
Information Needs in Software
Ecosystems Development

A Contribution to Improve Tool Support Across Software Systems.

Master Thesis
Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

submited by

Nicole Haenni
2014

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Dr. Mircea Lungu
Institut für Informatik und angewandte Mathematik

Abstract

Today’s open-source software repositories support a world-wide networked collabo-
ration and inter-dependence among independent developers. Due to the co-existance
and co-evolution of projects that depend and rely on each other, these software
ecosystems have led to an increased importance in large-scale software engineering.

At present little is known about the interworking of developers and the needs they
have to acquire for projects they are not familiar with. To explore this, we conducted
an investigation into the nature of the information needs of software developers
working on projects that are part of larger ecosystems. In an open-question survey
we asked framework and library developers about their information needs with
respect to both their upstream (i.e., providing code to a code base) and downstream
(i.e., using code) projects. Our research focuses on the type of information needed,
why is it necessary, and how developers obtain this information.

Our findings show a high discrepancy between developers depending on whether
they are working in an upstream or downstream context. The downstream needs
are grouped into three categories roughly corresponding to the different stages in
their relation with an upstream: selection, adoption, and co-evolution. The less
numerous upstream needs are grouped into two categories: project statistics and code
usage. Based on a concluding closed-question survey we strengthen our findings in
respect to their relevance. Current practices are that developers use non-specific tools
and ad hoc methods for information gathering. The contribution of our work is an
empirical investigation with an analytical comparison of the practices and state-of-the
art in program comprehension research. Our research provides a starting point to
understand information needs in distributed software development. Our findings
reveal that current tools lag far behind the needs of developers. A key contribution of
this thesis is the identification of requirements for an ecosystem-aware tool support.

1

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Research Questions . 9
1.3 Thesis Objective . 9
1.4 Thesis Outline . 9

2 Research Context 11
2.1 Software Development . 11

2.1.1 Version Control Systems . 12
2.1.2 Centralized Development . 13
2.1.3 Distributed Development . 13

2.2 Software Evolution for Distributed Development 14
2.3 Software Dependencies . 15
2.4 Software Ecosystems . 17

2.4.1 Definition . 19
2.4.2 Mining Software Ecosystems . 19
2.4.3 Example . 19
2.4.4 Characteristics . 20

2.5 Problem Definition . 21

3 Related Work 22
3.1 Information Needs of a Software Project . 22
3.2 Mining Software Ecosystems . 24

3.2.1 Codebook - a social company-based ecosystem 24
3.2.2 Seichter - social community-based ecosystem 24
3.2.3 GitHub - a social coding platform ecosystem 25
3.2.4 Software ecosystem visualization analysis (SPO, Softwarenaut) 25
3.2.5 Mining Library Usage - choosing the right upstream version 25
3.2.6 Case studies on API evolution or deprecation 26
3.2.7 Cells - code clone detections across projects 26

4 Research Method 27
4.1 Research Study Design . 27
4.2 Qualitative Survey . 30

4.2.1 Data Collection . 30

2

CONTENTS 3

4.2.2 Data Analysis . 30
4.3 Quantitative Questionnaire . 32

4.3.1 Data collection . 32
4.3.2 Data Analysis . 32

5 Qualitative Results 33
5.1 Participants . 33
5.2 Upstream Needs . 35

5.2.1 Code Usage . 35
5.2.2 Project Statistics . 35

5.3 Upstream Motivation . 36
5.4 Upstream Practices . 36
5.5 Downstream Needs . 37

5.5.1 Selection . 37
5.5.2 Adoption . 38
5.5.3 Co-Evolution . 38

5.6 Downstream Motivation . 38
5.7 Downstream Practices . 39
5.8 Summary of the Findings . 40

6 Quantitative Results and Validation 42
6.1 Background of the Respondents . 43
6.2 RQ1: Validation of Upstream Needs . 45

6.2.1 Code Usage . 45
6.2.2 Project statistics . 46

6.3 RQ1: Validation of Downstream Needs . 47
6.3.1 Selection . 47
6.3.2 Adoption . 49
6.3.3 Co-Evolution . 50

6.4 RQ2: Upstream and Downstream Motivation 51
6.4.1 Upstream motivation . 51
6.4.2 Downstream motivation . 52

6.5 RQ3: Current practices . 54
6.5.1 Inadequate tool support . 54

7 Discussion 56

8 Conclusions and Future Work 59
8.1 Contributions . 59
8.2 Limitations . 60
8.3 Conclusions . 60
8.4 Future Work . 61

CONTENTS 4

A Open Coding 63
A.1 Upstream answers from Question 2.1 to 2.3 64
A.2 Downstream answers from Question 3.1 to 3.3 68

B Likert items survey 71

C Results of Likert survey 77
C.1 Raw data . 77
C.2 Additional questions and answers . 81

List of Figures

2.1 Centralized (left) vs. Distributed Version Control Systems 13
2.2 Growth of GitHub repositories in millions (M) 14
2.3 An extract of the Ruby Gem Ecosystem. Illustration is published by Kabbedijk [1]. 17
2.4 An example software ecosystem with inter-dependencies across projects. 20
2.5 Illustration of conflicts in projects after deprecation of an upstream functionality. 20

3.1 Microsoft’s Codebook as a company-based software ecosystem. Taken from [2]. 24
3.2 Ecco, a meta-model for inter-dependent projects of an ecosystem [3]. 26

4.1 A mixed method exploratory design according to Creswell [4, Chapter 3] . . . 28
4.2 Our research study plan based on an exploratory study 29
4.3 The open-ended survey questions sent to selected developers 31

5.1 Categorized results from open coding process 40

6.1 Background information of the participants from the validation survey 43
6.2 Distribution of repositories and programming languages the participants use . . 44
6.3 Working domain of the participants . 44
6.4 Code usage . 45
6.5 Projects statistics . 46
6.6 Selection . 48
6.7 Adoption . 49
6.8 Co-Evolution. 50
6.9 Upstream motivation . 51
6.10 Downstream motivation . 52
6.11 Upstream practices . 54
6.12 Downstream practices . 54

C.1 Plotted Likert items of upstream answers . 79
C.2 Plotted Likert items of downstream answers 80

5

List of Tables

2.1 Definitions of Software Ecosystems . 18

4.1 An example of open coding process . 31
4.2 An example of a 5-point Likert item . 32

5.1 Background information about participants from the open-question survey . . . 34

A.1 2.1 What do you most want to know about the use of your library or framework
in your ecosystem? . 64

A.2 2.2 Why would that be interesting to know? 65
A.3 2.3 What do you currently do to obtain that information, if anything? 66
A.4 3.1 What do need to know about the libraries or frameworks that you are using? 68
A.5 3.2 Why is that good to know? . 69
A.6 3.3 What do you currently do to obtain that information, if anything? 70

C.1 Upstream results from Likert items survey . 78
C.2 Downstream results from Likert items survey 78

6

1
Introduction

“People think that computer science is the art of geniuses but the actual reality is
the opposite, just many people doing things that build on each other, like a wall of

mini stones.”

— Donald Knut

In the last decade, technological progress has improved computer power, network bandwidth
and storage costs. Therefore software deployment of standalone software projects has turned
into collections of software systems organized in source code repositories across the web. The
co-existence and co-evolution of a collection of software projects in an environment, we call a
software ecosystem [5]. These projects share software components and functionalities that are
often implemented by different developers. These software dependencies cross the boundaries of
projects and inter-connect similar and complementary software systems.

Consequently, modern software development does not start from scratch. Developers extend,
modify or reuse software components of existing software systems for a new project. They
interact with fellow developers inside and outside of their own projects bringing in new ideas,
concepts and code. We use the term upstream developer to indicate the core developer or a
contributor who provides a library or framework to others. One of the developers who integrates
such a software dependency is a downstream developer.

This trend of distributed and large-scale software engineering invokes new challenges in
terms of software complexity, growth of available data, software maintenance; collaboration,
communication and coordination between developers.

7

CHAPTER 1. INTRODUCTION 8

1.1 Motivation

This thesis focuses on the developers working together in a software ecosystem. Software systems
in an ecosystem are linked together due to dependencies they have because of the shared usage of
a given API or some other dependencies.

A common relationship between software systems is a reuse based dependency: an upstream
library or framework provides the source code to a downstream software application. In turn, the
downstream projects have upstream dependencies. This relationship comes with challenges (e.g.,
keeping up with the evolution of an upstream library) and information requirements (e.g., how is
the downstream using a library’s API). These connections may build a mashup of dependencies.
They lead to cross-references within and across software systems.

The integration of a library into a project brings other indirect dependencies. Because of this
interconnection, the evolution of a software system induces the co-evolution of corresponding
projects. Maintenance becomes an exhausting task and difficult to accomplish without inducing
unexpected shortcomings.

To keep software systems up-to-date a downstream project may fetch upstream updates by an
existing package manager. However, when updating to a new library version, software projects do
not behave as expected [6, 7]. Developers face problems such as: not knowing what has changed,
what affects the source code or which of the hosted projects have impacts. When a software will
not run or compile, there are minor and tricky solutions: debugging or manually checking the
actual source code implications. This issue concerns in the first place the developers working in a
downstream context.

Developers join a project, contribute to it and leave it for another project. While such human
replacements are often not planned and are unavoidable, a software project remains in its original
environment. A new developer has to acquire relevant knowledge of the developing system within
a short period [8]. He only retrieves as much information as the software system is able to provide.
It is often the case that even local collocated team members do not know how to retrieve specific
information.

Today’s integrated development environments (IDE) usually provide only limited in-built
features to support general programming tasks. They lack overall and overlapping functionalities
that help developers understand an entire ecosystem. During each evolution of a software project,
typically the developer team neglects to rework and update documentation. To obtain information,
there are internal resources such as debugger mode, performing queries as text searches and
reading code comments. To gain knowledge developers need to help themselves with additional
external tools, such as wikis or mailing lists. Since Web 2.0 the appearance of social media have
become a regular information source such as StackOverflow and Twitter [9].

Putting together all relevant information is a challenging task and a repetitive activity. There-
fore understanding a project represents a struggle for a developer [10]. The need for new tool
support has been identified in previous research [11].

Due to the increasing distributed software development, gathering project-related information
has become even more challenging. At present, distributed development fosters complex and
large software systems that invoke a tremendous rise in the amount of data. Hence, the human
capability has almost reached its limits in tracking the associations between related projects. By

CHAPTER 1. INTRODUCTION 9

identifying these limits, our study establishes its research area. We examine what information
needs developers ask for in this new development domain. This thesis contributes initial insights
for future tool support for developers working in software ecosystems.

1.2 Research Questions

We investigate the information needs of developers that interact in a large-scale open-source
software development and in the context of a software ecosystem. We identify two distinct roles a
software developer assumes when working in this context. As an upstream developer he provides
a framework or a library that other downstream developers make use of. In this research study, we
aim to understand the following main research question in the perspectives of the two antagonists.

RQ1 What are the information needs of a software developer working in a software ecosystem
context?

To gather additional insights we want to know why these needs are important and how
developers currently obtain the information needed. This leads to further research questions:

RQ2 Why are these information needs for the upstream and their downstream developers
important?

RQ3 How do upstream and downstream developers currently obtain the information they need?

We probe each research question from the perspective of an upstream and downstream developer.

1.3 Thesis Objective

The goal of this thesis is to gain a better understanding of the type of information needed by
developers in the context of a software ecosystem. To identify the information needs that arise
across projects in software ecosystems, we survey both developers that work in a downstream
and an upstream context.

To accomplish this objective, we intend to take the following actions. Firstly, we aim to
collect new insights by interviewing developers that work as framework and library developers.
To achieve this we analyzed the answers of an open-questioned survey. Secondly, we validate
our findings with appropriate statements with a Likert item survey. From that we can refine key
findings and relevant concepts of our results.

1.4 Thesis Outline

This thesis is structured in the following manner.

Chapter 2 (Research Context) provides a review of software engineering state-of-the-art. We
show how traditional centralized development changed to modern decentralized develop-
ment, followed by a closer scrutiny of software ecosystems.

CHAPTER 1. INTRODUCTION 10

Chapter 3 (Related Work) discusses related studies of information needs in software develop-
ment and compares recent research work concerning software ecosystems.

Chapter 4 (Research Method) describes our study design. Our research methodology consists
of two phases. First, we apply a Grounded Theory methodology with a preselected group
of participants. That way, we analyze answers from an open-questionnaire by classifying
similar emerging topics. Second, we evaluate our findings with a closed-questions survey
to determine an overall relevance of the previous results.

Chapter 5 (Qualitative Results) presents the initial results from the first iteration. This qualita-
tive process is called open-coding.

Chapter 6 (Quantitative Results and Validation) validates our results by validating them in
a follow-up closed-question survey. Then, we analyze their relevance in relation to a
developer’s needs.

Chapter 7 (Discussion) discusses and interprets our results. We outline the relevance of our
study with other current research studies introduced in the related work.

Chapter 8 (Conclusions and Future Work) summarizes the major contributions of this work
and outlines the limitations of the study. Then we conclude our research results and propose
future directions for further study.

2
Research Context

“In the same way you can never go backward to a slower computer,
you can never go backward to a lessened state of connectedness.”

— Douglas Coupland

In this chapter we set out the context of our research. Initially, we give a brief overview of how
the environment of software development has changed over recent years. We describe different
development practices and properties. After giving a definition of a software ecosystem, we state
the scope of our research interest.

Nowadays the end user of a software application is no longer a person working in isolation on
a computer. We use software applications that provide services such as web, mobile and desktop
applications interconnected across different platforms. They are able to keep our accounts and
data synchronized and up-to-date. Similar to the way a user’s digital life experiences have moved
from standalone to web-based applications, the developers have started to shift their coding
activities to the Internet as well.

2.1 Software Development

Before we can define our research problem, we need to understand the evolution in software
development and practices.

In the past usually one team of a company worked on one project hosted in a central repository.
A software repository is the environment where a project is developed and organized. Developers
access it on a local storage, an internal network share or on Internet servers through a web
interface. It is the place for storing and managing digital items, such as software projects and
packages, documents etc. [12]. In general it manages the versions of the items, dependencies and
related meta-data information to describe its semantics.

11

CHAPTER 2. RESEARCH CONTEXT 12

Since the introduction of distributed version control systems, modern software development
has changed in terms of collaboration, coding habits, hosting and deploying projects.

Presently, cloud-based infrastructures have started to ease modern software development by
providing platforms as a service (PaaS) to hand over the setup and the maintenance of a software
projects to providers such as Heroku1 or Parse2.

As a consequence communication over the Internet has increased and it generates every
second unprecedented amounts of data (in the Exabyte range for one day). In this context
researchers use the modern notion of big data [13]. In fact, the interconnectedness is at the
beginning of its technical capabilities.

2.1.1 Version Control Systems

Source code management (SCM) is accomplished by a version control system (VCS). Today we
distinguish two concepts we briefly explain.

Centralized VCS (CVCS) CVS and Subversion3 (SVN) are the pioneers of version control
system tools. The CVCS concept uses the file comparison techniques by storing the delta
diffs for each file change. SourceForge4 was the first hosting platform repository for
developers to store and provide their projects to others.

The downsides are:

• centralized server repository

• slow response time with large projects

Distributed VCS (DVCS) is the concept that predominates in modern software development.
The major tool is Git5. Other versioning tools are: Mercurial6, Bazaar7and BitKeeper8.
The DVCS concept stores a snapshot of the entire repository. Therefore each checkout
contains a full backup of the code.

The benefits are:

• fast performance

• parallel development of large-scale projects

• decentralized development

Another DVCS is Monticello9 from Pharo that distinguishes objects as classes and methods
and is an “out of the box” feature [14].

1https://www.heroku.com
2https://parse.com
3http://subversion.apache.org
4http://sourceforge.net
5http://github.com
6http://mercurial.selenic.com
7http://bazaar.canonical.com/en
8http://www.bitkeeper.com
9http://pharo.gemtalksystems.com/book/PharoTools/Monticello

https://www.heroku.com
https://parse.com
http://subversion.apache.org
http://sourceforge.net
http://github.com
http://mercurial.selenic.com
http://bazaar.canonical.com/en
http://www.bitkeeper.com
http://pharo.gemtalksystems.com/book/PharoTools/Monticello

CHAPTER 2. RESEARCH CONTEXT 13

In the following two subsections we describe how developers work together and where the
downsides and benefits between CVCS and DVCS are.

2.1.2 Centralized Development

By centralized development we mean that the entire development process is performed usually at
one location by one team of a company. As a team, developers organize a software project and its
source code within a common integrated development environment application, e.g., Eclipse IDE
and a company-based project repository. In classic development a VCS such as Subversion is the
most commonly used tool for software versioning and revision control.

Each developer works locally with a checkout of the source code that is hosted on a main
server instance. After writing some code, he commits the changes back to the server repository.
For each interaction such as diffs the developer has to query the central server first. The server
instance controls all access requests, coordination etc.; it is comparable with the concept of
a client-server model (see left illustration in Figure 2.1). Merging source code acquires a lot
of resources and it can be very time consuming. Thus, centralized version control is only
really acceptable in the context of company-internal software project due to the limitations of
performance and size of a code base. In this case most developers code during working hours at
the office within its local network. In contrast, however, in the context of open source development
a centralized model of source control does not satisfy the needs of global collaboration.

Client Client

REMOTE
REPO

Client

CENTRAL
REPO

Client

ClientClient

update /
commit

pull /
push

commit

Figure 2.1: Centralized (left) vs. Distributed Version Control Systems

2.1.3 Distributed Development

In 2005, Linus Torvalds introduced Git, an open-source DVCS. In this approach, there is no
central server instance. Instead, it is based on a peer-to-peer concept and communication flows
in all directions. Git provides the existence of multiple instances of a software repository (see
Figure 2.1). Basically the idea is that each clone (of a git server repository) comes with a local
copy of the repository and its entire history. Performance is in general faster than in any CVCS
because the operations are executed in the local environment before fetching or pushing the
changes over the network. Therefore DVCS has paved the way for distributed development. Git
has facilitated the open source development which is spread across projects, platforms and teams.
The infrastructure implements a directed acyclic graph (DAG).

CHAPTER 2. RESEARCH CONTEXT 14

Nowadays, Git predominates in distributed software development since it is fast and applicable
for large and scalable projects. The social hosting website GitHub10 is a well known source
code hosting platform that provides Git’s functionalities and adds additional features (e.g., pull
requests, forks). A member can publish the code of a project, another developer can clone this
code base into his workspace. We call such a copy of a code base a fork. Then, the contributor is
free to use or adapt existing parts of the code base. The action of asking the original developer
to accept code changes is called a pull request. GitHub is a social source code hosting service
where projects are collected and evolve over time by different developers.

By the end of 2013 GitHub has reached 10 millions repositories11. Figure 2.2 illustrates the
exponential increase since its first launch in April 2008.

Figure 2.2: Growth of GitHub repositories in millions (M).12

2.2 Software Evolution for Distributed Development

The process of software development over time is analogous to the evolutionary process in nature.
The term software evolution is used in this context to describe a system that changes iteratively to
keep up its requirements. In this work we consider the notion co-evolution of inter-dependent
projects thus we provide Lehman’s laws of software evolution [15].

1. A software system has to change over time in order to keep up its purpose. If no changes
are done, it will become obsolete.

10http://git-scm.com
11https://github.com/blog/1724-10-million-repositories
12Source: https://f.cloud.github.com/assets/4483/1803667/

b0ed664e-6c24-11e3-9559-e5702215c47a.png

http://git-scm.com
https://github.com/blog/1724-10-million-repositories
https://f.cloud.github.com/assets/4483/1803667/b0ed664e-6c24-11e3-9559-e5702215c47a.png
https://f.cloud.github.com/assets/4483/1803667/b0ed664e-6c24-11e3-9559-e5702215c47a.png

CHAPTER 2. RESEARCH CONTEXT 15

2. The result when a software system evolves is that complexity and data volume increase;
and at the same time its quality decreases.

Over time all software changes iteratively to keep up with changing requirements. From that
it follows that complexity and volume rises and at the same time quality decreases ([16]).

2.3 Software Dependencies

We must first understand the essential properties that characterizes the usage of a given software
project before we introduce the concept of software ecosystems in the next section.

Dependency Management is needed when a dependency between two software systems exists.
To ensure the quality of software systems managing such dependencies is essential. It is used to
keep track of a new version; or it ensures before installing a software program that all dependent
libraries wrapped in a package get installed to meet the requirements. Because these dependencies
are system or language dependent developers are forced to handle these relationships separately.
In the following we list some possible additions.

• In a Java project dependencies can be defined by some meta-data information in a specific
Maven13 file.

• Software versions for R code use CRAN, a network of several web and FTP servers to
keep versions and documentations up to date [17].

• Modern server-side web applications use the JavaScript library Node.js14 which comes
with the package manager npm15 to manage the versions of dependent modules [17].

In contrast to npm, Bower16 is a dependency package manager for front-end libraries, such
as jQuery17 or AngularJS18, that ensures the use of a single version.

• The Ruby version manager rvm19 is a command-line tool that manages and allows the
selection of a different Ruby version in the same environment. It is advantageous when
developers maintain or work on several projects with the requirement of a specified Ruby
version.

Software Reuse has become a common solution to problems that reoccur in many projects, by
reusing components provided by frameworks or libraries. The development progress improves
because the developers save time and effort instead of re-implementing reoccurring components,
e.g., secure login mechanism.

13http://maven.apache.org
14http://nodejs.org
15https://www.npmjs.org
16http://bower.io
17http://jquery.com/
18https://angularjs.org/
19https://rvm.io

http://maven.apache.org
http://nodejs.org
https://www.npmjs.org
http://bower.io
http://jquery.com/
https://angularjs.org/
https://rvm.io

CHAPTER 2. RESEARCH CONTEXT 16

Benefits can be derived from the fact that many developers in the open-source community
have been reusing a software module for some time. As a result the software has been used
and tested, thus achieving high quality. Defects in software are often more easily detected and
published by the open-source community.

However, dependencies have their downsides. Dependencies within a code base or across
projects are even larger in distributed development . The more code a project reuses, the more
complexity is added to it. Thus, the main problem is that developers are not able to understand all
the dependencies their software relies on.

CHAPTER 2. RESEARCH CONTEXT 17

2.4 Software Ecosystems

In 2003, Messerschmitt [18] introduced the term software ecosystem, and he describes it as “a
collection of software products having some degree of symbiotic relationships.” It is a derivation
from our biological ecosystem, since there are living organisms that interact with each other and
depend on each other in a shared environment. Messerschmitt’s recognizes similar relationships
between software products in current marketing strategies.

The concept is a general term, therefore multiple authors look at different aspects of software
ecosystems, and they have adapted it for their own purposes [5, 18–20]. In recent years, the term
software ecosystem appears more and more frequently in current software research work [19, 21].
The definitions in Table 2.1 provide an overview of different perspectives and definitions. They
indicate a top-down analysis: it begins with a business perspective, continues with a technology
and contributor view and concludes with the perspective of a software project.

Most researches of software ecosystem relate to market-oriented interests [19], e.g., how to
keep a software product competitive in today’s market, how to keep up the number of users etc.
Software companies, such as Google, Apple, or Facebook, have recognized the importance of
extending their platform by allowing external developers to contribute to the enlargement of their
array of products. These third-party developers benefit from the established qualities of their
technologies just as much the companies profit from the rise of their user base and popularity.
Indeed, there is no longer a big company with internal services, but instead a community with
contributors have gathered around their technologies to keep up their influence [22].

(a) Collaboration between Ruby developers (b) Ruby gems with inter-dependencies

Figure 2.3: An extract of the Ruby Gem Ecosystem. Illustration is published by Kabbedijk [1].

Kabbedijk et al. examined the interacting of developers and inter-dependent Ruby packages[1]
as shown in Figure 2.3. Another perspective is the one that considers a software project that uses
components from other projects. When one software component changes, all the other are forced
to adapt to these changes. Such a collection of software systems is the definition that Lungu
provides in his research [5]. In the next section we provide more details.

CHAPTER 2. RESEARCH CONTEXT 18

Table 2.1: Definitions of Software Ecosystems

Different Contexts A Software Ecosystem is . . . Examples

Technology- and
Market-based

“a set of businesses functioning as a unit and
interacting with a shared market for software
and services, together with the relationships
among them. These relationships are fre-
quently underpinned by a common technolog-
ical platform or market and operate through
the exchange of information, resources and
artifacts” [23] by Slinger et al.

Google/Android,
Apple/iOS apps,
Eclipse

Social and Business
Communities

“a set of software solutions that enable, sup-
port and automate the activities and transac-
tions by the actors in the associated social or
business ecosystem and the organizations that
provide these solutions” [20] by Bosch et al.

Facebook API,
Dropbox API

Third-party,
Internal and Ex-
ternal Developers

“a software platform, a set of internal and ex-
ternal developers and a community of domain
experts in service to a community of users that
compose relevant solution elements to satisfy
their needs” [22] by Bosch et al.

EchoNest API, Spo-
tify API

Inter-dependent
projects

“a collection of software projects that are de-
veloped and evolve together in the same envi-
ronment” [5] by Lungu et al.

SqueakSource,
Apache, Gnome,
Ruby Gem repos-
itory, Java Maven
repository etc.

CHAPTER 2. RESEARCH CONTEXT 19

2.4.1 Definition

Today’s software projects are distributed and inter-connected by networks. This work focus to the
emerging dependencies across platforms, projects and teams. Lungu [5] define such a software
ecosystem as

“a collection of software projects which are developed together and which co-evolve
together in the same environment”.

An environment can be

• a community

• a company

• a technical platform

2.4.2 Mining Software Ecosystems

Mining source code repositories is a prevalent research field to investigate the evolution of a
software project. To analyze a specific software ecosystem, we consider all involved software
project repositories. Lungu et al. defines such a collection including all versions and histories [24]
as a super-repository. They distinguish two different kinds:

• language-based (e.g., SqueakSource, RubyForge)

• language-agnostic (e.g., GitHub, company’s intern source code repositories, SourceForge)

These super-repositories serve as data pool for case studies [24–26].

2.4.3 Example

Compared to the other definitions in Table 2.1, Lungu looks at individual components as each
project consists of several packages and versions [5]. Each software project consists of a couple
of packages. Each package holds a history with a number of changed versions.

The illustration in Figure 2.4 describes a mock-up software ecosystem with a minimal
representation of possible relationships across projects. Project B provides a software functionality
BA; and requires CA, CB. We infer that Project B uses an upstream library C. Project A depends
on B and is a third-party project development. No official notation is defined to describe such
a dependency. A possible notation can be specified as B: prov(−,BA); req(CA,CB) etc. A new
version can enroll a chain of changes (cross-references) distributed over multiple projects and
packages (see Figure 2.5).

CHAPTER 2. RESEARCH CONTEXT 20

Figure 2.4: An example software ecosystem with inter-dependencies across projects.

Figure 2.5: Illustration of conflicts in projects after deprecation of an upstream functionality.

2.4.4 Characteristics

Our definition of software ecosystem focuses on the co-evolution and source-code level inter-
dependencies between projects versioned in super-repositories.

Reused-based dependency
The focus lies on software projects that depend on other systems. This relationship is a
dependency that is based on reuse. The upstream provides a certain service such as an API
method to a downstream project.

As a result, sharing common resources enlarges the developer and user community, de-
creases development costs but increases dependencies.

Co-evolution
Co-evolution extends the term software evolution from Section 2.2 by including the fact
that a software entity of a project evolves implies code adoption in another software project.

Changes in a software project leads to changes in the inter-connected software dependencies.

CHAPTER 2. RESEARCH CONTEXT 21

By storing the history of all versions, the co-evolution of a software ecosystem can be
analyzed.

When a certain entity evolves, all other entities that are linked together co-evolve. When
developers change and reuse parts of a software system relationships and dependencies
become more complex and numerous. An entire environment may be impacted.

Consequently, inter-dependencies of projects induce complexity ad complicate maintenance
tasks.

2.5 Problem Definition

We observe software systems that grow in size and complexity. The more complexity arises,
the less understandable it is for maintainers, contributors and newcomers. Hence, software
quality is still demanded by end users. Therefore reliable reusable systems such as frameworks
and libraries are often integrated because they provide entire functionalities that are needed
over and over again. This dependency again makes the software harder to maintain. These
libraries and frameworks hide their implementation details through abstraction. However, hiding
complexity in the upstream induces more complexities in the downstream projects. Besides, some
of the concealed information is as important to understand. Contemporary software development
projects consist of:

• A set of software systems with a group of other systems. They co-evolve together in the
same environment.

• A global distributed developer team. Their contribution is usually temporary.

New conditions demand new techniques. We investigate and identify the characteristics of a new
way of software development. Very little tool support is available to meet the needs of software
developers working in the context of a software ecosystem. Most tools provide only low-level
information, as Sillito et al. reported in their previous research [27]. Because of the lack of
appropriate information and documentation research for new tool support is not new [28, 29].
Nevertheless little research has been done towards information retrieval in software ecosystems.
Consequently a whole new area of research is opening up. We define the following terms:

Upstream project is a software project producing frameworks or libraries. It provides function-
alities by its API to other projects. An upstream developer is the creator, maintainer or
contributor of such a project.

Downstream project is a software project that uses a provided API. Therefore it depends on
an upstream project. A downstream developer is the user of an upstream project. Reused
components build a tight dependency link between multiple software systems and versions.

A software project may have an upstream and downstream role. This illustrates Project B in
Figure 2.4. In this thesis, we differentiate between upstream and downsteam developers and ask
what information needs they have during the development process. We do not include the needs
of other project team members, such as project managers, software architects, testers etc.

3
Related Work

“Technology no longer consists just of hardware or software or even services, but of
communities. Increasingly, community is a part of technology, a driver of technology,
and an emergent effect of technology.”

— Howard Rheingold

We place our research in the recent tradition of empirical studies of developer needs. Several
research studies of information needs in traditional software development have been conducted.
However, little attention has been paid to investigate the needs that occur when multiple, dis-
tributed software projects are involved.

In the first section, we relate our research to other previous studies of finding the needs of
developers. Then, we examine what research has been done so far in the context of software
ecosystems and developers. Furthermore, we aim to highlight the specific needs in the context in
which a project relates as being upstream or downstream to other projects.

3.1 Information Needs of a Software Project

Many studies have focused on identifying the information needs of software developers. Never-
theless most research has been done in an isolated development environment. Researchers have
investigated how developers work together within a company or team by contributing to a single
software system.

Sillito et al. [27] conducted a study in finding what information developers need when working
on a change task. They observed 44 questions. They are specific to their single-system task and
refer to implementation details such as method calls, data structures and type hierarchies. Based
on these findings they categorized four types of information needs that arise when a software

22

CHAPTER 3. RELATED WORK 23

project evolves: (1) where is the starting point in a unfamiliar code, (2) adding code invokes
the need of related properties of a given software entity such as a method, variables etc. The
other two types relate to multiple entities: (3) comprehension of a group of connected software
entities, (4) comprehension of multiple groups of connected software entities. They introduce a
representation to model a project’s source code as a graph; with software artifacts as nodes and
references or relationships as edges.

They found that most tools (vim, emacs, etc.) are not able to acquire the desired information.
They showed that this holds for today’s low-level tools. Available tools do not have deep insight
of a program[27, Section 6]. Another observation is that developers use multiple tools to solve
a single task. Their study did not reveal any information needs between multiple projects and
versions.

Ko et al. [30] conducted a field study in finding information needs in software teams. They
collected data by taking notes when developers posed questions during their daily work. Their
findings include 21 different types of information needs in seven categories with a wider per-
spective than Sillito’s study [27]. Their major findings are the knowledge of software artifacts
and their co-workers. Their study also revealed nothing about the interaction between different
software projects.

Phillips et al. [31] identify information needs to integrate branched versions of a software
project. They found four needs: (1) identifying conflicts before they arise, (2) monitoring features
with their dependencies, (3) tracking measured data about number of bugs, and (4) test results
and others.

In a recent work, Jansen reports on a qualitative study of developers, and how they make
choices when it comes to select a technology stack they use. Such a platform has an architecture
where software, components, programming languages fit the requirements of the developers, e.g.,
Microsoft CRM, Django web framework. The most important quality attributes identified are
“documentation”, “learnability”, “backward compatibility”, “portability”, and “standardizations
across platforms”. He reported that developers rank these properties over platform. They make
choices that are not always technical, but they are also business related regarding the number of
potential users [32].

Parnin and Rugaber [33] present a conceptual framework for understanding how a program-
mer’s memory copes with interruptions during the development process. Their intent was to
support work towards the design of development tools capable of compensating for human
memory limitations. They also delineate programmer information needs such tools must satisfy
and suggest several memory aids such tools could provide.

In Buse and Zimmermann’s research they have analyzed the information needs in software
analysis [34]. Their approach is the understanding of information needs of software developers
and managers. They focused their study on a business-oriented domain, whilst we examine the
needs framework or library developers and their users have. They consider that features can span
many parts of a project but did not show any findings across repositories. They have defined a
key guideline for an analytic tool.

CHAPTER 3. RELATED WORK 24

3.2 Mining Software Ecosystems

The following section sets out what research has been done according to distributed development
in the context of software ecosystems.

3.2.1 Codebook - a social company-based ecosystem

Related to our research Begel et al. have proposed Codebook as a social network that helps
developers get information about other developers’ activities [2, 35]. They have discovered
that most needs are about discovering, meeting, and keeping track of people, not just code [2].
Figure 3.1 illustrates their ecosystem with different entities, e.g., Persons, Work Items, Changesets,

Figure 3.1: Microsoft’s Codebook as a company-based software ecosystem. Taken from [2].

FileRevision, File and Source Code. Relationships as modifies, contains, assigned to, mentions
etc. connect them together. According to Begel et al. [2], Codebook provides information about:

• Finding a co-worker who is the original or responsible developer of a certain feature.

• Collecting all dependent entities that have a certain relationship with a feature.

• Notifying co-workers when a code change affects their features.

• Informing co-workers of intending code changes if other features are involved.

However, Codebook only contains data from the inside of their own company. While Begel et
al. have proposed ways to propagate information of projects, people and code; they have not
identified the information that developers need.

3.2.2 Seichter - social community-based ecosystem

To improve collaborations between developers Seichter et al. [36] proposed an information re-
trieval tool for software ecosystem infrastructures. Inspired by social networks such as Facebook,

CHAPTER 3. RELATED WORK 25

their approach proposes to interconnect software artifacts with corresponding information items.
Their main approach is to ensure that information items relate to a software item.

Their concept is that code snippets and other digital items are not attached to developers or
any other team members. The idea is that they subscribe to a software item and are its followers
like in social networks. Benefits are that the knowledge base of the whole project stays in the
network, even if members leave.

3.2.3 GitHub - a social coding platform ecosystem

Coding sites such as GitHub are both: a social network and an online hosting repository. It is a
software ecosystem because different projects co-evolve together in this platform. Contrary to
Microsoft’s Codebook [2] the environment embeds open-source projects among different teams
and companies.

A similar research is the investigation of Dabbish [37], who focuses on the social behavior
of active users in the GitHub community. Dabbish reported that developers use social activities
as an information resource. They judge a project depending on the social status of the original
developer or by the numbers of followers [37]. In our research we focus on the information
developers need when working in an ecosystem context.

3.2.4 Software ecosystem visualization analysis (SPO, Softwarenaut)

Lungu et al. [3] introduced a meta-model of a software ecosystem named Ecco. Figure 3.2
illustrates a collection of projects that tracks all relationships it depends on, uses or provides
functionalities [3] with other software components. Besides it differentiates between changed
versions of the project.

The application framework Small Project Observatory (SPO) was the first major work on
the analysis of a software ecosystem [25]. It visualizes inter-dependencies of projects and the
degree that developers collaborate with each other. As a basis he uses a collection of meta-data
of different version control repositories to analyze the relationships within an ecosystem [25].
“A super-repository represents a collection of version control repositories of the projects of an
ecosystem [5]”.

Due to legacy code and lack of documentation developers must rely on reengineering tools
to break down a complex software system. Such a tool is Softwarenaut[5]. It recovers the
architecture of a system in the context of its software ecosystem.

3.2.5 Mining Library Usage - choosing the right upstream version

Mileva et al. investigate what information supports a downstream developer by deciding what
version of a chosen upstream is helpful [38]. For this purpose they developed a tool that examines
three different facts: the general usage of the last few versions over a period of recent years,
current usage of a specific version and the numbers of downgrades to a prior version. Their result
shows that the number of times a certain version is used can be an indicator for its quality.

As an example they studied the Apache ecosystem and its libraries including their different
versions. It included a total of 250 projects in the year 2009. All relationships, dependencies

CHAPTER 3. RELATED WORK 26

Figure 3.2: Ecco, a meta-model for inter-dependent projects of an ecosystem [3].

and version numbers are defined in the Maven project object model (POM) file [38]. However,
detailed information about API changes are not obtainable because only information about the
versions of the libraries are captured.

3.2.6 Case studies on API evolution or deprecation

Another area of research which is related to this work is the empirical study of software archives
with the goal of empirically observing phenomena that hold true for software development in
general. Such is the work of Robbes et al. in which they empirically study the extend of API
deprecation in the Smalltalk ecosystem consisting of hundreds of inter-related projects developed
by a community of thousands of Smalltalk developers over a decade [6].

McDonnell et al. conducted a case study on API evolution of the Android Ecosystem[39].
They report that upgrading to a new Android API version takes over a year.

3.2.7 Cells - code clone detections across projects

A software ecosystem may contain large amounts of code duplicated from other projects. Large
amounts could be excluded if the duplicated parts are identified. Schwarz’s approach [40] is the
first technique to detect cloned implementations across projects in a software ecosystem.

4
Research Method

“It is no longer hard to find the answer to a given question; the hard part is finding
the right question and as questions evolve, we gain better insight into our ecosystem
and our business.”

— Kevin Weil (Twitter)

We have shown in the related work section that although the literature is rich in studies of
user needs there is a lack of knowledge about the particular needs in the context of distributed
development in open source software ecosystems. The most usual method to enter an unexplored
area is to conduct an open-question survey. This method benefits from unpredetermined opinions.
We take this approach and we test our findings with an additional closed-question study. In this
chapter we outline our research approach and describe our research method.

4.1 Research Study Design

There are three different strategies to investigate a research problem. We briefly outline their
properties and differences.

Quantitative methods are applied to test a theory or hypothesis. The process of such a study
has its rules and provides a controlled environment. To collect data, surveys with given answers are
provided, e.g., yes/no-questions, a group of given answers. Results are based on the occurrences
of selected items. Statistical analysis can reveal interesting information about the evaluated data.

Qualitative methods are used to discover new insights. Researchers often conduct interviews
with appropriate participants. Qualitative data are collected from individuals in a interactive

27

CHAPTER 4. RESEARCH METHOD 28

way. The interaction between researchers and participants improves the quality of the responses.
The interviewer can pose questions in case of unclarity, and move the conversation in a certain
direction. Researchers make use of qualitative methods when research questions surround a
broader scope of research area, an unknown subject. Questions such as why, what, how call for a
study with qualitative methods.

Mixed methods are a combination of quantitative and qualitative methods. Different variations
are described [4]. Triangulation is the process for answering the same research questions by
conducting two independent investigations, a qualitative and a quantitative one. To validate the
findings the results of both methods must correspond.

Qualitative,
initial findings

generalizes Quantitative
results

Interpretation

Figure 4.1: A mixed method exploratory design according to Creswell [4, Chapter 3]

This research study makes use of a mixed research methods strategy. We applied a sequential
exploratory design [4, Chapter 3]. A rough overview is illustrated in Figure 4.1. This approach
consists of two different research methodologies: a qualitative investigation followed by a
quantitative validation survey. For the first part we analyzed and categorized answers of a targeted
group of developers. We aimed at the quality of the responses to establish a groundwork for the
second investigation. The quantitative part builds on the preceding qualitative results. Based on
the reported data we formulated corresponding statements or directly cited a participant’s answer.

For the second procedure we set up a quantitative questionnaire which was provided to a
set of indiviudal developers. From these developers we arbitrarily received a large number of
answers.

To test and validate the propositions we asked the respondents to rate them according to
their agreement level. Then, we evaluated the frequency of agreement and disagreement of each
statement. Finally, the findings show the level of relevance or importance of each proposition
from the qualitative questionnaire. The results help corroborate and gain a deeper understanding
in our research area. The illustration in Figure 4.2 shows the structure of our research design.
Both phases are explained in the next sections.

CHAPTER 4. RESEARCH METHOD 29

Qualitative survey
Open-ended questions

Email survey

Data Collection
Convenience-

sampled group

Qualitative methodology

Grounded theory
open coding
axial and se-

lective coding

Qualitative Analysis
Categorizations

of initial findings

Quantitative survey
Closed-ended questions

Likert statemtents

Data collection
Selection of

a larger group
of participants

Quantitative
methodology

Likert items survey

Quantitative analysis
Interpretation
Key findings

validate

formulate
statements

Figure 4.2: Our research study plan based on an exploratory study

CHAPTER 4. RESEARCH METHOD 30

4.2 Qualitative Survey

In the first iteration, we did an open-questioned email survey. Compared to in-person interviews,
email surveys are not as prone to influencing the participant[41].

We follow the Grounded Theory methodology introduced by Strauss and Corbin[42]. Contrary
to beginning with a hypothesis, it induces concepts and a theory that evolve from collected data,
and continuously improves in an iterative process.

4.2.1 Data Collection

Sampling participants To identify the needs of developers working in open source ecosystems,
we interviewed a selected group via email and in person. We factor practical and theoretical pro-
found background knowledge in years in both academic and industry software development. We
asked the convenience sampled[43] participants what information needs they have corresponding
to their upstream and downstream roles in the software ecosystem in which they craft software.

Open-ended questions The questions are formulated as openly as possible and do not attempt
to influence the participant in a certain direction. The survey questions as shipped to the
participants are shown in Figure 4.3. According to our research questions we ask for their needs
(RQ1), their intentions (RQ2) and their current practices (RQ3). Question 1 is an introductory
question to help focus the interview’s subject. We asked in what kind of software ecosystem
they are active. Question 2 and its subquestions are addressing framework and library developers.
Question 3 and its subquestions are for developers that depend on other projects. In both cases
we ask for (2.1 and 3.1) what kind of information they need, (2.2 and 3.2) why this information is
important and (2.3 and 3.3) how they obtain that information at the moment.

4.2.2 Data Analysis

To analyze the answers we receive as free-form text, we applied a Grounded Theory methodology
as introduced by Strauss and Corbin[42]. In this methodology, contrary to beginning with a
pre-conceived theory, one is evolved from the data, and continuously refined in an iterative
process. The data analysis includes coding strategies by breaking down the data collection from
surveys or other observations into similar units. Typically, the procedure consists of the following
steps[44].

1. Open Coding

2. Axial Coding

3. Selective Coding

Open Coding (assign labels) We start with an initial coding by identify emerging topics in the
free text answers. For each relevant piece of information we assign a suitable term to the original

CHAPTER 4. RESEARCH METHOD 31

1. In what ecosystem are you most active?

2. Are you the developer of a framework or library? If so, what is its name?

2.1. What do you most want to know about the use of your library or framework in your
ecosystem?

2.2. Why would that be interesting to know?

2.3. What do you currently do to obtain that information, if anything?

3. Are you using a framework or a library in your ecosystem? If so, name one.

3.1. What do you most want to know about the libraries or frameworks that you are using?

3.2. Why would that be interesting to know?

3.3. What do you currently do to obtain that information, if anything?

Figure 4.3: The open-ended survey questions sent to selected developers

data (see Table 4.1). Such codes1 consist of an expression or phrase that maintains the meaning
of the original answers.

The following two steps are used. First, assigning the answers with labels by separate
researchers independently. Second, re-assigning iteratively the answers to capture various insights.
This procedure is repeated until some consistent terminology emerges. The data coded with labels
describes concepts. The raw data is available in Appendix A.

Table 4.1: An example of open coding process
Participant Free text answer Code

E [To see whether I can construct on the li-
braries or not] 1© ,

- 1© API understand-
ing

and to see if [the change was performed by
someone I trust] 2© .

- 2© Keeping up with
upstream evolution

Axial Coding (establish connections between concepts) By grouping similar codes and con-
cepts together we create axial coding categories and themes [42]. The results of the open coding
and of the axial coding are presented in Chapter 5.

Selective Coding (create a theory that covers all categories and tells the storyline) In the
final stage of coding, a core category emerges from the other categories. This can be done by

1The term “code” refers to a recurring topic in the interviews, and should not be confused with “source code.”

CHAPTER 4. RESEARCH METHOD 32

making connections and describing the relationship between two categories. Thus, associating all
categories to a theory, tells the storyline.

4.3 Quantitative Questionnaire

In the second iteration, we triangulate our qualitative results by running a closed-question Likert
item survey named after psychologist Rensis Likert [45]. It is commonly used to cross-check the
consistency with the results from another research method. The participants do not answer with
free text, but instead agree or disagree by rating their opinion on a scale.

The two purposes behind this questionnaire are:

1. Validate a set of Likert item statements on a 5-point scale

2. Identify the importance and consistency with the open-question findings

4.3.1 Data collection

Random sampling We performed sampling for data collection to a random target audience
consisting of various types of developers. Subscribers in mailing lists range from beginners to
professionals. Therefore we published the survey in different open-source communities.

Closed-ended questions We measure the level of agreement with a closed-questioned ques-
tionnaire. We use a Likert item survey [45]. For each code from open-questioned analysis, we
formulate at least one statement. The purpose of a quantitative analysis is to test these statements
and discover some phenomenon.

Participants give their level of agreement or disagreement on a numerical five-point Likert
scale [46]. We decided to use an uneven number of agreement levels (see Table 4.2). Thus we do
not force a participant to decide for an explicit answer. When statements have extreme answers
then they are not unbiased. This method – by rating these Likert item statements – is widely used
to validate a research study.

Table 4.2: An example of a 5-point Likert item

I want to ...
strongly
disagree

disagree neither agree
strongly
agree

... know the number of downloads © © © © ©

4.3.2 Data Analysis

With the validation process, we tested the relevance of the ranked Likert items. To compare the
results we summarized the five levels of agreement into three raw classifications: agreement,
neutrality and disagreement. This enhances the interpretation of the results. From that we derived
conclusions.

5
Qualitative Results

“Research is creating new knowledge.”

— Neil Armstrong

In this chapter we present the findings from our open-ended questionnaire aimed to discover
the information needs, motivations, and current practices of software developers working in
an ecosystem context. The results were first published in a workshop paper on ecosystem
architectures [47]. We provide our findings in chronological order.

We start by giving an overview of the participants we selected to take part in our open-
questions survey.

We then present a list of codes that resulted from the open-coding process to answer our
research questions. According to our survey questions in Figure 4.3, the codes are divided into
three categories:

• Codes that express what the information needs are

• Codes that express what is the motivation or purpose behind it

• Codes that express how they obtain them with current tools or practices

We continued to undertake an axial-coding analysis. Comparing the codes with each other, we
recognized relations and connections among our findings. To identify concepts we grouped
similar codes together to appropriate categories.

5.1 Participants

We shipped the email survey to a convenience sampled [43] group of 20 framework and library
developers, 14 of whom responded. An additional participant gave us the answers in person. As

33

CHAPTER 5. QUALITATIVE RESULTS 34

a convention we assigned a reference letter from A to N to each participant. Table 5.1 shows
industry and academic experiences of the participants. Two respondents (G and L) did not provide
any personal background information.

Table 5.1: Background information about participants from the open-question survey

ID # Respondent
Code

Academic degree Full time
experiences
in Industry
(# of years
since PhD)

Upstream
Developer

Downstream
Developer

1 A PhD 4 yes yes
2 B PhD 3 yes yes
3 C PhD 6 yes yes
4 D PhD 5 yes yes
5 E PhD 9 yes yes
6 F PhD 9 yes yes
7 G - - no yes
8 H PhD 1 no yes
9 I PhD 2 yes yes
10 J PhD 9 yes yes
11 K PhD 3 yes yes
12 L - - yes yes
13 M PhD 4 no yes
14 N PhD 3 yes yes

The goal of the first question was to put the a respondent into the right frame of mind in which
they would think about the broader context of their work and the inter-dependencies of the systems
he is working on. We did not analyze the answers here, but we mention that we had a variety
of ecosystems centered around different languages (Smalltalk, Python), technologies (Moose1,
SciPy2), and hosted in various online source code repositories (GitHub3, SqueakSource4). Two
respondents mentioned two social Q&A websites (StackOverflow.com5 and Reddit.com6).

1http://www.moosetechnology.org
2http://www.scipy.org
3http://github.com
4http://squeaksource.com
5http://stackoverflow.com
6http://www.reddit.com

http://www.moosetechnology.org
http://www.scipy.org
http://github.com
http://squeaksource.com
http://stackoverflow.com
http://www.reddit.com

CHAPTER 5. QUALITATIVE RESULTS 35

5.2 Upstream Needs

We list and explain the codes that are representative for answer to question 2 in Figure 4.3. The
results are numerated and consists of three subcategories:

• Upstream Needs (UN)

• Upstream Motivation (UM)

• Upstream Practices (UP)

We use the following notation: Code name (ID), (list of participants that support this need); e.g.,
API usage details (UN-2). (B,F,J,K,L). The frequency of occurrences are listed right after the
central themes. In addition, we support our findings with appropriate quotations of participants.
The original raw data is listed in the Appendix A.

We identified five distinct information needs for upstream developers grouped into two main
categories.

5.2.1 Code Usage

This grouping holds developer needs that detail how people use source code.

API usage details (UN-2). (B,F,J,K,L,N)
Developers want to monitor the way the downstream is using the API and collect details
about invoked methods and their arguments. This provides insight into the effectiveness of
an API and its usage: This includes naming conventions, indentation, comments and so
on. A guideline would provide help for maintenance issues, consistency and readability.

“Which parts of the code are actively used?” (L).

Runtime statistics (UN-4). (B)
Some developers want statistics about the usage of their library at runtime to help localize
and fix failures: “which API methods are called how often and which data is passed to
them? How often do they fail with an error?” (B).

Code convention compliance (UN-5). (E)
This includes naming conventions, indentation, comments and so on. A guideline would
provide help for maintenance issues, consistency and readability. “Variation of lint rules
in my projects along the project history” (E) to ensure that downstream developers follow
the conventions the developer set.

5.2.2 Project Statistics

This grouping holds the needs for simple, descriptive numbers describing the impact of the
software project.

CHAPTER 5. QUALITATIVE RESULTS 36

Downstream projects (UN-1). (A,C,D,F,I)
Developers want to know how their code fits in the ecosystem. They want to know the
number and nature of their downstream projects, and for what purposes the downstream is
using a project: “I’d like to know what people build with my frameworks” (A). Respondent
(D) wanted to know number of passive downstream developers that track a project’s state.

Forked projects (UN-3). (D,J,L)
Developers want to know about the clones of their work. With infrastructures like Github
this is particularly easy to do.

5.3 Upstream Motivation

This grouping represents answers to questions representing the motivation and purpose behind
the stated needs.

Strengthening self-esteem (UM-1). (A,I,J)
Pride in one’s work and project motivates this information need. “It is a good motivation
if a lot of people like my code and build cool stuff on top of it” (A) and “it helps the
self-esteem” (A). Positive feedback and rising popularity keeps a developer motivated and

“gives inspiration and hints where to orient the project’s evolution” (J).

Maintaining downstream compatibility (UM-2). (F,I,K)
When developers know how their clients use their framework or library, then they are able
to estimate the impact of code changes. If needed, they can notify downstream developers
on how to stay compatible. A participant explains: “I want to know [. . .] the impact [. . .]
when I modify my source code” (K). And another developer states: “I want my clients to
know how the library is being used and to assess the impact of possible changes” (F).

Managing resources (UM-3). (B,L)
Discovering unused functionalities allows developers to deprecate them out and to better
distribute effort. “To conserve my resources. If people don’t use a method or, a whole
feature of the API, why maintain it?” (B).

5.4 Upstream Practices

The grouping holds answers to our question regarding the current practices of developers to fulfill
their information needs.

Set up mailing lists (UP-1). (A,F,I,J)
Upstream developers set up mailing lists to get feedback from their downstream users.
Subscribers ask and discuss problems and solutions over email communication.

Repository analytics (UP-2). (A,C,D)
Some source code repositories provide analytics for projects. GitHub provides information
about forks, downloads, watches, etc. Even monitoring web traffic is of interest: “I
observe the web analytics of my project’s home page” (A).

CHAPTER 5. QUALITATIVE RESULTS 37

Monitoring ecosystem commits (UP-3). (F)
In some cases developers track code changes to many projects of interest at once by
monitoring news services: “I am monitoring the RSS of SqueakSource [NB: which
includes updates on the changes to several hundreds of active projects]” (F).

Social media (UP-4). (A)
Developers use social media tools (e.g., Twitter) to publish the latest news about their
project.

5.5 Downstream Needs

Based on the answers to question 3 in Figure 4.3 we synthesized the information needs for the
downstream developers. The results are numbered and consist of three subcategories according
to the results in Section 5.2 (Upstream Needs):

• Downstream Needs (DN)

• Downstream Motivation (DM)

• Downstream Practices (DP)

The downstream needs outnumber the upstream ones. We list them here in decreasing order of
their occurrence.

5.5.1 Selection

This grouping holds the information needs of a developer during the process of selecting an
upstream.

Available public support (DN-2). (A,B,E,J)
Developers want to know the popularity of a framework “Are they popular enough to
find support on the web in blogs and on StackOverflow?” (B). A related factor is the
responsiveness of the developer team and associated community to provide support: “How
likely are they to fix bugs and to respond to feature requests” (B). “. . . whether there are
bugs that were left unresolved for a long time” (E).

License type (DN-4). (A,I,L)
A common request is: “Is the license compatible with ours?” (A).

Implementation quality (DN-5). (B,E)
A potential client of a library wants to know how robust its implementation is, how often
it is updated, how responsive the developers are, and how fast the library is evolving.

“Whether [the project’s code] works or not” (E).

People want to know the level of activity around a library: “Whether they [the libraries]
are intensively maintained” (E).

CHAPTER 5. QUALITATIVE RESULTS 38

Comparison with similar upstreams (DN-8). (A)
Find related libraries and frameworks that provide similar functionalities but are indepen-
dently developed. “Comparison with similar frameworks” (A) gives the opportunity to
consider an alternative upstream.

5.5.2 Adoption

This grouping holds the information needs that pertain to a developer starting to work with a new
upstream.

Documentation (DN-3). (B,G,H,M,N)
The potential users of an API require its documentation: “I am basically happy with a
good API documentation” (B).

Some developers want to understand the internals of an upstream project and thus require
architectural documentation: “[. . .] expose connections between high-level elements [. . .]
what methods [. . .] of the packages invoke each other” (N).

Real contextual sample code (DN-7). (C)
Developers want example code snippets which are extracted from other projects with
similar functionality. “I’d like to see example code extracted from other projects using the
same libs that correspond to functions I’m trying to figure out how to use” (C).

5.5.3 Co-Evolution

This grouping holds the information needs that arise when an upstream dependency co-evolves
with others.

Monitoring upstream changes (DN-1). (E,F,K,N)
Developers want notifications of deprecations and substitutions that affect the API they use:

“What has changed since the last time I loaded [the library]” (K) and “if they deprecated
some methods” (N).

Compatibility with other systems (DN-6). (L)
A downstream client often depends on multiple upstreams. They want to know whether an
individual upstream works with the rest of the configuration. “Does the current version
[of the upstream] run on the version of the system I use [downstream]” (L).

5.6 Downstream Motivation

This grouping holds the answers the intentions behind the stated information needs.

API understanding (DM-1). (C,E,G,I,L,M)
Developers want to use functionalities provided by the API right away. This is eased when
API names are intuitive and well documented. “To see whether I can construct on the
libraries or not” (E). A participant’s answer is that he would like “to spend less time
figuring out how to use new libraries” (C).

CHAPTER 5. QUALITATIVE RESULTS 39

Keeping up with upstream evolution (DM-2). (E,H,I,J,L)
Developers of downstream projects want to keep up to date with upstream changes. The
only way to improve something is to know the existing problems and to know how it is
expected to work (I). “To know whether I have to update my projects or not” (E), e.g.,
if there are any new releases. The same respondent correlates to the credibility of the
upstream: “I am interested to see if the change was performed by someone I trust” (E).

Estimating the impact of changes (DM-5). (F,H,N)
Before updating to a new version of the upstream, developers want to estimate the impact
of changes. They are “interested in what the change affected” (F).

Choosing the right upstream (DM-3). (B,I)
Choosing the right upstream will impact the future of a project: “For example, [our testing
framework] uses JUnit 4, but later I learned that less than 5% of all users of JUnit use
version 4 and all others still use version 3. So we are stuck with a bad choice” (B). Another
developer argues: “. . . if I don’t know how to use [NB: the library] after an hour, I throw it
away. I won’t look one single day into its code just to see how to use it” (I).

Influencing an upstream (DM-4). (B,J)
Sometimes developers would like to modify the upstream to conform to their needs, but
this is not always possible: “Sometimes I need to collaborate and influence design of
frameworks I use and to ensure I can progress even if the maintainers I depend on are not
responsive” (J).

5.7 Downstream Practices

This grouping holds the answers that represents current practices and techniques downstream
developers use to satisfy their information needs.

Searching the Internet (DP-2). (A,B,C,G,H,I,M,N)
Downstream developers search the Internet for the the upstream developer’s website or
third parties blogs and tutorials. Before using a specific framework, downstream developers
like to play around and modify example code to see how it works.

Developers often estimate the relevance of a library by its popularity online, and in
programming related forums. “I look at the most popular tags on Stackoverflow and pick
that library” (B).

Monitoring news (DP-1). (C,E,F,G,I,J)
Developers read mailing lists and monitor repositories for commits and activities to be up
to date. Developers monitor the RSS feeds of the upstream projects: “I am monitoring the
RSS of SqueakSource” (F).

Continuous integration (DP-3). (F,K,L)
Some developers commit code changes to the project repository several times a day. As
one respondent states, “I am building regularly to ensure that at least things still work”
(F). This supports fast deployment and uncovers compatibility problems in early stages.

CHAPTER 5. QUALITATIVE RESULTS 40

Unit tests (DP-4). (E)
I load the latest upstream version and run my unit tests.

5.8 Summary of the Findings

Axial coding is the process in which we discover categories and subcategories by grouping the
codes from the previous sections together into larger themes (see Figure 5.1). Looking at our
data, we can see different themes for the two types of information needs: the upstream needs and
the downstream needs.

Figure 5.1: Categorized results from open coding process

Upstream Needs The upstream needs are classified into two main categories corresponding to
the type of information the developers require:

1. Code usage: API usage details (UN-2), Runtime statistics (UN-4), Code convention
compliance (UN-5)

CHAPTER 5. QUALITATIVE RESULTS 41

2. Project statistics: Downstream projects (UN-1), Forked projects (UN-3)

The developer motivation in this role is bi-modal: self-esteem and the desire to ensure that the
users of their code benefit from it. The current practices are well supported with respect the first
category but fail to support the second one. We envision this as an area of great potential for
future research.

Downstream Needs The downstream needs are classified into three main categories which
correspond to the life cycle of a relationship with an upstream:

1. Selection (Choosing an upstream): Available public support (DN-2), Implementation
quality (DN-5), License type (DN-4), Comparison with similar upstreams (DN-8).

2. Adoption (Learning about an upstream): Documentation (DN-3), Real contextual sam-
ple code (DN-7)

3. Co-Evolution (Co-Evolving with an upstream): Monitoring upstream changes (DN-1),
Compatibility with other upstream systems (DN-8).

Looking at the current practices we can see that opportunities for research abound especially in
the second and third phases where the needs are numerous and the current practices are often
manual and lack dedicated tool support.

The downstream needs are more numerous than the upstream needs and usually stem from
challenges inherent in code reuse. Our results show that downstream developers have the interest
to follow the other side in more detail.

6
Quantitative Results and Validation

“I was trying to figure out what to do next; I’d been accumulating ideas for produc-
tivity tools – software people could use every day, particularly to help organize their
lives.”

— Mitchell Kapor

We conclude our study by verifying our results in a closed-ended and web-based questionnaire
(see Appendix B, page 71). Unlike our previous questionnaire the participants did not answer
with free text, instead their answers range from full disagreement to full agreement on a numerical
five-point Likert items survey. The items in the survey are formulated based on the findings from
Chapter 5. For each code, we posed at least one statement. A total of 51 Likert item questions
were asked; 26 questions for upstream developers and 25 questions for downstream developers.
Where appropriate, we directly cited the participants from the qualitative survey to describe a
need. Additionally, we posed three voluntary open-ended text questions to capture additional
feedback statements and insights. We reference proper quotations by LS-<number> and add
them to emphasize our findings. We have published our findings in another workshop paper [48].
Raw data of the results are given in Appendix C (on page 77).

In Section 6.1, we provide background information of the respondents.We then present the
results in three parts:

• In Section 6.2 and Section 6.3, we validate the upstream and downstream needs (RQ1)

• In Section 6.4, we check the validity behind upstream and downstream motivation (RQ2).

• In Section 6.5, we demonstrate the relevance behind current practices (RQ3).

42

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 43

6.1 Background of the Respondents

Contrary to the qualitative questionnaire, we collected participants by promoting the survey in
various mailing lists: Open JDK, Processing.js, jQuery, CakePHP, SciPy, NumPy, Pharo Project,
Squeak, Seaside, Drupal, Coreaudio, Apache Hadoop, Apache Cassandra, Ubuntu, Soot, Google
WebToolkit, Zend Framework. This way we assured that a large crowd of developers with
different experiences could complete our questionnaire. We received 75 responses, from which
46 are framework and library developers and 29 consider themselves as framework and library
user.

The survey starts with questions about background information. As can be seen in Fig-
ure 6.1(a), the majority of the answers came from people in Europe and North America.

In Figure 6.1(b), we can see that developing experiences in years are equally distributed
(Figure 6.1(b)). In addition, we asked what source code repositories (Figure 6.2(a)) and which pro-
gramming languages (Figure 6.2(b)) they have used over the past year. Based on the background
information we observe that the respondents are a widely covered group.

Europe 46%

North America 32%

Asia 8%

South America 6%

Australia 4%

Africa 4%

(a) Geographical location

5-10 years 29%
11-20 years 22%

>20 years 22%

<5 years 17%

no answer 10%

(b) Years of experience

Figure 6.1: Background information of the participants from the validation survey

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 44

Github 31%
SourceForge 17%

Google Project 14%

Project Repository 11%
Other 11%

BitBucket 8%

SqueakSource 7%

RubyForge 1%

(a) Source code repositories/hosting sites

Python 13%

Smalltalk 6%
Ruby 6%PHP 11%

Java 14%

JavaScript 16%

C/C++ 16%

Other 18%

(b) Main programming language

Figure 6.2: Distribution of repositories and programming languages the participants use

only closed source
software

only open source
software both

industry
academy

N
um

be
r

of
 p

ar
tic

ip
an

ts

0
10

20
30

40

13

1

10

28

36

14

Figure 6.3: Working domain of the participants

Figure 6.3 presents information about the type of code licensing used by the respondents.
Most developers in industry (blue) use both closed-source and open-source software. Open-source

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 45

software is mostly used in an academic environment (ivory).

6.2 RQ1: Validation of Upstream Needs

In the first part of the questionnaire, we address upstream developers. We present the frequencies
of agreement or disagreement to our Likert items. The number of items depends on their occur-
rences from the open-coding process. To highlight important results, we emphasize individual
items.

We found two main categories from the qualitative survey.

• Code Usage (Chapter 5.2.1)

• Project Statistics (Chapter 5.2.2)

6.2.1 Code Usage

We grouped three information needs in this category. Each statement represents one of the three
codes from the qualitative analysis from Chapter 5.2.1. The distribution of the responses to our
statements on code usage-related information needs are shown in Figure 6.4.

Q1.1. The usability of my API. (UN-2)
Q1.2. Which API methods are called. (UN-2)
Q1.3. How the library is being used to asses the impact on changes. (UN-2)
Q1.4. Unused methods and functionalities. (UN-2)
Q1.5. How often a method gets called. (UN-4)
Q1.6. API failure statistics. (UN-4)
Q1.7. What arguments a method is typically invoked with. (UN-4)
Q1.8. Highly often used methods are better maintained by me. (UN-2 / UM-3)
Q1.9. The order in which the API methods are called. (UN-2)
Q1.10. If users follow the coding conventions I set. (UN-5)

Strongly Disagree Disagree Neither Agree Strongly Agree

I need to know ...

Figure 6.4: Code usage

API usage details (UN-2) The corresponding questions about API usage predominate because
this need has occurred five times as much as the other findings in the initial quantitative survey.
The findings strengthen this need.

Upstream developers need to know detailed usage of their API. These information are needed to
assess its usability and the impact of API method calls. (Key finding for API usage details)

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 46

(Q1.1 – Q1.3) More than 90% either agree or strongly agree with the importance of the usability
of their API. The remaining Likert statements are more detailed. Just as many agree or strongly
agree in being interested in what API methods are called and how their library is used to evaluate
possible impact on downstream dependencies. In order to assess the impact of changes, 77.7% of
the participants want to know how others use their library.

(Q1.9) Although originally it seemed like a legitimate need, 69.9% do not care how downstream
developers apply the order of method calls. There is strong agreement concerning the intention
for code improvements. A respondent confirms: “I like to know how people are using my code in
order to make the framework better. It’s not just about minimizing the impact of changes, but also
about seeing what’s awkward, what features are used in conjunction and which independently,
which areas are performance sensitive etc” (LS-57).

Runtime statistics (UN-4) The findings indicate that these answers strengthen this need.

(Q1.6) 61% agreed or strongly agreed that they want to know API failure statistics.

(Q1.5 and Q1.7) 63.0% agreed or strongly agreed to needing to know the number of method
calls; 53% want to know what parameters a method passes.

Code convention compliance (UN-5) This need is not well supported.

(Q1.10) Only a slight majority of developers want to know if their users follow the coding
conventions. A remaining two thirds strongly or simply disagrees. Either they have not defined
any coding conventions, or they do not care how the downstream applies them or maybe they
have no coding conventions in the first place.

6.2.2 Project statistics

The grouping in Figure 6.5 holds the need for simple numbers describing project statistics-related
statements from Chapter 5.2.2.

Q1.11. Know what people build with my framework. (UN-1)
Q1.12. Know whether people migrate to the latest version of my library. (UN-1)
Q1.13. Know who tracks my project. (UN-1)
Q1.14. Know the number of downloads. (UN-1)
Q1.15. Know all my downstream projects. (UN-1)
Q1.16. Know if many people like my code. (UN-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

I want to ...

Figure 6.5: Projects statistics

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 47

Downstream projects (UN-1) We asked for information developers need about their clients.

(Q1.11 – Q1.14) Two thirds of the participants want to know who is tracking their current
project (69.5%, Q1.13) and are interested in the number of downloads (65.2%, Q1.14). Almost
90% agree or strongly agree that they want to know what people built with their provided
framework or library (Q1.11). Two-thirds are interested in knowing whether the downstream is
migrating to the latest version (Q1.12).

(Q1.15) Two thirds are undecided, disagree or strongly disagree that they need to know all their
downstream projects. This statement has most undecided assents in this category. An explanation
could be that it is not yet possible with today’s infrastructures. This also could correlate with the
number of downstream: the more downstreams, the less the upstream would care to know about
all of them.

Forked projects (UN-3) This information need is about cloned source code bases. It is strongly
supported.

(Q1.16) 73.9% are interested whether people like their code. When developers need some
code, then they clone the code base for their own purposes. However, a majority of the upstream
developers confirm that they do not track any forks as the statement Q3.5 in Figure 6.11 indicates
(Q3.5).

Upstream developers want to know more than just the number or downloads, followers etc. A
comparison across the statements indicates the need of knowing details about the way their code
is being used. (Key Finding for Project statistics)

6.3 RQ1: Validation of Downstream Needs

We posed Likert item questions to developers that work in a downstream context. Because most
upstream developers share the role as a downstream developer we also asked them to answer the
second part of the survey.

• Selection (Chapter 5.5.1)

• Adoption (Chapter 5.5.2)

• Co-evolution (Chapter 5.5.3)

6.3.1 Selection

We examine the process of choosing an upstream project. The Likert items are based on the
findings from chapter 5.5.1 (Selection). The responses on selection-related information needs are
shown in Figure 6.6.

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 48

Q4.1. Whether the project's code works. (DN-5)
Q4.2. How intensively the project is maintained. (DN-2)
Q4.3. Pros and cons of related frameworks/libraries. (DN-8)
Q4.4. How responsive the support team is. (DN-2)
Q4.5. The software license. (DN-4)
Q4.6. The popularity of the project. (DN-2)
Q4.7. Who the upstream developers are. (DN-2)
Q4.8. Whether it takes more than an hour to get started. (DN-5)

StronglyDisagree Disagree Neither Agree Strongly Agree

I need to know ...

Figure 6.6: Selection

Implementation quality (DN-5) This information need is about the design of a project and
the simplicity of its usage.

(Q4.1) The statement Q4.1 is the strongest statement of this survey. 75.7% strongly agree and
24.3% agree on it.

(Q4.8) A third of the developers confirm that they dismiss an unfamiliar framework and library
if they are unable to run a small example within an hour. A two-thirds majority would spend
more than one hour before giving it up.

The majority of downstream developers would invest more than an hour to run a first example of
a library or framework. The decision is important enough to invest time to get familiar with it.
(Key Finding for Implementation quality)

Available public support (DN-2) The finding indicates some degree of inconclusiveness.
Results range from strong to low support.

(Q4.2) The second strongest statement is about the intensity of maintenance. A total of 91.4%
with strong agreement and agreement overwhelmingly support this need.

A participant confirms: “As a developer (and user in certain cases), I want to be certain that
the community is friendly, accepts [newbies] and responds fast” (LS-48).

(Q4.7) A two-thirds majority is not interested in who the developers are. This finding is
supported by the motivational statement Q5.4 about trust in Figure 6.10. In addition, it has
a predominant number of undecided answers (45.0%). As a participant states: “When I am
considering an open source library I am less interested in the identity of the people - more in the
code quality and the level of activity” (LS-25) and “A good programmer can also produce a bad
project so not only the programmer needs to be vetted but the project itself” (LS-13).

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 49

When choosing an upstream project, developers are less interested in the identity of the main
developers and more in alternative projects, in code quality and the level of maintenance. (Key
Finding for Selection)

Comparsion with similar upstreams (DN-8)

(Q4.3) 84% of the respondents strongly agree or agree to needing to compare related projects
with similar functionalities.

Licence type (DN-4) A single statement tests the importance to consider software license
types.

(Q4.5) The Likert item shows with 69.6% that software licenses are influential.

6.3.2 Adoption

In a further step, downstream developers report on their needs to learn about their upstream
dependencies. The distribution in Figure 6.7 shows the essential needs in adoption-related
information needs.

Q4.9. Code examples help to learn a project's design. (DN-7)
Q4.10. Up-to-date API and design documentation. (DN-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 6.7: Adoption

Real contextual sample code (DN-7)

(Q4.9) 85% would appreciate extracted code examples illustrating the functionalities provided
by their upstream project.

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 50

Documentation (DN-1)

(Q4.10) Developers agree with a total of 90% strong agreement and agreement that a good API,
design documentation and code examples are essential. One respondent emphasizes: “[...] this
depends on the documentation and ease of use: some frameworks are so easy to use you barely
need to read a quick-start document, others are very difficult to learn – sometimes this is because
of an over complicated API, other times it’s because the concepts are complicated” (LS-42).

To sum up, contextual code samples and up-to-date API documentation have mainly reached
full agreement or strong agreement while neutral approval is inconsiderable. (Key Finding for
Adoption)

6.3.3 Co-Evolution

The distribution of answers to the Likert items with co-evolution-related information needs is
shown in Figure 6.8.

Q4.11. Details about which methods and classes have changed. (DN-1)
Q4.12. I want to know the impact before I update to the latest version. (DN-1 / DN-6 / DM-5)
Q4.13. I only want to get notified on code changes when my code is affected. (DN-1 / DM-2)

StronglyDisagree Disagree Neither Agree Strongly Agree

Figure 6.8: Co-Evolution.

Monitoring upstream changes (DN-1) Evolving a downstream project requires detailed in-
formation about the source code changes. These include both general bug fixes and release
changes.

(Q4.11 and Q4.12) Both reveal a strong agreement on an instant information mechanism.

Compatibility with other systems (DN-6)

(Q4.13) There is one Likert item that stands out because of the prevalence of undecided answers.
This indicates either a badly phrased statement which the participants did not understand or that
they have no experience in notification systems.

Downstream developers want to know the impacts before updating to the latest version. This in-
cludes monitoring the upstream evolution and preview information of changes in implementation
details (Key Finding for Co-evolution)

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 51

6.4 RQ2: Upstream and Downstream Motivation

Our second research question investigated what motivates these needs. Figure 6.9 and Figure 6.10
report the results of our statements. The two strongest and diverse motivations that support their
needs are the following.

• Upstream motivation: Maintaining downstream compatibility

• Downstream motivation: API understanding

6.4.1 Upstream motivation

Intentions behind the needs of upstream developers are at first to provide compatibility to other
developers.

Maintaining downstream compatibility (UM-2)

(Q2.1 and Q2.2) There is a strong need to provide help to downstream developers, to notify
about code changes and to minimize impacts. A respondent states “if people are making
downstream fixes it would be helpful to know this so that [these changes] can be merged” (LS-
42).

Upstream developers are willing to provide help to their users. (Key Finding for Maintaining
downstream compatibility)

Strengthening self-esteem (UM-1)

(Q2.4) More than 70% of the participants strongly agree or agree that they stay motivated when
getting positive feedback. In Figure 6.9 the statement about self-esteem has the weakest support
in this category with the highest number of abstentions.

Q2.1. I want to provide help to clients. (UM-2)
Q2.2. I want to notify clients of changes ot maintain compatibility. (UM-2)
Q2.3. I follow my own vision of the project. (UM-2 / UM-1)
Q2.4. It keeps me motivated if a lot of people like my code. (UM-1)
Q2.5. It helps the self-esteem if a lot of people like my code. (UM-1)

StronglyDisagree Disagree Neither Agree Strongly Agree

I (don't) need to know these things because ...

Figure 6.9: Upstream motivation

Supporting downstream developers strengthens the personal motivation and self-confidence of
upstream developers while following the vision of the project is as important as giving help to
users.
(Key Finding for upstream motivation)

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 52

6.4.2 Downstream motivation

Q5.1. I avoid code adaptation if the estimated time is excessive. (DM-5)
Q5.2. It is painful to track dependencies among packages. (DM-1)
Q5.3. I stay with the running version as long as possible. (DM-5)
Q5.4. I am curious if code changes are made by someone I trust. (DM-2)
Q5.5. I only use a widely used version of a library. (DM-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 6.10: Downstream motivation

According to the respondents, the following statements have strong support Figure 6.10:

Estimating the impact of changes (DM-5) Downstream developers are willing to upgrade to
the newest version if code adoption is feasible in a reasonable time.

(Q5.1) 85% agreed or strongly agreed that the decision whether to adapt code or not depends
on the estimated time. (Estimating the impact of changes)

(Q5.3) 40%disagrees or strongly disagrees. 20% gave undecided answers. This shows that
there is the willingness to upgrade to with the latest version.

The decision whether to adapt code or not depends on the estimated time. This finding indicates
the more complex a software project gets, the more likely it is that developers omit any code
adoption such as version updates. (Key Finding for Estimating the impact of changes)

Choosing the right upstream (DM-3)

(Q5.5) More than half of the respondents have confirmed that the more often a library or
framework is already in use the more likely developers will use it, too. This indicates that the
developers think that frequency of its usage may provide information about its quality, available
support and popularity.

Downstream developers tend to use software (Q5.5) that is well established in usage and adoption.
Downstream developers tend to rely on other downstream developers. They trust in versions of
libraries and frameworks that are most distributed and well-known.
(Key Finding for Choosing the right upstream)

API understanding (DM-1)

(Q5.2) Difficulties arise to keep an overview of code dependencies.

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 53

Keeping up with upstream evolution (UM-2)

(Q5.4) A majority of over 70% does not care if code is changed are made by developers they
trust. This reveals the finding that implementation quality is more important than the reputation
of the developers.

If code changes are done by someone they trust does not seem to be an important need. One third
of the developers gave a neutral response and almost another third disagree or strongly disagree
on question Q5.4. (Key Finding for Keeping up with upstream evolution)

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 54

6.5 RQ3: Current practices

In Figure 6.11 we present our findings for question Q3 and for question Q6 in Figure 6.12. The
two strongest practices that help developers to obtain their information needs are.

• Upstream: Mailing lists

• Downstream: Searching the Internet

Current upstream practices Mailing lists have the strongest support for upstream developers
(UP-1). As Figure 6.11 shows, the majority of the participants strongly disagree to the remaining
Likert item statements about tools.

Surprisingly, the participants do not use social media services to obtain client information
(UP-4).

StronglyDisagree Disagree Neither Agree Strongly Agree

Q3.1. I follow Mailing lists. (UP-1)
Q3.2. I follow Social media. (UP-4)
Q3.3. I use Web analytics (e.g. Google Analytics). (UP-2)
Q3.4. I use RSS Feed Notifications. (UP-3)
Q3.5. I track the clones of my framework. (UP-2)

To obtain information about my downstream users, ...

Figure 6.11: Upstream practices

Current downstream practices Searching the web, continuous integration, reading bug re-
ports and subscribing to mailing lists are the most used practices. Retrieving information form
code repositories and running unit tests are less common.

Q6.1. Searching for blog posts and tutorials. (DP-2)
Q6.2. Building regularly to ensure things still work. (DP-3)
Q6.3. Subscribing to mailing lists to keep up-to-date. (DP-1)
Q6.4. Monitoring commits and activities of a project repository . (DP-1)
Q6.5. Tracking bug reports. (DP-2)
Q6.6. Using unit tests to understand how to use an upstream project. (DP-4)
Q6.7. I update as soon as changes are released on upstream projects. (DP-3)

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 6.12: Downstream practices

6.5.1 Inadequate tool support

We provide a comparison of downstream and upstream practices.

CHAPTER 6. QUANTITATIVE RESULTS AND VALIDATION 55

• Downstream developers use a lot of blogs, tutorials, and continuous integration. To solve a
problem using an upstream dependency developers search on the Internet because it is the
easiest and fastest method to find a solution.

• Upstream developers set up mailing lists as a main communication medium. In particular,
they have to provide support in a traditional way, i.e., documentation, publish release notes.

We observe that both have corresponding needs. Summarized, the findings confirm the lack
of appropriate tool support for exchanging information in both directions.

7
Discussion

“I have this hope that there is a better way. Higher-level tools that actually let you
see the structure of the software more clearly will be of tremendous value.”

— Guido van Rossum

We conducted an exploratory study with an initial qualitative study followed by a quantitative
validation survey. The initial results have revealed a total of 13 — 5 for upstream and 8 for
downstream — information needs that can be grouped into five categories. From the results of the
second phase, we summarized the key findings with a suitable statement. After a second phase
which involved surveying 75 developers, we corroborated some of the findings from the first
phase. Here we discuss the results of our analysis and contextualize them with in their related
work.

Our results are not generalizable due to our research methodology. We found more needs
for the downstream developer. Upstream developers want to know details about the API usage
in order to provide compatibility to their downstream. The results show a discrepancy between
upstream and downstream information needs. An explanation may lie in the different intentions
behind their role. We believe that these results are the beginning of further research in this area.
The outcome indicates that: (1) some of the needs are strongly supported by developers; (2)
only few of the practices are appropriate for their needs and (3) most but not all of the needs are
already addressed by existing research.

Alert mechanism for new versions We state that there is no information in new software
releases provided regarding implementation details of code changes (e.g., add, remove or modify
a method). Changes are often published in release notes or in change logs. But a developer needs
to know this information before integrating a new version into their own project code base.

56

CHAPTER 7. DISCUSSION 57

A diff command just shows changes that have been made to the source code within a sequence
of commits. But no semantical information is obtainable. Our results indicate the need for an
automatic notification process that highlights information not only about code changes but also
about implementation details.

Dietrich et al. carried out an empirical study on library updates with a collection of Java
open-source programs [7]. They show that present practices do not reveal potential impacts when
using a newer API version. They suggest library developers to adopt best versioning practices,
however, they do not propose a future-oriented solution towards large-scale software ecosystem
development.

Provide forward version upgrades Today developers downgrade to a previous API version
if their software system is not running with the latest one. To prevent this time-consuming
procedure, a monitoring tool provides migration patterns for new library or framework versions to
estimate the effort it takes [38]. As a step beyond the migration patterns we propose an automatic
effort estimation. This requirement becomes increasingly important since the inter-connectivity
of software ecosystems is a new phenomenon. The more the relationships and dependencies the
more we need to use an automated tool.

Comparing upstreams Take for example Comparison with Similar Upstreams, a need that has
strong support from our respondents. This is a challenging problem, and currently we are not
aware of any automated, or even semi-automated solution that would support developers in their
search for the best choice of an upstream.

This can be done in an approach similar to the work of Teyton et al. [49]. They present an
algorithm to substitute parts of a Java open source project when changing a third party library.
They have mined the patterns of the evolution of an upstream library or framework by observing
the way different downstream developers change their dependencies. In doing so, they propose an
algorithm that contrasts chunk of code in two different versions of a library. By transforming the
old source code to a substitution, the corresponding functionalities of the new migrated library
behave in the same manner.

Awareness of system co-evolution Infrastructures like Maven1, RubyGems2 or PyPI3 provide
an explicitly declared dependency graph. Other infrastructures, such as Sourcerer [50] and
Ecco[3], which automatically infer the dependency graph provide a strong starting point for
creating awareness of system co-evolution and Monitoring upstream changes. The next challenge
is the automatic discovery and reporting of “what a change affected” and the estimation of the
difficulty of upgrading to a new version of the upstream.

Monitoring API details The only need that is hard to address for the upstream developers is
the need to know API details about downstream projects. Indeed, this requires knowledge of

1http://maven.apache.org
2http://rubygems.org
3https://pypi.python.org/pypi

http://maven.apache.org
http://rubygems.org
https://pypi.python.org/pypi

CHAPTER 7. DISCUSSION 58

all the downstream, and theoretically this is not possible. Practically we observe that the vast
majority of open source code is available for indexing and analysis, so the theoretical limitation
might not be so drastic.

Dynamical code usage Dynamic analysis has been often used in program comprehension
research to support program understanding. The Runtime statistic need brought out in our
interviews goes beyond the traditional dynamic analysis by requiring the analysis to be deployed
downstream for the benefit of the upstream: “which API methods are called how often and which
data is passed to them? How often do they fail with an error?”. Although we can conjecture that
knowledge of the data that flows through an API can be beneficial for the designer, and technical
solutions are possible, the challenge there remains.

Code detection The framework Cells of Niko Schwarz is a first approach to detect duplicated
code in software ecosystems [40]. In his thesis he suggests that Cells is appropriate to detect
License type in distributed software systems by their identical structure. Real, contextual sample
code is found in the type-3 clones of the call sequences of the methods of a library as well as in
all the other projects that use that library[40]. Bringing this information as close to the developer
as possible is still far from the state-of-the art in the IDE practice. Finding type-3 clones with
the documentation of a project is likely to find projects that used the code samples from the
documentation as a starting point.

We observe that the practices are far behind the needs, and the results provide potential starting
point in in working on ecosystem-aware tools for developers. For example, the downstream
need Compatibility with other systems is not supported by any tools reported. This need calls for
further research.

Our intuition is that some of the needs can be addressed through automated ongoing analysis
of the sources of the projects. One infrastructure that comes closer is GitHub which provides
some of the upstream needs such as keeping track of forked projects, number of followers and
downloads[37]. Such needs can be addressed easily since they require no complex analysis of the
source code.

8
Conclusions and Future Work

In this thesis we investigated the information needed by developers working in a software
ecosystem context. Using an API from an upstream is an essential part of a modern software
project. This practice has increased the dependencies to other projects. To stay up to date with
the latest release of a library or framework, downstream developers invest time and effort to fit in
the code changes to keep up with the latest version.

The final chapter of this thesis provides a brief summary of our investigation, including the
questions of our research and the applied methods. We follow by discussing the limitations of our
study and list our contributions. We then present our conclusion and further research directions.

8.1 Contributions

This thesis has investigated what information needs developers have when using code from other
software projects. This work has made the following contributions.

• Definitions of upstream and downstream information needs. We carried out an open-ended
questions survey with 14 developers to ask them about their upstream or downstream
information needs. In Chapter 1, we have established the emerging field of software
ecosystems as our research domain. In this domain we identify two perspectives: the
developer of an upstream project and the downstream developer using the upstream’s
project for his own.

We present our research context in Chapter 2 and summarize related studies in Chapter 3.
In Chapter 4, we set up our research plan before we investigate developers to find out what
needs they have when working in a software ecosystem in one of the two perspectives.

• Categorizations of the information needs. An analysis of their needs and their placement
in the software ecosystem context (Chapter 5).

59

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 60

• Corroborations of the information needs. A follow-up closed-ended survey with 75
developers to corroborate the findings with the initial findings (Chapter 6).

• Comparison. A comparison of the discovered needs with state-of-the-art research with the
goal of identifying opportunities (Chapter 7).

8.2 Limitations

As this study is exploratory, our results might not be representative. The basis of our research
data is given by a convenience sampled group of software developers, in addition, the qualitative
findings were inferred from a rather small group of interviewees with common background
experiences. In an open-questionnaire survey the quality of the answers can neither be controlled
nor they can guarantee completeness. Most of the results depend on the selected participants
and their opinion or experience. Therefore our findings depend on the individual efforts the
participants made. However, it is the best method to gather unprejudiced data in an unexplored
area.

The quantitative approach derives questions that are related to the qualitative approach but
there are several Likert items with only one question testing a need. To truly validate the support
for one need one must ask more questions to capture all its facets. To avoid an overloaded
questionnaire we limited the number of questions. Further investigation is required, for example
by conducting semi-structured interviews to confront developers for more clarity.

We tried to avoid acquiescence bias by asking only unprejudiced questions. However, we
neglected to balanced key all Likert items [51]. This hinders any further statistical analysis, since
we cannot separate acquiescence bias from actual agreement.

8.3 Conclusions

This thesis aimed to identify the information needs of software developers working in a software
ecosystem, and we have seen that upstream and downstream developers have divergent needs.
The reported needs and their practices do not align with each other. In a world where code reuse
is becoming the norm via dependencies on third-party libraries, and any non-trivial project has
usually a large number of dependencies, we observe strong disparities between the reported needs
in this context and the reported practices.

RQ1 & RQ2 What are the information needs of a software developer working in a software
ecosystem context? Why are these information needs for developers important?

Downstream developers are mostly aware during the library selection decision in the first
place. As our participants reported they invest enough time before choosing the right one. This is
essential since they have to ensure the liveness of their project and estimate what impacts they
have on changes. A second criterion is how adoptable is a library? Real contextual sample code
and documentation are the identified needs. The third is the most important one. Every software
project co-evolves with the other projects in its ecosystem. Therefore downstream developers

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 61

need to know how these changes can be monitored and what are the indirect dependencies, i.e.,
does the library depend on other upstreams?

There are common tools that provide basic needs for upstream developers, such as user and
contributor base, and overall project statistics to the track number of downloads. We have seen
that their needs demand a deeper knowledge of their code usage such as API statistics. After all
they are willing to support their clients. In addition, they have to carefully decide where to invest
maintenance therefore they need to know what part of their code is highly used or not used at all.
In the qualitative part we found the need about strengthening self-esteem and previous research
has confirmed that the general reputation of a developer in the web is used as a crucial criterion
whether to use a library or not [37]. Nevertheless we believe that the foremost motivation is to
provide downstream compatibility. This was validated by testing the statements in the Likert
survey.

RQ3 How do upstream and downstream developers currently obtain the information they need?

Despite the wide range of available tools for software developers, they fail to fully support
the needs when working across projects in software ecosystems. Developers must understand
a software project therefore detailed information that tracks single software components from
API changes to overall project dependencies. Such a working tool for distributed software
development does not yet exist and asks for automated information interchange mechanism. From
our results software requirements for a monitoring tool can be gathered.

8.4 Future Work

We suggest the following subjects for future work.

1. Requirements for a software ecosystem architecture that supports ecosystem aware tools.

2. Monitoring a software ecosystem asking for dynamic information in real-time. The classic
use of machine learning techniques may not be very helpful since most classifiers have to
get trained and validated.

3. Providing an infrastructure that interchanges upstream and downstream information needs,
e.g., research studies with cloud-based infrastructures.

4. Provide for each information need an appropriate technology including all aspects for
distributed development. For example, the vast amount of data requires advanced databases
(NoSQL) such as graph databases, key-value based, column-oriented database. Are they a
good solution for software ecosystem development?

5. Understanding semantic information and structured data.

Appendices

62

A
Open Coding

Open coding codes of the open-questionnaire answers from the qualitative survey from Chapter 4
(Figure 4.3, page 31).

63

APPENDIX A. OPEN CODING 64

A.1 Upstream answers from Question 2.1 to 2.3

Table A.1: 2.1 What do you most want to know about the use of your library or framework in
your ecosystem?

Participant Free text answer Code
A A heat-map over the code would be fun, but in the

end probably not that useful (see below).
Number of downloads and project activity. I like
to know what people build with my frameworks

- downstream projects

B Usage statistics. Think of Google analytics. Which
API methods are called how often and which data
is passed to them and how often do they fail with
an error.

- API usage details, runtime statis-
tics

C I’d like to see and hear the musical projects people
are creating with the software. It would be cool
to have some kind of standard format that people
would use that could then easily be scraped and
compiled.

- downstream projects

D The number of forks and watches is useful to know. - forked projects
It gives a rough idea of the size of the potential
contributor base (for forks) and user base (for
watches).

- downstream projects

E Variation of lint rules in my projects along the
project history

- code convention compliance

F Who is using it in what context. - downstream projects
- API usage details

G - (no answer)
H - (no answer)
I Who is using it, for what reasons? In which envi-

ronment? (production or development?). In which
kind of app? (research, businness, etc). Which
were the problems/limitations they found.

- downstream projects

J Users, use cases - API usage details, forked projects
K what is used - API usage details
L - which parts of the code are actively used? - API usage details

- what is the public api? - forked projects
- How many active users do I have?
- professional vs. university / hobby

M - (no answer)
N It would be cool to see if users use it in a different

way
- API usage details

APPENDIX A. OPEN CODING 65

Participant Answer Code
A I primarily write code for my own needs. All I

wrote is because I needed it.
It is a good motivation and helps the self-
esteem if a lot of people like my code and
build cool stuff on top of it.

- vanity / strengthening self-
esteem

B To conserve my resources. If people don’t use
a method or, a whole feature of the API, why
maintain it?

- managing resources and effort

C Github already tells the interesting stuff. Who,
what, where, when.

-

D - (no answer)
E - (no answer)
F I want to know my clients to know how the

library is being used and to assess the impact
of possible changes.

- maintaining downstream com-
patibility

G - (no answer)
H - (no answer)
I Probably because the only way to improve

something is to know the existing problems
and to know how it is expected to work

- maintaining downstream com-
patibility

J Gives inspiration and hints where to orient the
project’s evolution

- strengthening self-esteem

K To know where is the impact points when I
modify my source code

- maintaining downstream com-
patibility

L - to be able to refactor the code managing resources
- keep used APIs competitive / combative
- clean up dead code

M - (no answer)
N They basically mail me. I didn’t develop this

framework by looking the needs of the users.
The only user was me. So I developed it for
my own needs and then I released it.

own vision / strengthening self-
esteem

Table A.2: 2.2 Why would that be interesting to know?

APPENDIX A. OPEN CODING 66

Participant Answer Code
A Infer from the mailing lists and from the bug

reports. Collect links to users.
- set up mailing lists

Number of downloads, project activity is avail-
able on squeaksource.com. GA tracking of
project websites.

- repository analytics

Observe twitter and blogs. Conferences. - social media
B Nothing. Well, guesstimation. -
C github - repository analytics
D It is provided by github. - repository analytics
E Using lint -
F I am monitoring the RSS of SqueakSource. - monitoring ecosystem commits

I am monitoring the corresponding mailing
lists.

- set up mailing lists

G Google it
H - (no answer)
I mailing lists - set up mailing lists
J Talk at ESUG, mailing list, present on a few

IRC channels
- set up mailing lists

K Nothing, I have not enough users. -
L None -
M - (no answer)
N - (no answer)

Table A.3: 2.3 What do you currently do to obtain that information, if anything?

APPENDIX A. OPEN CODING 67

APPENDIX A. OPEN CODING 68

A.2 Downstream answers from Question 3.1 to 3.3

Participant Answer Code
A Is the license compatible with ours? availability

and support, comparison with similar frameworks.
- license type

- available public support
- comparison with similar upstreams

B When doing a technology decision: Are they popu-
lar enough to find support on the web in blogs and
on Stackoverflow? Are they still maintained? If
yes, who maintains them? How likely are they to
fix bugs and to respond to feature requests.

- available public support, imple-
mentation quality

When using them I am basically happy with good
API documentation and an active channel in IRC.

- documentation

C I’d like to see example code extracted from other
projects using the same libs that corresponds to
functions I’m trying to figure out how to use.

- real contextual sample code

D - (no answer)
E Whether they work or not - implementation quality

Whether they are intensively maintained. Whether
they are bugs that left unresolved for a long time

- available public support

Which of my projects may be impacted by some
update of Pharo

- monitoring upstream changes

F Who changed what. - monitoring upstream changes
G Being scientific software - statistical packages, lin-

ear algebra routines, and so on, I need to know
when and how to use them

- documentation

H How to use the library - documentation
I How it works. What can I do with it. What is the

software license.
- license type

J How to get / install / use them, how to fix or report
problems, how to contact the maintainers

- available public support

K What has changed since the last time I loaded it. - monitoring upstream changes
L Does the current version work with my code that

is now using an older version? Does the current
version run on the version of the system I plan to
use?

- compatibility with other systems

Do people fix a lot of bugs? Do people report a lot
of bugs?
Does the license work with mine? - license type

M API documentation, design documents. - documentation
N Upstream developer should provide examples be-

cause then - a lot of my time I use the framework
with pure implementation and examples so what
you do is just go into the wild, the internet, looking
for how other people use the framework.

- real contextual sample code

Documentation that expose connections between
high-level elements like architectural components,
between packages, how they are connected because
what methods set in the classes of the packages
invoke each other

- documentation

If a new version has deprecated some methods they
have a nice way to alert me a method changed or
deprecated.

- monitoring upstream changes

Table A.4: 3.1 What do need to know about the libraries or frameworks that you are using?

APPENDIX A. OPEN CODING 69

Participant Answer Code
A Use in commercial projects. -
B To make sure there’s users and to make sure there’s

support.
For example, JExample uses Junit 4 but later I
learned that less than 5% of all users of JUnit use
version 4 and all others still use version 3. So new
we are stuck with a bad choice.

- choosing the right upstream, influ-
encing an upstream

C To spend less time figuring out how to use new
libraries.

- API understanding

D - (no answer)
E To see whether I can construct on the libraries or

not, and to see if the change was performed by
someone I trust.

- API understanding, keeping up
with upstream changes

To know whether I have to update my projects or
no.

- keeping up with upstream evolu-
tion

F I am interested in what the change affected. - estimating the impact of changes
G I want to know when to use what - API understanding
H If something has improved in the new releases - keeping up with upstream evo-

lution, estimating the impact of
changes

I because if I don’t know how to use it after one hour
I throw it away. I won’t look one whole day into
its code just to see how to use it.

- API understanding, choosing the
right upstream, keeping up with up-
stream evolution

J Sometimes I need to collaborate and influence de-
sign of frameworks I use, and to ensure I can
progress even if maintainers I depend on are not
responsive

- keeping up with upstream evolu-
tion, influencing an upstream

K To know if my source code is broken before run-
ning tests

L To be able to quickly use the API, planning my
future, and to make sure my system runs

- API understanding, keeping up
with upstream evolution

M To be able to use it - API understanding
N How much time it takes me to adapt my code to a

new version of the framework.
- estimating the impact of changes

Table A.5: 3.2 Why is that good to know?

APPENDIX A. OPEN CODING 70

Participant Answer Code
A Check website - searching the Internet

Source code
B I look at the most popular tags on Stackoverflow

and pick that library.
- searching the Internet

C Play at the REPL and ask questions to the mailing
list or google.

- monitoring news, searching the In-
ternet

D - (no answer)
E Ask the Pharo mailing list - monitoring news

Use unit tests - unit tests
F I am monitoring the RSS of SqueakSource. - monitor ecosystem statistics

I am building regularly to ensure that at least things
still work (continuous integration).

- continuous integration

G Google it, ask on the mailing list - searching the Internet, monitoring
news

H I visit websites of these libraries - searching the Internet
I read as much as I find in internent, ask in mailing

lists, check class comments
- searching the Internet, monitoring
news

J I ask the developers directly, via mail. - monitoring news
K Update manually. - continuous integration
L continuous integration - continuous integration
M I google it. - searching the Internet
N search the Internet - searching the Internet

Table A.6: 3.3 What do you currently do to obtain that information, if anything?

B
Likert items survey

Screenshots of the original Likert items survey.

71

APPENDIX B. LIKERT ITEMS SURVEY 72

APPENDIX B. LIKERT ITEMS SURVEY 73

APPENDIX B. LIKERT ITEMS SURVEY 74

APPENDIX B. LIKERT ITEMS SURVEY 75

APPENDIX B. LIKERT ITEMS SURVEY 76

C
Results of Likert survey

C.1 Raw data

• Table C.1 and Table C.2 contain the raw data from the Likert items survey.

• Figure C.1 and Figure C.2 visualize the data as Likert items barcharts.

77

APPENDIX C. RESULTS OF LIKERT SURVEY 78

Nr Statement (CodeID) Strongly
Disagree

Disagree Neither Agree Strongly
Agree

Total

Q1.1 The usability of my API. (UN-2) 1 (2.2%) 0 (0%) 2 (4.3%) 15 (32.6%) 28 (60.9%) 46 (100%)
Q1.2 Which API methods are called. (UN-2) 1 (2.2%) 5 (10.9%) 2 (4.3%) 19 (41.3%) 19 (41.3%) 46 (100%)
Q1.3 How the library is being used to asses the impact on

changes. (UN-2)
0 (0%) 3 (6.7%) 7 (15.6%) 24 (53.3%) 11 (24.4%) 45 (100%)

Q1.4 Unused methods and functionalities. (UN-2) 1 (2.2%) 3 (6.5%) 14 (30.4%) 16 (34.8%) 12 (26.1%) 46 (100%)
Q1.5 How often a method gets called. (UN-4) 1 (2.2%) 9 (19.6%) 7 (15.2%) 19 (41.3%) 10 (21.7%) 46 (100%)
Q1.6 API failure statistics. (UN-4) 3 (6.8%) 6 (13.6%) 8 (18.2%) 17 (38.6%) 10 (22.7%) 44 (100%)
Q1.7 What parameters the methods pass. (UN-4) 2 (4.4%) 8 (17.8%) 11 (24.4%) 17 (37.8%) 7 (15.6%) 45 (100%)
Q1.8 Highly often used methods are better maintained by

me. (UN-2 / UM-3)
1 (2.3%) 9 (20.5%) 10 (22.7%) 13 (29.5%) 11 (25%) 44 (100%)

Q1.9 The order in which the API methos are called. (UN-2) 2 (4.3%) 16 (34.8%) 14 (30.4%) 11 (23.9%) 3 (6.5%) 46 (100%)
Q1.10 If users follow the coding conventions I set. (UN-5) 1 (3.3%) 8 (26.7%) 10 (33.3%) 8 (26.7%) 3 (10%) 30 (100%)
Q1.11 Know what people build with my framework. (UN-1) 0 (0%) 0 (0%) 5 (10.9%) 26 (56.5%) 15 (32.6%) 46 (100%)
Q1.12 Know whether people migrate to the latest version of

my library. (UN-1)
1 (2.2%) 1 (2.2%) 13 (28.3%) 17 (37%) 14 (30.4%) 46 (100%)

Q1.13 Know who tracks my project. (UN-1) 2 (4.3%) 5 (10.9%) 7 (15.2%) 22 (47.8%) 10 (21.7%) 46 (100%)
Q1.14 Know the number of downloads. (UN-1) 1 (2.2%) 5 (10.9%) 10 (21.7%) 16 (34.8%) 14 (30.4%) 46 (100%)
Q1.15 Know all my downstream projects. (UN-1) 4 (8.9%) 8 (17.8%) 16 (35.6%) 12 (26.7%) 5 (11.1%) 45 (100%)
Q1.16 Know if many people like my code. (UN-3) 0 (0%) 2 (4.3%) 10 (21.7%) 22 (47.8%) 12 (26.1%) 46 (100%)
Q2.1 I want to provide help to clients. (UM-2) 0 (0%) 1 (2.2%) 4 (8.7%) 30 (65.2%) 11 (23.9%) 46 (100%)
Q2.2 I want to notify my clients about code changes and

arising impacts. (UM-2)
0 (0%) 0 (0%) 8 (17.8%) 27 (60%) 10 (22.2%) 45 (100%)

Q2.3 I follow my own vision of the project. (UM-3 / UM-1) 0 (0%) 4 (9.1%) 9 (20.5%) 21 (47.7%) 10 (22.7%) 44 (100%)
Q2.4 It keeps me motivated if a lot of people like my code.

(UM-1)
1 (3.2%) 2 (6.5%) 6 (19.4%) 14 (45.2%) 8 (25.8%) 31 (100%)

Q2.5 It helps the self-esteem if a lot of people like my code.
(UM-1)

3 (10%) 1 (3.3%) 11 (36.7%) 11 (36.7%) 4 (13.3%) 30 (100%)

Q3.1 I follow Mailing lists. (UP-1) 5 (11.1%) 0 (0%) 6 (13.3%) 17 (37.8%) 17 (37.8%) 45 (100%)
Q3.2 I follow Social media. (UP-4) 20 (44.4%) 5 (11.1%) 6 (13.3%) 9 (20%) 5 (11.1%) 45 (100%)
Q3.3 I use Web analytics (e.g. Google Analytics). (UP-2) 24 (54.5%) 4 (9.1%) 7 (15.9%) 6 (13.6%) 3 (6.8%) 44 (100%)
Q3.4 I use RSS Feed Notifications. (UP-3) 29 (67.4%) 3 (7%) 8 (18.6%) 1 (2.3%) 2 (4.7%) 43 (100%)
Q3.5 I track the clones of my framework. (UP-2) 6 (13%) 13 (28.3%) 11 (23.9%) 11 (23.9%) 5 (10.9%) 46 (100%)

Table C.1: Upstream results from Likert items survey

Nr Statement (CodeID) Strongly
Disagree

Disagree Neither Agree Strongly
Agree

Total

Q4.1 Whether the project’s code works. (DN-5) 0 (0%) 0 (0%) 0 (0%) 17 (24.3%) 53 (75.7%) 70 (100%)
Q4.2 How intensively the project is maintained. (DN-2) 0 (0%) 1 (1.4%) 5 (7.1%) 27 (38.6%) 37 (52.9%) 70 (100%)
Q4.3 Pros and cons of related frameworks/libraries. (DN-

8)
0 (0%) 1 (1.4%) 10 (14.5%) 41 (59.4%) 17 (24.6%) 69 (100%)

Q4.4 How responsive the support team is. (DN-2) 2 (2.9%) 5 (7.1%) 19 (27.1%) 34 (48.6%) 10 (14.3%) 70 (100%)
Q4.5 The software license. (DN-4) 2 (2.9%) 9 (13%) 10 (14.5%) 25 (36.2%) 23 (33.3%) 69 (100%)
Q4.6 The popularity of the project. (DN-2) 1 (1.4%) 6 (8.6%) 22 (31.4%) 31 (44.3%) 10 (14.3%) 70 (100%)
Q4.7 Who are the upstream developers. (DN-2) 7 (9.9%) 9 (12.7%) 32 (45.1%) 20 (28.2%) 3 (4.2%) 71 (100%)
Q4.8 Whether it takes more than an hour to get started.

(DN-5)
4 (5.6%) 18 (25.4%) 20 (28.2%) 26 (36.6%) 3 (4.2%) 71 (100%)

Q4.9 Code examples help to learn a project’s desgin. (DN-
7)

0 (0%) 0 (0%) 2 (2.9%) 38 (55.9%) 28 (41.2%) 68 (100%)

Q4.10 Up-to-date API and design documentation. (DN-3) 0 (0%) 0 (0%) 3 (4.4%) 40 (58.8%) 25 (36.8%) 68 (100%)
Q4.11 Details about which methods and classes have

changed. (DN-1)
0 (0%) 1 (1.5%) 15 (22.4%) 35 (52.2%) 16 (23.9%) 67 (100%)

Q4.12 I want to know what the changes have an impact on
before I update to the latest version. (DN-6)

1 (1.4%) 2 (2.9%) 12 (17.1%) 41 (58.6%) 14 (20%) 70 (100%)

Q4.13 I only want to get notified on code changes when my
code is affected. (DN-1)

5 (7.4%) 10 (14.7%) 31 (45.6%) 17 (25%) 5 (7.4%) 68 (100%)

Q5.1 I avoid code adaptation if the estimated time is exces-
sive. (DM-5)

0 (0%) 7 (10.4%) 15 (22.4%) 32 (47.8%) 13 (19.4%) 67 (100%)

Q5.2 It is painful to track dependencies among packages.
(DM-1)

1 (1.4%) 13 (18.6%) 16 (22.9%) 30 (42.9%) 10 (14.3%) 70 (100%)

Q5.3 I stay with the running version as long as possible.
(DM-5)

4 (5.9%) 22 (32.4%) 16 (23.5%) 15 (22.1%) 11 (16.2%) 68 (100%)

Q5.4 I am curious if code changes are made by someone I
trust. (DM-2)

12 (17.4%) 11 (15.9%) 27 (39.1%) 12 (17.4%) 7 (10.1%) 69 (100%)

Q5.5 I use only a widely used version of a library. (DM-3) 2 (2.9%) 11 (15.9%) 16 (23.2%) 29 (42%) 11 (15.9%) 69 (100%)
Q6.1 Searching for blog posts and tutorials. (DP-2) 0 (0%) 3 (4.5%) 5 (7.5%) 27 (40.3%) 32 (47.8%) 67 (100%)
Q6.2 Building regularly to ensure things still work. (DP-3) 0 (0%) 5 (7.5%) 14 (20.9%) 26 (38.8%) 22 (32.8%) 67 (100%)
Q6.3 Subscribing to mailing lists to keep up-to-date. (DP-

1)
2 (2.9%) 6 (8.8%) 11 (16.2%) 34 (50%) 15 (22.1%) 68 (100%)

Q6.4 Monitoring commits and activities of a project repos-
itory. (DP-1)

5 (7.4%) 9 (13.2%) 26 (38.2%) 21 (30.9%) 7 (10.3%) 68 (100%)

Q6.5 Tracking bug reports. (DP-2) 1 (2.2%) 3 (6.7%) 10 (22.2%) 12 (26.7%) 19 (42.2%) 45 (100%)
Q6.6 Using unit tests to understand how to use an upstream

project. (DP-4)
11 (25%) 3 (6.8%) 5 (11.4%) 11 (25%) 14 (31.8%) 44 (100%)

Q6.7 I keep up to date with my upstream projects as soon
as new changes are released. (DP-3)

0 (0%) 6 (13.3%) 13 (28.9%) 15 (33.3%) 11 (24.4%) 45 (100%)

Table C.2: Downstream results from Likert items survey

APPENDIX C. RESULTS OF LIKERT SURVEY 79

No. of Responses
R

ow
 C

ou
nt

 T
ot

al
s

If users follow the coding conventions I set. (UN−5)

The order in which the API methods are called. (UN−2)

Highly often used methods are better maintained by me. (UN−2 / UM−3)

What arguments a method is typically invoked with. (UN−4)

API failure statistics. (UN−4)

How often a method gets called. (UN−4)

Unused methods and functionalities. (UN−2)

How the library is being used to asses the impact on changes. (UN−2)

Which API methods are called. (UN−2)

The usability of my API. (UN−2)

30

46

44

45

44

46

46

45

46

46

Downstream code usage

Know all my downstream projects. (UN−1)

Know the number of downloads. (UN−1)

Know who tracks my project. (UN−1)

Know whether people migrate to the latest version of my library. (UN−1)

Know if many people like my code. (UN−3)

Know what people build with my framework. (UN−1)

45

46

46

46

46

46

Downstream project statistics

It helps the self−esteem if a lot of people like my code. (UM−1)

 It keeps me motivated if a lot of people like my code. (UM−1)

I follow my own vision of the project. (UM−3 / UM−1)

I want to notify my clients about code changes and arising impacts. (UM−2)

I want to provide help to clients. (UM−2)

30

31

44

45

46

Motivations

I use RSS Feed Notifications. (UP−3)

I use Web analytics (e.g. Google Analytics). (UP−2)

I follow Social media. (UP−4)

I track the clones of my framework. (UP−2)

I follow Mailing lists. (UP−1)

20 0 20 40

43

44

45

46

45

Practices

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure C.1: Plotted Likert items of upstream answers

APPENDIX C. RESULTS OF LIKERT SURVEY 80

No. of Responses
R

ow
 C

ou
nt

 T
ot

al
s

Who the upstream developers are. (DN−2)

Whether it takes more than an hour to get started. (DN−5)

The popularity of the project. (DN−2)

The software license. (DN−4)

How responsive the support team is. (DN−2)

Pros and cons of related frameworks/libraries. (DN−8)

How intensively the project is maintained. (DN−2)

Whether the project's code works. (DN−5)

71

71

70

69

70

69

70

70

A. Selection

Up−to−date API and design documentation. (DN−3)

Code examples help to learn a project's desgin. (DN−7)

68

68

B. Adaptation

I only want to get notified on code changes when my code is affected. (DN−1)

Details about which methods and classes have changed. (DN−1)

I want to know the impact before I update to the latest version. (DN−6)

68

67

70

C. Co−Evolution

I am curious if code changes are made by someone I trust. (DM−2)

I stay with the running version as long as possible. (DM−5)

It is painful to track dependencies among packages. (DM−1)

I only use a widely used version of a library. (DM−3)

 I avoid code adaptation if the estimated time is excessive. (DM−5)

69

68

70

69

67

Motivations

Using unit tests to understand how to use an upstream project. (DP−4)

I update as soon as changes are released on upstream projects. (DP−3)

Tracking bug reports. (DP−2)

Monitoring commits and activities of a project repository. (DP−1)

Subscribing to mailing lists to keep up−to−date. (DP−1)

Building regularly to ensure things still work. (DP−3)

Searching for blog posts and tutorials. (DP−2)

40 20 0 20 40 60

44

45

45

68

68

67

67

Practices

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure C.2: Plotted Likert items of downstream answers

APPENDIX C. RESULTS OF LIKERT SURVEY 81

C.2 Additional questions and answers

Reference ID to a participant’s free text answer: LS-01 – LS-75.

Additional questions for upstream developers

Are there any other information you need to know?

• Future environment system (LS-01)

• Bug Reports (LS-07)

• We often have had issues due to semantic changes in upstream projects that we depend on.
(LS-15)

• API Binary compatibility (source level, binary) (LS-17)

• Stability and reliability of the library/framework (LS-26)

• If people are making downstream fixes it would be helpful to know this so that can be
merged. (LS-42)

• I need to keep the API stable to avoid impacting client packages. (LS-68)

What else do you need to know about your clients?

• Better bug tracking. (LS-10)

• Which of them are from industry and might be interested in supporting the project finan-
cially? (LS-15)

• Do they used the library/framework in open source or proprietary applications (LS-26)

• The “like my code” feels odd. A lot of people use frameworks without even looking at the
code. Sure, I try to make my code as obvious as possible. I hope people trust my code
more because we are using regression testing and continuous integration but that is process
and not code. (LS-30) (Continuous integration, core category: Process)

• The questions seem to assume a “passive pull” approach to relating to clients. I would like
my clients to communicate their needs directly with the project. (LS-42)

• business rules and processes (LS-43)

• Just feedback to improve or extend (LS-53)

• I like to know how people are using my code in order to make the framework better. It’s not
just about minimizing the impact of changes, but also about seeing what’s awkward, what
features are used in conjunction and which independently, which areas are performance
sensitive etc. (LS-57)

APPENDIX C. RESULTS OF LIKERT SURVEY 82

Additional questions for downstream developers

Are there any other information you need to know?

• - Whether the library uses the latest standards/features. Not terribly important but a factor
none the less. For example the use of namespaces in PHP. (Coding convention respect)

- Whether the library is written in OO or whatever methodology used in the project. Using
a procedural library in an OO project makes little sense. (Coding convention respect, new:
Methodology)

- Codebase Quality The library should use not only solve a problem. It should do so using
best practices and allow for extension. (LS-2)

• Is it open-source? Closed source libraries I cannot build by myself meaning it can cease
working on a new platform, and bugs cannot be fixed by myself.

Is it C (as opposed to C++)? C++ implementations by different compilers are in great flux
meaning that a C++ library can fail to compile or work properly in a new compiler or in a
new compiler version.

The quality of the library. Can it fail compiling on new platforms/compiler versions?
How many bugs does it have? Does it contain subtle multithreading bugs? Incidentally,
the answer to the latter question is “yes” for a surprisingly large number of widely used
libraries. Alas, these kind of bugs only appear when running the library in a massively
parallel way and it seems both the library developers and most of the users typically lack
the interest or the means for doing this. What I would like to see in a library descriptions is
something like e.g., “tested for heavy parallel use on an 8-core CPU” (more cores reveal
exponentially more bugs). (LS-7)

• I also analyze the code of the project itself. Looking at the use of whitespace and what
sort of comments they write tells me a lot about the programmer who wrote the code and
whether or not they are any good at writing software. If their methodologies line up with
mine, then they are a solid coder and the library/framework can be trusted to some extent.
(LS-11)

• I evaluate how versatile the library is. Is ramping up on this library likely to help me in
future projects? (LS-14)

• How welcoming / open to discussion are the developers (it really makes a difference when
the developer takes questions as opportunities to enhance their project rather than answer
“no it’s like that deal with it”).

What communication canals are there (IRC, mailing list, archives, issue tracker...).

How organized are the developers or the community (is there a process, is the process easy
to get into / easy to recall, how connected/dispersed are the tools) (LS-21)

• What is the overall project use volume, by major version. As an example, in the Drupal
world, some very major subsystem within Drupal got a 90% usage reduction between the 6

APPENDIX C. RESULTS OF LIKERT SURVEY 83

and 7 major versions because a better architectured solution was created for 7 (and actually
moved to core in 8): so overall usage numbers are misleading because they lead new users
to believe that this solution is still very much the reference while it no longer is. (LS-22)

• Some of the answer differ a lot in their answers when considering closed source li-
braries/frameworks and open source libraries/frameworks.

For example, when i consider a closed source library it is very important for me to know
more about the company behind the library. When i am considering an open source library
i am less interested in the identity of the people - more in the code quality and the level of
activity. (LS-25)

• Yes. If the software belongs to a closed group of people. Because they will be making
noise around it. (LS-39)

• Prebuilt binaries available? – makes it easier to evaluate.
What build system it uses? – makes it easy to know if it will integrate with project.
Does it build cleanly? on which platforms?
What compilers are supported? what versions?
Which compilers/platforms/build environments do the maintainers use? – more often that
not, it is the build system not the code that doesn’t work. Knowing how much work is
involved in getting a project to build with a specific compiler is important. (LS-42)

• demand driven info generated... (LS-43)

• As a user, I want to be sure that I can find all the information I need about possible
compatibility problems, quirks, best practices etc.

As a developer (and user in certain cases), I want to be certain that the community is
friendly, accepts noobs and responds fast. (LS-48)

• I would need to know of existing bugs and / or limitations of usage (by design) to be able
to asses if the framework can be used for my application. (LS-51)

• Knowing what startups are using it could be interesting. (LS-53)

• test on the framework. It is important to ensure that the framework that is chosen has been
tested or tested properly. (LS-60)

• Q 7: Not “popularity” so much as “usage by others” who are willing to share advice.
(LS-68)

• further information and demos on the framework available? Agree (LS-69)

Additional question for upstream and downstream developers

Have we missed a key point in your opinion? Any inputs you want to share?

• It feels like this survey was constructed on a biased nature from experience with some
specific open source projects. One of the most difficult things to do is to “vet” programmers

APPENDIX C. RESULTS OF LIKERT SURVEY 84

and projects. Everyone posting to GitHub and other open source projects are unknowns and
the quality of the code that is posted varies greatly. There needs to be a vetting system to
help filter bad programmers to the bottom of the barrel where they belong. I’m constantly
sifting through bad or at least ill-conceived code to get to the good stuff.

A good programmer can also produce a bad project so not only the programmer needs to
be vetted but the project itself. GitHub and other open source software repos encourage
posting whatever, which is fine for polished and supported software, not so fine for newbie
stuff, which tends to lead to dead projects.

The other problem is dead projects that someone else wants to take over and is willing to
maintain at a similar or superior level of quality to the original author. Vetting programmers
would allow someone of similar or higher caliber to take over a project that they are
interested in maintaining.” (LS-13)

• 5.1: This somehow leaves Linux Distributions/FreeBSD ports out of the picture. In many
cases they select the version of the Framework my C software depends on. (LS-30)

• I think you’ve under-represented human support issues. Such as being able to communicate
with users and developers of a framework. This was a big issue for example on the [deleted]
mailing list where the developers stopped answering questions for over 1 year.

But this depends on the documentation and ease of use: some frameworks are so easy
to use you barely need to read a quick-start document, others are very difficult to learn –
sometimes this is because of an over complicated API, other times its because the concepts
are complicated.

Availability of very good MSDN documentation for Microsoft APIs means that it is easy to
learn them without access to developers. On the other hand, for some open source projects
it is impossible to learn the API or know the future of development without access to
developers. Another thing that would be useful is to crowd-source defect rates. I have used
a certain very common application framework that has experienced massive increase in
defect rate over the past 2 years. It would be nice to see this monitored by an independent
source. (LS-42)

• I write open source software because I need it. The issues you are questioning are all
negative but secondary issues. The positive secondary issues are that others often contribute
useful code. (LS-49)

• I usually choose self contained frameworks and avoid interdependencies (I’m an OS X /
iOS developer, not in a linux / package-management environment).

Also, I mostly just download the code, compile into a binary and include / link agains that.
Hardly ever do I check out a repository and keep it updated, because: a) I’m usually using
a different SCM than the project I want to use, and b) building the library as part of my
regular project build it too time consuming. (LS-51)

• Stable APIs are required. New features may be added, but any release must not break
existing client packages. (LS-68)

Bibliography

[1] Jaap Kabbedijk and Slinger Jansen. Steering insight: an exploration of the Ruby software
ecosystem. In Software Business, pages 44–55. Springer, 2011.

[2] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discovering and
exploiting relationships in software repositories. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10, pages 125–134,
New York, NY, USA, 2010. ACM.

[3] Mircea Lungu, Romain Robbes, and Michele Lanza. Recovering inter-project dependencies
in software ecosystems. In Proceedings of the IEEE/ACM international conference on
Automated software engineering, pages 309–312. ACM, 2010.

[4] John W Creswell and Vicki L Plano Clark. Designing and conducting mixed methods
research. Wiley Online Library, 2007.

[5] Mircea F. Lungu. Reverse Engineering Software Ecosystems. PhD thesis, University of
Lugano, 2009.

[6] Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers react to API
deprecation?: the case of a Smalltalk ecosystem. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, page 56. ACM,
2012.

[7] Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An empirical study into
evolution problems in Java programs caused by library upgrades. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pages 64–73. IEEE, 2014.

[8] Barthélémy Dagenais, Harold Ossher, Rachel KE Bellamy, Martin P Robillard, and Jacque-
line P De Vries. Moving into a new software project landscape. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1, pages 275–284.
ACM, 2010.

[9] Margaret-Anne Storey, Christoph Treude, Arie van Deursen, and Li-Te Cheng. The impact
of social media on software engineering practices and tools. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pages 359–364. ACM, 2010.

[10] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for
large systems. Communications of the ACM, 31(11):1268–1287, 1988.

85

BIBLIOGRAPHY 86

[11] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. What help do developers seek,
when and how? In Reverse Engineering (WCRE), 2013 20th Working Conference on, pages
142–151. IEEE, 2013.

[12] Jane Radatz, Anne Geraci, and Freny Katki. IEEE standard glossary of software engineering
terminology. IEEE Std, 610121990:121990, 1990.

[13] Oscar Nierstrasz and Mircea Lungu. Agile software assessment. In Program Comprehension
(ICPC), 2012 IEEE 20th International Conference on, pages 3–10. IEEE, 2012.

[14] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt. Ring: a unifying meta-
model and infrastructure for Smalltalk source code analysis tools. Computer Languages,
Systems & Structures, 38(1):44–60, 2012.

[15] Meir M Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE, 68(9):1060–1076, 1980.

[16] Meir M Lehman and Juan F Ramil. Software evolution—background, theory, practice.
Information Processing Letters, 88(1):33–44, 2003.

[17] Jeroen Ooms. Possible directions for improving dependency versioning in R. R Journal,
5(1), 2013.

[18] David G. Messerschmitt and Clemens Szyperski. Software Ecosystem: Understanding an
Indispensable Technology and Industry. MIT Press, Cambridge, MA, USA, 2003.

[19] Slinger Jansen and Michael Cusumano. Defining software ecosystems: A survey of software
platforms and business network governance. Proceedings of IWSECO, page 41, 2012.

[20] Jan Bosch. From software product lines to software ecosystems. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09, pages 111–119, Pittsburgh, PA,
USA, 2009. Carnegie Mellon University.

[21] Tom Mens and Mathieu Goeminne. Analysing the evolution of social aspects of open
source software ecosystems. In Third International Workshop on Software Ecosystems
(IWSECO-2011), pages 1–14, 2011.

[22] Jan Bosch and Petra Bosch-Sijtsema. From integration to composition: On the impact
of software product lines, global development and ecosystems. Journal of Systems and
Software, 83(1):67–76, 2010.

[23] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. A sense of community: A
research agenda for software ecosystems. In Software Engineering-Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on, pages 187–190. IEEE,
2009.

[24] Mircea Lungu, Michele Lanza, Tudor Girba, and Reinout Heeck. Reverse engineering
super-repositories. In Reverse Engineering, 2007. WCRE 2007. 14th Working Conference
on, pages 120–129. IEEE, 2007.

BIBLIOGRAPHY 87

[25] Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Romain Robbes. The small project observa-
tory: Visualizing software ecosystems. Science of Computer Programming, 75(4):264–275,
2010.

[26] Antonın Procházka, Mircea Lungu, and Karel Richta. Inter-project dependencies in Java
software ecosystems. 2012.

[27] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages 23–34, New
York, NY, USA, 2006. ACM.

[28] Thomas D LaToza. Using architecture to change code: studying information needs. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 764–765. ACM, 2006.

[29] Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,
tools and technologies: a survey. In Proceedings of the 2002 ACM symposium on Document
engineering, pages 26–33. ACM, 2002.

[30] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated software
development teams. In Proceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 344–353, Washington, DC, USA, 2007. IEEE Computer
Society.

[31] Shaun Phillips, Guenther Ruhe, and Jonathan Sillito. Information needs for integration
decisions in the release process of large-scale parallel development. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, pages 1371–1380. ACM,
2012.

[32] Slinger Jansen. How quality attributes of platform architectures influence software ecosys-
tems. In Proceedings of the 1st Workshop on Ecosystem Architectures. ACM, 2013.

[33] Chris Parnin and Spencer Rugaber. Programmer information needs after memory failure.
In Program Comprehension (ICPC), 2012 IEEE 20th International Conference on, pages
123–132. IEEE, 2012.

[34] Raymond P.L. Buse and Thomas Zimmermann. Information needs for software development
analytics. In Proceedings of the 34th International Conference on Software Engineering,
June 2012.

[35] Codebook. Microsoft Research. Website, 1996. http://research.microsoft.
com/en-us/projects/codebook/.

[36] Dominik Seichter, Deepak Dhungana, Andreas Pleuss, and Benedikt Hauptmann. Knowl-
edge management in software ecosystems: software artefacts as first-class citizens. In
Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, pages 119–126. ACM, 2010.

http://research.microsoft.com/en-us/projects/codebook/
http://research.microsoft.com/en-us/projects/codebook/

BIBLIOGRAPHY 88

[37] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in github:
transparency and collaboration in an open software repository. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative Work, CSCW ’12, pages 1277–1286,
New York, NY, USA, 2012. ACM.

[38] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller. Mining
trends of library usage. In Proceedings of the joint international and annual ERCIM
workshops on Principles of software evolution (IWPSE) and software evolution (Evol)
workshops, IWPSE-Evol ’09, pages 57–62, New York, NY, USA, 2009. ACM.

[39] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API stability
and adoption in the Android ecosystem. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 70–79. IEEE, 2013.

[40] Niko Schwarz, Mircea Lungu, and Romain Robbes. On how often code is cloned across
repositories. In Proceedings of the 2012 International Conference on Software Engineering,
ICSE 2012, pages 1289–1292, Piscataway, NJ, USA, 2012. IEEE Press.

[41] Folkman Curasi Carolyn. A critical exploration of face-to-face interviewing vs. computer-
mediated interviewing. International Journal of Market Research, 43(4):361, 2001.

[42] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. SAGE Publications Inc., 1998.

[43] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods in Human-
Computer Interaction. Wiley, 2010.

[44] Paul Cairns and Anna L. Cox. Research Methods for Human-Computer Interactions.
Cambridge University Press, 2008. Chapter 2, 7, 9.

[45] P.D.W.M.K. Trochim. Research methods. Dreamtech Press, 2003.

[46] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[47] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. Categorizing developer
information needs in software ecosystems. In Proceedings of the 2013 International
Workshop on Ecosystem Architectures, pages 1–5. ACM, 2013.

[48] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. A quantitative anal-
ysis of developer information needs in software ecosystems. In Proceedings of the 2014
European Conference on Software Architecture Workshops, page 12. ACM, 2014.

[49] Cédric Teyton, J-R Falleri, and Xavier Blanc. Automatic discovery of function mappings
between similar libraries. In Reverse Engineering (WCRE), 2013 20th Working Conference
on, pages 192–201. IEEE, 2013.

[50] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An infrastructure for
large-scale collection and analysis of open-source code. Science of Computer Programming,
79:241–259, 2014.

BIBLIOGRAPHY 89

[51] Jonathan Cloud and Graham M Vaughan. Using balanced scales to control acquiescence.
Sociometry, 1970.

	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Objective
	1.4 Thesis Outline

	2 Research Context
	2.1 Software Development
	2.1.1 Version Control Systems
	2.1.2 Centralized Development
	2.1.3 Distributed Development

	2.2 Software Evolution for Distributed Development
	2.3 Software Dependencies
	2.4 Software Ecosystems
	2.4.1 Definition
	2.4.2 Mining Software Ecosystems
	2.4.3 Example
	2.4.4 Characteristics

	2.5 Problem Definition

	3 Related Work
	3.1 Information Needs of a Software Project
	3.2 Mining Software Ecosystems
	3.2.1 Codebook - a social company-based ecosystem
	3.2.2 Seichter - social community-based ecosystem
	3.2.3 GitHub - a social coding platform ecosystem
	3.2.4 Software ecosystem visualization analysis (SPO, Softwarenaut)
	3.2.5 Mining Library Usage - choosing the right upstream version
	3.2.6 Case studies on API evolution or deprecation
	3.2.7 Cells - code clone detections across projects

	4 Research Method
	4.1 Research Study Design
	4.2 Qualitative Survey
	4.2.1 Data Collection
	4.2.2 Data Analysis

	4.3 Quantitative Questionnaire
	4.3.1 Data collection
	4.3.2 Data Analysis

	5 Qualitative Results
	5.1 Participants
	5.2 Upstream Needs
	5.2.1 Code Usage
	5.2.2 Project Statistics

	5.3 Upstream Motivation
	5.4 Upstream Practices
	5.5 Downstream Needs
	5.5.1 Selection
	5.5.2 Adoption
	5.5.3 Co-Evolution

	5.6 Downstream Motivation
	5.7 Downstream Practices
	5.8 Summary of the Findings

	6 Quantitative Results and Validation
	6.1 Background of the Respondents
	6.2 RQ1: Validation of Upstream Needs
	6.2.1 Code Usage
	6.2.2 Project statistics

	6.3 RQ1: Validation of Downstream Needs
	6.3.1 Selection
	6.3.2 Adoption
	6.3.3 Co-Evolution

	6.4 RQ2: Upstream and Downstream Motivation
	6.4.1 Upstream motivation
	6.4.2 Downstream motivation

	6.5 RQ3: Current practices
	6.5.1 Inadequate tool support

	7 Discussion
	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Limitations
	8.3 Conclusions
	8.4 Future Work

	A Open Coding
	A.1 Upstream answers from Question 2.1 to 2.3
	A.2 Downstream answers from Question 3.1 to 3.3

	B Likert items survey
	C Results of Likert survey
	C.1 Raw data
	C.2 Additional questions and answers

