstalk

A composite object

Figure 11.5: Inheritance/instantiation graph for the composite object framework.

terface but also the components and connectors of the composite object. Furthermore the default role
interface must be properly mapped to the interface object. For example, the first participating con-
nector is considered the interface connector. During the initialization the interface connector will be
connected to all participants. Thus the composite objects can be gracefully terminated by terminating
this connector.

The next section will discuss the highest layer of the FLO/C implementation which contains tools
that support the visual connection and composition of active objects.

98 CHAPTER 11. THEFLO/C KERNEL

Chapter 12

Visual Programming Tools

The FLO/C implementation separates the instantiation, attachment and activation of a connector pro-
viding flexibility to the FLO/C programmer. However, especially the attachment of active objects to
connectors is tedious and error-prone. As already seen in the instantiation script for the gas station
example (section 5.3) each connection needs a statement:
myConnector object: participant1 playsRole: aRole.

Furthermore when testing active objects, the dynamics of FLO/C cannot fully be exploited. A
test-script sending messages to the object does not reflect the concurrency of the active objects. It
is complicate to test the group management of connectors that allows attachment and detachment of
active objects on role groups on the fly.

To address these problems we implemented two visual programming tools. The FLO/C workspace
enables to visually compose connectors and components and send messages to them asynchronously.
Thecomposite object class browserallows one to visually create a composite object class.

12.1 The FLO/C Workspace

This tool1 solves the following problems:

� Inability to exploit concurrency of the active objects and the asynchronous message passing
systems when using and testing connected active objects.

� Inability to exploit the dynamics of connectors’ live time and the group management.

� Complexity of textual representation when using a statement per connection.

The tool is not intended to design active objects and connectors since we believe that this is easier
to do textually by declaring classes. Therefore the meta-classMetaConnector we presented in section
11.3 is designed to support connector class declaration in the standard browsing environment. Rather
the FLO/C workspace is intended to visuallyconnectandrun active objects. Therefore the user of the
tool can instantiate active objects and connectors. (S)he can connect the active objects to connectors
choosing a role for them. The tool will check if the active objects fit2 the roles. The user can activate
the connectors and asynchronously send messages to the active objects, by typing messages in an entry
field of the graphical user interface (GUI). (S)he can kill the running objects or connectors or add new

1In the implementation it is called "example editor".
2=Provide the proper interfaces.

99

100 CHAPTER 12. VISUAL PROGRAMMING TOOLS

ones on the fly. Therefore the dynamics of the asynchronous messages, the connector lifetime and
the group management are exploited. The user can arrange the visual representations of the objects
and connectors and examine the connection schema. We believe that visual connections are far easier
to understand and manage than the textual representation is. The structure of a screen setting can be
saved in order to use it to visually declare a composite object (see section 12.2) and other settings can
be loaded. Note that the inner state of the active objects is not saved, only their activation state, their
connections and positions on the screen.

Figure 12.1 shows a screen-shot of the FLO/C workspace displaying a configuration of the gas
station example introduced in section 5. On the top-left of the graphical user interface there are two
lists containing all active object classes and connector classes. By clicking on an entry, a new instance
is created in the display field at the bottom. Active objects are graphically represented as circles that
are labeled by their class name. Connectors are represented by a neuron-like shape. Connections
can be drawn between components and connectors. They are labeled by the role name. Connectors
and components can be selected by clicking on their representation. The representation will show the
selection by inverting a rectangular area around the representation. The selected representations can
be arranged using the mouse. The activation state of connectors and active objects is color coded:
black means passive, red active. The color blue indicates that a connector is ready for activation (has
at least one participant per role).

Figure 12.1: A screenshot the FLO/C workspace.

12.2. THE COMPOSITE OBJECT CLASS BROWSER 101

The main features of the tool are best explained following the buttons of the GUI from left to right.

� Unselect. When the user selected an active object but does not want any selection (s)he can
press this button.

� Inspect. To inspect the inner state of the selected active object or connector.

� Browse. To browse the class of the selected item in a system browser. This allows for example
to read the rules of a connector.

� Delete. The selected object is gracefully terminated and deleted from the screen.

� KillAll. All displayed objects are terminated and deleted from screen.

� ShowConnections. The connections of the selected connector can be inspected.

� Install. The selected and connected connector is activated.

� Load/Save. The current example is stored on- or loaded from a class of the users choice. The
description of the setting is therefore compiled into a class method of the chosen class. This
way of storing is also used by VISUALWORKS 2.0 to store window layouts.

� Refresh. Updates the display.

� Send. This button asynchronously sends the contents of the entry field (above the button), to
the selected active object. With this feature a user can run and test a setting of components
and connectors, exploiting the concurrency of the active objects. The entry fieldevaluates the
entry string. Therefore it understands literals like numbers, booleans, strings and arrays (e.g.
#(1 2)) as arguments (e.g.setName: ’Manuel’).

12.2 The Composite Object Class Browser

The composite object class browser can inherit half of the code3 used for the FLO/C workspace. This
is possible because the purposes are similar. The tool allows to declare new composite object classes
thereby facilitating the following problems:

� Composite object classes involve other class definitions, but ordinary browsers display only one
class a time. Therefore composite object classes are hard to browse.

� The connecting schema of a composite object is hard to code and understand in textual form
(compared to the code presented in section 6.1).

� When inheriting from a composite object class it is difficult to see what participant classes must
be overloaded and what connections must be declared. Compare to the code example in section
6.2.

� It is difficult to create "by hand" a composite object class out of a code script that uses or
tests the involved components and connectors (such a code script for the gas station example is
presented in section 5.3).

The composite object class browser solves these problems. When starting it, the user has to chose
a superclass4 and the name of the new composite object class (s)he wants to create. The composition

3Not including the code from the VISUALWORKS2.0 GUI framework.
4Every composite object class must have the base classCompositeObject.

102 CHAPTER 12. VISUAL PROGRAMMING TOOLS

graph of the superclass is then displayed on the GUI. When a user only wants to inspect a composite
object class, (s)he enters it as superclass and does not compile the result. If the user wants to create
a new class (s)he can use the GUI to add new participants and connector classes or extend inherited
ones, then compile the result. Furthermore examples that were tested by the FLO/C workspace tool
can be imported and thus encapsulated into a composite object class.

Figure 12.2 shows a snapshot of the GUI at the moment a a user creates a new classInheritedAd-
derEl which inherits fromCarryElement. The user wants to add new functionality (sum-bit calcula-
tion) to the inherited functionality (carry-bit calculation). Thus (s)he wants to do the same as we did
in the example of section 6.2. The moment the snapshot is take (s)he already added twoXorElement
component classes and is about to connect them to the newConnectionOfSum connector.

Figure 12.2: A screenshot of the composite object class browser.

The main features of the composite object class browser are best explained following the buttons
of the GUI from right to left.

� New Component andNew Connector. These buttons allow the user to select a new component-
or connector class.

� Extend. The selected component or connector class is replaced by another one of the user’s
choice. The tool will ensure, that extensions are able to support the connections they are al-
ready engaged in. Connectors that replace another connector must know all the necessary roles.

12.2. THE COMPOSITE OBJECT CLASS BROWSER 103

Replacing components must understand all the messages they can receive when they play roles.
The tool checks this by analyzing the rules of the connectors.

� Load. If the user has tested and saved a successful arrangement of active objects and connectors,
using the FLO/C workspace, (s)he can load it with this button, using it to compose the new
composite object.

� Compile. This button starts the compilation of the new composite object class. The interface
methods aregenerated automatically. The tool does this by analyzing all connectors that use
the defaultinterface role. When a rule contains a message containing this role, the selector is
used to compile a dummy method on the new class that serves as interface to the composite
object as seen in section 6.

� The other buttons do the same as in the visual example tool. They can be used for gaining
introspection of the connectors and components involved.

Evaluation of the tools. The two tools’ main goal is to visualize the parts of FLO/C programming
that are not well supported by the VISUALWORKS 2.0 environment: The multi-objectconnections.
All the programming examples that we will see in chapter 14 were tested (or developed in case of
composite objects) with these tools. Even users who have no idea of the FLO/C model can play with
the examples that are stored with the FLO/C workspace.

The application framework of VISUALWORKS 2.0 enabled the rapid development of the tools.
However, the tools do not cover all possible visual support for the FLO/C implementation. The
FLO/C workspace does not monitor the inner behavior of the components, it does not save its states
and it cannot monitor the message passing. The composite object class browser is for example not
capable to open up nested composition hierarchies and it cannot display the inheritance hierarchy.
Such extensions are possible but are omitted because of the time limitations of this thesis.

Before we start to discuss the implementation of some examples of coordination problems, we
want to focus on low-level issues of the FLO/C implementation such as its performance optimization.

104 CHAPTER 12. VISUAL PROGRAMMING TOOLS

Chapter 13

Performance Optimizations

There are still a lot of untreated subjects in the complete FLO/C implementation. Examples of omitted
implementation issues are how the specificators work (which also involves the implementation of a
classRole) or how the VISUALWORKS 2.0 application framework was used to implement the visual
tools, or the termination protocol of active objects. Because of space limitations we only discuss
the different optimization made in the FLO/C implementation, since this consumed a considerable
part of the implementation effort and involves other topics of the implementation (such as dynamic
connections).

The message interaction, the consequence lookup, the asynchronous message passing system and
last but not least the scheduling of threads adds performance overhead to a FLO/C program. The next
section presents where we had to take measures.

13.1 Problems with the First Implementation

In the first straight forward implementation (not featuring group management or connector program-
ming) even simple examples used execution times in the range of several seconds. Later it turned out
that a lot of the overhead was not caused by the FLO/C implementation but by a flaw of the garbage
collector of NEOCLASSTALK 1. Still, the first FLO/C implementation had to be optimized in many
ways.

FLO/C’s activities can be divided in four categories. These categories reflect the communication
flow inside and between active objects (see section 11.1.2 and following).

� The message interception.

� The consequence lookup.

� The negotiation for reservation of objects.

� The asynchronous message passing.

The message interception is not optimized since little time is lost there. In section 11.2 we already
explained that our FLO/C implementation uses a minimal solution for reservation of active objects,
so there is no time lost there either. The asynchronous message passing was optimized by omitting
an additional out-queue and its controller, which halved the number of threads. Note that the asyn-
chronous message passing system could be further optimized, leaving away the routers. However, we

1We informed the developer of NEOCLASSTALK of the bug, which is now fixed in the newest NEOCLASSTALK release.

105

106 CHAPTER 13. PERFORMANCE OPTIMIZATIONS

want to keep the routers since they are useful to simulate distribution (see section 11.1.2). This is also
the reason why we don’t care if the asynchronous message passing system is slow.

These considerations lead to the conclusion that theconsequence lookupmust be optimized. For
each message taken out of the queue, the controller has to ask each connector attached to that active
object, if rules are triggered and which. Then it has to fusion the consequences and send them and
react appropriately (see section 11.2). Time profiling revealed that our first implementation did indeed
waste most of its execution time in the consequence lookup.

The next two sections treat our two optimization approaches. First we tuned the lookup itself.
Then we cached the consequences in the controllers, in order to avoid a full lookup. This provided a
major speed-up but lead to some nasty problems.

13.2 Optimizing the Rule Lookup

The controller recursively collects the consequences by repeatedly asking connectors for consequences
of a particular message. The controller has to treat consequence messages according to the operator
of the triggering rule. In the old implementation the controller requested the consequences for each
operator separately. This had the advantage that the controller didn’t have to sort the consequences by
operators. On the other hand the lookup methods had to scan the rules for as many times as there are
operators. Therefore, we implemented a new method:Connector»giveConsequencesOf: aCall.
This method takes a reified message as argument (instance of the helper classCall) and returns a list
containing instances of classRightSideOfRule, which carry the consequences of a single ruleand
the operator. Thus the controller receives a list of suchRightSideOfRule instances. On one hand it
has to sort this list by operators. On the other hand a connector is only asked once to scan its rule base
for a given message instead of once per operator. Since the rule base is in general much larger than
the consequence list of a single message, this optimization achieved a speedup by almost factor 5.

In the first implementation anInteractionRule held an instance ofCall as precondition message,
an operator and a list ofCall instances as consequences. The rules were stored in the instance variable
interactionRules declared inMetaConnector, which held an instance of the SMALLTALK container
classOrderedCollection. The rule lookup was implemented using an overloaded equality operator
of the Call. Equality was determined by comparing the target objects and the message selectors If
both are equal then the calls are equal and thus a precondition is matched. This lead to well structured
consequence lookup code:

triggeringRules := interactionRules collect: [:rule | rule precondition = message].

However, in this code, the whole rule base is scanned to find rules that trigger. To optimize
this, we use nested instances of the SMALLTALK classDictionary, which is already optimized for
lookup. The instance variableruleDictionary which is declared inMetaConnector2 holds roles as
keys and again dictionaries as values. These dictionaries hold selectors as keys anda list of instances
of RightSideOfRule as values. The structure ofruleDictionary is therefore:
(role! (selector! (operator; consequence message�)�)).
Thus the lookup is significantly improved even if the dictionaries were not designed for fast retrieval
of the values. If the preconditions in a rule-base containr roles, and if for each role there is an average
of saverage selectors that trigger a rule, then the old lookup has to check equality forn = r � saverage

times. The new lookup uses an average ofm = r + saverage checks. Note that the use of selectors
instead of roles as the first key is also an optimization possibility. However, the introduction of role

2The rules are stored in the connector’s class, referring to participants trough roles.

13.3. CACHING CONSEQUENCE MESSAGES 107

groups decreases the ratio: average roles per selector (oaverage) to almost 1. This is because if two
objects play different roles, their selectors are probably named differently. With the ratiooaverage � 1,
the nested lookup with selectors as first keys does not pay off since thens � oaverage � s+ oaverage.
The nested lookup with roles as first keys speeds the implementation up with the factorsaverage which
is near 2 (see section 14.11 for the average number of different selectors per role in the preconditions
of all FLO/C examples).

The draw-back of the optimization is that the structural integrity of the old implementation is lost.
The new consequence loading code uses a nested dictionary access, and returns an empty list as soon
as it is sure that no consequences can be found in the dictionary. Note that these code examples of the
rule lookup are shortened for the readers convenience. The new consequence lookup code is:

MetaConnector>>listOfRightSidesOfRulesForMessage: aCall
^(ruleDictionary at: aCall object ifAbsent: [^OrderedCollection new])

at: aCall selector ifAbsent: [OrderedCollection new]

The two nestedat:ifAbsent: calls use the knowledge of the structure stored inruleDictionary but
this is bad style of object oriented programming. It violates the law of demeter [LH89]. The code
examples document how our optimization sacrificed clean structure for performance improvement.
The problem of not being able to have both is addressed in [Kic97] where Kiczales et al. propose
aspect oriented programming for this purpose. This is nevertheless not directly related to our work.

Evaluation. The single-pass lookup optimization brought a constant speedup factor of approxi-
mately 5. The restructuring of the rule store speeded even small examples up by factor 2. As seen
before, it consists of the advantage of dictionaries over other collection types and a factorsaverage

which is the average of different selectors per role in a rule base.
While these optimizations concerned only the connector classes, the caching of consequence mes-

sages will mainly impact the controller’s implementation.

13.3 Caching Consequence Messages

We will first explain how the cache works, then present three particular implementation problems and
finally we evaluate the overall performance improvement of the optimization.

13.3.1 Working Principle

When a controller pulls a message from the in-queue, it has to communicate with all connectors that
are attached to the controlled object. This involves a recursive process that orders the sequential
consequences. Obviously this is a time consuming part and the next time the same message is pulled
from the queue, it has to be done again. However, when the connections have not changed this
is unnecessary work, because the consequences will be the same. Therefore, we implemented a
classCache3. It contains a dictionary with message selectors as keys and instances of the class
ExecutionLists as values. These instances contain lists that hold the consequence messages sorted
by operators, ready to be handled in a single pass. Note that we only need the selector as key (and not
also the object) because the message comes from the queue of the particular object that the controller
controls. Figure 13.1 shows the dictionary of a cache.

3In [KdRB91] this mechanism is called "memorization".

108 CHAPTER 13. PERFORMANCE OPTIMIZATIONS

p1

moveUp

p2

moveUp

canMove: p1

screen

canMove: p2

screen

moveLeft

moveDown

consequences

asynchronous
consequences

sequential

waitUntil

permittedIf

execution lists

moveUp

Figure 13.1: The cache containing different execution lists.

Each time a controller pulls a message from the queue it calls the following method on its cache,
asking it if this message triggers any rules at all:

Cache>>checkAndUpdateFor: call
"This method returns whether the call triggers rules or not. It also updates the cache"
| res execLists|
res := dictionary at: call selector ifAbsent: [

"This is the fist time we receive this call..."
execLists := ExecutionLists new.
self addList: execLists forCall: call.

].
^res isNil not

If the cache does not know the selector of the pulled message, it calls
addList:forCall:. This will call back the controller to collect the consequences from the connectors.
Then it stores the result in the dictionary and returns the answer to whether there are consequences
or not. As described in section 11.2 the controller will use this answer to decide if the message is a
helper message (no rules triggering) and can be executed sequentially, or if it triggers rules and must
be executed using the execution lists.

We saw that the dictionary stores message selectors as keys. But what happens to the arguments
of a message?

13.3.2 Value of Arguments

After the controller knows that there are rules triggering on a message pulled from the queue, it can
get the execution lists from the cache, since the cache has lazily loaded them. But when the controller
starts to execute the lists, the consequence messages must have actual arguments provided from the
message pulled from the queue (see section 4.1). The problem is that the cache holds the actual

13.3. CACHING CONSEQUENCE MESSAGES 109

arguments of apreviousrequest. Normally the connector values the arguments of the consequence
using the actual arguments of the message that was provided for lookup (see section 11.4) but with
the cache the connector is bypassed.

In order to solve this problem we introduced a classArgumentHolder which holds thecurrent
value of a symbolic argument. When looking up the consequences for the first time the cache sends
the connector argument holders instead of actual arguments The connector then returns consequence
messages valued properly with these argument holders instead of actual arguments. Furthermore, the
cache keeps the argument holders separately in theExecutionLists instance. When these lists are
about to be executed, the cache uses the actual argument values that it gets from the message pulled
out of the queue in order to set the value of the separately stored argument holders appropriately.
Since all arguments of the cached consequences use the same objects as value holders, the setting of
the separate holders also sets all arguments in the cached consequences. Thus the argument holders
in the consequence messages refer the current arguments. When executing cached consequences the
controller tells each argument holder in the consequences to provide this current actual value.

Figure 13.2 illustrates the use of the argument holders.

argument holder argument holder

real argument

real argument

execution lists

Figure 13.2: Argument holders in execution lists.

We use the concept of argument holders to solve another problem, namely the propagation of
computation results with the keywordresult (see section 4.5).

Our implementation subclasses the classArgumentHolder to declare the classResultHolder.
When a rule uses the keywordresult as argument, the connector replaces it with a result holder that
is linked to the reified message which result should be used. When the controller executes a message
it writes its return value to theresult instance variable of the message. Result holders use this fact.
Since they keep a reference to the reified message in which result their interested in, they can access
theresult instance variable when requested to provide the actual argument value. This happens when
a message gets executed in the controller by the following method

Controller>>execute: call
| res realArgs|
realArgs := cache giveArgsOfHoldersIn: call.

"Ask the arguments holder to provide real args."
res := self executeCompiledMethodFor: call object

selector: call selector
arguments: realArgs.

call result: res. "This is for the symbolic ’result’ argument"
^res.

110 CHAPTER 13. PERFORMANCE OPTIMIZATIONS

Cache>>giveArgsOfHoldersIn: call
^call arguments collect: [:a | a giveArgument].

Thanks to the use of these holders neither the controller nor the cache has to know the difference
between normal arguments and result values. The holders are simply told to provide their value using
the messagegiveArgument, when the value is used for execution. Figure 13.3 illustrates the use of
the result holders.

execution lists

real argument

real argument

result

result holder

Figure 13.3: Result holders in execution lists.

13.3.3 Caching in a Dynamic Implementation

The FLO/C model is very dynamic. However, caching is something static therefore we must discuss
the problems that arise when caching in a dynamic implementation.

In our FLO/C implementation connectors may be attached and detached from an active object
dynamically. Such an action involves the notification of the controller of the active object, which will
have to reset the cache. But the situation is even more complicated. Because of the recursive lookup
of the sequential consequence messages, the caches ofevery object that is reachable in the net of
connectorsmust be reset. This is because in any reachable object, a message could cause sequential
consequences that finally affect the new connection. Therefore, the cache contents of any reachable
object could be incomplete, when a new connection is established.

The FLO/C implementation provides broadcast facilities to propagate a cache update. Whenever
a new connection is established, the connector informs all controllers of its participants, which in turn
inform all known connectors and so forth.

Dynamic role specificators. Each controller controls one active object and has one cache. There-
fore, the caches store the consequences per-object. Consider the rule:

philosopher eat. impliesBefore chopstick_select_RND pickedUp

The rule enforces that each time before a philosopher eats, one of the chopsticks is picked up. As seen
in section 4.4.3 the RND-specificator selects randomly one of the objects that plays the rolechopstick.
The cache of the controller which pulled the rule triggering message out of its queue should not store
the choice of the chopstick permanently. Else the same philosopher would always choose the same
chopstick, which is clearly not the desired behavior when using the RND-Specificator. Therefore, our
FLO/C implementation allows the connectors to indicate that consequences should not be stored in the
cache, but collected from the connectors every time. Note that most of the specificators (receiver, next,

13.4. EVALUATION OF THE OPTIMIZATION 111

other) are not dynamic. Given a particular object in the precondition message, the receiver (itself) or
the next (according to the inner order in the role group) is always the same object. Therefore, their
consequence message can be cached.

Another solution to the problem of dynamic roles would be to transfer knowledge of roles to the
controller. However in our implementation the controllers are per-object. The notion of roles and their
mapping to objects is clearly the responsibility of the connectors.

13.4 Evaluation of the Optimization

Optimizing therule lookupon the connector side brought a speedup of factor bigger than 5 and an
additional factor that is proportional to the number of selectors per object in the rule-base, normally
bigger than 2. On the downside it obscured the design. Optimizing the lookup on the controller side
by introducing a consequence message cache promised great performance improvements but got us
in trouble with the dynamics of FLO/C. In order to measure the performance improvement with
caching, we measured execution time of a large example. We used the binary adder example already
mentioned in section 6.1 and further discussed in section 14. The example consists of four composite
objects that are connected to form a binary adder. The composite objects are nested, they consist of
logical elements that can calculate logical operations likeAND, OR andXOR. Inputs and the results
of the elements are propagated entirely by connectors using asynchronous message passing. Because
of the exhaustive use of nested composite objects, there are a lot of rules that just propagate a message
to and from an interface object. Therefore, cached execution lists are small, which means that the
cache will not show its full potential of performance improvement. This would be the case if there
were a lot of connectors connected to every single object, defining many of rules for it. Therefore, we
can interpret the resulting speedup in this example as a lower bound for the average speedup achieved
by caching.

We ran the example on a Sparc Ultra 4. It contains 137 active objects therefore using 137 threads.
In one run 156 asynchronous messages are used to propagate the 8 entry booleans to the 4 outputs.
Since the system is purely push-flow based [Lea97], the first run encounters empty caches in every ac-
tive object, but in the second run all consequence messages are loaded from the cache. The following
table provides execution times in milliseconds.

first run (empty cache) subsequent run (cached)
8648 1451

1094
8804 1452

1549

The heavy use of asynchronous message passing renders the example quite slow (see section 13.1),
nevertheless the caching provided an average speedup of factor 6 that scales up with the numbers of
rules per object.

We can conclude that the optimization work payed off since it speeded up the first implementation
by an average factor higher than 60.

112 CHAPTER 13. PERFORMANCE OPTIMIZATIONS

Chapter 14

Implemented Examples

Our FLO/C implementation is an object oriented language extension that allows one to explicitly
express multi-object coordination. It also enforces the paradigm of strict separation between commu-
nication and computation (see section 3.1). The following sections illustrate how FLO/C program-
ming is used to solve different toy-example problems which demonstrates the expressive power of
the FLO/C model. The examples are partially taken from other coordination literature or designed
to show either a particular problem of coordination or a particular feature of FLO/C. Because of the
time limitations of this work we were not able to implement a full-scale real world example. However,
we hope that by presenting our solutions to canonical examples taken from the literature, and by the
diversity of the eleven1 implemented examples, we can convince the reader that FLO/C is a simple
and effective model to implement multi-object coordination.

Usually the components used in an example are small and easy to understand. Therefore, we
only present their public interfaces. We will focus on the connectors and the rules they use to solve
an interaction and coordination problem. Note that now we use the connector declaration syntax of
the implementation. It has some small differences compared to the example of section 5: Connector
classes are instantiated from the meta-classMetaConnector and the rule declaration of the method
MetaConnector»withBehavior: string also implicitly declares the roles a connector knows.

The following sections describe the ten examples:

1. The"vending machine" proposed by Agha and Frølund was the first implemented example in
FLO/C. It is explained in more detail than the other examples. Our solution does not use the
higher FLO/C features like connector states and role management.

The next five examples are the author’s creations.

2. The"synchronized movements" is a small but paradigmatic example for FLO/C style coor-
dination since it consists of only one set of synchronized multi-object joint actions (see section
2.2.2).

3. The"unstable server" example uses FLO/C’s exception mechanism, and demonstratespull-
styleclient-server relations.

4. The"decrementor" example features a complex asynchronous interaction pattern.

1There are ten examples in this section an one in section 5.

113

114 CHAPTER 14. IMPLEMENTED EXAMPLES

5. The"workers and tools" example shows the use of relative roles to implementmutual exclu-
sion on shared resources. It also discusses the subtle difference between the FLO/C implemen-
tation and the FLO/C model and its consequences to the example implementations.

6. The"binary adder" example illustrates nested composite object hierarchies and massive asyn-
chronous message passing.

The rest of the examples are taken from the coordination literature. They use FLO/C’s high
level features like dynamic connector establishment.

7. The"dining philosophers" . We present a fair solution to this well-known problem.

8. The"workers-administrator" example is an architectural pattern from parallel programming.

9. The"electronic vote" example was introduced to illustrate Minsky’s coordination approach
using so called policies.

10. The"sleeping barber" example models an enriched producer-consumer problem.

14.1 The Vending Machine

14.1.1 Description

The vending machine example was used in [FA93] as an example of a concurrent part-whole hierarchy.
A vending machine consists of concurrent parts and the whole is subject to consistency requirements.
Since their proposed vending machine architecture is trivially small we extended it by factoring out
more participants with particular functionality. Our vending machine holds items behind an outlet
door. It concurrently accepts: money, requests to open the door and requests to cancel the deal. When
the door is open, it accepts requests to deliver the item. After the item in the outlet was taken, the
machine puts a new one into the display. Additionally (not described in [FA93]) there are different
policies of returning the money that was payed too much.

Coordination Aspects

Beside of the client-server relationships, there are different constraints between the outlet and the
money accepting device (e.g. unlock outlet when enough money added), as well as between the outlet
and the money returning device (no money back when the door is open). The coordination managing
object must enforce that the machine cannot reach an inconsistent state or even is cheated on purpose
when accessed concurrently, therefore it featuresmulti-object constraints. The fact that the locking
mechanism is located separately from the money entry can cause a variety of inconsistent states. For
example a user can pay and then try to open the door and press the change releasing button at the same
time. Or the user can pay, then open the door but not closing it again thus causing troubles for the
reloading of a new item into the display.

14.1.2 Solution

We divided the machine in different independent units. The coin outlet, the money store, the door lock
and the door simulate the control and monitoring of physical devices. Furthermore, a money manager
represents the price policy of the machine. All these units are implemented by independent active
objects. They carry only their proper functionality and use no assumptions how they collaborate in a

14.1. THE VENDING MACHINE 115

vending machine2. The goal is that they communicate and synchronize only through connectors. The
connectors also enforce the global consistency of the different units. We want the vending machine to
exploit as much asynchronism as possible because the different units represent real-world objects that
behave concurrently. For example when a user has taken an item the next one should be able do add
money immediately and should not be blocked by the process that puts a new item into the display.

The next section will show the active objects that represent parts of the machine. Then the con-
nectors that implement the interactions are presented. Finally follows an evaluation of the example.
Figure 14.1 shows the components and connectors of the vending machine.

The Active Objects

The active objects that represent real-world objects provide three kinds of services. They can be asked
to provide an aspect of the state of the physical object (e.g. is the door open now) or they can signal
that something of interest happened to the physical object (e.g. the change giving button is pushed) or
they can trigger an action of the mechanical devices (e.g. lock the door). The following list shows the
active objects and its interfaces.

coinEater . This active object signals when coins are inserted into the mechanical device triggering
the messageadd: number. It also signals when the user pushes the "change" button with the
messagechangeButtonPushed.

store . This object represents the place where the coins are stored. It can release coins for a requested
amount with the methodphysicalRelease: number.

moneyManager . This is the location where the price of the item, the entered amount of money and
the change amount is stored. The object stores these numbers in instance variables and provides
accessor methods to get and set them. With theadd: amount message themoneyManager
internally reflects when money is added. ThecalculateIfEnough can be used to ask if the
already added money is enough to purchase an item. The methodcalculateChange calculates
the current amount of change and the methodconsume subtracts the price from the entered
money, thus reflecting that an item has been sold.

doorLock . This active object represents the mechanic device that can lock the door. The following
messages query the current state of the door:locked, unlocked. The door can be loked and
unlocked using the methods:lock, unlock.

door . The door can signal if it is opening or closing. It can also trigger the mechanism to put a
new item into the display. Query methods are:opened, closed, itemAvailable, itemTaken.
The following methods reflect a change of the door’s state:openDoor, closeDoor, takeItem.
Furthermore, the door can issue a request for the physical device to put a new item into the
display with the methodproduceItem.

Note that the door lock is separated from the door, because they represent two different physical
devices. The door could easily be further separated from the "item display", but the example is rich
enough to show characteristics of FLO/C.

None of these objects know each other or use methods of each other. We now introduce connectors
that implement their collaboration. They will also take care to use asynchronous message passing if
possible, to support the example’s intrinsic concurrency.

2This is enforced by the fact that at no point in time a participant has any reference to another (see chapter 3).

116 CHAPTER 14. IMPLEMENTED EXAMPLES

The Connectors

$

$

$

MoneyStore

ChangeGivingConnector MoneyAddingConnector

ItemTakingConnector

DoorConsistencyConnector

CoinEater

MoneyManager

Door

DoorLock

Figure 14.1: The vending machine architecture.

We split the interactions of the objects in four connectors. Three of them address a logically
connected line of actions (user enters money, user takes item and user requests change), while the one
we present right now just reflects the consistency of the simulation.

The DoorConsistencyConnector. The door and doorlock represent real-world entities that signal
their state. This connector enforces the consistency of the signals of the door, and between the door
and its lock. If "impossible" signals occur an exception is raised. Here is the declaration of the
connectorDoorConsistencyConnector:

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) door openDoor. permittedIf doorLock unlocked. door closed. endRule
(2) door closeDoor. permittedIf doorLock unlocked. door opened. endRule
(3) door takeItem. permittedIf door opened. endRule
(4) door methodWasForbidden: m. implies connector illegalSignal: m. endRule ’;
() installAtName: #DoorConsistencyConnector

If the vending machine works correctly, there can’t be a signal indicating that the door opens (or
closes) when the door is locked. To get the open signal, the door must be closed, and vice versa
(Rule 1 and 2)3. The item (located behind the door) cannot be taken, when the door is closed (Rule
3). If "impossible" signals occur, an exception is raised and the connector handles it in its method
illegalSignal: methodSelector (Rule 4).

3Note that each of these rules hastwoconsequence messages.

14.1. THE VENDING MACHINE 117

The MoneyAddingConnector. This connector expresses how the adding of money from outside is
reflected inside the machine, therefore it connects the coin eater, the money manager and the door
lock.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) coinEater add: amount. impliesLater moneyManager add: amount. endRule
(2) moneyManager add: amount. impliesLater doorLock unlock. endRule
(3) doorLock unlock. permittedIf moneyManager calculateIfEnough. endRule’;
() installAtName: #MoneyAddingConnector

The first rule notifies the money counter. The second rule asynchronously tries to unlock the door.
The door lock unlocks, of course, only ifenoughmoney is added (Rule 3). Note that this connector,
with its asynchronous operators, brings concurrency into the simulation.

The ItemTakingConnector. The following connector implements the interactions that take place
when a user takes an item. It connects the door, the money manager and the door lock.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) door takeItem. implies moneyManager consume. endRule
(2) door closeDoor. implies doorLock lock. endRule
(3) door closeDoor. impliesLater door produceItem. endRule
(4) door produceItem. permittedIf door itemTaken. endRule
(5) doorLock unlock. waitUntil door itemAvailable. endRule ’;
() installAtName: #ItemTakingConnector

When the user takes an item, the price must be subtracted from the money entered (Rule 1). The
second rule ensures that the door is locked as soon as the door is closed. Rules 3 and 4 take care
that a new item appears, when the old one is sold. Rule 5 delays the unlock process until the item
is produced by the two former rules. The process of putting a new item into the display is triggered
asynchronously, because it can be time consuming but should not block all other activities of the
vending machine. However, rule 5 prevents that the user can open the door before the new item is
displayed. Else a user could open the door before the next item is on the display and might close the
door again in disappointment. Then the vending machine must think that the item has been taken thus
it consumes the money of the user (Rule 1). Therefore, rule 5 prevents that the user can loose money
without getting an item.

Note that the closing of the door implies the door to lock, and the locking of the door will cause
the next connector to move into action.

The ChangeGivingConnector. This connector is responsible for the change that the machine gives
back. It connects all active objects of the machine together. If the user pushes the change button, the
door is locked (rule 1). Rule four ensures that the door is closed. Else, locking the door would be
ineffective. The user could open the door, push the change button to get the full change, then take the
item (since the door is still open) and cheat the machine that way. Rule 2 causes the money manager
to calculate the change. When the money manager has calculated the change it stores the amount
using its accessor methodchange. In rule 3, this accessor triggers the store to release the correct

118 CHAPTER 14. IMPLEMENTED EXAMPLES

amount. Note that the methodcalculateChange and rule 3 show the FLO/C programming idiom
for asynchronously propagate computation results (see section 7.4). A part of the chain of actions is
hidden in the fact thatcalculateChange callschange: amount which triggers rule 3.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) coinEater changeButtonPushed. implies doorLock lock. endRule
(2) doorLock lock. implies moneyManager calculateChange. endRule
(3) moneyManager change: amount. impliesLater store physicalRelease: amount. endRule
(4) coinEater changeButtonPushed. permittedIf door closed. endRule ’;
() installAtName: #ChangeGivingConnector

We see that the change giving process is triggered each time the door locks. That way, the user
also gets change each time he takes an item and closes the door (see the previous connector). Other
ways of change giving (e.g. only when button pushed) are also possible.

14.1.3 Evaluation

We used only stateless connectors to implement the example. This is possible, because we use object
states as guards. (Door»opened? MoneyManager»calculateIfEnough?). They represent the ab-
stract state of the group of objects that compose the vending machine. Operations that should execute
on a stable state are connected usingsequential ordering operators(implies andimpliesBefore) op-
erators, which guarantees that the state of the participants is not changed by some concurrent action.
For example, the following scenario is not possible: The user adds money then presses the change
button. If the messages could interleave in a bad way, first the door will lock (because of the change
button), then the door will unlock (because the last adding will be handled asynchronously). Now the
vending machine releases the full change, but the user can open the door! This cannot happen because
the change giving joint actions update the money manager (rules 1 an 2 inChangeGivingConnector)
and the unlocking of the door is guarded by the money manager (rule 3 inMoneyAddingConnector).

The example of [FA93] is only a sketch of a vending machine that even shows limitations of the
synchronizer construct that were used. Their machine can not automatically give change, because the
synchronizers lack of a possibility to send messages to the active objects. The example we present is
not trivial. Therefore, it shows the expressive power of FLO/C in offering different design dimensions:

� The level of concurrencyis controllable by the connectors. In the example we tried to use
a lot of asynchronous propagation. This lead to interleaving of processes. By replacing the
asynchronous with synchronous operators, we could sequentialize the whole simulation.

� The designer hasfull control over the behaviorof the machine, and is not limited by FLO/C to
one solution. For example the change giving policy can be changed to: no change, when item is
taken, only when button is pushed. Or the moment when the money is consumed can be varied.
For example the money could be consumed as soon as the door opens (not when the item is
taken).

� The designer can break communication patterns into easyunderstandable units(as seen in the
example: chains of implications, and their guards), or (s)he can take other considerations into
account, like minimizing the number of connectors or rules and the use of connector states etc.

14.2. SYNCHRONIZED MOVEMENTS 119

14.2 Synchronized Movements

14.2.1 Description

An arbitrary number of graphical elements should keep their relative position to each other, but each
can be told to move concurrently. All objects should stay within a certain border.

Purpose of the Example

This is a canonical example for synchronized multi-objectjoint actions(see 2.2.2). Every partici-
pating object adds its own constraint. Once the preconditions to the joint actions are checked, the
participants should move without treating other movement requests until all participants have reached
the destination of their movement. Since this is a paradigmatic example for joint actions it’s easy to
solve in FLO/C.

14.2.2 Solution

In this example, graphical objects implement the methodmoveAddX: x addY: y that moves the object
from its current position for the provided amountsx andy along the x and y axis of a screen. Fur-
thermore, a testing messagenotOutOfRangeX: x rangeY: y is implemented to check if a movement
would carry the object out of range.

The connector declaration to coordinate an arbitrary number of such visual objects looks like this:

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) graphObj moveAddX: x addY: y. implies
() graphObj_select_Next moveAddX: x addY: y. endRule
(2) graphObj moveAddX: x addY: y. permittedIf
() graphObj_select_REC notOutOfRangeX: x rangeY: y. endRule’ ;
() installAtName: #GraphicObjConnector

Rule 1 When one of the graphical objects receives the request to move for a certain amount on the x
and y axis, the request is propagated to the next graphical object. Considered the cycle breaking
mechanism, the sending of a move request causes each participant to move once in asequential
order.

Rule 2 However, each object must check if it can move without going out of the screen range.

Rule (1) and (2) form a set of joint actions. Therefore, (see section 4.3) upon a single movement
request the guards foreachparticipant are checked first. If all guards succeed all the objects move in a
sequential and protected fashion. During the movements they may receive other movement requests,
but do not treat them until all objects have reached their destination of the current movement. Note
that instead of thepermittedIf guard awaitUntil guard can also make sense, when there is a chance
that a retry of the movement request will succeed later, for example when the constraining range will
be widened or when participants are detached from the connector.

120 CHAPTER 14. IMPLEMENTED EXAMPLES

14.2.3 Evaluation

The solution consists of the declaration of one set of joint-actions. The actions are an ordered sequence
of movements and every movement is guarded individually. The fact that the guards are collectively
evaluated before the actions guarantees that all movements take place or none. Therefore, the solution
also represents apessimistic transaction: only when all participants can commit to the actions the
movements take place and they are protected from-third party access.

Note that we can immediately guarantee that our presented solution is livelock free because it does
not usewaitUntil operators (see section 9.2).

14.3 An Unstable Server for a Client

14.3.1 Description

The example consists of clients that use servers to preprocess data. Each server is up at a chance
of 50 percent. If it’s up, it does the preprocessing on the argument. If it is down, the client has
to do all the work on its own. Note that the client could also react in other ways, e.g. contacting
another server. The concrete processing of the toy example: A client gets a string in itsin: accessor.
A NotifyingCSConnector causes a server to preprocess it (conversion to number), and delivers the
result back to the client, which processes it (increments the number by one). If the server fails, the
connector causes the client to do the conversion on its own. The final result is put in theout instance
variable of the client.

Purpose of the Example

The connector connectsindependentactive objects. It allows the client to use services of the server in
pull-style. Just before a client needs the preprocessing of a server the connector pulls the result from
the server. Furthermore the example demonstrates the exception handling of FLO/C.

14.3.2 Solution

The following two tables present the interface of the participants. The interface of the participant that
plays the role of the client:

Client
in: string Input.
preprocessed: number Intermediate result.
localwork: number Handle the local work of a request.
doAll Handle both local work and server’s preprocessing.
out: number Output.

The interface of the participant that plays the role of the server:

Server
preprocess: string Preprocess a string.
isAlive Answer if server is available.

We declare theNotifyingCSConnector to connect an arbitrary number of objects that play the
rolesclient andserver. We will explain the solution following the order of the rules.

14.3. AN UNSTABLE SERVER FOR A CLIENT 121

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) client in: a. impliesLater client_select_REC localwork: a. endRule
(2) client localwork: a. impliesBefore server_select_Next preprocess: a. endRule
(3) server preprocess: a. implies client_select_REC preprocessed: result. endRule
(4) server preprocess: a. permittedIf server isAlive. endRule
(5) client localwork: a. implies client_select_REC out: result. endRule
(6) client methodWasForbidden: m. implies client_select_REC doAll. endRule
(7) client doAll. implies client_select_REC out: result. endRule ’ ;
() installAtName: #NotifyingCSConnector

Rule 1 Once a client received data through the argument to ain: message, the connector sends a
message to the client, telling it to do it’s local work. Note that the methodlocalwork: expects
to find the preprocessed data in the instance variablepreprocessed.

Rule 2 Therefore, before the local work can start, a server is called to do the preprocessing (! pull-
style). If there are several clients and servers, the servers are called one after the other according
to an inner order (see section 4.4.3 for the definition of the Next-specificator). Thus they get
equal amounts of requests.

Rule 3 Once the server has preprocessed a result, it is sequentially propagated back to the client that
requested it, using the default roleresult. Note that rule 2 and rule 3 form joint actions to
trigger the preprocessing and propagating it to the client. Therefore, when the client starts its
local work, the preprocessed data is ensured to be ready inpreprocessed.

Rule 4 However, the server only preprocesses data when it is up. This guard message extends the
sequential joint-actions of the rules 2 and 3 that does the pull-style preprocessing service. Thus
first this guard is checked (is the server up?) then the reserved server is told to preprocess and
deliver the result to the client4.

Rule 5 Finally the result of the locally and remotely processed request is written to the output.

Rule 6 However, the pulling of the preprocessing can be forbidden when the server is down. In this
case an exception is raised that we catch here. For this example we decided to make the client
capable of processing the whole task on its own. Other solutions, like retrying or using another
server are possible by changing this rule.

Rule 7 If the result is processed by the client itself it must be out-putted, too.

14.3.3 Evaluation

Pulling client-server interaction is frequently used. The example shows a FLO/C programming pattern
to implement sequential pulling-style interactions (rule 2-4). It also illustrates how the exception
mechanism can be used to implement different failure handling policies.

4The example is simplified because we assume that the server will not go down once it is reserved.

122 CHAPTER 14. IMPLEMENTED EXAMPLES

14.4 The Decrementor

14.4.1 Description

The decrementor is introduced by the author as an example with non-trivial, time consuming inter-
action between active objects. A decrementor iteratively processes a natural number. Whenever the
number is even, it is divided by two. When it is odd, an odd amount (typically 3) is added to it.
Eventually, this process leads to the number one. E.g.11! 14! 7! 10! 5! 8! 4! 2! 1

However, for some inputs (like for 6) the process goes on forever:6! 3! 6! :::

The decrementor returns the number of iteration steps it takes to reduce the starting number to one.

Purpose of the Example

The example shall show interesting interaction patterns using asynchronous push-style propagation.
Therefore, our decrementor consist of three independent active objects, namely theadder, which does
the adding on odd numbers, thedividerwhich divides the even numbers and thecounter, which counts
the steps. The divider cannot process odd numbers therefore it is responsible to test if a given number
is odd or even. One (little) multi-object coordination problem comes from the fact that the adder must
also use the testing method of the divider. However when using FLO/C’s guard operators this is no
problem at all. The interaction pattern is "complex" because the connector cannot tell on its own if a
number must be propagated to the adder or to the divider.

14.4.2 Solution

We identify three independent components: the adder the divider and the counter. Furthermore, we
declared additional methods for the connector (see section 4.5). The components are implemented
as active objects. The adder and the divider implement the methodprocess: number to provide
their special functionality (adding or dividing). They store their results using their accessor method
result: number. Note that this will be used to implement FLO/C’s idiom for the asynchronous
propagation of computation results (see section 7.4). The divider implements the query methods
canProcess: number and cannotProcess: number. The counter increments the current count
through the messagecount. With resultAt: number it outputs the current count and resets the counter.
The connector implements the query methodsisOne: number andbiggerThanOne: number.

In our solution we introduce two connector classes. TheDecrementConnector asynchronously
propagates results between the adder and the divider. TheCounterConnector is responsible that the
counter can correctly count the number of iterations used to decrement an input to 1. Here is the
declaration of theDecrementConnector.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) adder process: a. permittedIf divider cannotProcess: a. connector biggerThanOne: a. endRule
(2) divider process: a. permittedIf divider canProcess: a. connector biggerThanOne: a. endRule
(3) adder result: a. impliesLater divider process: a. adder process: a. endRule
(4) divider result: a. impliesLater divider process: a. adder process: a. endRule’;
() installAtName: #DecrementConnector

14.5. WORKERS AND TOOLS 123

Rule 1 The adder should only process an input, if it is odd (not processable by the divider) and if it
is still bigger than one.

Rule 2 The divider should only process an input if it can (input is an even number) and if it is still
bigger than one.

Rule 3 and rule 4 Whenever the adder or the divider has processed an input they store the result
using an accessor methodresult:. This will trigger rules 3 and 4, thus propagating the result
asynchronously to the adder and the divider again.

Since the connector does not know if the adder or the divider has to process the next result, it sends
requests to both and defines guards for both to filter out the wrong processing. The asynchronous
messages keep bouncing between the processing units until the argument they carry is decremented
to 1.

TheCounterConnector knows the rolescounter andprocessor. While it triggers the counter
object to keep track of processings it does not distinguish between adder and divider. They both play
the role ofprocessor.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) processor result: r. implies counter count. endRule
(2) processor result: r. impliesLater counter resultAt: r. endRule
(3) counter resultAt: r. permittedIf connector isOne: r. endRule’ ;
() installAtName: #CounterConnector

Rule 1 Whenever a processing unit produces a result, the counter increments immediately.

Rule 2 The connector also tries to asynchronously trigger the methodresultAt:. This method outputs
the final count of the counter.

Rule 3 However, the result is only final if the input is decremented to 1.

14.4.3 Evaluation

We composed the adder, divider and counter into a decrementor composite object, in order to use it
as worker that shows heavy internal communication, and thus is time consuming. The decrementor
was used amongst other things to test theworkers-administratorexample (see section 14.8), where
it played the role of a time consuming worker. Note that there the decrementor is protected against
concurrent requests. In the example as presented here, multiple requests can bounce between the
adder and the divider. The counter countseveryprocessing step. It does not distinguish between
different requests therefore the results will be wrong. But the different request are all reduced correctly
therefore the requests will cause the correct numbers of outputs.

14.5 Workers and Tools

14.5.1 Description

In this example an arbitrary number of workers use an arbitrary number of tools. The workers work in
independent live cycles. They must be provided with a tool, when they want to work. However each

124 CHAPTER 14. IMPLEMENTED EXAMPLES

tool can only be used by one worker at the time.

Purpose of the Example

The example illustratesmutual exclusionand the problem ofshared resources. FLO/C proposes
relative rolesto express the temporal ownership of an active object (see section 4.4.3). Furthermore,
we demonstrate the dynamics of role groups in FLO/C. In a running example, workers and tools can
be added or removed on the fly.

14.5.2 Solution

The workers do either work or have a break. Every time before they start to work, a connector of
classWorkersConnector automatically delivers a tool. The workers implement their working cycle
themselves as the following code sketch shows. However, this could also be programmed in the
connector.

Worker>>work
"Doing something here"
...
self haveABreak

Worker>>haveABreak
(Delay forMilliseconds: self lazyness) wait
self work

Here is the declaration of theWorkersConnector:

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) workers work. impliesBefore tools_select_RND_as_myTool free: false. endRule
(2) workers work. impliesBefore workers_select_REC tool: myTool. endRule
(3) workers work. implies myTool free: true. endRule
(4) workers work. waitUntil myTool free. endRule ’ ;
() installAtName: #WorkersConnector

All four rules compose one set of multi-object joint actions (see section 2.2.2) that handles the
state transitions when one worker decides to work.

Rule 1 Before a particular worker starts to work, a tool is explicitly reserved using the methodAc-
tiveObject»free: boolean 5. The tool is chosen by random (RND-specificator) and the choice
is stored in the relative rolemyTool (see section 4.4.4).

Rule 2 Furthermore, the worker receives a reference to the tool. This is in contrast to FLO/C’s
paradigm (see section 3.1) but used in order to underline the reservation of the tool.

Rule 3 After the work is done, the tool is released.

Rule 4 If the chosen tool is not free, the multi-object joint actions are delayed.

5The active objects provide afree: boolean accessor method and a testing methodfree. They are just a getter and
setter method to a boolean instance variable and have no special functionality. Thus the user could also declare an instance
variable ofTool to use it as explicit lock.

14.6. THE BINARY ADDER WITH LOGICAL SWITCHES 125

14.5.3 Explicit Locks and Processor Yields

This example reveals the simplification of the FLO/C implementation in contrast to the model. In
the FLO/C model the explicit reservation of the tool and the guard in rule 4 would not be neces-
sary, because the participants of the joint actions (a worker and a tool) are reserved by the underlying
mechanisms (see 4.3). Our implementation however does no implicit reservation, but simply does
not yield the processor. This leads to almost equal behavior as an underlying reservation (see section
11.2). However thework method does yield the processor by callinghaveABreak which callsDe-
lay»wait which subsequently suspends the current process. Therefore, the implicit reservation of our
FLO/C implementation is broken, and the example has to add explicit reservations (usingActiveOb-
ject»free:). In other examples like the "dining philosophers" example, we will yield the processor on
purpose in order to show how explicit reservation can be programmed with our FLO/C implementa-
tion. Using explicit reservation is sometimes necessary in the model, too. It is used when an object
must be protected against a particular access for a particular time not corresponding to a single set of
multi-object joint actions. The access of the pumps between the payment actions and the pumping
actions seen in the gas station example of section 5 is such a case.

14.6 The Binary Adder with Logical Switches

14.6.1 Description

Logical elements (not, and, or, xor) as independent actors are composed to a binary adder that can add
an arbitrary number of digits.

Purpose of the Example

We did not introduce this example to implement a program that can add fast, but to illustrate the
composition of active objects into composite object classes (see chapter 6). The whole example works
as anasynchronous push-flowsystem. At the bottom layer of the hierarchy, there are composite
objects that each implement a logical operation. To do so they mustsynchronize on their entries(that
are triggered asynchronously) to produce an output.

14.6.2 Solution

Since the composition of the adder is already described in chapter 6 we focus on the architecture of
the logical elements.

Logical elements. A logical element is a composite object that encapsulates an inner element. The
inner element is an active object that implements the logical operation (and,or etc). The inner object
has two instance variables that represent the current input to the logical operation. The inner element
implements the methodfire that returns the result of the operation, using the current values of its
instance variables. The instance variables are set by the methods:inA: bool andinB: bool.

The logical element contains two connectors, one of them (theTwoInputsConnector) propagates
input from the interface to the inner element and delivers the result of the firing from the inner element
to the interface. The other connector (theSynchronizeInputsConnector) synchronizes the inputs
and the firing. For example the composite object declaration of theAndElement looks as follows:

126 CHAPTER 14. IMPLEMENTED EXAMPLES

MetaCompositeObject new
superclass: NotElement ;
withComponentClasses: ’

And ’ ;
withConnectorClasses: ’

TwoInputsConnector SynchronizeInputsConnector ’ ;
withConnectionSchema: ’

connector: 1 role: innerElement object: 1
connector: 2 role: innerElement object: 1’ ;

installAtName: #AndElement

Note that the declaration of all further logical elements can reuse theAndElement declaration
through inheritance (see section 6.2). The following code illustrates this on the example of the
XorElement declaration which solely overrides the class of the inner object (Xor instead ofAnd):

MetaCompositeObject new
superclass: AndElement ;
withComponentClasses: ’

Xor ’ ;
withConnectorClasses: ’

super super ’ ;
withConnectionSchema: ’’
installAtName: #XorElement

All logical elements use the same two connectors.TwoInputsConnector implements the inter-
nal propagation andSynchronizeInputsConnector the synchronization of the inputs. Here is the
declaration of the classTwoInputsConnector:

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) interface inA: a. implies innerElement inA: a. endRule
(2) interface inA: a. impliesLater innerElement fire. endRule
(3) interface inB: a. implies innerElement inB: a. endRule
(4) interface inB: a. impliesLater innerElement fire. endRule
(5) innerElement fire. implies interface outA: result. endRule’ ;
() installAtName: #TwoInputsConnector

Rule (1) and (3) of theTwoInputsConnector immediately set the instance variables according to the
input on the interface. Upon each input rules (2) and (4) try to asynchronously trigger the firing. When
the firing took place, rule (5) carries the result to the interface for output. However, the inner element
should not trigger when only one input arrived already. This synchronization is addressed by the class
SynchronizeInputsConnector as seen here:

14.7. THE DINING PHILOSOPHERS 127

()MetaConnector new
() superclass: Connector ;
(1) instanceVariableNames: ’bSent aSent ’ ;
() withBehavior: ’
(2) innerElement inA: a. implies connector aSent: true. endRule
(3) innerElement inB: a. implies connector bSent: true. endRule
(4) innerElement fire. permittedIf connector aSent. connector bSent. endRule
(5) innerElement fire. implies connector aSent: false. connector bSent: false. endRule ’ ;
() installAtName: #SynchronizeInputsConnector

This connector defines instance variables (1) to store if input has already arrived. Rule (4) allows
output only when it has arrived on both channels (2)(3). Upon firing the connector’s state is reset (5).

Composition of the adder. In section 6.1 we explained how the logic elements can be composed
to a binary adder element. The following connector connects the binary adder elements to abinary
adderwith arbitrary entries:

MetaConnector new
superclass: Connector ;
withBehavior: ’
adder outB: a. impliesLater adder_select_Next inC: a. endRule’ ;

installAtName: #BinaryAddersConnector

The connector connects the carry bit output (outB:) to the carry bit input (inC:) of the next adder
element.

14.6.3 Evaluation

The example shows nested use of composite objects as well as the inheritance of them. Further-
more, it is used for measuring the performance improvement of the FLO/C implementation using a
consequence message cache (see section 13.4).

The example illustrates that asynchronous push-flow systems [Lea97](p.220) are naturally pro-
grammed in FLO/C. "Splitters" can be programmed by using role groups of rules with several con-
sequences. "Mergers" can synchronize using thepermittedIf operator as seen in theSynchronizeIn-
putsConnector declaration.

14.7 The Dining Philosophers

14.7.1 Description

The dining philosopher problem [Dij72] is probably the most cited coordination problem example.
An arbitrary number of philosophers are sitting on a round table, thus each one has two neighbors. A
philosopher alternates between eating an thinking. In order to eat, a philosopher has to grab its left
and right chopstick. The left chopstick of a philosopher is the right chopstick of his left neighbor.
Only one philosopher at a time can hold a particular chopstick.

128 CHAPTER 14. IMPLEMENTED EXAMPLES

Purpose of the Example

The example illustrates three well known coordination problems: Shared resources (chopsticks), with
mutual exclusion and the possibility of deadlock. Furthermore, a coordination language should offer
the possibility to program afair or starvation free solution.

14.7.2 Solution

The philosophers and the chopsticks are implemented as independent active objects. The philoso-
phers’ methods implement their live-cycle. After a philosopher has eaten it thinks for a random time
and then starts to eat again. The methods of a philosopher are:

Philosopher>>eat
(Delay forMilliseconds: self randomAmountOfTime) wait
self think

Philosopher>>think
(Delay forMilliseconds: self randomAmountOfTime) wait
self eat

Our solution introduces two connectors to implement the interactions between chopsticks and
philosophers and to enforce mutual exclusion and fairness. TheDiningPhiloConnector is responsible
for the relationship between philosophers and their chopsticks. In its initialization phase, it orders
the philosophers and the chopsticks. Then, whenever a philosopher wants to eat, the user-defined
LNR-specificator selects it’s appropriate chopsticks. The connector changes the chopsticks’ state
to explicitly reserve them. Again this is only necessary, because of aDelay»wait call intentionally
placed within theeat method (see section 14.5.3). Thanks to the explicit reservation, the connector
still guarantees mutual exclusion.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) philosopher eat. impliesBefore chopstick_select_LNR_as_mySticks free: false. endRule
(2) philosopher eat. waitUntil mySticks free. endRule
(3) philosopher eat. implies mySticks free: true. endRule ’ ;
() installAtName: #DiningPhiloConnector

Rule 1 Before a philosopher wants to eat, his chopsticks are chosen by the select-left-and-right spec-
ificator LNR6. They are explicitly locked settingfree to false. Furthermore the relative role
mySticks maps the particular selection of chopsticks to the philosopher (see section 4.4.4).

Rule 2 If one of the two sticks is occupied already, the philosopher must wait for eating.

Rule 3 After the philosopher has eaten its chopsticks are released.

In order to grant fairness, theFairPhiloConnector enforces, that no philosopher can grab chop-
sticks, when one of his neighbors is waiting for a longer time. The connector uses methods defined in

6The Left-and-right specificator uses the inner order of the role groupphilosopher to determine the neighbors. See also
section 4.4.

14.8. ADMINISTRATOR AND WORKERS 129

its superclassFairnessConnector to register request times and to compare them, using the SMALL -
TALK messageTime class»millisecondClockValue. The methodregisterTimeFor: participant
registers the time of a request by a particular participant and the methodunregisterTimeFor: partic-
ipant resets the registration when the request was granted. The methodnotWaitingLonger: group
than: participant returnsfalse if there is a member ofgroup who’s request time is older than the one
of theparticipant.

MetaConnector new
() superclass: FairnessConnector ;
() withBehavior: ’
(1) philosopher think. implies connector registerTimeFor: philosopher_select_REC. endRule
(2) philosopher eat. waitUntil
() connector notWaitingLonger: philosopher_select_LNR
() than: philosopher_select_REC. endRule
(3) philosopher eat. implies connector unregisterTimeFor: philosopher_select_REC. endRule’;
() installAtName: #FairPhiloConnector

Rule 1 After a philosopher has finished thinking, he wants to eat. Therefore, the connector registers
the time of this event.

Rule 2 Before an actualeat request is treated, this rule ensures that none of the neighbors (determined
by the user-defined LNR-Specificator) is waiting longer for eating. Note that only the two
neighbors of a philosopher compete for the chopsticks.

Rule 3 After a philosopher has eaten the connector has to register this fact. The waiting time of the
philosopher is set back to zero.

14.7.3 Evaluation

The FLO/C solution to the "dining-philosopher problem" is so easy that we had to pep it up with
Delay»wait calls. The solution is deadlock free because any FLO/C solution is (see section 8). It is
livelock free as well. A given philosopher must at most wait until his two neighbors have eaten once.
Then it will be the one that waited the longest. According to section 8.3.2 the model (or section 11.2
the implementation) will give the philosopher a chance to eat. Since both neighbors are blocked out
the philosopher will succeed to pick the chopsticks and eat. Therefore, the solution is always live and
fair. It demonstrates how FLO/C can be used for mutual exclusion on shared resources.

14.8 Administrator and Workers

The administrator and worker example [Gen81] is an example often cited in various literature. It
concerns the problem how to design an architecture that can exploit the distribution of tasks. The
administrator-workers pattern is such an architecture.

14.8.1 Description

An arbitrary number of clients need to use a service that more than one server (worker) can provide.
An administrator distributes the requests of the clients to the workers and forwards the results back to
the clients. The administrator can use different policies to decide which request goes to which worker
(depending on the size of the request, or the state of the worker etc.)

130 CHAPTER 14. IMPLEMENTED EXAMPLES

Purpose of the Example

The example bears complex interaction. The administrator has to protect the worker from concurrent
access and it has to manage dynamically changing connections between clients and workers. There-
fore, it is a good test for the FLO/C model. Since the administrator-workers example is still a simple
problem we want to solve it without using connector programming to explicitly keep track of the con-
nections between workers and clients. Instead we want to codeall interactions between clients and
worker into rules of connectors.

14.8.2 Solution

In our solution a client issues a requests for a computation by calling its own methodrequest: arg. It
expects to be called back with the messageresult: res that carries the result in the argumentres. The
workers can process an argument with their methodprocess: arg. When they finished a processing
they write the result using their methodresult: res.

The work of the administrator is done in theAdministratorConnector. It connects the clients
with the workers. Our solution ispush basedand involves acall-back to the clientimplemented by
a connector. TheAdministratorConnector dynamically creates aBacksendConnector for each
request, which in turn will propagate the result back to the client, and then destroy itself. Thus,
the AdministratorConnector does not have to keep track which worker currently works for which
client. The policy to choose a worker is implemented in a specificator (FRE). This specificator simply
chooses the first free (not running) worker. If none is found, it chooses a random one, and the request
has to wait. In order to use another policy, the user can define another specificator.

Our solution involves two new connector classes. The classAdministratorConnector implements
the administrator. It uses the rolesworker and client to connect an arbitrary number of workers
an clients. It uses the default roleconnector to call its own methods. One of these methods is
createConnectionFrom: source to: target which uses the classBacksendConnector to establish
a channel between a particular client and a particular worker.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) client request: a. implies connector request: a from: client_select_REC. endRule
(2a) connector request: a from: c. implies worker_select_FRE process: a.
(2b) connector createConnectionFrom: worker_select_FRE to: c. endRule
(3) worker process: a. implies worker_select_REC free: false. endRule
(4) worker process: a. waitUntil worker_select_REC free. endRule
(5) worker result:a. implies worker_select_REC free: true. endRule’ ;
() installAtName: #AdministratorConnector

Rule 1 When a client issues a request for a computation on an argument, the connector calls a dummy
method to redirect the request. Note that we want the rules of connectors to do all the commu-
nication work, and not methods of the connector.

Rule 2a The user defined free-specificator (FRE) chooses a free worker to process the request. Note
that the specificator will find a free worker if possible. However, if all workers are occupied it
will select an occupied one. A user can define a specificator by inheriting from classSpecifi-
cator. (S)he must declare three properties of the specificator: (1) Is the specificator dynamic

14.8. ADMINISTRATOR AND WORKERS 131

or not7. (2) What is the abbreviation for the specificator when used in rules (e.g. FRE) and
(3) What is the policy to select a subset of the role group. In order to define a policy the user
overloads the methodselect:context:. This method receives the role group and the context of
the current message, which is necessary for some specificators (see section 4.4.3), and it returns
a collection containing the subset of participants. The following code defines the policy of the
free-specificator.

select: roleGroup context: connector
"Selects one free participant of the role group."
"If none is free, a random one is returned."

^OrderedCollection new add: "Return a subset with:"
(roleGroup detect: [:o | o free]

ifNone: [
roleGroup at: (Random new next * roleGroup size) rounded
]

)

Note that the free-specificator (FRE) is dynamic. Its choice cannot be cached.

Rule 2b The connector calls its own methodcreateConnectionFrom:to: which establishes a chan-
nel for the result to be sent from the worker to the appropriate client.

Rule 3 and 5 The workers are reserved and released explicitly using the selectorfree:. Note that the
free-specificator is designed to work with thefree selector to determine if a worker is free.

Rule 4 If no worker is free, a request has to wait.

Rule 2 triggers the methodcreateConnectionFrom:to: which establishes a channel for the call-
back of the client when the worker has produced the requested result.

AdministratorConnector>>createConnectionFrom: worker to: client
|b|
"Establish a connection to deliver the result."
b := BacksendConnector new.
b objects: worker playRole: ’source’.
b objects: client playRole: ’target’.
b install

Here we make heavy use of the dynamics of FLO/C. Once the connector is established, the
administrator can forget about the request of the client. The declaration of theBacksendConnector
is:

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) source result: a. implies target result: a. endRule
(2) target result: a. implies connector decouple. endRule’ ;
() installAtName: #BacksendConnector

7Dynamic specificators forbid caching as described in section 13.3.3

132 CHAPTER 14. IMPLEMENTED EXAMPLES

Rule 1 Once the worker produced the result, the client gets a call-back immediately, providing it with
the result.

Rule 2 When the target received the result the connector terminates gracefully, without terminating
its participant8 (Connector»decouple).

14.8.3 Evaluation

The example shows the expressive power of dynamic connector creation and destruction. Instead of
programming the worker selection policy into the connector, which is also a possible way of imple-
menting the problem, a user-defined specificator selects the workers for a given request. Therefore,
all client-worker interaction is coded in connector rules and the selection policy of the administrator
is factored out in a user-defined specificator.

14.9 The Electronic Vote

14.9.1 Description

The electronic vote example was presented by Minsky et al. [MU97] to demonstrate the expressive
power of their coordination language which also features explicit entities for coordination (see section
15).

They describe the following problem. Assume that there is a specific issue on which an open
and heterogeneous group of agents (active objects) is asked to vote. Consider the following policy
designed to ensure that the vote is fair and confidential:

1. An agent can vote at most once, and only within the time period alloted for this vote.

2. The counting is done correctly.

3. An agent is guaranteed that nobody else, not even the organizer of the vote, will know how (s)he
voted.

We present a FLO/C solution to a small extension of the problem. In our solution each voter can
initialize a vote and provide the issue and deadline. Multiple votes can run concurrently as long as
they concern different issues. All voting results are propagated back to the voters.

Purpose of the Example

Voters have their own independent opinions. The example demonstrates the separation of concerns
between policy enforcement and individual object behavior. The example involves proactive behavior
of the participants that call a vote, and it involves time measurement. Furthermore, since the voters
are independent they can try to cheat by voting twice on the same issue. The FLO/C approach has
the advantage that active objects have no references to others (see section 3.1) and therefore cannot
bypass the connectors to cheat.

8Else it would terminate a client and a worker.

14.9. THE ELECTRONIC VOTE 133

14.9.2 Solution

The voters are the only actors in this example (beside of the connector). ClassVoter has the following
public interface.

Voter
startVoteOn: string deadline: time The voter request a vote.
voteOn: string The voter is informed about a vote on an issue. It calls:
opinion: string This method returns the voters opinion on an issue.
resultOf: string was: res The voter gets the result of a vote.

When a voter is told to vote on an issue it builds its own opinion on the issue. The method looks
like that:

Citizen>>voteOn: issue
"The citizen asks itself, what its’ opinion on as subject is."
self opinionOn: issue.

In our implementation a citizen builds its opinion using its private methodintelligence which
returns a number. The methods code looks like this:

opinionOn: issue
^((Random new next *(issue size / self intelligence)) <0.5)
"The longer the issue, the more likely it is rejected. Issues that have"
"the same size as the number stored in ’intelligence’ have a 1:1 chance."

We declare a classVoteConnector. A single connector of this class is designed to ensure proper
voting capabilities for an arbitrary number of voters, to which it refers by the rolecitizen. The
VoteConnector class defines methods to register voters and their vote. The connector contains rules
that start its own methods using the default roleconnector (see connector programming in section
4.5). The methods mainly write single results into SMALLTALK dictionaries stored in the connectors
own instance variablestimeTable, voteTable andvotersRegistration. They are not further presented
here.

() MetaConnector new
() superclass: Connector ;
() instanceVariableNames: ’timeTable voteTable votersRegistration ’ ;
() withBehavior: ’
(1) citizen startVoteOn: issue deadline: t. implies connector openVoteOn: issue until: t. endRule
(2) citizen startVoteOn: issue deadline: t. impliesLater citizen voteOn: issue.
() connector countResultOf: issue. endRule
(3) citizen opinionOn: i. implies connector register: result on: i.
() connector registerVoter: citizen_select_REC on: i. endRule
(4) citizen opinionOn: i. permittedIf
() connector voter: citizen_select_REC hasNotYetVotedOn: i.
() connector timeNotElapsedFor: i. endRule
(5) connector countResultOf: i. waitUntil connector timeElapsedFor: i. endRule
(6) connector countResultOf: i. implies citizen resultOf: i was: result.
() connector closeVoteOn: i. endRule
(7) citizen startVoteOn: issue deadline: t. waitUntil connector notVotingOn: issue. endRule ’;
() installAtName: #VoteConnector

134 CHAPTER 14. IMPLEMENTED EXAMPLES

Rule 1 A citizen can call a vote on an issue and provide a deadline for it. The connector (accessed by
the default roleconnector) must register the issue and the deadline immediately.

Rule 2 Then the connector broadcasts the subject of the vote to the citizens. It does so asynchronously,
because it is not expecting them to return an opinion; it is the citizen’s choice to do so. The
second consequence of rule 2 sends the request to count the result of the vote to the connector.
As seen in rule (5), this will not happen until the deadline is reached.

Rule 3 When a citizen has built its opinion, it is registered by the connector. The connector stores the
citizen’s vote separately from the citizen in order to keep the vote anonymous.

Rule 4 However, the opinion is only registered if the citizen has not already voted, and if the deadline
has not passed.

Rule 5 As seen in rule (2) the connector asynchronously requests itself to add up the results, but it
must wait for the deadline.

Rule 6 Once the deadline is passed and the votes are counted, the result is immediately propagated
to all citizens, and the connector closes the vote.

Rule 6 Before the vote is not closed it is not possible to start a new vote on the same issue. Here we
delay the request with awaitUntil guard. ApermittedIf guard can be an option, too.

14.9.3 Evaluation

VoteConnector is an example of a programmed connector. It uses its own methods and instance
variables to keep track of the votes. Our implementation extended the example described in [MU97]
because it allows concurrent votes on different issues. It illustrates complicate interaction behavior
with timing constraints between an arbitrary group of participants. The participants are constrained
from behaving malevolent like voting twice (rule 4). The anonymity of the vote can be guaranteed
because the rule (3) store the results separate from the voters.

14.10 The Sleeping Barber

14.10.1 Description

The sleeping barber example [BA82] features an arbitrary number of customers that need a haircut
once in a while. These customers wait in a waiting room that is limited in size. When there are no
customers around the barber sleeps. New customers wake up the sleeping barber. The barber invites
the customer who waited the longest into the barber room. He cuts the customer’s hair to the size that
the customer desires. After sending the customer out, the barber checks for the next customer.

Coordination Aspects

This example represents a producer-consumer problem, where the barber "consumes" customers. The
waiting room represents a customizable buffer of fixed size. Customers should be treated fair. Note
that when the barber finished a customer, he must actively check, whether there are customers in the
waiting room. If no customer is waiting the barber sleeps and the next customer has to wake him up.
Therefore, the example features the two policies of polling and of notification.

14.10. THE SLEEPING BARBER 135

The example contains the waiting room as explicit entity that represents a buffer. Note that we
prefer to use the message queues of active objects instead of an explicit buffer entity. But we tried to
stick to the description as close as possible therefore we introduced an active object playing the role
of a waiting room.

14.10.2 Solution

In our solution, the customers have their own live cycle, they decide when to go to the barber. Then
they try to enter the waiting room. If the waiting room is full, they are rejected by a connector and
live on their lives (the hair is constantly getting longer) and try to go to the barber later. The public
interface of theHairyGuy class:

HairyGuy
live Live and check if hair is too long.
growHair Models the growing of the hair.
goCutting Go to the waiting room of the barber.
enter Enter the barber room.
sit Sit on the barber chair.
desiredLength Return the desired length of the haircut.
leave Leave the barber room.

The customer’s methods call each other in order to implement the customer’s live cycle (see figure
14.2). Note that the methods involved in the interactions with the barber and the waiting room are
called by connectors.

leave live growHair

goCutting

[hair is too long]

Figure 14.2: The self calling graph of a "hairy guy".

The methods of the barber call each other in one chain that represents the complete hair cutting
process (see figure 14.3). A connector will connect the chain to a cycle.

lookForCustomer sleep

showOutshowChair

cutHair

Figure 14.3: The self calling graph of a barber.

The waiting room is implemented as a first-in first-out buffer of limited size. Here is its public
interface:

136 CHAPTER 14. IMPLEMENTED EXAMPLES

WaitingRoom
newWaitingCustomer: h A new hairy guyh enters the waiting room.
whoWaitedLongestEnters The one who waited the longest enters thebarber room.
notEmpty Return whether there are waiting customers.
notFull Return whether there is place for another customer.

TheSleepingBarberConnector glues together the hairy guy (rolecustomer) the waiting room
(role waitingRoom) and the barber (rolebarber). Furthermore, it uses the default roleconnector to
refer to its own state and operations. TheSleepingBarberConnector implements all the interactions
that happen outside the barber room (for example the interactions with the waiting room and the
waking up of the barber). The connector is designed for one barber and one waiting room but an
arbitrary number of customers.

()MetaConnector new
() superclass: Connector ;
() instanceVariableNames: ’innerConnector customerEntered ’ ;
() withBehavior: ’
(1) customer goCutting. implies
() waitingRoom newWaitingCustomer: customer_select_REC. endRule
(2) customer goCutting. permittedIf waitingRoom notFull. endRule
(3) customer methodWasForbidden: m. impliesLater customer_select_REC live. endRule
(4) customer goCutting. impliesLater barber lookForCustomers. endRule
(5) barber lookForCustomers. implies waitingRoom whoWaitedLongestEnters. endRule
(6) barber lookForCustomers. waitUntil connector customerLeft. endRule
(7) barber showChair. waitUntil connector customerEntered. endRule
(8) customer enter. implies
() connector barberRoomWithCustomer: customer_select_REC
() barber: barber.
() connector customerEntered: true. endRule
(9) barber showOut. implies connector barberRoomWithoutCustomer.
() connector customerEntered: false. endRule
(10) barber sleep. permittedIf waitingRoom empty. endRule’ ;
() installAtName: #SleepingBarberConnector

Rule 1 When a customer enters the waiting room, the waiting room is notified to host the customer.

Rule 2 This is only allowed if the waiting room is not full.

Rule 3 If it is not allowed themethodWasForbidden: exception is caught here, and the customer
continues its daily live.

Rule 4 If the customer successfully went to cut the hair, this means that (s)he entered the waiting
room. Therefore, the barber is waken up to look for customers.

Rule 5 When the barber looks for customers the waiting room is told to bring forth the next customer.

Rule 6 The barber should not look for new customers until the one he treated last is gone. This
prevents that the barber is waken up although it is not sleeping but treating a customer.

Rule 7 The barber should not show a new customer the chair until the customer entered the barber
room. This rule and rule 6 synchronize the activity of the connector that implements the be-
havior inside the barber room (see later) and the one that implements the behavior outside (this
connector here).

14.10. THE SLEEPING BARBER 137

Rule 8 When a customer enters the barber room, the connector dynamically creates a special con-
nector of the classBarberRoomConnector for the behavior there. Furthermore, in order to
synchronize with this new connector an instance variable is set marking that the inner connector
is handling the customer and the barber now (compare with rules 6 and 7)

Rule 9 The methodbarberRoomWithoutCustomerdestroys the inner connector which duty is done
when the barber has finished the haircut of a customer. Furthermore, the synchronizing instance
variablecustomerEntered is reset.

Rule 10 The barber is only allowed to sleep when the waiting room is empty. Note that it is the
barbers own live cycle that will send him to sleep after he treated a customer (see figure 14.3).

TheSleepingBarberConnector controls the interaction that takes place between customers and
the waiting room and it controls the live of the idle barber. When the barber is busy with a customer,
a dynamically created inner connector of classBarberRoomConnector takes over the responsibility
of the barber and this particular customer. It follows the live cycle of the barber and triggers the cor-
responding customer behavior. TheBarberRoomConnector knows the rolesbarber andcustomer.
Note that the connector is not designed for role groups since there is never more than one customer or
barber inside the barber room.

()MetaConnector new
() superclass: Connector ;
() withBehavior: ’
(1) barber showChair. implies customer sit. endRule
(2) barber cutHair. implies customer desiredLength. endRule
(3) customer desiredLength. implies customer hair: result. endRule
(4) barber showOut. impliesLater customer leave. endRule’ ;
() installAtName: #BarberRoomConnector

Rule 1 When the barber shows the chair for the customer, the customer will sit on it.

Rule 2 When the barber cuts the hair, the customer’s desired length is requested.

Rule 3 The return value of the desired length is used for the new hair length of the customer, thus
his/her hair is cut to the desired length.

Rule 4 When the barber shows the customer out, (s)he will eventually (asynchronous propagation)
leave.

The two connectors glue together the live cycle of the customers and the barber. The figure
14.4 shows the state transitions (method executions) which are triggered by the live cycle of the
barber and the customers themselves and it shows the transitions that are triggered by rules of the
SleepingBarberConnector connector. Transitions belonging to the live cycle are represented as
arrows that leave the state representation (a box). However, if a dashed arrow points to the starting of
the transition arrow then the transition is caused by a propagating rule. The figure refers to the rules
by the number we used in the declaration ofSleepingBarberConnector before.

The behaviorinsidethe barber room is modeled by theBarberRoomConnector. The figure 14.5
shows the state transitions of the barber and its customer. It also shows which state transitions belong
to the live cycle of the barber and the customer, and which ones are triggered by the connector.

Note that the individual live cycles presented in the figures 14.2 and 14.3 can still be identified in
the figures 14.4 and 14.5.

138 CHAPTER 14. IMPLEMENTED EXAMPLES

in the wait-
ting room

[waiting room
is full]

[waiting room
is empty]

Guard definition[]

State transition of live cycle

State transition enforced by
sequential propagation.

State transition enforced
by asynchronous propagation.

Legend

transition that must wait

[last customer has left
the barber room]

customers live cycle barber live cycle
live (grow hair)

show chair

enter

look for customers

sleep

Rules 2,3

[customer has entered]
Rule 7

Rule 10

Rule 9Rule 1

show outleave

Rule 8
Barber room connector takes over.

go cutting
[hair is too long]

Rule 5

Rule 6

Rule 4

Figure 14.4: The different state transitions outside of the barber room.

14.11. EVALUATION OF THE EXAMPLES 139

State transition of live cycle

State transition enforced by
sequential propagation.

State transition enforced
by asynchronous propagation.

Guard definition[]

Legend

customer barber

tell desired length

cut to desired length

Rule 1

Rule 2

Rule 3

Rule 4

leave

cut hair

show out

show chair

sit

Figure 14.5: The different state transitions inside the barber room.

14.10.3 Evaluation

The example implementation uses exception handling, dynamic creation of connectors and connector
programming. We tried to stick closely to the description of the example, in order to encounter
limitations of FLO/C. This is the reason why the example uses a large connector defining 10 rules.

The example illustrates the trade-off between responsibilities of the connectors and the compo-
nents (see section 7.4). The components have a simple self-call graph and the connectors connect
these graphs to enforce complex system behavior.

After this final and most complex example, we will summarize our example implementation work
in the following section.

14.11 Evaluation of the Examples

The coordination examples were programmed in FLO/C to evaluate the model’s expressive power. We
implemented eleven toy examples partially taken from traditional and recent coordination literature.
FLO/C programming was able to solve all problems and even some extensions to the problems. The
examples were implemented in parallel to the development of the model. This helped us to identify
and address problems and limitations of the early FLO/C model. Special features like the excep-
tion mechanism or connector programming (see section 4.5) were introduced to FLO/C because they
turned out to be handy when implementing examples. The examples’ implementation revealed funda-
mental problems like how to identify active objects (see section 7.4) that implies further research. We
claim that the implementation of the example proves that FLO/C enables a programmer to implement
complex object oriented coordination without expert programming skills.

Example overview. There are a lot of recurring themes in the examples of the previous sections.
Most examples use specificators which enhances the run-time flexibility. The solutions are indepen-

140 CHAPTER 14. IMPLEMENTED EXAMPLES

dent of the number of participants, participating active objects can be added and removed on the fly.
The solutions use asynchronous and sequential message flow to implement different styles of client-
server relations. Throughout the examples sequential operators are used to connect together critical
actions and asynchronous propagation is used to request the actions. The following table presents
the most important features of each example. It shows what coordination problem is particularly
interesting in the given example and what special purpose lead to the implementation of the example.

Example Coordination problem Special purpose

1) Vending machine. Multi-object constraints: The
parts of the machine can be
accessed concurrently.

Our solution demonstrates the
use of stateless connectors.

2) Synchronized movements. Multi-object joint actions.
Pessimistic transaction.

A small and typical example.

3) Unstable server. Components can refuse the
collaboration.

Here we present an application
of FLO/C’s additional exception
mechanism.

4) Decrementor. Complex asynchronous mes-
sage flow.

The solution can be used to im-
plement workers with heavy in-
ternal communication.

5) Workers and tools. Mutual exclusion on shared
resources.

The solution demonstrates ex-
plicit locks and relative roles.

6) Binary adder. Asynchronous push-flow
with splitters and mergers.

The solution presents a nested
object hierarchy with compos-
ite objects and demonstrates the
inheritance of composite object
classes.

7) Dining philosophers. Mutual exclusion on several
shared resources and fair-
ness.

Providing a solution to this fa-
mous example is "a must".

8) Workers-administrator. Dividing tasks to workers
thereby supporting different
strategies.

The solution shows the useful-
ness of user-defined specifica-
tors.

9) Electronic vote. Constrained proactive be-
havior. Deadlines and
anonymity.

Our solution demonstrates con-
nector programming when regis-
tering time and voters.

10) Sleeping barber. Producers and consumers
connected by a customizable
buffer of fixed size. Two
valid protocols at the same
time: notifying the consumer
and polling of the consumer.

Our solution presents dynamic
creation and destruction of a
specialized connector. It also
demonstrates the responsibility
tradeoff between connectors and
components.

14.11. EVALUATION OF THE EXAMPLES 141

Figures of the example implementation. To complete the presentation of the examples we show
occurrences and ratios of the FLO/C connectors and component classes used in the eleven example
implementations.

Connectors
connector classes 31
using keywordconnector 10
rules 125
roles 79
rules per connector 4.0
roles per connector 2.5
consequences per rule 1.2
selectors per role

in precondition 1.7

Components
total number of component classes39
composite object classes 11
components per composite 2.3
connectors per composite 1.9
connections per composite 4.1

The tables show that almost every third connector contains rules that refer to the connector itself
by using the keywordconnector (see section 4.5). Mostly these connectors use methods to access
their own state that represents the state of the interaction. The frequent use of this feature justifies its
introduction to FLO/C.

Thanks to the group management of FLO/C, the average number of rules per connector is low and
the average of roles even lower. Only few rules use more than one consequence message per rule.

The average number of selectors per role in the preconditions of a connector is a direct speed-up
factor in the rule lookup optimization we implemented (see section 13.2).

The average composite object encapsulates two other active objects that are connected by an
average of two connectors (an interface connector and one for the inner behavior). The connectors
attach to the components through an average of four connections.

142 CHAPTER 14. IMPLEMENTED EXAMPLES

Part IV

Finale

143

Chapter 15

Related Work

The FLO/C model is inspired by different areas of computer science. Its main goal ismulti-object
coordination of active objects. Thus FLO/C uses a simple active object model to express concurrent
activities and it coordinates the active objects with explicit connectors. On the other hand FLO/C

postulates the separation of interaction and computation. This is well-known in thearchitectural
designcommunity. FLO/C implementsarchitectural design decisions. By bringing together these
different aspects FLO/C differs from all previous approaches. However, we will discuss individual
differences between FLO/C and of some of the latest approaches in related areas.

15.1 Coordination

15.1.1 Explicit Entities for Multi-Object Coordination

Beside FLO/C, several languages propose rule based declarations to coordinate concurrent objects
[FA93, MU97].

Synchronizers. The synchronizers proposed by Agha and Frølund [FA93] have many similarities
to FLO/C. The synchronizers express coordination patterns in the form ofmulti-object constraints.
They support the separation of concerns and support the reuse of coordination code. The constraints
ensure atomic execution of methods. Constraints can use the state of the synchronizer and change it.
However, our model supersedes the model of synchronizer. First the expression of the coordination is
no longer limited to the state of the connector itself. A connectorenforcesnew behavior to the objects
by invokingparticipant object services. Second, a connector is a dynamic run-time entity that can be
dynamically created and destroyed. Third, a connector can to refer togroupscoordinated objects and
supports dynamic addition or removal of participants.

The coordination language facility (CLF). CLF [AFP96] is a rule based language to coordi-
nate distributed objects. It is built as an additional coordination layer on top of CORBA [Obj91].
CLF introducescoordinatorsthat negotiate between participating objects about abstract token pro-
ductions and consumptions. The negotiation uses three phases (inquiry, reservation and confirma-
tion/cancelation) which finally leads to coordinated execution of different actions in the participants.
First the coordinatorinquiresif a participant holds a token that occurs on the left hand side of a rule.
Each participant proposes a set of actions to remove the token. Then the coordinator asks the par-
ticipant to reservesome of these actions. Finally when the coordinator has achieved the necessary

145

146 CHAPTER 15. RELATED WORK

reservations to fulfill the rules, it confirms the reservations (and cancels the unnecessary reservations).
Confirmed actions are guaranteed to execute, deleting the corresponding tokens. This leads to the
placing of compensating tokens as specified in the right hand side of the rules.

CLF differs from FLO/C in that its coordination support is process oriented. CLF eases the
implementation of workflow and not of concurrent programming in general. CLF supports long-
lived inquiries. Its coordinators do not impose new state on the world like FLO/C’s connectors.
Furthermore, CLF does not have the benevolent liveness properties of FLO/C (see section 9.4).

Coordination policies. The coordination policies proposed by Minsky and Ungureanu [MU97] are
a recent approach and most similar to FLO/C. They use explicit entities to control the message
passing between groups of agents. Rules describe constraints over the message passing and enforce
state changes in agents proactively. Although coordination policies are intended for use in distributed
systems they do not address low-level usability responsibilities but coordinate at a high level of ab-
straction (just like FLO/C).

However, the coordination policies lack of a simplerule compositionmechanism as proposed in
FLO/C (see section 4.3). Furthermore, they do not offer a way to compose nestedobject hierarchies
like composite objects do (see section 6).

15.1.2 Factoring Out Per-Class Coordination

All approaches of this category have recognized the advantages of factoring out synchronization and
coordination code. However their coordination abstractions affect only one class at a time.

Generic Synchronization Policies (GSP). GSPs [McH94] improve the reusability of interaction
code (the policies) as well as the code of the objects. Policies are generic, they can be applied to
any class. This is achieved by using parameters for message selector groups (like reading selectors
and writing selectors). Nevertheless, a policy is always applied to one single class. It is not possible
to connect objects of different classes through GSP. GSP controlsintra-object concurrency. Note
however that there is a recent approach [SL97] which reified GSPs as first class entities. But even
there GSPs do not feature high level multi-object coordination constructs like synchronized multi-
object joint actions.

The D language. The D language [LK97] is an aspect oriented approach [Kic97] to coordination.
Kiczales and Lopes observe code tangling in concurrent programming with JAVA . D aggressively
adheres to syntactic separation of concerns by introducing three aspect languages. The first language
expresses the basic functionalities of the system, the second one expresses remote access strategies
and the third one expresses coordination of threads. A special tool called Aspect Weaver takes the
programs written in the aspect languages and merges them to one executable program (in plain JAVA).
D’s coordination aspect language allows one to declare sets of mutual exclusive methods and a set
of self exclusive methods per class. It expresses synchronization guards by featuring atomic pre- and
post conditions to methods.

While aspect oriented programming bears much expressive power it lacks the dynamics of the
FLO/C model. For example the D language cannot express run-time change of coordination policies.
The D language lacks the notion of composition and it does not allow formal analysis. However,
one of its aspect languages addresses remote access strategies. Such strategies are not yet featured in
FLO/C.

15.2. ARCHITECTURAL DESIGN 147

15.2 Architectural Design

15.2.1 Formal Approaches for Architectural Design

Formal connectors. Formal connectors were introduced to describe how architectural components
interact [AG94]. Objects specifications have ports. The formal connector defines roles and glue for
these roles. All descriptions are expressed in CSP [Hoa85]. It is possible to validate formal connector
architectures and prove that they are e.g. deadlock free. We used the idea of separating interaction
and computation from the FLO model [DR97] which in turn is inspired by the formal connectors.
The separation of concerns bears several advantages. An advantage is the ability to reason about the
interaction properties of a system like for example the liveness without knowing the exact semantics
of the computational behavior. This is of importance for the architectural design. In section 8 we
formally introduce how interaction between components is modeled in FLO/C. Furthermore, the
specification allowsreasoningabout the interaction behavior.

In contrast to formal connectors FLO/C supports theimplementationof collaboration design.
Another advantage of the separation of concerns is the improvement of thereusabilityof code. Of
course, this does not pay off in the area of architectural design, because there the research does not
deal with code. However, in FLO/C the reuse of code is demonstrated for example in section 6.2
where we can inherit composite object declarations. Furthermore, FLO/C provides constructs that
allow the composition of high-level coordination abstractions like mutual exclusion and pessimistic
transaction (see section 4.3). Such constructs are not included in the formal connectors.

Temporal Specification Object Model. TSOM (Temporal Specification Object Model) uses the
propositional temporal logic (PLT) system [Ara95]. The interaction behavior of objects is described
in terms of logical formulas. Similar to the FLO/C model, TSOM’s method executions are atomic.
The concurrency assumptions are the same as in FLO/C. TSOM allows the composition of objects.

For some operators there is a direct mapping between the two models:(p ! �q) is equivalent
to p impliesLater q. Whereas the formalism of PLT allows verification (detection of conflicts in
interaction specifications), it is limited in different ways (e.g. constraints cannot evaluate messages
and composite objects have one set of constraints, instead of several connectors). Software reuse is
not an issue in TSOM. Nevertheless, it could be interesting to translate verified TSOM specifications
into FLO/C.

15.2.2 Connectors at Run Time

Different approaches have suggested ways toimplementarchitectural design using components and
connectors.

The FLO language. Ducasse introduced FLO [Duc97b][DR97] to provide programming support
to factor out design decisions concerningobject interaction. The FLO model implements dependen-
cies between objects. It introduces explicit connectors to implement dependencies. They hold rules
over the message passing of the participants the connector controls. FLO/C evolved from the FLO
model. Therefore, most of the terminology of FLO/C is taken over from FLO. In fact FLO and
FLO/C use a similar meta-level architecture to implement connectors and to control message passing
(see section 10.4). However, FLO controls interaction in a purelysequential way. Therefore, it cannot
be used to coordinate active objects.

148 CHAPTER 15. RELATED WORK

The Chiron-2 (C2) architectural style. The C2 style [TMA+94] supports larger grained reuse and
flexible system composition. It distinguishes between components and connectors. In C2 a con-
figuration of a system of components and connectors is an architecture. Components communicate
with each other asynchronously through connectors. The connectors are similar to "event busses"
that propagate requests up and notifications down through an architecture. Each component declares
which notifications and requests it sends and which requests and notifications it receives. Components
are unaware of components placed lower in a C2 architecture. The connectors route, broadcast and
filter events. They can define priorities for its connected components. A C2 architecture is message
based, multi-threaded and assumes no shared address space.

C2 differs from the FLO/C model in many ways but in particular in the responsibility and the
expressive power of connectors. C2 connectors do not enforce state changes of the components. They
cannot be dynamically exchanged. Connectors on the same architectural level cannot cooperate. Re-
cursive application of the C2 style (like composite objects of FLO/C) is not featured. Multi-object
coordination is no goal of C2 therefore C2 provides no high-level coordination support (e.g. transac-
tions).

15.3 Active Object Models

Our FLO/C model coordinates active objects. It does not introduce a new active object model but
uses an ACTALK like approach to express concurrent activities.

ACTALK . ACTALK is a minimal open testbed for active objects [Bri89]. FLO/C uses a similar
active object model as discussed in sections 2.2.1 and 11.1.1.

The object model ATOM. The ATOM model combines concurrency and object-oriented feature
[Pap96]. A main issue is the reuse of code. The rich active object model (intra-object concurrency,
abstract state, state predicates, state notification) gives ATOM much expressive power. On the other
hand, the model does not factor out the inter-object communication into separate stand-alone objects
(like connectors). Therefore, objects cannot be composed to build an object that fits in the ATOM
model again. The model has no explicit support for multi-object coordination.

Chapter 16

Conclusion

With FLO/C we introduced an object oriented model for coordinating active objects. In contemporary
concurrent programming (e.g. using JAVA), coordination is implemented using low-level constructs
and/or declared by statements in the objects’ class definitions. As stated in section 2.1 the program-
ming of high level coordination tasks is tedious and error-prone. Furthermore, the code is tangled by
coordination statements that are spread within domain-specific code.

High-level coordination support. FLO/C offers explicit, rule based connectors for coordination
(section 4). FLO/C factors out coordination code into explicit coordination objects that collaborate
using the abstraction ofsynchronized multi-object joint actions(section 2). FLO/C’s rules are speci-
fied using 5 operators. Two operators support multi-object constraints (blocking and balking guards).
Two execution ordering operators (push- and pull style) enable protected multi-object state changes
and one operator enables light weighted communication (section 4.2). By incrementally adding rules
FLO/C allows the straightforward enforcement ofconditional synchronization, mutual exclusionand
communicationbetween groups of different kinds of objects. Thus it covers the coordination cate-
gories stated by Carriero and Gelernter [CG90].

Support for implementing interaction design. FLO/C divides programming in computation (done
in active objects) and coordination (done in connectors). Thus it directly mapsarchitectural design
principles, and it enforces the separation of concerns (section 3.1). FLO/C offers the possibility toim-
plementdesign decisions concerning the interaction between objects.Composite active objectsallow
the mapping of hierarchical designs and improve the scalability of the model (section 6). Connectors
as explicit rule-based coordinators profit of the incrementability of rules. They collaborate through a
uniform role fusion protocol (section 4.3).

Analyzing interaction design and implementation. FLO/C’s formal specification allows the ana-
lysis of coordination behavior of a given FLO/C program. It enables us to formally specify the five
operators of FLO/C and to prove their properties. Furthermore, we proved the deadlock freedom of
any FLO/C program, and livelock freedom under certain restrictions (section 8).

Open Implementation. FLO/C is fully implemented using SMALLTALK (section 10) and it can be
implemented in any object oriented language with an open meta-object protocol. The code is freely
available at the author’s web pages. We also implemented eleven non-trivial coordination problems

149

150 CHAPTER 16. CONCLUSION

(section 14). Examples were taken from well-known as well as from recent coordination literature in
order to demonstrate the expressive power of FLO/C’s coordination mechanisms.

Additional contributions. In comparison to other high-level rule based approaches like synchro-
nizers, FLO/C introduces additional abstractions by dealing with arbitrary object groups. It does not
only constrain the components but enforce state changes in oder to ensure consistent global states.
Furthermore, FLO/C is completely dynamic (section 4.4). It can establish and cancel connections at
run time, coordination policies can be exchanged at run time and FLO/C allows new connectors to be
created on the fly.

16.1 Future Work

Distribution and heterogeneity of active objects. We implemented the FLO/C model on a single
processor machine, using this fact to simplify the reservation phase of the rule fusion (see section
11.2). Therefore, a future work will address real distribution. We believe that the formal FLO/C

model presented in part II and distributed systems infrastructure such as CORBA [Obj91] can form a
base for a real distributed FLO/C implementation. FLO/C’s separation of concerns will pay off even
more when used in a distributed environment. Active objects reside in different physical locations.
Connectors form bridges over a network. However, the FLO/C model needs be extend for distributed
application. We need to add declarations oflocationandmobility of active objects an connectors. We
also need to address the low-level coordination tasks (e.g. conversion, real-time support) we omitted
in this work (see section 2.2.2). An implementation of distributed FLO/C must implement the full
negotiation of the reservation phase with its requirements (see section 8.3.2) and cannot shortcut the
negotiation with implicit reservations (see section 11.2).

The handling of communication failures and roll-backs of synchronized joint actions also need
considerable further efforts.

Architectural analysis. The formal specification of FLO/C in part II allows execution order analy-
sis of a given set of rules. Future work could automate such analysis.

Another interesting future work could be an automatic translation of architectural design with
formal connectors [Ara95] to FLO/C code, as well as query languages to prove properties of FLO/C

examples (like the query language presented for formal connectors [NACO97]).

Language extensions. Another direction of future research could be the improvement of expres-
sive power: finding additional operators, to refine the dependency managing policies (e.g. including
priorities) and additional specificators to refine group management.

Like in FLO [DR97] we would like to introduce generic connectors, which rules are not restricted
by explicit selector names, and which preconditions could contain advanced matching features like
regular expressions.

Design principles to identify active objects and connectors. As seen in section 3.1 a functionality
can be encapsulated into a passive object, an active object or a composite active object. The designer
must consider the complexity of inner activities in order to select the proper object representation.
Section 7.4 showed that it is not easy to decide how much inner activity an active object can bear and
when to break the functionality into components of a composite active object.

16.1. FUTURE WORK 151

Another design decision is how sets of rules should be grouped into connectors. In some examples
(see section 14) we tried to identify chains of actions and encapsulated the corresponding rules into
single connectors. In other examples we separated connectors that encapsulate pure interaction rules
from connectors that encapsulate only synchronizing rules.

We claim that future research on the identification of active objects and connectors can be fruitful
not only for FLO/C programming but also for the area of architectural design and coordination.

152 CHAPTER 16. CONCLUSION

Bibliography

[AFP96] J.-M. Andreoli, Steve Freeman, and Remo Pareschi. The coordination language facility:
Coordination of distributed objects.Theory and Practise of Object Systems, 2(2), 1996.

[AG94] R. Allen and D. Garlan. Formalizing architectural connection. InProceedings of
ICSE’94, 1994.

[Agh86] G. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[AHM96] J.-M. Andreoli, C. Hankin, and D. Le M’etayer.Coordination Programming - Mecha-
nisms, Models and Semantics. Imperial College Press, 1996.

[Ara95] Constantin Arapis. A temporal perspective of composite objects. InObject-Oriented
Software Composition, pages 123 – 152. Prentice-Hall, 1995.

[BA82] Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982.

[Bec97] Kent Beck.Smalltalk Best Practice Patterns. Prentice Hall, 1997. ISBN: 0-13-476904-X.

[Blo79] Toby Bloom. Evaluating synchronisation mechanisms. InSeventh International ACM
Symposium on Operating System Principles, 1979.

[Bri89] Jean-Pierre Briot. Actalk: A testbed for classifying and designing actor languages in the
Smalltalk-80 environment. In S. Cook, editor,Proceedings ECOOP’89, pages 109–129.
Cambridge University Press, July 1989.

[CG90] Nicholas Carriero and David Gelernter.How to Write Parallel Programs. MIT Press,
1990.

[CM84] K.M. Chandy and J. Misra. The drinking philosopher problem. InTransactions on
Programming Languages and Systems, volume 6. ACM, 1984.

[CM93] Shigeru Chiba and Takashi Masuda. Designing an extensible distributed language with a
meta-level architecture. InProceedings ECOOP’93, LNCS 707, pages 483–502, Kaiser-
slautern, Germany, July 1993. Springer-Verlag.

[Coi87] P. Cointe. Metaclasses are first class: The ObjVlisp model. InOOPSLA’87 Proceedings,
pages 156–165, October 1987.

[Coi90] Pierre Cointe. The classtalk system: A laboratory to study reflection in Smalltalk. In
OOPSLA/ECOOP’90 Workshop on Reflection and Metalevel Architectures, 1990.

153

154 BIBLIOGRAPHY

[CTN98] J. Cruz, S. Tichelaar, and O. Nierstrasz. A coordination component framework for open
systems. Working Paper, IAM, University of Berne, 1998.

[DBFP95] Stéphane Ducasse, Mireille Blay-Fornarino, and Anne-Marie Pinna. A reflective model
for first class dependencies. InProceedings of OOPSLA’95, pages 265–280, Austin,
October 1995. ACM. RR–95–24.

[Dij72] E.W. Dijkstra. Hierarchical ordering of sequential process. In C.A.R Hoare and R.H.
Perrot, editors,Operating Systems Techniques. Academic Press, New York, 1972.

[DR97] Stéphane Ducasse and Tamar Richner. Executable connectors: Towards reusable design
elements. InProceedings of ESEC/FSE’97, LNCS 1301, pages 483–500, 1997.

[Duc97a] Stéphane Ducasse. Des techniques de contrôle de l’envoi de message en Smalltalk.
L’Objet, 3(4), 1997. Numero Special Smalltalk.

[Duc97b] Stéphane Ducasse.Intégration réflexive de dépendances dans un modèle à classes. PhD
thesis, Université de Nice-Sophia Antipolis, 1997.

[FA93] Svend Frølund and Gul Agha. A language framework for multi-object coordination. In
Proceeding of ECOOP’93, LNCS 707, pages 346–360. Springer Verlag, July 1993.

[Fer89] Jacques Ferber. Computational reflection in class based object oriented languages. In
Norman Meyrowitz, editor,Proceedings of OOPSLA’89, pages 317–326. ACM, October
1989.

[Frø96] Svend Frølund.Coordinating Distributed Objects. MIT Press, 1996.

[Gen81] Morven Gentleman. Message passing between sequential processes: the reply primitive
and the administrator concept. InSoftware – Practice and Experience, vol.11, pages 435
– 466, 1981.

[Gol97] Mickael Golm. Design and implementation of a meta architecture for Java. Mas-
ter’s thesis, Institut für Mathematische Maschinen und Datenverarbeitung der Friedrich-
Alexander-Universität Erlangen-Nürnberg, 1997.

[GR83] Adele Goldberg and Dave Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[HL85] D Helmbold and D. Luckham. Debugging Ada tasking programs.IEEE Software,
2(2):47–57, 1985.

[Hoa85] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[How95] T. Howard.The Smalltalk Developer’s Guide to VisualWorks. SIGS Books, 1995.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow.The Art of the Metaobject
Protocol. MIT Press, 1991.

[Kic92] Gregor Kiczales. Towards a new model of abstraction in the engineering of software. In
Proc. of IMSA’92 Workshop on Reflection and Meta-Level Architecture, 1992.

[Kic97] Gregor Kiczales. Aspect-oriented programming. ECOOP, 1997.

BIBLIOGRAPHY 155

[Lea97] Doug Lea.Concurrent Programming in Java. Addison-Wesley, 1997.

[LH89] K. Lieberherr and I. Holland. Assuring good style for object-oriented programs.IEEE
Software, September 1989.

[LK97] Cristina Videira Lopes and Gregor Kiczales. D: A language framework for distributed
programming. Technical report, Xerox Palo Alto Research Center, 1997.

[MA93] S. Matsuoka and A.Yonezawa.Research Directions in Concurrent Object-Oriented Pro-
gramming, chapter Analysis of Inheritance Anomaly in Object-Oriented Concurrent Pro-
gramming Language., pages 107–150. MIT Press, 1993.

[MC94] T. Malone and K. Crowston. The interdiciplinary study of coordination’.ACM Comput-
ing Surveys, 1994.

[McA95] Jeff McAffer. Meta-level programming with coda. InProceedings of ECOOP’95, LNCS
952, pages 190–214. Springer-Verlag, August 1995.

[McH94] Ciaran McHale.Synchronisation in Concurrent, Object-Oriented Languages: Expressive
Power, Genericity and Inheritance. PhD thesis, Department of Computer Science, Trinity
College, Dublin, 1994.

[MU97] Naftaly H. Minsky and Victoria Ungureanu. Regulated coordination in open distributed
systems. InProceedings Coordination ’97, pages 81–97, 1997.

[NACO97] Gleb Naumovich, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Applying
static analysis to sofware architectures. InESEC ’97, pages 77 – 93, 1997.

[Obj91] Object Management Group.The Common Object Request Broker: Architecture and Spec-
ification, 1991.

[Pap96] Michael Papathomas. Atom: An active object model for enhancing reuse in the develop-
ment of concurrent software.RR 963-I-LSR-2, IMAG-LSR, 1996.

[Par95] ParcPlace-Digitalk.VisualWorks User’s Guide, 1995.

[Riv96a] F. Rivard.Smalltalk et Réflexivité. PhD thesis, Ecole des Mines de Nantes, 1996.

[Riv96b] Fred Rivard. Smalltalk : a reflective language. InProceedings of REFLECTION’96,
pages 21–38, 1996.

[Riv97] Fred Rivard. NeoClasstalk v1.2. Ecole des Mines de Nantes and OTI,
http://wfn.emn.fr/dept_info/perso/rivard/informatique/, 1997.

[SG96] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

[SKT96] S. Skublics, E. Klimas, and D. Thomas.Smalltalk with Style. Prentice-Hall, 1996. ISBN:
0-13-165549-3.

[SL97] Jean-Guy Schneider and Markus Lumpe. Synchronizing concurrent objects in the pi-
calculus. InProceedings of Langages et Modèles à Objets ’97, 1997.

156 BIBLIOGRAPHY

[TMA+94] R. Taylor, N. Medvidovic, K. Anderson, J. Whitehead Jr., J. Robbins, K. Nies, P. Oreizy,
and D. Dubrow. A component- and message-based architectural style.IEEE, 1994.

[WZ88] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modification mech-
anism or what like is and isn’t like. InECOOP ’88, pages 55 – 77. Springer-Verlag,
1988.

