
Augmenting Eclipse with Dynamic
Information

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marcel Härry
Mai 2010

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz

David Röthlisberger

Institut für Informatik und angewandte Mathematik

Further information about this work and the tools used as well as an online version of this
document can be found under the following addresses:

Marcel Härry
mhy@students.unibe.ch
http://scg.unibe.ch/research/senseo

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

http://scg.unibe.ch/research/senseo
http://scg.unibe.ch/

iii

Copyright ©2010 by Marcel Härry

Some Rights Reserved

This work is licensed under the terms of the Creative Commons Attribution – Noncommercial-
No Derivative Works 2.5 Switzerland license. The license is available at http://
creativecommons.org/licenses/by-nc-nd/2.5/ch/

Attribution – Noncommercial – No Derivative Works

You are free:

To Share – to copy, distribute and transmit the work

Under the following conditions:

Attribution – You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

Noncommercial – You may not use this work for commercial pur-
poses.

No Derivative Works – You may not alter, transform, or build upon
this work.

With the understanding that:

Waiver – Any of the above conditions can be waived if you get permission from the
copyright holder.

Other Rights – In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

Notice – For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to the web page http:
//creativecommons.org/licenses/by-nc-nd/2.5/ch/.

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/

iv

Abstract

Traditional IDEs such as Eclipse provide a broad range of supportive tools and views to
manage and maintain software projects. However, they provide developers mainly with
static views on the source code neglecting any information about runtime behavior. As
object-oriented programs heavily rely on polymorphism and late-binding, it is difficult
to understand such programs only based on their static structure. Developers therefore
tend to gather runtime information with debuggers or profilers to reason about dynamic
information. Information gathered using such procedures is volatile and cannot be
exploited to support developers navigating the source space to analyze and comprehend
the software system or to accomplish other typical software maintenance tasks.
In this thesis we present an approach to augment static source perspectives of Eclipse
with dynamic information such as precise runtime type information or memory and object
allocation statistics. Dynamic information can leverage the understanding for the behavior
and structure of a system. We rely on dynamic data gathering based on aspects to analyze
running Java systems.
To integrate dynamic information into Eclipse we implemented a plugin extending the
Eclipse Java Development Toolkit (JDT) called Senseo. This plugin augments existing
IDE tools of Eclipse and several standard views of JDT such as the Package Explorer with
dynamic information. Besides these enrichments, Senseo provides several visualizations
such as an overview of the collaboration within the software system. We comprehensively
report on the efficiency of our approach to gather dynamic information. To evaluate our
approach we conducted a controlled experiment with 30 professional developers. The
results show that the availability of dynamic information in the Eclipse IDE yields for
typical software maintenance tasks a significant 17.5% decrease of time spent while
significantly increasing the correctness of the solutions by 33.5%.

v

vi

Acknowledgements

The presented work was completed with the support of many people. I would like to
express my gratitude to everyone that supported me during the time I was working on
this thesis. Everyone of you helped me to complete this thesis.

David Röthlisberger supervised me during this thesis and his ideas, input and motivation
kept me on track. This work would not have been possible without him. I enjoyed the
various discussions we had many times over lunch as well as appreciated the constructive
critic he gave on my thesis.

Prof. Oscar Nierstrasz for letting me write my thesis in the Software Composition
Group (SCG). His inspirational lectures revealed many interesting aspects of software
engineering and kept me interested in this field.

All the SCG staff and students for their advice and contributions to this work and the great
time we had. Having lunch together or working at the SCG student’s pool was always
fun and interesting.

Special thanks goes to everyone that participated in the controlled experiment and shared
some of their spare time to validate our approach and giving further input and ideas.

Also all my friends that did not see me a lot in the last months, but still supported me in
finishing my work and taking the load off of me. I appreciate your unconditional support
and this thesis would not have been finished without you!

My parents and my brother for all their support in the last years and enabling me to study
at the university. I would not be anywhere near here without your ongoing support!

Thank you.

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Shortcomings of Traditional IDE Perspectives 1
1.2 Senseo - Augmenting Eclipse with Dynamic Information 3
1.3 Contributions . 5
1.4 Structure of the Thesis . 6

2 State of the Art 7
2.1 Traditional IDEs . 7
2.2 Dynamic Analysis . 8
2.3 IDE Enhancements and Visualizations 10
2.4 Controlled Experiments in Software Engineering 15
2.5 Summary . 17

3 Motivation 19
3.1 Reasoning About Complex and Extensible Frameworks 19
3.2 Understanding Abstract Class and Interface Hierarchies 21
3.3 Runtime Types . 21
3.4 Invocation Count . 22
3.5 Assessing Runtime Complexity . 22
3.6 Understanding Execution Flow . 23
3.7 Persistent Integration into IDEs . 23
3.8 Summary . 23

4 Gathering Dynamic Information 25
4.1 Dynamic Analysis . 25
4.2 Categories of Dynamic Information 27
4.3 Performance Evaluation . 29
4.4 Summary . 30

5 Senseo - Integrating Dynamic Information in Eclipse 31
5.1 Information Gathering . 31
5.2 Information Processing . 32
5.3 Enrichments . 33

ix

x Contents

5.3.1 Dynamic Metrics Selection . 34
5.3.2 HeatMaps . 35
5.3.3 Tooltip . 36
5.3.4 Calling Context Ring Chart (CCRC) 39
5.3.5 Collaboration Overview . 39

5.4 Summary . 40

6 Validation 43
6.1 Solving the Use Cases . 43
6.2 Experimental Design . 44

6.2.1 Hypothesis . 44
6.2.2 Subjects . 45
6.2.3 Subject System and Tasks . 46
6.2.4 Experimental Procedure . 48
6.2.5 Variables and Evaluation . 49

6.3 Results . 49
6.3.1 Time Results . 50
6.3.2 Correctness Results . 52
6.3.3 Task-dependent Results . 53

6.4 Feedback . 53
6.4.1 Qualitative Feedback . 54
6.4.2 Informal Feedback . 55
6.4.3 Observations . 55
6.4.4 Feedback Conclusion . 56

6.5 Threats to Validity . 56
6.5.1 Construct Validity . 56
6.5.2 Internal Validity . 57
6.5.3 External Validity . 58

6.6 Summary . 58

7 Discussion 59

8 Conclusions 65
8.1 Future Work . 66

A User’s Guide to Senseo 71
A.1 Requirements . 71
A.2 Installation . 71
A.3 Gathering Data . 71
A.4 Visualizations / Enrichments . 73

A.4.1 Tree Metrics . 73
A.4.2 Ruler Annotations . 73
A.4.3 Tooltip Metrics . 73
A.4.4 CCRC . 74
A.4.5 Collaboration Overview . 74

B Subject Expertise Questionnaire 75

Contents xi

C Experiment Tasks 79
C.1 Tasks . 79
C.2 Time Results . 81
C.3 Correctness Results . 82

D Feedback Questionnaire 85

Bibliography 89

xii Contents

List of Figures

2.1 Enriched source code view in Hermion 12
2.2 Two HeatMaps in the Smalltalk Squeak IDE 14

3.1 JDT interface and class hierarchies representing Java source elements
(extract). 21

4.1 Sample code and its corresponding CCT 27
4.2 MAJOR overhead for the DaCapo benchmarks 30

5.1 Run Configuration to launch an Eclipse Project in the instrumented JVM. 32
5.2 Setup to gather dynamic information. 32
5.3 List and selection of available CCTs. 33
5.4 Class diagram of the storage system. 34
5.5 Overview of Senseo and all its techniques to integrate dynamic informa-

tion into Eclipse . 34
5.6 Selection of dynamic metric to be used for categorization. 35
5.7 Rulers left and right of the editor view showing dynamic metrics. 36
5.8 Package Explorer enriched with decorators. 37
5.9 Hierarchy View enriched with decorators. 37
5.10 Tooltip appearing for a method name in its declaration. 38
5.11 Tooltip for a message send occurring in a method. 38
5.12 CCRC colored based on the number of invocations. 40
5.13 Collaboration Overview showing callers and callees of a method. 40
5.14 Collaboration Overview showing collaboration on a class level. 41
5.15 Collaboration Overview showing collaboration between two classes. . . 41

6.1 Box plots comparing time spent and correctness between control and
experimental group. 51

6.2 Box plots comparing time spent between control and experimental group
on all tasks. 51

6.3 Box plots comparing correctness between control and experimental group
on all tasks. 52

6.4 Mapping how much tools have been used in tasks. 54

A.1 Instrumentation of JDK . 72

B.1 Question 1: Working as professional software developer 75
B.2 Question 2: Working as a Java developer 76
B.3 Question 2: Experience with Java . 76

xiii

xiv List of Figures

List of Tables

2.1 Comparing tools to Senseo . 16

6.1 Average expertise in control and experimental group 46
6.2 The nine activities by Pacione et al. 47
6.3 The five software maintenance tasks 48
6.4 Statistical evaluation of the experimental results 50
6.5 Task individual performance concerning time required and correctness. . 53
6.6 Percentage of subjects using specific dynamic information in particular

tasks . 54
6.7 Mean ratings of the subjects for each feature of Senseo 55

B.1 Experience in the different areas . 77

C.1 Time per task per subject . 82
C.2 Correctness per task per subject . 83

D.1 Question 2 results . 86
D.2 Question 3 results . 86
D.3 Question 4 results . 87
D.4 Question 5 results . 88

xv

xvi List of Tables

Chapter 1

Introduction

As an introduction we briefly outline the shortcomings of static perspectives on a software
system in IDEs, such as the limited support to analyze runtime behavior, and argue for
the integration of dynamic information into the IDE. We then briefly present Senseo, an
Eclipse plugin addressing the discussed shortcomings. Finally, we outline the various
contributions included in this thesis and describe its structure.

1.1 Shortcomings of Traditional IDE Perspectives

Traditional IDEs such as Eclipse provide multiple perspectives on a software system.
These perspectives aim to support developers in various activities during software devel-
opment and maintenance. However, such perspectives are mainly based on information
obtained through static analysis, which processes source code to interpret the structure
and behavior of the studied software system. Static analysis algorithms such as the ACP
algorithm [65] which infers type information of Java systems, try to approximate the
behavior of the software system based on the acquired information [38]. However, object-
oriented programs heavily rely on language features like inheritance, interface or abstract
types, late-binding, or polymorphism. This means that the behavior of object-oriented
systems can only be completely determined at runtime [29]. For example, views based
on static source code analysis cannot disclose precise information about all types bound
to a certain variable at runtime. While searching for implementors of a certain interface
type, static views reveal all candidate implementors, but at runtime actually only one
specific implementation is used. Such inexact search results mislead developers in their
assumption about a source artifact and what parts of the software system are relevant
for the task at hand. We conclude that views based on static source code analysis are
imprecise.
As it is crucial for program comprehension to disclose any aspect of a software system [8],
such perspectives are not sufficient to understand the behavior of an object-oriented pro-
gram. Furthermore, we state that features of object-oriented languages such as polymor-
phism necessitate the access to dynamic information to precisely reveal all characteristics
of an object-oriented software system. Other researchers also report that having dynamic
information available is of great value for typical software maintenance tasks [40].

1

2 1.1. Shortcomings of Traditional IDE Perspectives

Furthermore, in most software systems conceptually related code is scattered over many
different source artifacts, e.g., classes and methods. It is therefore difficult to understand
how an application is implemented purely by navigating and browsing the source code
[58]. Additionally, as static perspectives cannot reveal precise information about message
sends between software artifacts, it is impossible for developers to precisely reason about
how different parts of the software system collaborate.

To support developers during development and maintenance of software systems, IDEs
also provide means to efficiently navigate the source code space or to study source
artifacts, for instance, to obtain precise information about runtime types. Analyzing the
existing static perspectives revealed that several activities developers usually perform
during typical software maintenance are not sufficiently supported. The following list
summarizes the identified activities:

• Understanding higher-level concepts such as application layers, models, or separa-
tion of concerns.

• Identifying collaboration patterns, that is, how various source artifacts communicate
with each other at runtime.

• Gaining an overview of control flow and execution complexity, for instance to
quickly locate performance bottlenecks.

• Locating design flaws, design “smells”, performance bottlenecks, and other code
quality issues, such as classes heavily coupled to classes in other packages or
classes residing in wrong packages.

• Understanding execution paths and runtime types of an object-oriented system
employing complex hierarchies including abstract classes and interfaces.

As discussed static perspectives provide imprecise information during such activities,
therefore developers usually resort to debuggers to circumvent these limitations. By
setting appropriate breakpoints and stepping through the execution developers try to pre-
dict execution flow or runtime types. However, such workarounds are very cumbersome
and lead to further problems: Information gathered by debuggers is volatile, that is, it
cannot be aggregated or embedded into the IDE. Furthermore, information revealed by
debuggers only represents a current situation unrelated to any other execution or to the
next cycle of the loop we currently study. Such an isolated view impedes studying and
comparing the current situation to other execution paths of the same feature or to other
executions of a certain code artifact. Moreover, as debuggers do not reveal any additional
information about collaborating parts of the software system, the inspection carried out
by debuggers remains very isolated and disconnected from other parts of the execution.
These limitations of debuggers complicate the inspection of scattered or tangled code and
result in an incomplete view on the software system.

Such an incomplete view impedes analysis of how features or concrete source artifacts
behave at runtime. For instance, performance issues of source artifacts are often only
revealed in certain circumstances or in combination with other specific source artifacts.
But as it remains unclear which source artifacts are used at runtime as well as which
source artifacts collaborate with each other, any reasoning about performance issues in
the IDE is very cumbersome and difficult.

1.2. Senseo - Augmenting Eclipse with Dynamic Information 3

Summary. As static perspectives provide an imprecise and incomplete view on a soft-
ware system studying the following aspects of an object-oriented software system is
barely supported without embedding dynamic information:

• Runtime types - Inheritance or interface and abstract types impede any prediction
about which types are actually used at runtime.

• Execution flow - As various aspects of program execution are not certain until
execution, any prediction of execution flow remains uncertain.

• Performance aspects - As only system execution reveals which code is exer-
cised at runtime, analyzing performance bottlenecks is difficult without dynamic
information.

• Scattered code - Determining collaboration within a system encompassing scat-
tered code based on imprecise and incomplete information is cumbersome.

Problem statement. Various characteristics of object-oriented software systems such as
inheritance and polymorphism can only be determined at runtime. IDEs purely relying on
static source code analysis cannot reveal important aspects of an object-oriented software
system and provide therefore imprecise and incomplete perspectives on the system. Such
static perspectives badly support developers during software maintenance.

To address the stated problem we need to integrate solutions to analyze and visual-
ize dynamic information in IDEs to support developers working on typical software
maintenance tasks.

In this thesis we focus on supporting developers maintaining software systems in Java, a
widely used statically-typed language. As we further discuss in Chapter 2, IDEs for Java
such as Eclipse on which we focus our integration barely embed dynamic information up
to now.

1.2 Senseo - Augmenting Eclipse with Dynamic Information

Previously, we outlined various activities that are not sufficiently supported by static per-
spectives of traditional IDEs, as they neglect dynamic information such as runtime types.
We aim to seamlessly integrate enrichments and visualizations of different kinds dynamic
information in the IDE to efficiently support developers during software maintenance.
To achieve a solution for the discussed limitations we need to address different aspects
of gathering, aggregating and integrating dynamic information. The following research
questions give an overview on the different challenges such a solution pose:

Research Questions

• What kind of dynamic information is useful for software maintenance?

• How can we gather, process, aggregate, and store dynamic information efficiently?

• How can we represent and integrate dynamic information into IDEs?

• How can we validate our approach?

4 1.2. Senseo - Augmenting Eclipse with Dynamic Information

Our solution is embodied in Senseo, an Eclipse plugin augmenting different views of
Eclipse with dynamic information. Senseo enriches the standard Java Development Tools
(JDT)1 with different visualizations of the gathered information.

We state our thesis as follows:

Thesis

Integrating dynamic information into the IDE addresses shortcomings of its
static source code perspectives and supports developers to more efficiently
and correctly perform typical software maintenance tasks.

Senseo is our working prototype to validate our approach. To gather dynamic information
Senseo relies on MAJOR [64], a tool to weave aspects in the standard Java class library
(JDK). Using these aspects we are able to define what kind of dynamic information
is gathered. To gather, process and store dynamic information efficiently, MAJOR is
directly integrated into Senseo. This integration embeds the process of information
gathering seamlessly into the work processes developers usually perform within Eclipse.
While running in the instrumented Java VM, MAJOR collects several kinds of dynamic
information of the studied software system and transmits these to the Senseo plugin.
Subsequently, the received information is parsed and imported in our data storage. We are
able to export the gathered data from our storage system as well as to load such exported
data. This feature enables developers to archive, share and compare gathered data from
multiple executions.

The integration of MAJOR answers our second research question and enables us to address
the third question, namely to represent and integrate dynamic information into IDEs.
Based on the processed and aggregated information we are able to integrate enrichments
that range from visualizations on a coarse-grained level within the source code view up
to higher level views providing an overview of the whole software system. The integrated
visualizations disclose hotspots of the analyzed software system in the source code view
as well as within the various navigation trees that come with Eclipse. Such visualizations
are for example colored icons disclosing the exact number of invocations of a method,
class or package.

Information about the argument types of a method or its callers and callees are disclosed
by tooltips, small windows that pop up when the mouse hovers over a source element
(a method name, a variable, etc.). Additionally, these visualizations are interactive and
provide assistance to navigate the source space, hence developers can navigate towards
source artifacts with our enrichments by clicking on an element of interest. The CCRC, a
visualization of the gathered data tree, the Calling Context Tree (CCT), discloses the call
stack and the context of the gathered dynamic information. Furthermore, we provide a
Collaboration Overview which discloses how the different parts of the software system
such as packages, classes or methods collaborate to each other.

1http://eclipse.org/jdt/

http://eclipse.org/jdt/

1.3. Contributions 5

1.3 Contributions

Senseo enriches Eclipse with dynamic information to ease maintenance of object-oriented
systems written in Java. The process of integrating dynamic information into IDEs
includes several aspects such as data gathering, storage and processing and enrichments
and visualizations as well as we aimed to validate our approach. We outline these four
contributions in the following paragraphs.

Data Gathering. In this thesis we examine different challenges related to the process of
gathering dynamic information such as choosing the appropriate technique to seamlessly
integrate gathering of dynamic information into the IDE. Furthermore, we outline different
approaches to solve these challenges. Our choice is MAJOR2 which enables us to cover all
methods executed in the JVM and allows us to select what kind of information should be
collected. We subsume its architecture and advantages compared to other techniques and
validate by means of a benchmark its performance. Senseo integrates MAJOR into Eclipse
and enables developers to dynamically analyze their applications within Eclipse.

Storage and Processing. The gathered dynamic information has to be stored, processed
and aggregated to be integrated into the IDE. Senseo implements its own storage system
which enables us to store the gathered dynamic information of multiple projects and
executions. It is possible to query the stored information on a package, class and method
level. Additionally, this storage system provides different kinds of aggregated information.
For instance, we group all methods of the examined software system based on their
number of invocations into different clusters to easily disclose hotspots and bottlenecks.
Furthermore, it is possible to store and load the gathered information to aggregate it over
multiple executions and to exchange it with other developers.

Enrichments and Visualization. In this thesis we contribute several approaches of
enrichments and visualizations of dynamic information in the IDE. We reveal how Senseo
integrates aggregated information into the different views of the IDE and how these
enrichments support developers during typical software maintenance tasks, as outlined in
Section 1.1. Examples of such enrichments are tooltips showing dynamic information on
a source code level. All contributed enrichments improve the navigation of the source
code space and the search for various elements, such as precise information about all
callers of the currently studied element. Additionally, we contribute several high level
overviews of the software system such as a Collaboration Overview.

Validation. Besides a use case based validation, we validate our approach with a con-
trolled experiment. 30 professional developers solved five typical software maintenance
tasks concerned with comprehending and maintaining a representative software system.
We measured time and answer correctness for both an experimental group using our
Eclipse enhancements and a control group using the traditional Eclipse IDE. With this

2http://www.inf.usi.ch/projects/ferrari/MAJOR.html

http://www.inf.usi.ch/projects/ferrari/MAJOR.html

6 1.4. Structure of the Thesis

experiment we show that integrating dynamic information into Eclipse yields a signifi-
cant 17.5% decrease of time spent while significantly increasing the correctness of the
solutions by 33.5%.

1.4 Structure of the Thesis

Our thesis has the following structure:

Chapter 2 outlines the state of the art in dynamically analyzing and visualizing software
systems in IDEs. Furthermore, we present different techniques to gather dynamic informa-
tion. We then briefly look at other controlled experiments in software engineering.

In Chapter 3 we motivate our approach to integrate dynamic information into the IDE.
We further examine what kind of dynamic information is required to be gathered to
address the outlined problems.

Chapter 4 addresses the issue of of dynamic information gathering and briefly outlines
some of the implementation details. This includes an overview of MAJOR, its inner
data structure and optimizations performed to reduce the gathering overhead in terms of
analyzing time and memory consumption.

In Chapter 5 we describe the general architecture of Senseo: How Senseo integrates
MAJOR and how it stores and processes the gathered information. We then outline the
different enrichments and visualizations we integrated into the Eclipse IDE.

Chapter 6 discusses the controlled experiment we conducted: Experiment setup, sub-
ject selection and the statistical evaluation are outlined. Additionally, we discuss the
threats to validity and conclude that the results support our claim that Senseo supports
developers during software maintenance tasks correctness and speed. We are even able to
show a significant increase in both correctness and speed in conducting typical software
maintenance tasks.

Chapter 7 critically discusses the various aspects of our work on Senseo. We further
discuss details of various parts of Senseo’s architecture such as the information gather-
ing.

In Chapter 8 we argue for the inclusion of dynamic information into IDEs to support
developers in their daily work on software maintenance, such as reasoning about different
parts of a software system or understanding of the underlying code. Additionally, we
outline further work to extend the current integration and visualization of dynamic
information in Eclipse.

Attached to this thesis is a user’s guide to Senseo and various resources gathered during
the controlled experiment.

Chapter 2

State of the Art

In this chapter we examine the state of the art in dynamically analyzing and visualiz-
ing software systems. First, we describe traditional IDEs and outline related work in
improving and enriching their source code perspectives. Second, we look at existing
tools to gather dynamic information and describe their features. Third, we present several
tools or IDE enhancements visualizing static or dynamic information to improve software
comprehension, maintenance, or navigation and study their contributions to improve
the understanding of software systems. Not all of them are based on dynamic analysis,
some employ different techniques, such as relating source artifacts to each other based
on navigation patterns. Ultimately, we briefly outline different controlled experiments in
software engineering.

2.1 Traditional IDEs

Static source code analysis is widely integrated in mainstream IDEs such as Eclipse or
NetBeans. Besides enabling developers to edit the source code of a software system, IDEs
often provide developers with other means to study and maintain a software system such
as syntax highlighting or debuggers. Modern IDEs integrate a broad range of different
perspectives and supportive tools. For instance, they integrate means to navigate the
hierarchical structure of the source code. Such an example is the Package Explorer in
Eclipse in which source code artifacts are hierarchical organized (Package→ Class→
Method). Another example is the class browser available in Smalltalk environments.
This browser contains a series of panes horizontally aligned side by side at the top of
a text editor window; these panes present the class hierarchy of the Smalltalk system.
Such a browser does not integrate any runtime behavior, it is therefore for example not
possible to determine which parts of the software system are used while executing a
certain feature.

Eclipse integrates several search facilities, for example developers can search for imple-
mentors of a certain interface or can look up references of a method within the software
system. As these search facilities are purely based on static source code analysis they
return for example every class implementing a certain interface. Developers can therefore
barely determine which of the found classes are used at runtime and are hence relevant to

7

8 2.2. Dynamic Analysis

study the software system. For the same reason, all possible references to a method are
disclosed, which makes any studying of runtime collaboration uncertain and imprecise.
A more sophisticated tool is the Call Hierarchy View which discloses callers and callees
of a certain method. It is possible to restrict the search scope, to reveal collaborations
restricted to certain packages. However, as this lookup is still based on static source code
analysis it can never represent the actual collaboration occurring at runtime or restrict
callers and callees lookup to certain feature executions.

Eclipse also integrates various visualizations and enrichments to ease navigation within
the software system and to enrich its views. Such an example are tooltips, which embody
the documentation of a method in small pop-ups that appear when hovering with the
mouse over a reference to that method. Eclipse also uses a broad range of icons and
annotations to display compiler errors or warnings, or search results within the source
code view. Compiler warnings are for example annotated by yellow icons containing
an exclamation mark within the various navigation trees or by yellow annotations in the
overview ruler on the right side of the source code view. Senseo reuses some of these
techniques to enrich Eclipse’s views with dynamic information.

With static analysis, especially with static type inference [46], it is possible to gain insights
into the types that variables assume at runtime. Deriving static types by type inference
and type reconstruction has a wide range of usages. However, most approaches do not
scale very well and trade precision by performance [62]. Roel Wuyts et al. introduce with
RoelTyper [67] a fast type reconstructor for Smalltalk. It type-checks instance variables
of classes based on heuristics. Pluquet et al. [47] argue that such an imprecise but faster
approach is required to include feedback about the possibly used types into development
environments. They present the type reconstruction algorithm used by the RoelTyper and
tested the heuristic in different Smalltalk environments. Pluquet et al. found out they
are able to find nearly instantly in 75% of the cases the correct type. Such a fast method
allows direct usage within IDEs. However, this approach implements type inference
based on static source code analysis and provides therefore only an approximation. This
means that it still guesses which types might occur at runtime and does not reveal the
actual types used at runtime.

Knowledge about the underlying structure of the code can be exploited during refactoring
tasks or other code transformations. Additionally, to ease code completion, knowledge
about the structure of the software system is used to provide developers with a list of
candidate messages that could be sent to a variable of certain type. Robbes and Lanza [52],
for example, show that additional ordering of candidate messages based on the change
history can improve the expected results for code completion.

2.2 Dynamic Analysis

Dynamic analyses based on tracing mechanisms traditionally focus on capturing a call
tree of message sends, but existing approaches do not bridge the gap between dynamic
behavior and the static structure of a program [23,66]. Our work aims at incorporating
the information obtained through dynamic analyses into the IDE and thus connecting the
static structure with the dynamic behavior of the system.

2.2. Dynamic Analysis 9

The concept of data and execution flow analysis has been widely studied in the field of
static and dynamic analysis. For instance, Eisenbarth et al. [24] proposed the use of static
and dynamic feature analysis to better support program comprehension. In later work they
also motivate the use of concept analysis and dynamic information of execution traces to
reason about features within a software system [25]. Their approach helps developers to
easily identify the different components of a certain feature within a software system to
quicker understand the internal structure and relations. That is for example, identifying
layers of a software system such as the persistent layer or identifying how these layers
communication with each other.

Issues of dynamic analysis are portability and performance. Furthermore, dynamic
analysis generates a huge amount of data which has to be processed, aggregated and
stored for further use. Developers usually resort to debuggers to dynamically analyze
software systems and to, for example, determine runtime types or to predict the behavior
of certain source artifacts. Unfortunately, information extracted during a debugging
session is volatile, that is, it disappears at the end of the session. Furthermore, debuggers
are often separated from the usual workflow within IDEs and provide only a relation
between the current (halted) context of an execution and the source code. Contrary to
Senseo debuggers are therefore cumbersome to gain a bigger picture on the underlying
software system nor they are capable of aggregating dynamic information over several
runs.

Tools dynamically analyzing software systems rely mainly on techniques enabling system
profiling capabilities. Using these techniques the tools can reveal execution trace or
execution time of a certain method. Profiling capabilities have been integrated in IDEs,
such as the NetBeans Profiler1 and Eclipse’s Tracing and Profiling Project (TPTP)2.
In general, profilers give information about a program’s execution performance, but
similar to debuggers, profilers also focus on specific runs of a system and hence give
limited general insights into overall complexity of source artifacts. For instance profilers
do not aggregate the gathered information over several executions and can reveal therefore
no information about how a certain source artifact complexity is affected by the execution
of different software features.
Profilers suffer therefore from similar drawbacks as debuggers: the collected dynamic
information is not integrated in the static source views in the IDE. Hence, developers use
such tools only occasionally instead of continuously benefiting from dynamic information
that is directly available in the source code views.

Conceptually, there is not much difference between Senseo and a debugger or profiler.
However, the main difference is, that Senseo presents and continuously updates the
dynamic information directly within the source code views, without extra actions to
be taken by the developer. Additionally, Senseo records and aggregates dynamic in-
formation over several runs and provides an easy way to compare such gathered data
by easily selecting which gathered information is used to generate the enrichments and
visualizations.

In the following paragraphs we outline different known techniques to gather dynamic
information about Java based software systems:

1http://profiler.netbeans.org/
2http://www.eclipse.org/tptp/performance/

http://profiler.netbeans.org/
http://www.eclipse.org/tptp/performance/

10 2.3. IDE Enhancements and Visualizations

JFluid. The NetBeans profiler uses the JFluid technology [16] to which we refer simply
as JFluid. It exploits dynamic bytecode instrumentation and code hot swapping to collect
dynamic metrics [17]. Contrary to MAJOR, which is used by Senseo, JFluid uses a
hard-coded, low-level instrumentation to collect gross time for a single code region and
to build a Calling Context Tree (CCT) augmented with accumulated execution time for
individual methods [15]. JFluid relies therefore on a customized JVM which ties JFluid
to that special JVM and makes portability harder. NetBeans accesses the gathered CCT
through a socket or shared memory. The gathered data is only used to provide profiling
information which makes JFluid a pure profiling tool.

*J. Dufour et al. [20] present a variety of dynamic metrics for Java programs. They
introduce a tool called *J [22] for metrics measurement. *J relies on the Java Virtual
Machine Profiler Interface (JVMPI) [63]. JVMPI requires that profiler agents are written
in native code which hampers portability, whereas MAJOR implements everything directly
in Java using standard aspect weaving techniques. Moreover, JVMPI is known to impose
high performance overhead, and for this reason instrumentation of the studied software
system is slow and impractical.

PROSE provides aspect support within the JVM [48] and aims to ease the collection
of certain dynamic metrics based on direct access to JVM internals. PROSE combines
bytecode instrumentation and aspect support at the just-in-time compiler level. However,
contrary to MAJOR it does not support aspect weaving in the standard Java class library.
This makes it impractical to gain insights in used JDK libraries. In addition, this limitation
makes it difficult to reason about border regions, regions where execution flows enter
application code or where application code calls JDK code.

As a technique to reduce the amount of gathered information, sampling-based profiling
techniques can be used. They are common for feedback-directed optimizations in dynamic
compilers [3]. Such techniques significantly reduce the overhead of metrics collection.
However, sampling produces incomplete and possibly inaccurate information, whereas
the integration of dynamic information into an IDE requires complete and precise metrics
for all executed methods.

2.3 IDE Enhancements and Visualizations

A common feature in modern IDEs is to provide different views on the source artifacts of
a software system. Such a view is for example a visualization of the class hierarchies in
the studied software system presenting various information about the existing classes and
interfaces such as which classes implement a certain interface. Further research tries to
take more sources into account and provide polymetric views of a system. For instance,
Girba et al. [27] proposed to use the history of an observed hierarchy as an additional
source. They use polymetric views to disclose the evolution of class hierarchies.

In the following paragraphs we discuss different tools and concepts integrating and
visualizing static and/or dynamic information.

2.3. IDE Enhancements and Visualizations 11

Class Blueprints. Lanza and Ducasse [34] propose class blueprints, a visualization
of the internal structure of classes. These blueprints provide several layers representing
different aspects of an object: For instance, one layer represents the initialization of the
object and another one represents the accessor layer, where setter and getters can be
found. These layers form a template on which concrete classes can be mapped. Within
these layers, various methods or attributes of a class are represented by colored boxes
of different shape. Blueprints ease the understanding of a class and help developers to
quickly grasp the inner structure of a class. Class Blueprints are only based on static
source code analysis, they therefore do not take into account any runtime information.
Furthermore, contrary to Senseo they are implemented in an external view and not
integrated into the IDE. They are not directly usable while navigating the source code
space and require developers to perform a context switch (switching to another window)
to use these blueprints. Such a required context switch makes class blueprints not as
valuable as information directly embedded in the IDE.
Ducasse et al. [19] adopted a similar approach to represent the different roles of packages
in package surface blueprints. They group packages based on references to other packages.
This reveals how packages are connected to each other.

JIVE: Visualize Java in Action. Reiss [51] developed a tool to visualize the behavior
of Java programs in real-time. This work introduces a dynamic Java visualizer that
provides a view of a program in action with low overhead. Hence, it can be used at
any time by programmers to understand what their program is doing while it is doing
it. The process to gather dynamic information is ongoing, but can be turned on and off
during the execution. It visualizes the gathered data in a box display where each box
represents a certain class or thread. Each box contains differently colored rectangles
representing the various statistics gathered. Such boxes are visualized in an external tool
which limits its usage, as it does not integrate dynamic information into the IDE and the
source code views. While Senseo supports developers to navigate the source code space,
JIVE, for example, does not link the gathered dynamic information with the static source
code.

VizzAnalyzer. Löwe et al. [40] merge information from both static and dynamic anal-
ysis to generate visualizations in a dedicated tool. For static source code analysis and
even transformation of Java sources, they developed a software called Recorder3. This
tool provides the basis for further dynamic analysis which is performed by using a tool
called VizzAnalyzer [60] which maps information from a debugger interface to graphical
views. These graphical views are presented in an external tool and are updated live from
the debugger interface. It is possible to apply filters and aggregation on the gathered
information. On the dynamic side of their analysis they can reason about Calls, Accesses
(on attributes), Knows (representing relations, such as binding another object in a variable)
and Instance-Of. Due to the visualization in an external tool, VizzAnalyzer is limited in
supporting developers directly within the IDE. Contrary to Senseo developers therefore
have to change the current view on the software system and interrupt their workflow to
benefit from VizzAnalyzer’s visualizations.

3http://recorder.sf.net

http://recorder.sf.net

12 2.3. IDE Enhancements and Visualizations

Hermion. Röthlisberger et al. [56] with Hermion integrate dynamic information into
the IDE and provide mechanisms to query such information. Hermion integrates naviga-
tion features into the source code to enable navigation to callers and callees. Furthermore,
Hermion indicates runtime types of variables and provides a reference view to disclose
collaboration with other classes. Compared to Senseo, Hermion’s feature-centric per-

Reference ViewType ViewMessage Send Navigation

Sender NavigationBack Button

Figure 2.1: Enriched source code view in Hermion

spective is more targeted to reveal collaboration within features or disclose methods used
in different features. It is for example limited in disclosing hotspots within a software
system, as it does not reveal information about the number of objects allocated within a
certain method.

Feature Views. Greevy et al. [28] propose to analyze software evolution through feature
views. Features are usually assembled by different source artifacts of a software system.
These artifacts are a valuable source of information for a reverse engineer. By capturing
the execution trace it is possible to map a feature execution with its source artifacts. Such
execution traces are often huge and difficult to interpret. Greevy et al. visualize such traces
in feature views, by compacting them into simple sets of source artifacts that participate
in a features runtime behavior. The visualizations are generated using Mondrian [41]
which is integrated in the Moose4 reengineering environment [43]. Furthermore, they are
able to compare such feature traces and their views over time, to evaluate how a feature
changes over time.
However, their approach mainly compacts and visualizes feature traces; any integration
into an IDE is missing. Moreover, the view on a feature is limited to its execution trace
and does not reveal any further dynamic information such as runtime types of variables.
Feature Views do also not reveal other interesting aspects of a software system such as
exact number of allocated objects within a method or within a complete feature trace.
Röthlisberger [57] integrated these visualization into the Squeak IDE in a so called
feature browser. The various contributions of different parts of the software system to
a certain feature are linked with the corresponding source artifacts. Such an integration
enables developers to navigate, browse and modify these feature artifacts within a single
environment. Additionally, this environment contains a feature tree which visualizes the
recorded method call tree of a feature. An empirical study with twelve graduate computer

4http://www.moosetechnology.org/

http://www.moosetechnology.org/

2.3. IDE Enhancements and Visualizations 13

science students showed that such a feature centric environment has a positive effect
on program comprehension and in particular on the efficiency in discovering the exact
locations of software defects and in correcting them efficiently.

Fluid source code views [14] are another approach to disclose related source artifacts
within the source code space. They present related code (for instance an invoked method)
directly in the current source code view in an additional widget. Such a view recognizes
the separated but linked nature of source artifacts. However, fluid source code views
statically link separated source artifacts together and may thus identify wrong or unrelated
candidate methods at polymorphic call sites.

Ferret [11] recognizes the conceptual relation between static and dynamic aspects of
software systems by integrating a query tool into Eclipse to allow developers executing
conceptual queries about source artifacts directly in the IDE. An example of such a query
is “callers of method x”. Ferret focuses on querying static information, but is also able
to take into account dynamic information to obtain more precise results. Contrary to
Senseo, Ferret does not aim at giving an overview of the system or enriching the static
IDE perspectives with dynamic information.

Mylyn (formerly Mylar) [30] computes a degree-of-interest value for each source
artifact based on the historical selection or modification of the artifact. The background
color of the artifacts highlights their relative degree-of-interest in the context of the current
task; interesting entities are assigned a “hot” color.
In Mylyn the information used to compute the interest value is relatively simple: selecting
and editing an artifact increases the interest; if no further event occurs the interest
decreases over time. Mylyn therefore only uses the recorded analysis of a developer’s
IDE usage to disclose candidate source artifacts and does not take any static or dynamic
source code analysis into account.

HeatMaps. Röthlisberger et al. [59] propose HeatMaps as a simple and uniform mech-
anism to represent complex information in an easily understandable way in any IDE. Heat
is computed by two different means, namely in time-based HeatMaps or metrics-based
manner. Figure 2.2 shows such HeatMaps integrated in the Smalltalk Squeak IDE. The
top left one highlights the number of versions of source artifacts and the bottom right one
the recently browsed artifacts.

NavTracks exploit the navigation history of software developers to form associations
between related source files (e.g., class files) [61]. Based on these relations NavTracks
reveals related entities to developers. This approach works at the granularity of files,
hence does not take into account specific methods or classes. As it is therefore based on
a single data source, namely the recency of browsing in the navigation history, such a
recommendation list helps little to obtain an overview of the whole system; the developer
just sees a list of artifacts possibly related to a specific artifact, but does not see all
interesting entities in a “big picture” view. These recommendations are always relative to

14 2.3. IDE Enhancements and Visualizations

Figure 2.2: Two HeatMaps in the Smalltalk Squeak IDE

a selected artifact, that is, dependent on what the developer has currently selected, thus it
is not easy to identify all artifacts related for a given task.

FEAT [54] applies a concern graph to visualize scattered but conceptually related code
elements together in order to identify and navigate elements relevant for a particular
concern. Recent versions of FEAT are able to automatically infer the source entities
related to particular concerns [53]. Robillard et al. define a concern as “anything a
stakeholder may want to consider as a conceptual unit, including features, nonfunctional
requirements, and design idioms” [55]. Usually the source code implementing a concern
is not encapsulated in a single source entity but is instead scattered and tangled throughout
a system [55]. To determine the entities participating in a concern, FEAT analyzes system
investigation activities performed by the developer in the IDE [53]. The resulting concern
graph presented in the FEAT Eclipse plugin supports developers performing maintenance
tasks involving identified concerns [53].
As the authors report, FEAT’s concern identification algorithm is heavily dependent on
how organized the analyzed investigation activities are [53, 55]. Disorganized investiga-
tion sessions yield vague, incomplete and often useless concern graphs [53]. Thus the

2.4. Controlled Experiments in Software Engineering 15

FEAT approach is not very robust and not properly usable when only having available
development sessions from developers unfamiliar with the system under study. Further-
more, the FEAT approach requires developers to manually validate the proposed concerns
by rejecting false positives, that is, concerns wrongly identified.

CodeCrawler. Lanza et al. [35] contribute CodeCrawler, a stand-alone tool to analyze
statics and dynamics of programs. It is mainly targeted at visualizing object-oriented
software based on polymetric views. The principle of such views is to represent source
code entities as nodes and their relationships as edges between the nodes. It has been
integrated into Moose5 [18], a platform for software and data analysis, and there is also
an Eclipse Integration called X-Ray6.
CodeCity is a visualization tool based on the analyses performed by Moose. It provides
static source analysis on top of Moose. The visualization is a navigable 3D city where
classes are represented as buildings within the city. Packages are visualized as districts of
the city in which the buildings remain. CodeCity maps static metrics, such as number of
methods or attributes in a class to a certain building. Moreover, it visualizes the nesting
level of classes within packages by placing them in darker regions of a district.

CodeMap. Erni [26] provides with CodeMap a visualization of the source code using
the same visual language as atlas cartography [33]. CodeMap generates maps from the
vocabulary of a software system. Features belonging to certain terms are grouped together
on islands with the idea of grouping code belonging to the same domain. CodeMap aids
the developer with a mental model of the software project. A current implementation [32]
integrates the approach within an Eclipse Plugin7 and combines it with various other
static and dynamic source code analysis such as test coverage or code ownership. It
integrates supportive tools for navigation such as displaying search results or visualizing
control or data flows on the map.

All these different tools and visualizations contribute differently to the various fields
of software maintenance, reverse engineering, or program comprehension, and address
similar topics as Senseo. In Table 2.1 we summarize the main differences of these tools
to Senseo and highlight Senseo’s advantages compared to them.

2.4 Controlled Experiments in Software Engineering

Other researchers also conducted controlled experiments to validate tools supporting
software maintenance tasks. Cornelissen et al. [10] evaluated a trace visualizing tool
with 24 student subjects. They present the design of a controlled experiment for the
quantitative evaluation of their tool Extravis for program comprehension. They report a
22% decrease in time and 43% increase in correctness of solving various typical software
maintenance tasks.
Quante et al. [49] evaluated with 25 students the benefits of Dynamic Object Process

5http://www.moosetechnology.org/
6http://xray.inf.usi.ch/
7http://scg.unibe.ch/research/softwarecartography

http://www.moosetechnology.org/
http://xray.inf.usi.ch/
http://scg.unibe.ch/research/softwarecartography

16 2.4. Controlled Experiments in Software Engineering

Tool Main differences compared to Senseo
Class Blueprints [34] Presents blueprints in an external tool which are purely.

based on static source code analysis.
JIVE [51] Visualizes dynamic information in an external tool and does

not integrate the information into the IDE.
VizzAnalyzer [40] Visualizes dynamic information in an external tool and

is therefore not integrated into the IDE.
Hermion [56] Only enriches source code views with dynamic information, no

visualization revealing the bigger picture on a software system
is integrated.

Feature Views [28] Limited to compact and visualize feature traces. No direct
integration into the IDE or no information about runtime types
is disclosed.

Fluid source [14] Only linking static source code views, may give
code views wrong results in case of polymorphism.
Ferret [11] Provides only a possibility to query the source code space

taking dynamic information into account.
Mylyn [30] Discloses source artifact based on the historical selection

or modification of the artifact. No dynamic information is used.
HeatMaps [59] Visually discloses source artifacts based development information

such as historical navigation.
NavTracks [61] Discloses related code based on the navigation history of the

developer and does not take into account any runtime information.
FEAT [54] Organizes scattered code based on concerns. Organization is

completely based on the way developers investigated the source code.
CodeCrawler [35] Mainly targeted to visualize the structure of object-oriented

software systems based on polymetric views.
CodeMap [26] Provides a mental model based on static source code analysis.

Table 2.1: Comparing tools to Senseo

2.5. Summary 17

Graphs (DOPGs) for program comprehension. While these graphs are built from execu-
tion traces, they do not actually visualize entire traces but describe the control flow of an
application from the perspective of a single object. The involved students had to perform
a series of feature location tasks in two systems. The use of DOPGs by the experimental
group lead to a significant decrease in time and a significant increase in correctness in
case of the first system. However, the differences in case of the second system were not
statistically significant and Quante et al. suggest to perform further evaluation with more
than one system.

2.5 Summary

Static source code analysis is the main technique used by many different integrations
of visualizations into traditional IDEs. The perspective on a software system remains
therefore mainly a static one.
We described several existing approaches to gather dynamic information. We showed
that most of them are used for to gather profiling information about a software system.
Moreover, we noted that most of them either provide incomplete information, are not
easy portable, or suffer from severe performance issues.
We then presented various tools providing static or dynamic information about a software
system. Furthermore, we looked at various IDE enhancements or visualizations. We
showed how such tools or enrichments support developers in reasoning about runtime
behavior. Approaches outlined in other works also visualize software dynamics, but
are usually not directly integrated into an IDE but rather provided by separate tool. We
compared these tools to Senseo in Table 2.1.
At the end we outlined other controlled experiments conducted in research to validate
tools supporting software maintenance tasks.

18 2.5. Summary

Chapter 3

Motivation

The narrow focus on static source code analysis in IDEs results in particular in a static
view on a software system. However, features of object-oriented languages such as
abstract-types or late-binding impede any software comprehension purely based on static
source code analysis. Such purely static views on source code do not tell us how the
program behaves at runtime nor does it reveal any information about runtime types.
Furthermore, static analysis such as static type inference, is a computationally expensive
task and provides often imprecise results [50]. The analysis is imprecise in the sense
that too much information can be taken into account – not all the possible cases actually
appear at runtime – or that we cannot reason about exact number of invocation. The
following examples illustrate common problems of static source code analysis in the
context of object-oriented languages.

3.1 Reasoning About Complex and Extensible Frameworks

Huge and extensible software systems such as Eclipse are often based on a well docu-
mented architecture. The different parts of the framework forming such an architecture
like the one of Eclipse are generally exposed through interface types to developers im-
plementing other parts or plugins. Eclipse comes therefore with a huge hierarchy of
interfaces to model the structure of different aspects of the Eclipse framework. Such
an interface is for example IResource which is heavily used to represent the state of
a resource maintained by a workspace in Eclipse such as a file containing source code.
IResource is a very abstract representation for any possible structure to give a unique
way to handle different structures such as a view representing a certain visualization
of a software system in the same manner within Eclipse. This makes it a widely used
interface type in different parts of Eclipse like for example within the core of Eclipse1.
Digging deeper into Eclipse plugins such as JDT suddenly reveals the main problems
when reasoning about abstraction in interfaces: JDT encompasses interfaces and classes
modeling Java source code artifacts such as classes, methods, fields, or local variables.

1http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.
platform.doc.isv/reference/api/org/eclipse/core/resources/class-use/
IResource.html

19

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/resources/class-use/IResource.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/resources/class-use/IResource.html
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/resources/class-use/IResource.html

20 3.1. Reasoning About Complex and Extensible Frameworks

IResource is used a lot within JDT for the already known use cases, but it is also
used to represent these JDT specific types. For instance, JDT models Java element
containers, such as folders, files or compilation units with its own interface hierarchy
(IFolder, IFile, ...) which all implement IResource. However, these resources are
passed to the core framework as IResource-types and are also passed back with these
types. This means that within the JDT these resources have to be casted back into the
representing Java elements, which is illustrated by the following code sample taken from
the JavaModelManager:

public static IJavaElement create(IResource resource, IJavaProject project) {
/*...*/
int type = resource.getType();
switch (type) {

case IResource.PROJECT :
return JavaCore.create((IProject) resource);

case IResource.FILE :
return create((IFile) resource, project);

/* ... */
default :

return null;
}

}

While we statically examine JDT and reason about its structure, we encounter IResource
types in many different parts such as in variables, in message sends, or as return values.
However, we are not able to tell whether a certain return value represents a Java element
or any other resource represented by IResource within the Eclipse framework.
We can conclude that the introduction of the JDT plugin establishes new use cases for
IResource. But these JDT specific types are not mentioned in the Eclipse core docu-
mentation which is the main reference for IResource. Furthermore, by purely looking
at the source code we are not able to determine which implementations of IResource
are used within JDT and in which parts.
While looking at JDT we come across an example similar to IResource namely
IJavaElement. Contrary to IResource, IJavaElement is only used within
the JDT plugin. However, its behavior is similar to that of IResource. Figure 3.1
shows an extract of the JDT interfaces and classes representing static artifacts of a class.
Clients of this representation usually refer to interface types such as IJavaElement
or IJavaProject, as the following code snippet found in JavadocHover illus-
trates:

IJavaElement element = elements[0];
if (element.getElementType() == IJavaElement.FIELD) {

IJavaProject javaProject = element.getJavaProject();
} else if (element. getElementType() == IJavaElement.LOCAL_VARIABLE) {

IJavaProject javaProject = element.getParent().getJavaProject();
}

This example reveals that for some elements the resulting javaProject is wrong or
undefined. We have the impression that the if conditions are not comprehensive or not
correct at all. Or the developer who implemented this source artifact was aware that only
certain clients of IJavaElement are contained in the elements collected during the
execution of this method. However, this assumption is contrary to the documented method
signatures we find in the generated documentation which lists simply IJavaElement
as a client of this method. The developer could have excluded the remaining clients of

3.2. Understanding Abstract Class and Interface Hierarchies 21

Figure 3.1: JDT interface and class hierarchies representing Java source elements (ex-
tract).

IJavaElement by intent, as he might have been aware of implementation or perfor-
mance problems. Another possibility is that the method getJavaProject is wrongly
implemented for some element types. Thus we have two questions about this code:

1. Which implementations of getJavaProject are invoked?

2. Which types are stored in variable element; are all relevant cases covered with
the if statements?

3.2 Understanding Abstract Class and Interface Hierarchies

For the first question, we search for all declarations of method getJavaProject.
Using static source code analysis, Eclipse reveals all implementors of IJavaElement.
However, Eclipse lists also many more implementations of such a message which might
be totally unrelated to IJavaElement. Additionally, JDT itself declares more than 20
methods with this name, most of which are not related to the representation of source code
elements. We have to skim through this list to find out which declarations are defined
in subtypes of IJavaElement. After having found these declarations, we still cannot
be sure which are actually invoked in this code as we rely only on static source code
analysis.

3.3 Runtime Types

Even when manually narrowing down the list of declarations of getJavaProject to those
actually defined in subtypes of IJavaElement, we still have a lot of remaining candi-
dates. Moreover, we can neither be sure whether those are really invoked by this source
code nor how often and with which concrete receiver types.

To address the second question of Section 3.1, we first search for all classes implementing
IJavaElement in the list of references to this interface. This yields a list with more
than 2000 elements; all are false positives as IJavaElement is not supposed to be
implemented by clients. We thus search for all sub-interfaces of IJavaElement to

22 3.4. Invocation Count

see whether those have implementing classes. After locating two direct sub-interfaces
(IMember and ILocalVariable), each of which has more than 1000 references in
JDT, we give up searching for references to indirect sub-interfaces, such as IField
or IType. It is not possible to statically find all concrete implementing classes of
IJavaElement, in particular not those actually used in this code.

Thus we resort to using the debugger. We find out that element is of type SourceField
in one scenario. However, we know that debuggers focus on specific runs, thus we still
cannot know all the different types element has in this code. To reveal all types of
element and all getJavaProject methods invoked by this polymorphic message
send, we would have to debug many more scenarios, which is very time-consuming as
this code is executed many times for each system run.

3.4 Invocation Count

When examining source code that invokes a particular method, a large list of candidate
method implementations may be generated. Static analysis alone will not tell you
how frequently, if at all, each of these candidates is actually invoked. However, such
information is crucial to assess the performance impact of particular code statements.
Speaking about such code statements: While running the debugger we further realize
that getJavaProject is very often executed, as our breakpoint within this method
frequently halts the execution. However, as debuggers usually do not provide a way to
efficiently count the exact number of invocations we are required to look for another tool .
Such a tool is for example a profiler with which we can reason about the invocation count.
This means that we have to rely on two different tools built for different purposes that
both provide just volatile information.

3.5 Assessing Runtime Complexity

Using the profiler shows that executing getJavaProject for some types of source
elements is remarkably slow. However, developers addressing this efficiency problem
need to know for which types the implementation of getJavaProject is slow and
why, for instance, whether the inefficient implementations create many objects or repeat-
edly execute code. However, by using the profiler we are not able to reveal which types
are responsible for the performance bottlenecks. This leaves us in the situation that we
end up pinpointing the receiver using a debugger and a profiler together to validate our
assumptions. Furthermore, we have to aggregate information about runtime complexity
over multiple runs to pinpoint specific method executions being slow. Revealing all meth-
ods invoked by polymorphic message sends using a debugger is often time-consuming, in
particular if a code statement is repeatedly executed with different input parameters as in
the example above. This makes any procedure to examine such a situation rather tedious
and hardly efficient.

We therefore need a way to reveal such hotspots within their calling context spanning
multiple executions. The execution complexity of a method is often heavily dependent

3.6. Understanding Execution Flow 23

on the passed parameters or on the receiver to which the message triggering the method
invocation is sent. A visualization combining source code with dynamic information
would enable us to quickly determine which types suffer from poor performance.

It is much more convenient for a developer if the IDE itself could collect and show
runtime information aggregated over several runs together with the static structure, i.e.,
augmenting Eclipse’s source code viewer to show precisely which methods are invoked at
runtime and how often, optionally even displaying runtime types for receiver, arguments,
and return values.

3.6 Understanding Execution Flow

To gain knowledge about the architecture of a software system or a framework it is
necessary to understand the execution flow of such a system and how the different parts
collaborate. The importance of execution path information becomes clear when inspecting
Java applications employing abstract classes or interfaces. As we have mentioned earlier
such systems often follow a black box approach. Hence, the source code usually refers
to these abstract types, while at runtime concrete types are used. However, locating the
concrete class whose methods are executed at runtime when the source code just refers to
interface types, can be extremely cumbersome with static navigation, since there may be
a large number of concrete implementations of a declared type.

Therefore it is crucial for a developer to have information about the execution flow and
collaborating parts at hand. Additionally, a developer is interested in how these parts
communicate with each other. This asks once more for a visualization revealing execution
flow and the collaborating parts of a source artifact to developers. Additionally, as
executions might involve interface or abstract types it is important to reveal the actual
runtime types as well as their calling context.

3.7 Persistent Integration into IDEs

As outlined in Section 3.4 information gathered by profilers and especially by debuggers
is volatile, bound to specific executions and therefore disappears at the end of the session.
Furthermore, it is not possible to persistently store such information for much longer than
immediate usage. Besides that both tools do not feed aggregated information back to
the IDE, thus developers use them only occasionally instead of benefiting from runtime
information directly in the static IDE views. It is therefore crucial to integrate the gathered
information in a non-volatile, persistent manner, so that it is possible to aggregate and
prepare it for further usage.

3.8 Summary

In this chapter we have outlined different examples for the typical software maintenance
tasks we outlined in Section 1.1. We showed that plain static views of traditional IDEs

24 3.8. Summary

limit developers in each of these tasks. Additionally, we can conclude that existing
dynamic analysis is often limited to tracing mechanisms and focusing on capturing a call
tree of message sends. Furthermore, we showed that dynamic behavior is not linked with
the static structure of a program. However, it is important to have runtime information
available to developers. Moreover, it should be possible to persist such information for
future analysis or comparison.
We propose to integrate the gathered information directly within the IDE to support
developers in efficiently performing typical software maintenance tasks. To support many
different software maintenance tasks we aim to integrate the gathered information at
different levels: At a fine-grained method level to illustrate complexity, for instance, based
on receivers of a message send. But also at a more coarse-grained level, for instance,
for entire packages or classes, to quickly identify candidate locations for highly invoked
artifacts.

Additionally, we need to give an overview of the different parts of the entire software
system collaborating with each other. Such an overview provides a big picture view of
the examined software system and highlights points of interest.

To summarize our proposal we conclude that we need to:

• gather dynamic information.

• aggregate and store such dynamic information.

• integrate the aggregated information on a fine- and coarse-grained level into the
IDE.

• provide higher level overviews.

• provide means to navigate the source code space through these enrichments and
visualizations.

By meeting these requirements developers are provided in the IDE with yet missing but
required information about the behavior of a software system at runtime. Moreover, we
claim that direct access within an IDE to dynamic information such as message sends
and dynamic types eases software maintenance by making available dynamic information
and by enabling efficient browsing and navigation.

Chapter 4

Gathering Dynamic Information

Gathering dynamic information is the basis to reason about runtime behavior and there-
fore required for any of our further work. In the following sections we will introduce
the topic of dynamic analysis and present our solution to efficiently gather dynamic
information.

4.1 Dynamic Analysis

Dynamic software analysis is commonly referred to as the analysis of the properties
of a program at runtime [4]. It yields precise information about the runtime behavior
of a system. In contrast to static analysis, dynamic analysis derives properties that
hold for one or more executions [4]. Gathering dynamic information usually requires
the examination of the running program through program instrumentation [37] using
different kind of techniques. Denker et al. [12] identify the following techniques to gather
runtime information: Source code modification, logging services, bytecode modification,
method wrappers, debuggers, or instrumentation. Studying these techniques we encounter
different kinds of limitations or drawbacks. For instance, such a technique might require
adjustments to the execution environment and is therefore not fully suitable to seamlessly
integrate information gathering into the IDE. We analyze these techniques regarding the
gathering of dynamic information of Java based software systems:

• Source code modification or logging services are not appropriate, as we aim to
integrate the process of data gathering seamlessly into the IDE and do not want to
introduce source code changes that might affect the runtime behavior.

• Bytecode modification requires profound knowledge of the bytecode instructions
used by the virtual machines. This makes the instrumentation not easily portable to
different implementations of the Java Virtual Machine.

• Method wrappers are easy to integrate in dynamic languages like Python or
Smalltalk. However, they are not really feasible in Java due to its limited ca-
pabilities of intercession.

25

26 4.1. Dynamic Analysis

• Debuggers can be used to gather dynamic information, however, as they are usu-
ally not meant for instrumentation, they do not provide an efficient interface to
continuously gather runtime information.

Of the presented techniques by Denker et al., instrumenting the virtual machine, the
runtime environment in which the system runs, is best suited for our goal. This technique
does not require any modification of the source code, which makes it suitable to seamlessly
integrate the process of information gathering into the IDE and the instrumentation is
also a flexible way to gather runtime information. In Section 2.2 we presented various
frameworks, that provide different ways to instrument the Java Virtual Machine (JVM).
We summarize their drawbacks as follows: PROSE does not cover the standard JVM
libraries them self, thus it will not provide a full coverage of a software system. JFluid
uses a hard-coded, low-level instrumentation to collect gross time for a single code
region, which doest not satisfy our requirement of a very flexible way to gather dynamic
information. Another presented tool is *J which relies on the Java Virtual Machine
Profiler Interface (JVMPI) [63] which is known to cause high performance overhead and
requires profiler agents to be written in native code.
As a suitable solution for our requirements we selected MAJOR [64], an AspectJ-based
[31] weaving tool enabling comprehensive aspect weaving into every class loaded in a
Java Virtual Machine, including the standard Java class library, vendor specific classes,
and dynamically generated classes. MAJOR is based on the standard AspectJ compiler and
weaver; it uses advanced bytecode instrumentation techniques to ensure portability [5].
Moreover, using aspects eases customization and extension and makes it fully portable
to different implementations of the JVM while introducing only a moderate overhead.
Using aspects we can easily adapt the gathering of dynamic information to our needs and
can describe further data to be gathered. The code MAJOR has woven (instrumented)
is executed immediately after the JVM bootstrapping, which enables us to gain nearly
full coverage of all executed code within the complete runtime. Only a small part of the
initialization until MAJOR is loaded cannot be covered. However, we can ignore this
issue as for nearly all applications this part is completely irrelevant and only prepares the
environment to load MAJOR.

The following paragraph discusses how MAJOR internally organizes the gathered data
to get an accurate and compact representation, and how the collected information is
transfered to the IDE.

Aspect-based Calling Context Tree Construction The woven aspects use the col-
lected data to continuously build a tree of calling context profiles (CCT) [1], containing
different dynamic metrics such as amount of invocations of a method. The CCT represents
a generic data structure that is able to hold various metrics for each executed calling
context. It provides a compact and yet informative representation of every calling context.
Figure 4.1 illustrates a code snippet together with the corresponding CCT (showing only
method invocation counts as metric). Each CCT node stores dynamic metrics and refers
to an identifier of the target method for which the metrics have been collected. It also has
links to the parent and child nodes for navigation in the CCT. Our CCT representation is
designed for extensibility so that additional metrics can be easily integrated.

MAJOR sends periodically a snapshot representing the current CCT to the interested

4.2. Categories of Dynamic Information 27

Calling Context Tree

 }

}

 h();

 for(int i=1;i<=10;++i) {

void f() {

 for(int j=1;j<=i;++j) {

void h() { return; }

void g(int i) {

 }

 h();

}

#calls = 55

#calls = 10#calls = 10

#calls = 1

h()

g(int)h()

f()

Code Sample

 g(i);

Figure 4.1: Sample code and its corresponding CCT

observer over a socket based communication channel.

4.2 Categories of Dynamic Information

In Chapter 3 we outlined different characteristics of object-oriented software systems
which can only be revealed completely at runtime. Each of these characteristics can be
detected or described with one or several kinds of dynamic information. These kinds of
dynamic information can be stripped down into different categories, such as execution
flow (which methods are called in which order), runtime types (e.g., argument types) or
further interesting metrics. Depending which specific software maintenance tasks we
would like to support with our enrichments and visualizations we need to gather different
kinds of dynamic metrics.
We can determine the required categories of dynamic information by looking at the
different examples we presented in Chapter 3: Runtime complexity can for instance be
expressed in terms of number of objects created, number of methods invoked, or amount of
memory allocated in a source code artifact. Such a static artifact is for instance a method
like getJavaProject which we discussed in Section 3.1. Another example is message
sending: In object-oriented programs, understanding how objects send messages to each
other at runtime is crucial. However, static analysis cannot always reveal the actually
invoked method as the statically defined type might represent an interface or abstract type.
Due to inheritance respectively late-binding the method might be implemented in the
super- or subtypes of that statically defined type. Additionally, precise receiver types,
which could possibly be a sub-type of the class defining the method, can also be reified.
Based on these examples we define the following categories:

Execution Flow. To reason about collaboration within a software system, knowledge
about which methods call which other methods is essential. Such information can reveal
the execution flow of a software system and is a first step towards identifying collaborating
parts within a software systems. By storing the gathered dynamic information in the

28 4.2. Categories of Dynamic Information

tree-like structure CCT we also map the calling context of a method and can derive from
that the execution flow.

Number of invocations This dynamic metric helps developers to quickly identify
hotspots in the source code, i.e., very frequently invoked methods or classes containing
such methods. Furthermore, methods never invoked at runtime become visible, which is
useful when removing dead code or extending the test coverage of the application’s test
suite. Related to this metric is the number of invocations of other methods triggered from
that particular method.

Method Invocation Variants If we know which methods are invoked in which order,
we also like to reason about the actual variants of such an invocation (e.g., precise
argument or receiver types). Each part of that configuration can result in different
ways the execution continues. For instance, depending on the receiver type a different
implementation of the examined method is invoked. We expect the following three pieces
of information about a method invocation to be crucial for the integration of dynamic
information into the IDE:

• Receiver types. Often sub-types of the type implementing the method receive the
message send at runtime. Knowing receiver types and their frequency thus further
increases program understanding. Such knowledge can, for example, reveal that a
certain implementation of a method is not used in the execution of an examined
feature.

• Argument types. Information about actual argument types and their frequency
increases the understanding of a method, i.e., how it is used at runtime. Precise
information about argument types eases the understanding of the task a method
is performing as the processing of the task is often dependent on the parameters
passed. Moreover, a notion of the frequency of certain argument types gives more
insights into how often certain paths of the method are executed and thus gives
hints what parts of a method could benefit the most from optimization.

• Return types. As return values pass results from one method to another, knowing
their types and their frequency helps developers to better understand communication
between different methods. For instance, a client of a method often does not know
what precise type it will be assigned or whether a null return value is also to
be expected. Thus, showing precise return types including relative frequency,
improves the understanding of a method from the client’s point of view.

Number of created objects. By reading static source code, a developer usually cannot
tell how many objects are created at runtime in a class, in a method or by a line of source
code. It is unclear whether a source artifact creates one or one thousand objects — or
none at all. This dynamic metric, however, is useful to assess the costs imposed by the
execution of a source artifact, to locate inefficient code, or to discover potential problems,
for instance inefficient algorithms creating enormous numbers of objects.

4.3. Performance Evaluation 29

Allocated memory. Different objects vary in memory size. Having many but very tiny
objects might not be an issue, whereas creating a few but very huge objects could be
a sign of an efficiency problem. Hence, we also provide a dynamic metric revealing
memory usage of various source artifacts, such as classes or methods. This metric can
be combined with the number of created objects metric to reveal which types of objects
consume most memory and are thus candidates for optimization.

Dynamic Bytecode Metric. The aggregation of this metric relates to the complexity
of the corresponding computation. In contrast to CPU time, the number of executed
bytecodes is a largely platform-independent metric that can be easily collected without
significant measurement perturbations [9, 21]. In order to count the number of executed
bytecodes without modifying the JVM, it is necessary to intercept the execution of each
basic block of code, increasing a bytecode counter by the number of bytecodes in each
executed basic block [6].

Having these categories of dynamic information available provides us with sufficient
information to support developers by means of integrating or visualizing the gathered
information within the IDE.

4.3 Performance Evaluation

Gathering dynamic information suffers often from excessive overhead and a huge amount
of collected data. Many approaches use naive and non-optimized techniques such as using
a standard hash-table implementation to to store the collected data. Hence, already for
medium-sized applications, serialization of such non-optimized data structures introduces
long latencies to transmit the gathered data. Furthermore, the transferred data can grow
up to several gigabytes of serialized dynamic information.

In order to validate that the used technique to gather dynamic information offers sufficient
performance to cope with real-world workloads, we evaluated the different sources of
overhead and analyzed the amount of transmitted data for the DaCapo benchmarks1 [7].
For our measurements, we use MAJOR2 version 0.6 with AspectJ3 version 1.6.5 and
the SunJDK 1.6.0 13 Hotspot Server Virtual Machine. We execute the benchmarks
on a quad core machine running CentOS Enterprise Linux 5.3 (Intel Xeon, 2.4GHz,
16GB RAM).

Figure 4.2 shows the overhead for CCT creation, collection of dynamic information
(including the number of method invocations, the number of object allocations, the
estimated allocated bytes, the number of executed bytecodes, and the runtime receiver,
argument, and return value types), as well as serialization and data transmission to
the Eclipse plugin, including processing of the received data by the plugin. In this
measurement setting, each benchmark is executed 15 times and the median execution
time is taken for computing the overhead. For each run of each benchmark, the CCT and

1http://dacapobench.org/
2http://www.inf.usi.ch/projects/ferrari/
3http://www.eclipse.org/aspectj/

http://dacapobench.org/
http://www.inf.usi.ch/projects/ferrari/
http://www.eclipse.org/aspectj/

30 4.4. Summary

!"##$ %"&#$
'"#($)")($ '"%($)"!&$)"*'$)"+'$)"),$)"*)$

+"*&$

)"+($

,"('$,"!,$

)"(%$

#")%$

!"!)$

%"(%$

*"''$
%"+($ %"#)$

''"'%$

'(")+$

+"!,$

&"%*$ &"'!$

&"&#$

&"!($

&"#!$

&")*$

'"!#$

&"'*$ &")&$

&"!)$

&"*&$

&"%&$

'$

!$

#$

*$

,$

''$

'!$

'#$

'*$

',$

)'$

)!$

)#$

)*$

-./01$ 203-/$ 45-1/$ 6407896$:38$ 59;0<2$ =>/53.$ 0?7.<6@$ 0?96-145$ 8A<$ @-0-.$ B63"$

A6-.$

C
D
6
15
6
-
<
$E
-
4/
3
1$

F617-07G-H3.I/1-.9A79973.$

J30064H3.$3:$<>.-A74$7.:31A-H3.$

JJK$416-H3.$

Figure 4.2: MAJOR overhead for the DaCapo benchmarks

the gathered dynamic information are serialized and transmitted once upon benchmark
completion.

On average (geometric mean), CCT creation alone causes an overhead of factor 2.68.
CCT creation and collection of dynamic information result in an overhead of factor 9.07.
The total overhead, including serialization/transmission, is of factor 9.47. For all bench-
marks, the larger part of the overhead is due to the collection of dynamic information,
where the collection of runtime type information is particularly expensive. Serializa-
tion/transmission causes only minor overhead, because in these measurement settings
serialization/transmission happens only once upon benchmark completion.

We conclude that MAJOR is fast enough to cope even with large-sized applications, and it
is possible to frequently transmit the collected dynamic information to the Eclipse plugin,
continuously providing up-to-date dynamic information to the software developer.

4.4 Summary

We described the different concepts and techniques for dynamic analysis and introduced
MAJOR as the most suitable solution. Additionally, we explained why the chosen tech-
nique is the best option for our requirements. We then outlined the different required
categories of dynamic information to get a solid basis for enrichments and visualization to
support developers in typical software maintenance tasks. As gathering dynamic informa-
tion often suffers from poor performance, we benchmarked MAJOR and could show that
its overhead of factor 9.47 still allows us to cope even with large-sized applications.

Chapter 5

Senseo - Integrating Dynamic
Information in Eclipse

In Chapter 3 we outlined different problems we aim to solve and motivated the integration
of dynamic information into the IDE. Moreover, we discussed the requirements to be
able to provide software developers with dynamic information useful for typical software
maintenance tasks.
To prototype this approach we implemented Senseo, an Eclipse plugin that enables
developers to dynamically analyze Java applications. Senseo addresses the different
points we stated in Section 3.8.

Senseo enriches the source views of Eclipse using the different categories of dynamic
information as discussed in Section 4.2. Senseo is an approach to augment IDEs with
dynamic metrics towards the goal of supporting the understanding of runtime behavior of
applications, such as execution flow or execution complexity of source artifacts.
First, we present the basic architecture of information gathering in Senseo. Second, we
illustrate several practical integrations and visualizations of the gathered dynamic metrics
embedded in Eclipse.

5.1 Information Gathering

Senseo takes care of collecting the dynamic information and storing it in an aggregated
format to ease the computation of dynamic metrics. The actual gathering of dynamic
information is provided by a calling context profiling aspect run by MAJOR. Hence
the application to be analyzed is executed in a separate application VM where MAJOR
weaves the data gathering aspect into every loaded class, while the Eclipse IDE runs in a
standard VM to avoid perturbations. While the subject system is still running, MAJOR
periodically transfers the gathered dynamic data from the application VM to Eclipse
using a socket. We do not have to halt the application to obtain its dynamic data. For
efficiency reasons, we collect data during several seconds in the instrumented application
VM before we send it in one piece over the socket.
To analyze the application dynamically within the IDE, developers have to execute it with

31

32 5.2. Information Processing

Senseo. This is done by an additional Run Configuration called Senseo Profiler which
Senseo adds to the already existing Eclipse Run Configurations. Similar to the Java Run
Configuration known to all Java developers using Eclipse, one can choose the Main-class
to be executed and run the selected Java application. Figure 5.1 illustrates such a Run
Configuration. Senseo then packs the application in a JAR to fit the technical requirements
of MAJOR. It further opens a socket to listen for the to be transmitted dynamic information
and then starts the packed application with MAJOR, i.e., the instrumented JVM. During
the execution, the application can be used as usual.

Figure 5.1: Run Configuration to launch an Eclipse Project in the instrumented JVM.

5.2 Information Processing

Senseo receives the transfered CCT over a socket and analyzes and processes the received
CCT. This means it decompresses the received information and extracts the collected
dynamic metrics. Additionally, it aggregates these metrics and stores them in its own
storage system which is optimized for fast access from the IDE. To finish the process of
parsing the received CCT, the filled caches holding data such as the clusters grouping
methods based on their invocation count, are cleared and counters are reset. Finally,
Senseo notifies subscribed listeners such as opened editors or other visualizations about
the changed data basis. Figure 5.2 gives an overview of the setup of our approach.

StorageApp VM Sockets Eclipse VM

SenseoMAJOR
Dyn. data

Figure 5.2: Setup to gather dynamic information.

5.3. Enrichments 33

Figure 5.3: List and selection of available CCTs.

Senseo separately stores each execution, that is, each CCT built over the lifetime of an
execution. Usually Senseo displays the last collected CCT in the Storage View (Figure 5.5,
(B)), however, it is possible to select other CCTs and thus display dynamic data aggregated
over many application runs. Figure 5.3 shows the Storage View in which developers can
select the currently active CCT, store collected CCTs to disk, load them from exported
files as well as remove them from the list of currently loaded CCTs.

The storage system provides access to the dynamic information, similar to how Java
applications are organized: A storage instance contains packages which contain classes
which contain methods. Additionally, the storage system provides an easy way to query
the gathered information as well as the aggregated information such the class with the
most invoked methods. Senseo caches any statistical information such as the maximum
number of invocations within a class until further dynamic information is received;
this guarantees efficient access to such data after a primary initialization. Aggregated
statistical information can for example contain the allocated amount of bytes for the
complete class or package.

Figure 5.4 shows the class diagram and reveals how the storage system is organized and
how the gathered dynamic information is stored within Senseo. The various gathered
categories of dynamic information are stored at a method level in a SenseoMethod-
Edge connecting the sending and receiving method. SenseoMethod, SenseoClass and
SenseoPackage aggregate this dynamic information for all elements they contain (such as
all methods in a class) and provide means to query the aggregated data, for example by
using getMetricCount(String metric).

5.3 Enrichments

We integrate several dynamic metrics directly in the static source code in order to provide
developers with insights into runtime behavior while studying code. We discuss these
visualizations in the following sections.

34 5.3. Enrichments

int getMetricIndexForMethodSignature(String metric, String methodSignature)
SenseoPackage getPackage(String packageName)
SenseoClass getSenseoClass(String classSignature)

SenseoStorage

int getMaxMetricCount(String metric)
List getCollaboratedClassesIn(String packageName)
SenseoClass getSenseoClass(String classSignature)

SenseoPackage
*
1

int getClassMaxMetricCountOfMethods(String metric)
getMaxMetricCount(String metric)
List getCollaboratedMethodsIn(String className)
SenseoMethod getMethod(String methodSignature)
SenseoClass getParentClass()
List<SenseoClass> getPrivateClasses()

SenseoClass
*

1

int getMetricCount(String metric)
List<SenseoClass> getReturnValues()

SenseoMethod
*
1

List<SenseoClasses> getArguments()
int getMetricCount(String metric)

SenseoMethodEdge
*
2

*

1

Figure 5.4: Class diagram of the storage system.

Figure 5.5: Overview of Senseo and all its techniques to integrate dynamic information
into Eclipse

5.3.1 Dynamic Metrics Selection

As we gather four different types of dynamic metrics we provide a possibility to choose
which metric is used for the different visualizations. Besides the number of invocations
of methods, we also provide metrics such as the number of objects a method creates
or the amount of memory it allocates. Furthermore, to the already mentioned three
dynamic metrics we provide a dynamic metric which represents the number of message

5.3. Enrichments 35

Figure 5.6: Selection of dynamic metric to be used for categorization.

sends to a certain method and which is derived from the number of method invocations.
We placed the selection in the main menu bar of Eclipse (Figure 5.5, (A)). Selecting a
metric immediately switches the source for all the different visualizations and updates
them amongst all open views. Figure 5.6 shows the expanded menu entry containing
all available dynamic metrics as well as the current selected one (Size of all created
objects).

5.3.2 HeatMaps

Based on the work of Röthlisberger et al. [59] we use HeatMaps to separate the values of
each dynamic metric into different clusters and highlight based on these clusters different
hotspots within the application. We reuse the concept of HeatMaps in all parts of the
system to visualize such clusters.

Ruler columns are one of the visualizations where HeatMaps play a central role. There
are two kind of rulers next to the source editor: (i) the standard ruler on the left (Figure 5.5,
(1)) showing local information and (ii) the overview ruler on the right (Figure 5.5, (2))
giving an overview of the entire file opened in the editor. In the traditional Eclipse IDE
these rulers denote annotations for errors or warnings in the source file. Ruler (i) only
shows the annotations for the currently visible part of the file, while the overview ruler
(ii) displays all available annotations for the entire file. Clicking on such an annotation
in (ii) brings the developer to the annotated line in the source file, for instance to a line
containing an error.

We extended these two rulers to also display dynamic metrics. For every executed method
in a Java source file the overview ruler presents, for instance, how often it has been
executed on average per system run using three different icons colored in a hot/cold
scheme: blue means only a few, yellow several, and red many invocations [59]. Clicking
on such an annotation icon causes a jump to the declaration of the method in the file. The
ruler on the left side provides more detailed information: It shows on a scale from 1 to 6
the frequency of invocation of a particular method compared to all other invoked methods
as shown in Figure 5.7. A completely filled bar denotes methods that have been invoked
the most in an application.
To associate the continuous distribution of metric values to one of the discrete scales, we
use the k-means clustering algorithm [39].
The dynamic metrics in these two rulers allow developers to quickly identify hotspots

36 5.3. Enrichments

in their code while looking at one opened file and thus they help developers to locate
candidate methods for optimization or further investigation. Such hotspots can differ from
the currently selected dynamic metric and depend on the runtime behavior a developer
is interested in. The applied heat metaphor allows different methods to be compared in
terms of number of invocations.

Figure 5.7: Rulers left and right of the editor view showing dynamic metrics.

To see fine-grained values of the dynamic metrics, the annotations in the two columns
are also enriched with tooltips. Developers hovering over a heat bar in the left column or
over the annotation icon in the right bar get a tooltip displaying precise metric values, for
instance exact total numbers of invocations or even number of invocations from specific
methods or receiver types.

Package Explorer is the primary tool in Eclipse to locate packages and classes of an
application. Senseo augments the package explorer (Figure 5.8) with dynamic information
to guide the developer at a high level to the source artifacts of interest, for instance to
classes creating many objects. For that purpose, we annotate packages and classes in the
explorer tree with icons denoting the degree with which they contribute to the selected
dynamic metric such as amount of allocated memory (Figure 5.5, (3)). A class for
instance aggregates the metric value of all its methods, a package the value of all its
classes. The same metric values as in the overview ruler are used to map them to three
different package explorer icons: blue, yellow, and red, representing a heat coloring
scheme. These annotations are further populated to other views within Eclipse such as the
the Class Hierarchy (Figure 5.9), which provides a view on the hierarchy of the current
active class.

5.3.3 Tooltip

As a technique to complement source code without impeding its readability we opted to
use tooltips (Figure 5.5, (4)), small windows that pop up when the mouse hovers over a
source element (a method name, a variable, etc.). Tooltips are interactive, which means
the developer can for instance open the class of a receiver type by clicking on it. This
supports the developer in navigating through the source code space.

5.3. Enrichments 37

Figure 5.8: Package Explorer enriched with decorators.

Figure 5.9: Hierarchy View enriched with decorators.

Method header. The tooltip that appears on mouse over the method name in a method
header shows (i) all callers invoking that particular method, (ii) all callees, that is, all
methods invoked by this method, and optionally (iii) all argument and return value types.
We also show how often a particular invocation occurred. For instance for a callee, we

38 5.3. Enrichments

Figure 5.10: Tooltip appearing for a method name in its declaration.

Figure 5.11: Tooltip for a message send occurring in a method.

display the qualified name of the method containing the call site and the number of
invocations from this callee. Optionally, we also display the type of object to which
the message triggering the invocation of the current method was sent, if this is a sub-
type of the class implementing the current method. For a callee we provide similar
information: The class implementing the invoked method, the name of the message,
and how often a particular method was invoked. Additionally, we can show concrete
receiver types of the message send, if they are not the same as the class implementing
the called method. Figure 5.10 shows a concrete method name tooltip for method
paintScreenLineRange.

In a method header, we can optionally show information about argument and return
types, if developers have chosen to gather such data. Tooltips presenting this information
appear when the mouse is over the declared arguments of a method or the defined return
type.

Method body. We also augment source elements in the method body with tooltips.
Each message send defined in the method we map to information stored in our storage
system, we provide the dynamic callee information similarly as for the method name,
namely concretely invoked methods, optionally along with argument or return types
that occurred in this method for that particular message send at runtime, as shown in
Figure 5.11. For the return statements (return) the tooltip shows the return types the
method answered. For arguments passed to the method we show the argument types with
which the method was invoked.

5.3. Enrichments 39

5.3.4 Calling Context Ring Chart (CCRC)

The CCRC [42] offers a condensed visualization of a Calling Context Tree (CCT) which
is stored in the storage system. The CCRC uses the CCT selected in the Storage View to
generate the visualization. If multiple CCTs are selected the latest CCT is displayed. It
provides navigation mechanisms to locate and explore subtrees of interest for the software
maintenance task at hand. In a CCRC, the CCT root is represented as a circle in the
center. Callee methods are represented by ring segments surrounding the caller’s ring
segment. A CCRC can display all calling contexts of a CCT in a single view, correctly
preserving the caller/callee relationships conveyed in the CCT. For a detailed analysis of
certain calling contexts, CCT subtrees can be visualized separately and the number of
displayed tree layers can be limited. In order to reveal hot calling contexts with respect to
a chosen dynamic metric, ring segments can be sized proportionally to the aggregated
metric contribution of the corresponding CCT subtree.

Senseo integrates a CCRC view of the CCT (Figure 5.5, (5)) which is interlinked with
the static source view. The ring chart in the figure shows a subtree whose root has
been selected by double-clicking on a calling context. For a selected calling context in
the CCRC, the developer can switch to the corresponding method source. Vice versa,
for a method in the source view, the methods’ occurrences in the CCT (if any) can be
highlighted and automatically selected one after the other.

While the CCRC implementation described in [42] visualizes only a single, aggregated
dynamic metric, by sizing each ring segment according to the aggregated metric contri-
bution of the corresponding CCT subtree, the new CCRC version integrated in Senseo
supports visualization by coloring each ring segment according to the calling context’s
“hotness” with respect to the selected metric, as seen in Figure 5.12. For instance, if the
chosen dynamic metric for coloring is the number of method invocations (not aggregated),
the most frequently invoked calling contexts are colored red.

5.3.5 Collaboration Overview

In a separate view next to the source code editor (Figure 5.5, (6)), Senseo presents all
dynamic collaborators for the currently selected artifact. For instance, if a method has
been selected, the Collaboration Overview shows the collaborators at the package, class,
or method level (Figure 5.13); that is, it lists all packages or classes invoking methods
of the package or class in which the selected method is declared (callers). Figure 5.14
shows the collaboration on a class level. Furthermore, the Collaboration Overview shows
all packages or classes with which the package or class declaring the method is actively
communicating (callees). For the method itself, the Collaboration Overview lists all direct
callers and callees. This overview is navigable; clicking on the selected method or class
opens a window in the editor pointing to the selected resource. Additionally, we can
double-click on a certain class or package to get a more specific overview (Figure 5.15)
of the selected item on a class or package level.

40 5.4. Summary

Figure 5.12: CCRC colored based on the number of invocations.

Figure 5.13: Collaboration Overview showing callers and callees of a method.

5.4 Summary

We introduced Senseo as a prototype approach to gather, aggregate and visualize dynamic
information in the IDE. We showed how Senseo provides an effective way to gather
dynamic information. Moreover, it provides means to store, aggregate and query such
information and enables developers to aggregate data gathered over multiple executions.

5.4. Summary 41

Figure 5.14: Collaboration Overview showing collaboration on a class level.

Figure 5.15: Collaboration Overview showing collaboration between two classes.

We outlined the different key elements of Senseo and showed how these features such
as ruler columns, tooltips or Collaboration Overview support developers during typical
software maintenance tasks.

42 5.4. Summary

Chapter 6

Validation

First, we show how Senseo supports developers in addressing different software mainte-
nance use cases by solving the problems outlined in Section 3.1. However, these use cases
do not fully validate our approach. Consequently, we motivate conducting a controlled
experiment to validate our approach and describe:

1. the experimental design,

2. the hypotheses,

3. the subject system,

4. the experimental procedure,

5. the statistical evaluation of our experiment,

6. possible threats to validity.

To conclude this chapter we discuss observations made during the experiment and put
them into relation with the results. We further discuss developer feedback encompassing
both informal and qualitative feedback.

6.1 Solving the Use Cases

In Section 3.1 we raised two questions about a typical code example from the Eclipse JDT.
This example can be seen as typical for many other object-oriented applications written
in Java. Such applications contain code that is similar to our example (IJavaElement)
and also similarly difficult to understand purely with information about the static applica-
tion structure. Using Senseo developers are able to reason about which implementations
of getJavaProject are invoked and can reveal which types are stored in variable
element.

First, to determine the getJavaProject methods invoked in the given code example,
developers hold the mouse over the call site written in source code to get a tooltip
mentioning all distinct methods that have been invoked at runtime at this call site, along
with the number of invocations. This tooltip saves us from browsing the statically

43

44 6.2. Experimental Design

generated list of more than 20 declarations of this method by showing us precisely
the actually invoked methods. Second, to find out which types of objects have been
stored in element, we can look at the message send to getElementType whose
statically defined receiver is the variable element. The tooltip also shows the runtime
receiver types of a message send, which are all types stored in element in this case. It
turns out that the types of element are SourceField, LocalVariable but also
SourceMethod, thus the if statements in this code have to be extended to also cover
SourceMethod elements. We were unable to statically elicit this information.

To assess the efficiency of the various invoked getJavaProjectmethods, we navigate
to the declaration of each such method. The dynamic metrics in the ruler columns reveal
how complex an invocation of this method is, for instance how many objects an invocation
creates on average, even depending on the receiver type. Thanks to these metrics we
find out that if the receiver of getJavaProject is of type LocalVariable, the
code searches iteratively in the chain of parents of this local variable for a defined Java-
project. We can optimize this by searching directly in the enclosing type of the local
variable.

Addressing these two questions reveals that Senseo can help developers to reason more
efficiently about typical tasks in software maintenance. Additionally, we can see that
developers are also able to find information which would not be retrievable by relying
purely on static source code analysis. However, these use cases are very limited and give
only small feedback about how our approach is useful to developers. To validate our
approach in a more reliable way, we designed and conducted a controlled experiment to
validate our approach with professional software developers.

6.2 Experimental Design

We conducted a controlled experiment with 30 professional Java developers to measure
the expected impact of Senseo on performing typical software maintenance tasks on
object-oriented systems. We now describe the experimental design, the subjects, the
evaluation procedure, the final results (including qualitative feedback) as well as threats
to validity.
This experiment aims at quantitatively evaluating the impact of the Senseo plugin and
the dynamic information it integrates into the Eclipse IDE on developer productivity
in terms of efficiently and correctly solving typical software maintenance tasks. We
therefore analyze two variables in this experiment: time spent and correctness. This
experiment also reveals which kind of tasks benefit the most from the availability of
dynamic information in the IDE. The experimental design we opted for is similar to the
one applied in the study of Cornelissen et al. [10] which evaluated a trace visualizing tool
called EXTRAVIS.

6.2.1 Hypothesis

We claim that the availability of the Senseo plugin reduces the amount of time it takes to
solve software maintenance tasks and that it increases the correctness of the solutions.

6.2. Experimental Design 45

Accordingly, we formulate the following two null hypotheses:

• H10: Having the Senseo plugin available does not impact the time for solving the
maintenance tasks.

• H20: Having the Senseo plugin available does not impact the correctness of the
task solutions.

Consequently, we formulate these two alternative hypotheses:

• H1: Having the Senseo plugin available reduces the time for solving the mainte-
nance tasks.

• H2: Having the Senseo plugin available increases the correctness of the task
solutions.

We test the two null hypotheses by assigning each subject to either a control group or
an experimental group. While the experimental group has the Senseo plugin available
for answering typical software maintenance tasks and questions, the control group uses
a standard Eclipse IDE; otherwise there is no difference in treatment between the two
subject groups. As both groups have nearly equal expertise, differences in time or solution
correctness can be attributed to the availability of the Senseo plugin.

6.2.2 Subjects

We asked 30 software developers working in industry (24) or with former industrial
experience in software development (6) to participate in our experiment. Participation
was voluntary and unpaid. All subjects answered a questionnaire asking for their expertise
with Java, Eclipse and specific skills in software engineering such as how often they work
with unfamiliar code or how often they apply dynamic analysis. Most subjects (25) are
mainly working with Java on their job, the others (5) mainly use another language but
rely on Java at least in some of their professional projects. 15 subjects has been working
at least one or two years generally with Java, while 12 people has been working for more
than 3 years mainly as Java Developers. All participants are familiar with the Eclipse
IDE either for Java Development or other languages, such as Python or Ruby.

The subjects have between one and 25 years of professional experience as a software
engineer (average 4.8 years, median 4 years). 27 subjects have a university degree
in computer science (Bachelors or Masters from 18 different universities) while three
subjects either studied in another area or learned software engineering on the job. The
subjects are very heterogeneous and thus fairly representative (seven different nationalities,
working for eight different companies). In a Likert scale from 0 (no experience) to 4
(expert) subjects rated themselves an average of 2.93 for Java experience, 2.73 for Eclipse
experience and 2.72 for experience in working with unfamiliar code. All these ratings refer
to “very experienced”. With an average rating of 2.20, experience in applying dynamic
analysis is slightly lower, but this rating is still considered as “quite experienced”. Note
that no subject claimed to have no experience in any of these four areas. The four areas in
detail:

• Java: 23 subjects have much or expert experience with Java, 5 subjects know and
use Java, while the remaining 2 subjects have only little experience with Java.

46 6.2. Experimental Design

Table 6.1: Average expertise in control and experimental group
Expertise variable Control group Exper. group
Years of experience 4.73 4.40
Java experience [0..4] 2.93 2.80
Eclipse experience [0..4] 2.80 2.67
Unfamiliar code exp. [0..4] 2.73 2.73

• Eclipse: 18 subjects are working daily with Eclipse and rated themselves as experts
or claimed to have much experience, while 11 know Eclipse but rarely use it and
only 1 person has little experience with Eclipse.

• Unfamiliar code: 3 people claimed to be experts in working with unfamiliar code.
19 subjects have much experience with reverse engineering code of other people,
while 8 people have only little experience.

• Dynamic analysis: One person rated herself as an expert in the field of dynamic
analysis, while 11 subjects have much experience. Also 11 subjects are rarely
employing dynamic analysis techniques and 7 persons claimed to have only little
experience.

Additionally, we asked the subjects about their experience in developing or maintaining
open source projects to verify how many people are familiar with looking at their own or
other open source projects. 3 considered themselves to be experts in maintaining such
projects, while 3 subjects claimed to be experienced. The majority (17) has no (9) or only
little (8) experience, while 7 subjects rarely contribute to open source projects.

To assign the 30 subjects to either the experimental or the control group, we used the
obtained expertise information to build two groups with equal expertise. To assess
the expertise we considered four variables as given by the subjects: number of years
of professional experience in software engineering, experience with Java, Eclipse and
with maintaining unfamiliar code. For each subject we searched for a pair with similar
expertise concerning these variables and then randomly assigned these two persons to
either of the two groups. This leads to a very similar overall expertise in both groups as
shown in Table 6.1.

In Appendix B we added the subject questionnaire as well as the results of each ques-
tion.

6.2.3 Subject System and Tasks

As a subject system we have chosen jEdit1, an open-source text editor written in Java.
JEdit consists of 32 packages with 5275 methods in 892 classes totaling more than 100
KLOC. We opted for jEdit as a subject system as it is medium-sized and representative
of many software projects found in industry. JEdit has a long history of development
spanning nearly ten years and involving more than ten developers. Even though it has
been refactored several times, a careful analysis of the code quality revealed several

1http://www.jedit.org/

6.2. Experimental Design 47

Table 6.2: The nine activities by Pacione et al.
Activity Description
A1 Investigating the functionality of (a part of) the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating runtime interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the systems execution
A8 Assessing the quality of the systems design
A9 Understanding the domain of the system

design flaws, such as the use of deprecated code, tight coupling of many source entities
to package-external artifacts, and lack of cohesion in almost all packages, which makes
jEdit hard to understand. We expect many industrial systems to have similar quality
problems, thus we consider jEdit to be a well-suited subject application fairly typical for
many industrial systems developers come across on their job. Furthermore, the domain
of a text editor is familiar to everyone, thus no special domain-knowledge is required to
understand jEdit.

The tasks we gave the subjects are concerned with analyzing and gaining an understanding
for various features of jEdit. While choosing the tasks, our main goal was to select tasks
representative for real maintenance scenarios. Furthermore, these tasks must not be
biased towards dynamic analysis. To assure that these criteria are met we selected the
tasks according to the framework proposed by Pacione et al. [44]. They identified nine
principal activities for reverse engineering and software maintenance tasks covering both
static and dynamic analysis. Table 6.2 gives an overview of these activities. Based on
these activities Pacione et al. propose several characteristical tasks including all identified
activities. We thus design our tasks following this framework to respect all nine principal
activities, which avoids a potential bias towards Senseo.

This leads us to the definition of five tasks, each divided into two subtasks, resulting
in ten different questions we asked to the subjects. Table 6.3 outlines all five tasks and
their subtasks and explains which of Pacione’s activities they cover. Task five is a special
case since we use it as a “time sink task” to avoid ceiling effects [2]. Subjects that can
answer the questions quickly might spend considerably more time on the last task when
they notice that there is still much time available, so the addition of a time-consuming
task at the end which is not considered in the evaluation makes sure that subjects have a
constant time pressure for all relevant tasks. The first four tasks also cover all of Pacione’s
activities.

All questions are open, that is, subjects cannot select from multiple choices but have to
write a text in their own words. Beforehand, the experimenters solved all tasks themselves
to prepare an answer model according to which the subjects’ answers were corrected.
We graded the subjects’ answers by assigning scores from zero to four for each question.
Before starting with the experiments, the two experimenters (who are also co-authors of
this article) answered all prepared questions. We compared and combined both solutions

48 6.2. Experimental Design

Table 6.3: The five software maintenance tasks
Task Activities Description
1.1 A 1, 9 Locating a feature in code and naming the

packages and architectural layers in
which it is implemented

1.2 A 1, 4 ,5 Describing package collaborations in
this feature

2.1 A 8 Comparing fan-in, fan-out of three classes
2.2 A 4, 5, 6, 8 Describing coupling between the

packages of these three classes
3.1 A 1, 3, 4, 5 Analyzing the order in which methods

of a class are invoked
3.2 A 1, 3, 5, 7 Locating clients of this class and

analyzing the communication patterns
between the class and its clients

4.1 A 4, 5, 8, 9 Comparing two features on a fine-grained
method level to locate a defect in a feature

4.2 A 2 Correcting this defect by comparing
it to the other, flawless feature

5.1 A 4, 5, 6, 7 Exploring an algorithm in a specific class
and analyzing its performance

5.2 A 5, 6, 7, 8 Comparing this algorithm to another,
similar algorithm in terms of efficiency

to form an answer model which we then used to grade the subjects’ answers.

We also ran a pre-test by giving the questions to two students. In this pre-test we evaluated
if the allocated time slot of two hours is reasonable to complete all questions and whether
our answer model is sound. The two experimenters graded the solutions of the two
students independently and the ratings only differed in one point for one single question
of a student, otherwise the ratings were the same. This pre-test also helped us to formulate
the questions slightly differently for better clarity. Furthermore, we simplified three
questions as they were too complex and time-consuming in the beginning.

6.2.4 Experimental Procedure

We gave the subjects a short five minute introduction to the experiment setup. Subjects
from the experimental group additionally received an introduction to the Senseo plugin
lasting for 20 minutes. This introduction followed a script we prepared to ensure that
every subject receives the same information about the Senseo plugin. Furthermore, we
provided the Senseo subjects with a short description and a screenshot highlighting
and explaining the core features of the Senseo plugin. This documentation served as a
reference during the experiment and contained similar explanations as the Users Guide to
Senseo (see Appendix A).

We only answered clarification questions during the introduction to give the same amount

6.3. Results 49

of information to all subjects. After the introduction we allowed the subjects to play with
Senseo for 20 minutes to get a feeling for it as none of the subjects had ever used Senseo
before.

Afterwards, we started the experiment. We supervised all subjects during the entire
experiment and recorded the time they took to answer each question. Appendix C
contains a copy of the questions given to the subjects. Concerning infrastructure, each
subject obtained the same pre-configured Eclipse installation we distributed in a virtual
image. The only difference between the control group and the experimental group was
the availability of the Senseo plugin, otherwise the Eclipse IDE was configured in exactly
the same way.

We provided the Senseo group with pre-recorded dynamic information obtained by
executing all actions from the menu bar of jEdit to make sure that the pre-recorded
information is not biased towards the experiment tasks. We provided pre-recorded
dynamic information to control the variable of tracing the appropriate software features.
Although it does not take much time to gather dynamic information with Senseo, freeing
subjects from this task makes sure that the subjects’ performance in the experiment is
only dependent on how Senseo presents the information and not on which information
has been recorded. As the control group did not receive any dynamic information, we
clearly stated in the task descriptions how to run and analyze the feature under study with
the conventional debugger in Eclipse. For the experiment the subjects used computers
that meet the following minimum hardware requirements: 2.16 GHz Intel Core 2 Duo
processors, 2 GB RAM, screen resolution of at least 1280x800.

6.2.5 Variables and Evaluation

The two dependent variables we study in this experiment are time the subjects spend to
answer the questions, and correctness, that is, how correct are their answers to the tasks
we pose. Keeping track of the answer time is straightforward as we prohibited going back
to previously answered questions. We simply record the time span between the starting
time of one question and the next. Correctness is measured using a score from 0 to 4
according to the overlap with the answer model, which forms a set of expected answer
elements (usually the names of certain source artifacts).

The only independent variable in our experiment is whether the Senseo plugin is available
in the Eclipse IDE to the subjects during the experiment.

We apply the parametric, one-tailed Student’s t-test to test our two hypotheses at a
confidence level of 95% (α=0.05). To validate that the t-test can be used, we first apply
the Kolmogorov-Smirnov test to verify normal distribution and then Levene’s test to
verify equality of variances in the sample.

6.3 Results

In this section we analyze the results obtained in the experiment. First, we evaluate
the results for time and correctness. Second, we identify for which types of tasks the

50 6.3. Results

Table 6.4: Statistical evaluation of the experimental results
Group Mean Stdev. K.-S. Lev F t p
Time [m]:
Eclipse 114.80 20.62 0.27

Senseo 94.73 (-17.5%) 12.4 0.18 3.06 3.23 .0016

Correctness (points):
Eclipse 11.33 2.58 0.31

Senseo 15.13 (+33.5%) 2.10 0.24 0.22 4.42 .0001

availability of dynamic information in the IDE is most useful. Finally, we evaluate the
qualitative feedback we gathered by means of a debriefing questionnaire.

In the appendix we added detailed results of the experiment tasks (Section C.2, Sec-
tion C.3) as well as the questionnaire given to the subjects after the experiment (Ap-
pendix D).

In the obtained experiment results we could not find any outliers resulting from extraor-
dinary conditions. Only three subjects could not complete the time sink task (task 5) in
the two hours we allotted, but everybody finished the four relevant tasks. Even though
we removed one task, the remaining four tasks still cover all of the nine maintenance
activities defined by Pacione (compare Table 6.2).

6.3.1 Time Results

On average, the Senseo group spent 17.5% less time solving the maintenance tasks. The
time spent by the two groups is visualized as a box plot in Figure 6.1.

To statistically verify whether the Senseo plugin has an impact on the time to answer
the questions, we test the null hypothesis H10 which says that there is no impact. We
successfully applied the Kolmogorov-Smirnov and the Levene test on the time data (see
Table 6.4), thus we are able to apply Student’s t-test to evaluate H10. The application
of the t-test allows us to reject the null hypothesis and instead accept the alternative
hypothesis, which means that the time spent is statistically significantly reduced by the
availability of the Senseo plugin as the p-value is with 0.0016 considerably lower than
α=0.05 (see Table 6.4).

From the observations of subjects during the experiment, from their informal feedback
during the debriefing interviews and particularly from the formal questionnaires (dis-
cussed in detail below), we could conclude that subjects using Senseo were more efficient
due to the following reasons: (i) the availability of dynamic information in the source
code views (presented in tooltips) helps developers to more quickly gain an understanding
how source artifacts communicate with each other, (ii) the visualizations of dynamic
information such as number of method invocations shown in ruler columns and package
tree enable developers to quickly spot which source elements are executed and how often,
and (iii) as the Collaboration Overview accurately presents all source artifacts that are
related or collaborating with a selected source entity such as a package, class or method,
developers can more quickly navigate to code relevant for a specific task. Note that

6.3. Results 51

Senseo was an unfamiliar plugin for all subjects, thus the results would presumably be
even better if participants had used the Senseo plugin in their daily work before doing the
experiment.

60

80

100

120

140

Eclipse Senseo

T
im

e
 s

p
e

n
t

(m
in

u
te

s
)

13

17

4

6

8

10

12

14

16

18

20

Eclipse Senseo

C
o

rr
e

c
tn

e
s
s
 (

p
o

in
ts

)

(1) (2)

Comparing Senseo and Eclipse group

Figure 6.1: Box plots comparing time spent and correctness between control and experi-
mental group.

Figure 6.2: Box plots comparing time spent between control and experimental group on
all tasks.

52 6.3. Results

Figure 6.3: Box plots comparing correctness between control and experimental group on
all tasks.

6.3.2 Correctness Results

The Senseo group’s answers for the four maintenance questions are 33.5% more correct,
which is also shown in the box plot in Figure 6.1. Additionally, Figure 6.2 and Figure 6.3
show box plots comparing time spent and correctness of the Senseo and the control group
on each task.

To test the null hypothesis H20 which suggests that there is no effect of the availability
of the Senseo plugin on answer correctness, we are also allowed to use the Student’s
t-test as the Kolmogorov-Smirnov and the Levene test succeeded for the correctness
data (compare Table 6.4). As the t-test gives a p-value of 0.0001 which is clearly below
α=0.05, we reject the null hypothesis and accept the alternative hypothesis H2, which
means that having available the Senseo plugin during software maintenance activities
supports developers to more correctly solve maintenance tasks.

The availability of the Senseo plugin increases the correctness of answers probably due to
the following reasons :

The evaluation of the questionnaire, the observations during and the informal interviews
after the experiment allowed us to attribute the improvements in answer correctness to the
same techniques of Senseo that also improved the efficiency: (i) precise information about
runtime collaboration or execution paths as highlighted in the extended source tooltips
enables developers to accurately navigate to dependent artifacts, (ii) information about
execution complexity (number of method calls or number and size of created objects
shown in ruler columns or package tree) eases the correct identification of inefficient
code, and (iii) accurate overviews of collaborating artifacts given by the Collaboration
Overview supports developers in exploring all relevant parts of the system to completely

6.4. Feedback 53

Task Time [m] Correctness (points)
Eclipse Senseo Eclipse Senseo

Task 1 511 425 (-16.8%) 38 53 (+39.5%)
Task 2 388 340 (-12.4%) 58 79 (+36.2%)
Task 3 437 291 (-33.4%) 52 69 (+32.7%)
Task 4 386 365 (-5.4%) 22 26 (+18.2%)

Table 6.5: Task individual performance concerning time required and correctness.

address a task.

6.3.3 Task-dependent Results

We also analyzed the two variables, time spent and correctness, for each task individually
to reveal which kind of task benefit most from dynamic information integrated in Eclipse.
Table 6.5 presents the aggregated results for time spent and correctness for each subject
group and each task individually. Tasks 1, 2 and 3 benefit significantly from the availability
of the Senseo plugin both in terms of time required to solve them and the correctness of the
solution. However, for task 4 the benefit of the Senseo plugin is less pronounced.

Furthermore, we examined more in detail which tools are useful for what kind of tasks by
analyzing the results of the subjects using Senseo and the questionnaire they completed
at the end. Figure 6.4 presents an overview of how useful a tool was to complete a task.
Usefulness has been categorized in five categories, ranging from 0 (tool have not been
used at all) to 5 (tool was a main contribution to solve the task). We counted only people
using information from the specific tool. If they looked at it but believed that it did not
provide any value, we counted the usefulness as 0. The CCRC has not been widely used
by the subjects due to several reasons we outline in Section 6.4. Concerning the other
tools, we can clearly see that the Collaboration Overview and the tooltips have been used
to reveal exact caller and callee information as well as to reason about the collaboration
within the software system. HeatMaps as well as the annotations and the decorators were
mainly useful while navigating the source space to detect hotspots such as methods that
have been frequently invoked. The Collaboration Overview was for all subjects at least a
starting point to find the appropriate methods or source artifacts, while the tooltips were
useful to navigate and study the software system on a fine-grained level.

Coming back to the kind of tasks introduced in Section 6.2 that we wanted to support with
Senseo, we can conclude that the Senseo plugin successfully aided developers performing
such tasks. The experimental task 1 refers to task type 1, task 2 to type 2 and 3, and task
3 to type 4, while for task 4 we consider lower level information as more relevant, such as
information on a method body level, which is currently not supported by Senseo.

6.4 Feedback

In the experiment we collected also qualitative feedback by means of a questionnaire
to evaluate the impact of particular features of the Senseo plugin on specific kinds of

54 6.4. Feedback

Figure 6.4: Mapping how much tools have been used in tasks.

Dynamic Information Task 1 Task 2 Task 3 Task 4
Runtime types (Tooltip) 33% 47% 47% 20%
Number of invocations 53% 67% 40% 27%
Number of created objects 33% 47% 27% 13%
Number of exec. bytecodes 27% 33% 20% 7%
CCRC 7% 7% 0% 0%
Dynamic collaborators
(callers, callees) 53% 80% 73% 33%

Table 6.6: Percentage of subjects using specific dynamic information in particular tasks

maintenance tasks. This evaluation yields answers to the question which Senseo feature
and which kind of dynamic information is actually relevant or useful for what kind of
software maintenance tasks. In the following sections we discuss the obtained feedback
and outline several conclusions we drew.

6.4.1 Qualitative Feedback

In Table 6.6 we list for each task the percentage of subjects that used a specific kind of
dynamic information integrated by the Senseo plugin (evaluation of the question “Did
you use dynamic information X in task Y?”), and Table 6.7 presents how useful subjects
rated each Senseo technique on a Likert scale from 0 (useless) to 4 (very useful).

From the evaluation asking for the use of dynamic information in specific tasks, we draw
the conclusion that there are basically three kinds of tasks whose solution process is very
well supported by the availability of dynamic information in IDEs: (i) tasks requiring

6.4. Feedback 55

Table 6.7: Mean ratings of the subjects for each feature of Senseo
Dynamic Information Mean rating [0..4]
Tooltip showing runtime types 3.6
Ruler column incl. dynamic info 3.2
Overview ruler column incl. dyn. info 3.0
Package tree incl. dynamic info 2.4
CCRC 2.1
Collaboration Overview 3.7

developers to understand how different source artifacts collaborate with or depend on
each other, (ii) tasks in which developers have to assess how often code is executed or
how complex it is, and (iii) tasks that require the developer to understand which code is
related to a given feature. This conclusion agrees with the quantitative results discussed
earlier where we revealed that task 1 (feature and collaboration understanding), task 2
(quality assessment) and task 3 (control flow understanding) benefited most from the
availability of the Senseo plugin while for task 4 (low level defect correction) dynamic
information was less useful.

Appendix D contains for further study all the questions of the experiment questionnaire
as well as the detailed results of each question.

6.4.2 Informal Feedback

Besides the qualitative feedback the subjects also provided informal feedback during
discussions after the experiment. Some feedback was concerned with feature requests
for further visualizations or improvements which we discuss in Section 8.1. Mainly, the
subjects underlined the value of dynamic information in IDEs and mentioned that they
would be very happy to have such kind of information available during their daily work.
Some subjects mentioned that in the very first moment they have been misled by
HeatMaps, especially in ruler columns, as the HeatMaps have not been appropriate
for the current task the subjects were solving, but were still attracting developer’s atten-
tion. Furthermore, the subjects stressed the usefulness of the Collaboration Overview
and had various suggestions for further improvement. However, it was also noted that
sometimes the Collaboration Overview was overloaded with collaborating classes or
packages and hence a filtering mechanism would be useful.
Some subjects mentioned also that they would be very interested to see how Senseo
performs with larger software systems than jEdit and how the workflow of collecting
dynamic information would fit to systems like J2EE applications. Some skepticism was
raised how Senseo would scale with such big applications and how useful for instance a
Collaboration Overview would be in this case.

6.4.3 Observations

During the experiment we observed the subjects while solving the different tasks and
took notes about certain usage behaviors we could study. One of the main observations

56 6.5. Threats to Validity

was that the CCRC was not heavily used and developers lost interest in it the more they
proceeded within the experiment. Another observation revealed that the Collaboration
Overview was heavily used to navigate through the source code space and study the
collaboration within different parts of the software system.
The HeatMaps in views like the package tree were used to quickly determine hotspots
within the expanded tree. HeatMaps in the ruler column were used to gain an overview
of a displayed class or spot an interesting class. We can conclude that HeatMaps were
considered to be a reasonable means to get a quick overview of the system and to navigate
towards a certain source artifact.
Subjects very familiar with Eclipse and its daily usage are inclined to use the traditional
tools that rely on static source code analysis. They often used Senseo either to verify the
results of the traditional tools or to combine the different (static and dynamic analysis
based) tools to navigate and search faster the source code space for a possible solution.
This includes the usage of the Collaboration Overview or even sometimes the CCRC.
Also the tooltip has been widely used to verify their assumptions and seems to provide an
efficient way to study methods.

6.4.4 Feedback Conclusion

From the results evaluating the different Senseo concepts, we conclude that developers
particularly benefit from the availability of the collaboration views and runtime type
information in source code. Also considered to be useful are visualizations of dynamic
information in the source code columns, such as the presentation of number of invoked
methods in a method or class. The aggregated dynamic information presented in the
package tree is perceived as less useful by the developers, probably because it is not
meaningful to study runtime complexity at a high package level. The subjects also could
not benefit from the CCRC as this visualization serves the rather specialized task of
performance optimization which has not been directly covered by the maintenance tasks
of the experiment.

6.5 Threats to Validity

In this section we discuss several threats to validity concerning this experiment. We
distinguish between (i) construct validity, that is, threats due to how we operationalized
the time and correctness measures, (ii) internal validity, that is, threats due to inferences
between treatment and effect during the analysis, and (iii) external validity which refers
to threats concerning the generalization of the experiment results.

6.5.1 Construct Validity

Due to the operationalization of the time and correctness variables, the results might
not hold in real, non-experimental situations. For instance, subjects could have been
more attentive than they would be in their daily job, or they might have guessed the
experimental goal and acted accordingly, or were more anxious as they were observed

6.5. Threats to Validity 57

and could have assumed that their personal performance was evaluated. In general, the
testing of the treatment, the (un)availability of the Senseo plugin, could have influenced
the outcome of the experiment. However, we consider this threat to be negligible as the
experimental goal was not revealed to subjects. At the same time we made clear that
we do not evaluate their personal performance (we anonymized their answers), and we
tried to use a familiar, non-artificial atmosphere by conducting the experiment with most
subjects in their own office using their own computer if it fulfilled the requirements for
the experiment, see Section 6.2.

6.5.2 Internal Validity

Some threats to internal validity originate from the subjects. First, subjects might not
have the required expertise to properly solve the maintenance tasks. This threat is largely
eliminated by preliminary assessment of the subjects’ expertise concerning their Java,
Eclipse and software maintenance skills. Additionally, we required them to not have
expert knowledge in developing jEdit. Second, the experimental group might have had
more knowledge than the control group. This threat is mitigated by assigning the subjects
in a randomized manner to the two groups in a way that both groups have nearly equal
expertise (see Table 6.1).

Other threats to internal validity stem from the maintenance tasks we prepared. First, the
tasks could have been too difficult or time-consuming to solve. This threat is refuted by
the fact that nearly all subjects from both groups could solve all tasks in time (except two
from the control group and one from the Senseo group). Moreover, each question was
answered fully correctly by at least one person from each group. Additionally, we asked
subjects in the questionnaire directly how they judged the time pressure and the difficulty.
On average, the ratings were 2.8 for time pressure (representing “felt no time pressure”)
and 3.1 for average difficulty of all tasks (which means “appropriately difficult”). Second,
the threat that we formulated tasks favoring Senseo is largely limited as we used Pacione’s
established framework [44] to find the tasks used in the experiment. Third, a threat for
the correctness evaluation is that the experimenters might have favored Senseo while
grading subjects’ answers. By initially building an answer model according to which
the subjects answers were graded, we mitigated this threat. For the obtained answers the
experimenters gave points as pre-defined in the answer model which in turn has been
formulated and validated by two persons individually.

Lastly, we discuss the objection that the control group using the standard Eclipse IDE
could have performed better if additional plugins, for instance JMetrics2 would have been
available. We did not prevent control group subjects from installing additional tools or
plugins into Eclipse. We asked them at the beginning whether they could name a specific
plugin to be installed and even allowed them to install additional plugins as they see
a need during the experiment. However, none of the subjects opted to install such an
additional aid nor could he or she after the completed experiment name a plugin that
would have been specifically useful for the maintenance tasks we designed.

2http://sourceforge.net/projects/jmetrics/

http://sourceforge.net/projects/jmetrics/

58 6.6. Summary

6.5.3 External Validity

Generalizing the results of the experiment could be unjustified due to the selection
of tasks, subjects, or the application used in the experiment. This threat is mitigated
since we selected the maintenance tasks carefully to follow Pacione’s framework [44]
of representative maintenance tasks. Furthermore, we asked open questions to the
subjects to better model industrial reality than would be possible with multiple choice
questions.

The literature recommends avoiding experimental groups consisting of only students [45].
We therefore selected subjects who all have professional experience in industry as software
developers as mentioned in Section 6.2. As the subjects also work for different companies
and have a high variety of education profiles, the study participants should be fairly
representative for professional software developers and thus not impose a threat to
generalization.

In Section 6.2 we described several reasons why jEdit is representative for many industrial
systems. Additionally, we asked subjects at the end of the experiment how comparable in
terms of maintainability they consider jEdit to be to systems they daily work with. On
average, they gave on a Likert scale from 0 (totally different) to 4 (very representative) a
rating of 3.1, which refers to “many similarities”. Hence we are confident to have found
with jEdit a system representative for most industrial applications.

6.6 Summary

In this chapter we showed how Senseo can help to reason about a certain software system
while solving common software maintenance tasks. We conclude that the integration of
dynamic information is very helpful and supportive for developers. To emphasize this
conclusion and to measure the value of Senseo in a practical manner, we performed a
controlled experiment with 30 professional developers. This experiment reveals that the
participants spent 17.5% less time on the maintenance tasks while at the same time pro-
viding 33.5% more correct answers. Additionally, we discussed the feedback we received
through a qualitative questionnaire and informal discussions with the subjects after the
experiment. We could show that this feedback coincides with our own observations we
did during the experiment.

Chapter 7

Discussion

Integrating dynamic information into IDEs features several problems such as gathering,
storing and aggregating dynamic information or visualizing the aggregated information.
In this section we critically discuss different aspects of our work, i.e. Senseo. For the key
parts of Senseo we go more into detail and discuss where Senseo is a powerful tool and
where it lacks certain features. To conclude we discuss how Senseo supports the different
activities outlined at the beginning and assess the conducted validation.

IDE Integration. While integrating the different enrichments and visualizations of
Senseo we had to address several problems. Some of these problems could be solved,
others are not yet fully addressed and should be addressed in future work.

• Data Gathering - Senseo integrates the process of data gathering as an additional
Eclipse Run Configuration similar to the one launching Java applications, which
makes it almost fully transparent to developers to use in their usual workflows.
However, MAJOR requires the application to execute within a specially instru-
mented JVM, which makes the integration not as transparent as we wished but
which was the most appropriate solution for a seamless integration. Furthermore,
the integration of MAJOR has certain limitations:

– MAJOR requires us to instrument the used JVM upfront. This is a necessary
task if we want to cover the complete JDK code and not only gather dynamic
information of application specific code. As this is a one-time task, its costs
are affordable and as we integrated the process to instrument the JVM into
Eclipse it is also performed without difficulty. We could have integrated the
task into the installation process of the Senseo plugin which would completely
hide the instrumentation from a developer’s view. However, we opted to
integrate this task into the run configuration to enable developers to choose
which JVM they want to instrument.

– Before its execution, the application is packed into a JAR-archive to execute it
with MAJOR. This eases our integration with MAJOR but restricts developers
as they are required to follow the convention to organize their source code in
a folder called src/, in order to be able to build a JAR-archive. We opted for

59

60

this solution to much better decouple MAJOR from Senseo. Additionally, like
this it is much easier to exchange MAJOR with a different technique to gather
dynamic information.

Performance. As dynamic analysis deals with a huge amount of data, it is impor-
tant to process this information in an efficient manner; especially if we would like
to integrate the aggregated data continuously in the IDE. The first implementa-
tion of MAJOR, provided a straightforward and naive way to collect and transfer
dynamic information, thus suffered from an excessive overhead. MAJOR used a
naive, non-optimized aspect for collecting dynamic information and always trans-
mitted the complete CCT to the Eclipse plugin using Java’s standard serialization
mechanism. Even for medium-sized applications, serialization introduced long
latencies and generated several hundred megabytes of data. As a case study, we
ran Eclipse itself as a target application and analyzed the usage of the JDT core.
Without Senseo, starting and terminating Eclipse took 53 seconds; executing the
same scenario with Senseo took 188 seconds, i.e., the overhead of Senseo was
255%. The transmitted CCT grew over 200 MB thus loading and storing of the
received CCT was problematic.

The recent version of MAJOR performs much better and addresses the discussed
overhead: The aspects to gather dynamic information are optimized, particularly the
code that collects runtime type information. Wherever runtime type information
can be statically inferred, the new aspect avoids expensive access to dynamic
context information through AspectJ’s reflection API. For instance, if all formal
method arguments are of primitive or final type, the actual argument types cannot
vary at runtime and therefore do not need to be collected. For instance, there
is no need to collect runtime argument types in a method foo with the formal
arguments foo(int i, String s, double d), since int and double
are primitive types and String is a final type.

Additionally, we use an optimized serialization mechanism that transmits the CCT
in an incremental way, sending only those nodes whose dynamic information
has changed since the previous transmission. In addition, the data structures
that store dynamic information are optimized as well as since they are accessed
frequently. Thanks to the principle of locality [13] the updated parts of CCTs are
close together and typically only a small subset of the CCT nodes is transmitted.
Thus, we can frequently update the dynamic information in the Eclipse plugin,
e.g. once per second. The serialization format includes a name table (types,
methods, signatures) as well as compact representations of the CCT nodes and the
gathered dynamic information using only integer arrays. Hence, we can serialize
all data with Java’s efficient, low-level DataOutputStream API instead of
using the expensive ObjectOutputStream class, which gives us further speed
improvements. Repeating the previous case study showed that starting Eclipse took
98 seconds and the transmitted CCT grew only up to 45 MB, which gives us a time
overhead of less than 100% as well as an impressively small amount of collected
data, i.e. only a fifth of the previous size. If we consider that the new optimized
MAJOR collects even more dynamic metrics, we can conclude that the overhead
has actually been reduced even more.

61

Taking all these improvements into account, we can conclude that Senseo relies on
an efficient way to gather dynamic information.

• Integration of dynamic information. Enrichments such as annotations, HeatMaps
or the decorators have been enthuastically accepted and adopted by the subjects
during the controlled experiment. Generally the possibility to switch the dynamic
metric on which the categorization is based empowers developers to quickly iden-
tify hotspots within the software system. The obtained feedback in the validation
showed that developers appreciate enrichments within navigation trees and the
source code view. However, such enrichments to embed dynamic information into
the IDE could also be used in other static source code views such as enriching the
call hierarchy view with execution flow information, or it could be combined with
other existing tools that are integrated into Eclipse such as the Findbugs Eclipse
plugin1. There are many other views and tools within Eclipse which could benefit
from dynamic information. However, for Senseo we have chosen to enrich the tools
and views most used by developers during their development work, for instance,
the source code editor or the package explorer.

• Enrichments and visualizations. Each of the various enrichments and visualiza-
tions contributes differently to ease the analysis of software systems. Means to
navigate in these enrichments or overviews such as the possibility to jump to the
source artifact of the displayed method in the collaboration overview have also
been largely accepted and adopted by the subjects. However, they pointed out some
limitations, for example concerning annotations and decorators:

– Annotations and decorators disclosing dynamic information can overlap with
enrichments based on static source code analysis. For instance, annotations
in the overview column might interfere with existing annotations for search
results or compiler warnings. On the one hand, this could be addressed by
choosing a different color schema for these enrichments. On the other hand,
the annotations or decorators are placed in a very small area and share a small
space with a lot of other information contributed by other tools. This means
that collisions are likely and often tools override each other’s enrichments.
Furthermore, as we aim to reveal the hotness of the enriched artifacts such as
classes in the package explorer, a color schema similar to HeatMaps is much
more intuitive due to its gradient from cold (blue) to hot (red). Therefore, we
claim that such a schema is much more likely than any other color schema we
could have chosen to not collide with existing annotations and decorations.

– Clustering methods into their specific groups is only based on a single dy-
namic metric. This means that the values of the collected dynamic metrics are
not combined to calculate different clusters for HeatMap-based enrichments.
We considered a combination of multiple metrics to be useful and discussed
various ideas how to enable developers to combine different metrics. How-
ever, we also raised many concerns about the value of such combinations
as nearly none of the possible combinations provides any meaningful value.
Further questions such as how the values should be connected and interpreted
are raised. For instance, it was unclear to us how we could combine the

1http://code.google.com/p/findbugs/

62

number of object allocations with the number of method invocations. Would
an invocation count as much as an allocated object? What would it mean to a
developer if a method has often been invoked and has allocated many objects,
while another method has only been invoked once but has allocated the same
number of objects? How would we group such combinations? Due to these
open questions and as we could not find any meaningful combination, we
have chosen to not provide any possibility to combine the different metrics.

– Eclipse does currently not provide any possibility to show multiple tooltips
in one pop-up window, which means that our introduced tooltips containing
dynamic information are overwriting the existing Javadoc tooltips. Several
subjects complained that the absence of the Javadoc tooltips conceals useful
information and that it would be much more useful if both (Javadoc and our
dynamic information) were displayed in the tooltip. Unfortunately, such a
feature would have required us to change the core of the Eclipse framework.

• Enabling Software Navigation is a crucial feature of IDEs; especially while
performing software maintenance tasks it is important to quickly navigate the
software system. We integrated for example hypertext-like links in the displayed
information in tooltips to navigate to the related definition. In the Collaboration
Overview or the CCRC it is possible to easily navigate a selected element by
clicking on it while holding the ctrl-key. While the navigation within tooltips
and within the Collaboration Overview is easy and has been considered as useful
by many subjects, the navigation within the CCRC has often been criticized as
cumbersome. This limitation is related to the issue that the CCRC does not
scale well for huge CCTs. In Section 8.1 we outline some ideas to address these
drawbacks.

We can summarize that in general the integration of dynamic information in Eclipse is
successful. However, each part of the integration has certain limitations. Some limitations
are given by the used tools such as MAJOR and its upfront instrumentation while other
limitations are due to a prototype based implementation not yet covering all possible
aspects. The current enrichments proved to be useful to navigate the source space and
to conduct typical software maintenance tasks. However, further work is required to
improve the existing implementation.

Addressing Shortcomings of traditional IDEs. In Section 1.1 we outlined different
activities developers usually perform during software maintenance and which are badly
supported in traditional IDEs. Senseo is our approach to better support developers in these
activities. In the following points we discuss how the different parts of Senseo support
the outlined activities, but also discuss various limitations of our approach:

• Understanding execution paths and runtime types of an object-oriented sys-
tem employing complex hierarchies including abstract classes and interfaces:
Visualizations such as the CCRC or enrichments such as tooltips use different
means to display information about runtime types or execution paths either on a
fine-grained level (tooltips) or on a coarse-grained level (CCRC). Tooltips reveal
information about actual runtime types and callers or callees of methods, while the
CCRC reveals the calling context of the currently studied method. Furthermore,

63

as Senseo is able to reveal the used implementors of abstract classes or interfaces,
we are able to quickly examine how complex hierarchies including abstract classes
and interfaces are used.

• Understanding higher-level concepts such as application layers, models, or
separation of concerns: Decorators in the Package Explorer and HeatMaps help
us to understand how and how heavily different parts of the software system have
been involved during the execution.

• Identifying collaboration patterns, that is, how various source artifacts com-
municate with each other at runtime. The Collaboration Overview allows us to
easily identify which source artifacts communicate with each other at runtime and
how frequently this communication occur. Furthermore, the collaboration is not
only disclosed on a method level; we can also reason about collaboration between
classes or packages.

• Locating design flaws, design “smells”, performance bottlenecks, and other
code quality issues such as classes heavily coupled to classes in other packages
or classes residing in wrong packages: Using HeatMaps, decorators, or the
CCRC we can easily spot points of interest and focus on them. Furthermore, the
Collaboration Overview helps us to identify tightly coupled methods or classes
and packages to refactor these quality issues. Additionally, tooltips reveal detailed
information about the costs of a method invocation and concrete information about
the involved runtime types.

• Gaining an overview of control flow and execution complexity, for instance to
quickly locate performance bottlenecks. Tooltips provide information about the
control flow such as exact information about callees and senders of message sends.
Furthermore, the CCRC helps us to gain an overview on the execution complexity
of the currently studied context.

We conclude that Senseo is able to support all our outlined software maintenance activities
in a sufficient manner. However, as previously outlined Senseo currently provides no
solution to restrict data gathering to only a specific feature execution and therefore all
enrichments and visualizations are always based on the entire gathered CCT. This means
that developers still have to filter out information manually to gain an overview only on a
specific feature execution. Developers studying a central layer used by several features
are therefore overwhelmed with information from different feature executions, which
impedes studying only a specific feature. Furthermore, as subjects noted in the feedback
of the experiment the CCRC is barely usable to navigate huge CCTs.
Besides these limitations, MAJOR is currently not able to analyze intra-procedural control
flow, hence Senseo provides only a high-level view on execution paths between methods.
We could address this limitation by guessing which branch of a control-flow statement
has been executed and by looking at all the callees of a method. This procedure, however,
is very imprecise; the only proper solution is to improve MAJOR to also cover intra-
procedural flow or to employ another technique to gather dynamic information capable
of addressing this drawback. This means that Senseo’s view is limited when it comes to
examining complex and large methods.

64

Validation. First, we validated Senseo only on a use case basis. The analyzed use cases
matched the software maintenance tasks we discussed in Section 3.1, which we also
encountered while developing with the Eclipse framework. As described in Chapter 6,
we aimed to verify our approach by conducting a quantitative experiment with 30 profes-
sional software developers. The results of the experiment show that integrating dynamic
information into the Eclipse IDE yields a significant 17.5% decrease of time spent while
significantly increasing the correctness of the solutions by 33.5%. Additionally, the
general feedback showed that the integration of dynamic information into the IDE is
appreciated by developers and considered as supportive. However, our validation cannot
be seen as a field study as all subjects’ experience with Senseo is limited to the experiment
itself. This means that we measured only the impact of Senseo on the subjects’ efficiency
and correctness within the experimental setup and not during their usual work as software
developers. To validate Senseo’s impact and usefulness on typical activities a developer
encounters during her daily development work, evaluation over a longer time period and
with a different experimental setup is required. However, due to time constraints we
were not able to conduct such a field study. But from the results of our experiment, we
conclude that Senseo supports developers in conducting typical software maintenance
tasks as its availability increased correctness and efficiency.

Summary. In this chapter we discussed different aspects of Senseo and its validation.
We showed that Senseo adequately and seamlessly integrates all important features into
Eclipse and addresses the previously discussed limitations of traditional IDEs. However,
Senseo still has certain drawbacks such as MAJOR’s inability to reify intra-procedural
control flow. Furthermore, we discussed the advantages as well as the various limitations
of the implemented enrichments and visualizations such as that tooltips are hiding impor-
tant static information. To conclude we showed that we successfully validated Senseo in
an experimental setup but that further validation is required to measure Senseo’s impact
and usefulness on developers’ daily work concerned with developing and maintaining
software systems.

Chapter 8

Conclusions

In this last chapter we conclude our work by summarizing the most important contribu-
tions we made during our studies on this topic and by discussing some perspectives for
future work in the area of integrating dynamic information in IDEs as well as ideas to
improve our existing approach Senseo.

In this work we presented the thesis that integrating dynamic information in the IDE
supports developers during typical software maintenance tasks. We identified the short-
comings of traditional IDEs relying purely on static source code analysis and showed how
the availability of dynamic information helps developers during software maintenance
tasks by providing information about the runtime behavior of the software system. Es-
pecially in object-oriented software systems, dynamic information increases knowledge
about the system which cannot be or is only partially supplied by static source code
analysis with expensive computations. In Chapter 3 we motivated the integration of
dynamic information into the IDE to address the different shortcomings of traditional
IDEs. Furthermore, we identified different requirements to be covered by our work
to successfully integrate dynamic information into the IDE. Such corner-points are for
example that we need to embed the information directly in the IDE within the familiar
tools, that we need to provide means to navigate the source code space based on the
dynamic information or that we need to provide higher level overviews. Based on the
identified shortcomings and these requirements we elaborated different categories of
dynamic information to be gathered. We discussed different techniques to gather dynamic
information and presented MAJOR as our choice.
For this thesis we targeted the Java language and Eclipse, the most widely used IDE for
Java development. We implemented our approach in Senseo, an Eclipse plugin providing
a framework to gather dynamic information directly within the IDE, processing the re-
ceived dynamic metrics and integrating the aggregated data into the IDE. Senseo consists
of the following parts:

• Data Gathering - We are able to run the software system to be examined directly
from within the IDE with an instrumented JVM.

• Data Processing / Storage - Senseo receives, process and store the gathered
dynamic information. Furthermore, Senseo provides means to query aggregated
information as well as storing and loading the gathered data.

65

66 8.1. Future Work

• Enrichments - Senseo provides various enrichments to the Eclipse IDE: For in-
stance, it augments the source code view with HeatMaps denoting hotspots within
the current source code artifact or it decorates various navigation trees with colored
icons to disclose points of interest within the whole software system. Additionally,
it enriches tooltips to provide aggregated information about what kind of dynamic
information has been gathered for a certain method.

• Visualizations - By integrating a CCRC view we visualize the calling context tree
(CCT) and reveal information about the execution flow. Furthermore, we integrated
the concept of HeatMaps within this visualization to group the different parts of
the system as well as to disclose hotspots.

• Collaboration Overview - To disclose collaboration patterns and to reveal the
coupling of the different parts of the examined software system. Senseo’s Collab-
oration Overview provides information about collaborating methods, classes or
packages in tables.

• Navigation - All the different enrichments, visualizations and overviews encom-
pass means to navigate the source space. For instance, tooltips embed hyperlinks to
navigate to the listed elements or the CCRC opens the source editor at the selected
method by holding CRTL and clicking on the node representing the method.

To validate our approach we conducted a controlled experiment with 30 professional
software developers to measure the impact of Senseo on different typical software mainte-
nance tasks. The result shows that the visibility of dynamic information in the Eclipse
IDE yields a significant 17.5% decrease of time spent while significantly increasing the
correctness of the solutions by 33.5%.

In Chapter 7 we critically discussed our approach and our contributions. We showed
how Senseo addresses the identified shortcomings of traditional IDEs and outlined the
different shortcomings of the current implementation of Senseo.

We can conclude that Senseo successfully integrates dynamic information in the static
views of the Eclipse IDE and supports Java developers in performing different kinds of
software maintenance tasks. Furthermore, it eases the comprehension of the runtime be-
havior of a software system and discloses hotspots or bottlenecks during execution.

8.1 Future Work

We believe that Senseo is a solid framework to form a foundation for further research on
integrating dynamic information into IDEs. In the following paragraphs we outline some
ideas on future work on Senseo:

Intra-Procedural Control Flow. While Senseo currently purely focuses on the inter-
procedural control flow represented by the Calling Context Tree, further research could
also capture the intra-procedural control flow. We think that this offers additional sup-
port for program comprehension and optimization. Moreover, Senseo is an adequate

8.1. Future Work 67

framework to extend existing perspectives of IDEs or to enable the integration of fur-
ther dynamic analysis such as memory leak and data race detectors. Thanks to our
aspect-based gathering technique, the development and integration of such advanced
features based on additional dynamic information can be completed in straightforward
manner.

Improving Information Gathering. Currently the gathering of dynamic information
is a continuous process: MAJOR subsequently transmits updated parts of the CCT to
Senseo. This process can be improved in various ways such as integrating mechanisms
to enable or disable the process of information gathering at runtime or by enabling
developers to select within the IDE which parts of an application should be covered by
instrumentation. Such selection could happen before starting the instrumentation or even
at runtime. This would enable developers to limit data gathering to specific software
features and source artifacts. Hence, developers could examine certain source artifacts
in the context of a specific feature and no other dynamic information, e.g. from other
features, would be displayed and therefore developers would not be misled by unrelated
information. Additionally, it would be interesting to be able to selectively swap aspects at
runtime to select and hence change the kind of data which is collected. This would for
example enable developers to collect information about the number of created objects in
a first execution, while in a second execution a developer would gather the number of
invoked bytecodes.
Senseo currently requires the application to be started in an instrumented VM which does
not provide access to the usual debugging mechanism often used to further inspect a
running application. Hence, if a developer wants to use the debugger to halt the execution
at certain breakpoints he has to switch to the common debugger where no dynamic
information is collected. We think that a better integration of our instrumentation into the
existing Java Run Configurations, combined with the feature to selectively turn on and
off the data gathering would improve the overall usage of Senseo.

Data Processing. Senseo uses its own storage system to store and process the gath-
ered information. We organize the gathered data on a per project basis hierarchically in
packages, classes and methods. Such a storage system introduces an additional overhead
to process and aggregate the gathered dynamic information. Furthermore, a dedicated
storage system requires us to parse the entire CCT transmitted over the socket. Fur-
thermore, we need to implement a way to serialize our data structure to persistently
store the contained information on disk as well as implementing our own way to query
the storage system. Using a back-end optimized for storing and querying information
organized in graphs such as Neo4J1 would ease the integration of features like persistency
and would provide an optimized way to query such a storage system [36]. This would
tighten Senseo more to a graph based representation of the gathered data. However, as the
execution flow within a system can always be modeled as a graph, such a representation
is apparent.

1http://neo4j.org/

http://neo4j.org/

68 8.1. Future Work

Visualizations. Senseo forms a solid basis to enrich Eclipse with dynamic information.
However, the implemented visualizations are very limited and offer various possibilities
for further improvements. Besides the integration of more visualizations or more dynamic
metrics, we see also a potential to improve existing visualizations:

• Collaboration Overview - Our validation revealed that the Collaboration Overview
has been perceived as a very powerful tool. However, the visualization of the ag-
gregated information is only textual, which impedes navigation. Especially a larger
and widely used source artifact contains many collaborating parts and reveals
therefore very quickly the limitation of such a textual representation. We think that
an approach similar to the CCRC is more appropriate to visualize the aggregated
data and to improve navigation in such a visualization. We imagine packages to
be arranged on an plane connected by edges revealing the collaboration. Addi-
tionally, the thickness of these edges could be weighted based on how often a
certain collaboration occurs. Developers could then click on a package to study the
collaboration of the classes within this package. Furthermore, classes not contained
by this package would reveal collaboration between packages. This approach could
further go into methods and provide a graphical representation of the collaboration
on a finer grained level.

• CCRC has been evaluated to be only helpful in specific use cases such as quickly
spotting hotspots in the CCT. One of its issues is that the ring chart quickly grows
huge and is therefore hard to navigate. Having data about more than one feature
further overloads the ring chart and complicates its navigation. However, we see
potential in a graphical representation of the CCT, as it can be very helpful to
track execution flow and to detect hotspots in a larger system. We imagine that the
visualization could be enriched with further information. Additionally, we imagine
a better interaction with source code navigation such as automatic zooming towards
the currently active method. Another problem is for example that a currently active
method can be contained multiple times in the tree. We imagine that all occurrences
of the active node could be better highlighted in the ring chart. For instance, the
tree could be separated into several views, each zoomed to one of the occurrences
of the active method in the tree.

Integration. We integrated dynamic information into different parts of the JDT such
as the source code view or the package tree. Moreover, we augmented traditional
static source code views such as tooltips with the aggregated information. However, as
traditional IDEs already feature a broad range of different views on information gained
through static source code analysis such as a type hierarchy or source code search results,
we imagine further integration with these views. Augmenting these static perspectives
with the same dynamic information we integrated in Senseo or, for instance, embedding
which other classes are collaborating with the currently studied class the type hierarchy.
Furthermore, we imagine search results to be annotated with dynamic information or
enriching other tools such as CodeMap are with our aggregated data. Hence, Senseo
would provide an interface to query the gathered dynamic information through a public
interface.

8.1. Future Work 69

Language Independence Senseo is currently tightened to the language Java and Eclipse.
The discussed and addressed use cases, however, are not restricted to Java but are valid
for any kind of object-oriented languages. Eclipse already supports a broad range of
object-oriented languages that use the same kind of tools for static source code analysis.
Hence Eclipse could provide a solid framework to work with different languages and
support also the integration of dynamic information for other languages besides Java.
As gathering dynamic information is decoupled from the other parts of Senseo, integrat-
ing support for other languages would be done by providing tools to gather dynamic
information in these languages.

70 8.1. Future Work

Appendix A

User’s Guide to Senseo

This chapter guides you through the installation of Senseo and its usage. Furthermore, we
describe the different features and enrichments of Senseo.

A.1 Requirements

To be able to use Senseo with all its features a standard Eclipse installation in version
3.4.1 bundled with JDT is required. Furthermore, you preferably should have a current
version of the Java SDK installed on your system. We propose that you unpack and install
the version to be used in your Home-Directory in ˜/java/current.

Note to OS X users: Due to limitations in Apple’s bundling of the Java Virtual Machine,
Senseo is not able to gather dynamic information with the standard Apple JVM. However,
there are free (as in free software) implementations of the Java Virtual Machine available
for Mac OS X such as the Soyalatte JVM. Soyalatte is known to work with Senseo. We
recommend an installation in ˜/java/current.

A.2 Installation

Senseo can be installed from an Eclipse update site. You need to add the following URL
as an Eclipse Update Site in the Eclipse Update Manager:

Update-Site: http://scg.unibe.ch/download/senseo/eclipse/

You are then able to install the Senseo plugin within your Eclipse installation. After
successfully restarting Eclipse, Senseo is enabled and immediately available.

A.3 Gathering Data

To gather dynamic information you can create a new Run Configuration (Figure 5.1) in
Eclipse for your current project similar as you would normally launch your application

71

http://scg.unibe.ch/download/senseo/eclipse/

72 A.3. Gathering Data

within Eclipse. You need to choose a Senseo Profiler Run Configuration and select the
Main-class of your project, to specify the entry-point to your application. Afterwards, you
can launch your application. First, Senseo prepares your application to be instrumented
by MAJOR and then launches the packed JAR-file with MAJOR. To stop instrumentation
you can simply terminate your application. Please note that you need to run an initial
instrumentation for the first execution (see Paragraph Initial Instrumentation for further
information).

Note: Currently we require your project to follow the convention that all necessary source
code is located in a folder called src/ within your project. We use this convention to
generate a JAR-File to be passed to MAJOR.

Initial Instrumentation. MAJOR requires an initial instrumentation of the JDK with
which your application is executed. This means that prior to your very first execution of
an application in Senseo you need to open the Senseo Runtime Configuration and select
the Major Setup tab (Figure A.1). In this view, clicking on the button Instrument starts
the instrumentation of the JDK in your Home-Directory in ˜/java/current. This can take
up to several minutes and on slower machines even up to half an hour. However, this
initial instrumentation is only required once prior to the first usage of Senseo.

Figure A.1: Instrumentation of JDK

A.4. Visualizations / Enrichments 73

A.4 Visualizations / Enrichments

Senseo features different kinds of enrichments and visualizations to integrate the gathered
dynamic information in Eclipse. The following sections explain each of these enrichments
in detail and explain their functionalities.

A.4.1 Tree Metrics

In the various trees of Eclipse Senseo shows for each artifact (package, class, etc.) either
a red, yellow, or purple icon to represent the metric value of a particular artifact. If the
current selected metric is for instance number of invocations, then a red colored artifact
means that the method has often been invoked. For packages or classes, the metric value
is aggregated over all methods defined in a package or class. Figure 5.8 and Figure 5.9
give two examples how the different trees are enriched with the current selected metric.
For instance, in the package tree we can distinguish between three metric values: high
(red), average (yellow), and low (purple). To change the metric (e.g. from number of
invocations to number of created objects), you can use the switch (depicted with (A) in
Figure 5.5).

A.4.2 Ruler Annotations

Figure 5.7 shows an example of rulers enriched with colored annotations within the
source code view. Senseo provides enrichments on both sides of the source code view
displaying HeatMaps and annotations. The hotness of these enrichments are based on the
currently selected metric.

Left Ruler Column Metrics. The left ruler column provides local information for the
currently displayed methods of a class. It shows a color gradient from blue to red with six
distinct color values. The color values have the same meaning as in the package tree (the
more red, the more active is the current method for the current metric). The metric shown
in the ruler column is also changeable with switch (A) in Figure 5.5. A white color in the
column means that this method has not been invoked.

Right Overview Ruler Column Metrics. This overview ruler provides an overview of
the entire source file, that is, of all classes and methods defined in that file, also methods
currently not visible in the source code view. The colors encode the same meaning as
in the package tree or in the left ruler column. In the overview ruler, Senseo just shows
three distinct color values as in the package tree.

A.4.3 Tooltip Metrics

The tooltip, appearing when mouse-overing a method declaration (Figure 5.10) or invo-
cation (Figure 5.11), shows more detailed information about how a particular method

74 A.4. Visualizations / Enrichments

was used at runtime. For instance, the tooltip shows how often a method was invoked
(callers count), how many objects it created, the size of all created objects (in bytes), or
the number of methods this method invoked (callees). Furthermore, the tooltip contains a
list of actual callers of this method, a list of actual callees, a list of argument types, and a
list of return types. With type we refer to the class of the object that has been actually
used as argument or return value, not the statically declared type. Note that tooltips
are interactive. You can for instance click on a return type to navigate to that particular
class. A tooltip encompassing dynamic information only appears if there is dynamic
information available about a method or a method invocation. Otherwise, if a particular
method has not been invoked or has not been analyzed by Senseo, we show the traditional
(Javadoc) tooltip.

A.4.4 CCRC

The CCRC presents the call stack with the method in the center as the root (by default the
main method). All direct callees of a method are arranged in a ring around that particular
method, the indirect callees appear in the next ring, and so on. The colors used in the
CCRC are the same as used in the left ruler column (gradient from red to blue). You
can navigate in the CCRC, for instance zoom in or out, click on a method to select all
occurrences of this method in the CCRC (all occurrences are colored in gray with a red
border), double-click in a method to focus on this method, that is, turn it into the new
center of the CCRC, or you can press Ctrl and click on a method to view its source. The
CCRC is particularly useful to detect performance bottlenecks, for instance, methods
that trigger the invocation of many nested methods (that is, a method which has many
subsequent rings).

A.4.5 Collaboration Overview

The Collaboration Overview shows you either for a selected package, a selected class,
or a selected method with which other packages, classes, or methods it collaborates. A
collaborator is either a sender (the other artifact invokes methods in this package or class)
or a callee (this package, class, or method invokes methods in this other package or class).
In this view you can easily locate all dependencies of an artifact.

Appendix B

Subject Expertise Questionnaire

The following questions were used to categorize the subjects based on their experience to
create two groups; one using Senseo and another one – the control group – having only
standard Eclipse available. Each question is followed by the evaluated answers.

1. For how many years have you worked as a professional software developer in industry
up to now?

Figure B.1: Question 1: Working as professional software developer

2. For how many of those years have you mainly worked as Java developer?

75

76

Figure B.2: Question 2: Working as a Java developer

3. How many years ago did you learn Java?

Figure B.3: Question 2: Experience with Java

4. Which degree or education have you completed?

1. Computer Scientist/Software Engineer or MSc/Licentiate University/ETH/Tech-
nical College 53.3%

2. BSc University/ETH/Fachhochschule 40%

77

3. Practical Education as Computer Scientist or Software Engineer 6.7%

4. Other

5. Please rate your specific knowledge in the following areas on a scale from 0 (no
experience or knowledge) to 4 (expert in this area).

0 - No 1 2 3 4 -
experience Expert

Java 3.3% 3.3% 16.7% 56.7% 20%
Eclipse 0% 3.3% 33.3% 50% 13.3%
Working with unknown
code written by other
people (reverse
engineering,
software analysis,
program comprehension) 0% 10.3% 13.8% 69% 6.9%
Employing of dynamic
analysis techniques
and tools (Debugger,
Profiler, Visualizations) 0% 23.3% 36.7% 36.7% 3.3%
Developing or maintaining
open source projects
(e.g. a SourceForge project) 30% 26.7% 23.3% 10% 10%

Table B.1: Experience in the different areas

6. Have you ever used the text editor jEdit?

• Yes: 50%

• No: 50%

7. Have you even looked at, maintained or re-used the source code of jEdit?

• Yes: 20%

• No: 80%

78

Appendix C

Experiment Tasks

In the following sections we include the task sheet we handed out to the subjects, followed
by the detailed evaluation of the subjects. The first table (Table C.1) represents the time
spent on each task per subject. The second table (Table C.2) shows their correctness per
task.

C.1 Tasks

Thank you for participating in this experiment!
Please answer the following questions about the jEdit application. In total you have 90
minutes to answer all questions. Please refrain from answering questions in a rush, rather
skip the last question(s) if there is not enough time left.
For each question we will record the time it takes you to answer it and we will also rate
the correctness of your answer. At max you can achieve three points for each question if
your answer is fully correct. Please do not go back to a previous question which you have
already answered to not perturb the recorded answering time for this previous question.
The questions are concerned with typical maintenance tasks you would perform in an
application you have not developed yourself and about which you have no or only limited
knowledge. You are not asked to actually perform these maintenance tasks, but to just
acquire the necessary knowledge and insights into the system to be able to perform these
tasks. The system used in the experiment is jEdit, a fully-fledged text editor written in
Java.
We ask you to work on five different tasks, each consists of two subtasks. These tasks are
ordered in a top-down approach, which means that you first gather general knowledge
about jEdit and later go down on a more detailed level to study the inner structure and
behavior of jEdit.

Before beginning with the tasks, we provide you with a short written description and
manual for the tools provided to you (Senseo and its features, tools). You can use this
description as a reference during the experiment. No other tools are permitted during the
experiment, in particular no manuals or other documentation about jEdit.
At the end of the experiment we kindly ask you to answer a short questionnaire asking

79

80 C.1. Tasks

you for your experience with the experiment and the tools used therein.
The experiment and the allocated 90 minutes start when we ask you to turn this page, that
is, when you tell us that you are ready to start. ;)

Task 1 Question 1.1
In jEdit you find the feature indent selected lines in the menu at Edit ->Indent ->Indent
selected lines. Please study where and how this feature is implemented in the code on
a coarse-grained level: Which packages, classes implement the feature? In which part
or layer of the application is this feature mostly implemented? In the UI, model, text
processing, or somewhere else?

Question 1.2
Compare the package in which the indent selected lines feature is mainly implemented
with the package org.gjt.sp.jedi.guit in terms of collaboration between them. Do these
packages collaborate with each other and if so, how and where (which classes communi-
cate)?

Task 2 We want to assess the quality of jEdit, for instance whether its classes are
organized in the right packages or whether we should move classes to other packages.
For this we need to analyze how certain classes are coupled to each other and how they
communicate to the rest of the system. If a class of package C heavily communicates
with classes of package B, it should maybe moved to package B. Or if a class is heavily
used by package B (high fan-in from B) but has low fan-out to other packages, it should
probably also belong to package B. Fan-in of a class is defined as the number of methods
or constructors of this class that are invoked from other classes. Fan-out of a class is the
number of methods or constructors of other classes this class is invoking. In the following
we ask you to compare the quality of different artifacts of jEdit.

Question 2.1
Compare the quality of class org.gjt.sp.jedit.buffer.FoldHandler, org.gjt.sp.jedit.msg.ViewUpdate
and org.gjt.sp.jedit.Mode to each other in terms of fan-in, fan-out. Please give a list saying
which class has the highest quality if we consider low fan-in and low fan-out as a sign for
tight cohesion, that is, good inner quality. Which class is second, which third?

Question 2.2
Which classes of package org.gjt.sp.jedit.msg are heavily coupled to package org.gjt.sp.jedit?
Are there classes in org.gjt.sp.jedit.msg heavily coupled to other packages than org.gjt.sp.jedit?

Task 3 Question 3.1
Analyze class org.gjt.sp.jedit.buffer.FoldHandler. What objects (i.e. instances of which
classes) send messages to instances of FoldHandler (callers)? To which objects (that is,
instances of which classes) do instances of FoldHandler send messages (callees)?

Question 3.2
What kind of methods or constructors of FoldHandler and its subclasses are executed
in which order by clients (maybe there is common entry point used by all clients and

C.2. Time Results 81

they subsequently invoke the same methods in the FoldHolder hierarchy in the same
order)? Which are the invocation sites (classes and methods) of these methods and
constructors?

Task 4 We look again at the indent selected lines (Edit ->Indent ->Indent selected lines)
feature. This feature works on selected lines of text, but after executing (e.g. indenting
two lines of text), the selection is often lost, no text is selected anymore sometimes. We
want to correct this problem by keeping the selection after having indented a text.

Question 4.1
Compare this feature to the implementation of other related features such as remove
trailing whitespaces or shift indent left. What is implemented differently in these features
than in indent selected lines?

Question 4.2
We really want indent selected lines to keep the selected text. How can you achieve
this? What will you change in the code (which methods to adapt, what statements to
add, change or remove)? We do not expect you to provide us with working code, just
suggestions about what kind of statements you would add, change or remove to make it
work.

Task 5 Feature remove whitespace (Edit ->Indent ->Remove trailing whitespaces)
has been identified by users to be very slow; the lead developer of jEdit thinks class
org.gjt.sp.jedit.indent.WhitespaceRule is the bottleneck. Can you confirm this assump-
tion? Answer the following two questions to decide whether we should optimize this
class.

Question 5.1
What are the methods and the control structures in class WhitespaceRule that get executed
the most? Are there repeated patterns of code that gets executed when this rule is applied
to a document?

Question 5.2
Compare class WhitespaceRule to other classes in the same hierarchy of Rules (classes
implementing IndentRule). Is it really used more often or more heavily (e.g. does it create
more objects or execute more complex code) than the other classes? Explain why or why
not.

C.2 Time Results

The following table shows the amount of time spent (in minutes) of each subject per
task.

82 C.3. Correctness Results

Subject Senseo 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 Total
Subject 1 1 17 4 7 8 5 13 7 4 12 4 65
Subject 2 0 17 8 5 12 7 12 4 8 16 7 73
Subject 3 1 10 18 14 11 11 12 14 9 10 9 99
Subject 4 1 11 13 12 5 8 7 12 10 78
Subject 5 0 18 19 9 12 6 12 19 4 10 5 99
Subject 6 0 13 6 12 13 12 15 9 13 15 13 93
Subject 7 1 23 13 12 9 12 16 12 5 8 9 102
Subject 8 0 29 11 25 11 21 9 20 21 147
Subject 9 0 27 18 12 10 6 16 25 18 132
Subject 10 1 8 5 16 13 12 22 13 3 19 8 92
Subject 11 0 15 16 14 21 8 15 18 12 16 18 119
Subject 12 0 12 13 20 13 8 16 10 22 114
Subject 13 1 19 17 10 10 10 10 11 4 91
Subject 14 0 22 20 19 9 10 12 16 21 129
Subject 15 1 29 5 10 9 4 12 11 10 8 4 90
Subject 16 0 27 8 7 8 24 6 19 18 4 4 117
Subject 17 1 26 17 9 22 9 8 8 1 3 3 100
Subject 18 0 7 13 23 9 10 13 20 17 9 10 112
Subject 19 1 18 7 14 10 8 17 9 4 18 6 87
Subject 20 1 21 18 11 9 13 14 6 8 13 6 100
Subject 21 1 22 18 15 12 8 9 12 11 4 5 107
Subject 22 0 16 9 15 7 11 14 20 4 7 5 96
Subject 23 1 19 12 12 12 11 6 15 15 102
Subject 24 0 16 24 17 7 7 19 13 18 5 5 121
Subject 25 1 25 19 8 11 12 11 12 19 4 4 117
Subject 26 0 15 16 25 11 10 11 7 2 14 5 97
Subject 27 0 27 27 6 9 21 8 21 29 18 11 148
Subject 28 1 19 17 14 14 3 15 16 3 10 11 101
Subject 29 1 19 16 8 13 5 12 8 9 13 2 90
Subject 30 0 14 28 16 11 17 10 27 2 8 6 125

Table C.1: Time per task per subject

C.3 Correctness Results

The following table shows the correctness of each subject per task.

C.3. Correctness Results 83

Subject Senseo 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 Total
Subject 1 1 1 2 2 2 4 2 1 1 2 2 15
Subject 2 0 1 2 2 1 2 2 1 2 1 1 13
Subject 3 1 2 3 3 2 2 2 1 1 0 0 16
Subject 4 1 3 2 4 3 2 2 2 1 0 0 19
Subject 5 0 1 0 2 2 1 1 1 1 2 1 9
Subject 6 0 2 2 2 2 2 2 1 1 0 0 14
Subject 7 1 2 2 3 2 1 2 0 0 3 2 12
Subject 8 0 2 1 3 1 1 1 0 0 0 0 9
Subject 9 0 0 0 2 1 2 1 0 0 0 0 6
Subject 10 1 2 2 3 2 2 2 2 2 0 0 17
Subject 11 0 2 0 2 2 2 1 1 1 0 0 11
Subject 12 0 2 1 2 2 2 2 0 0 0 0 11
Subject 13 1 2 1 2 2 2 2 0 0 0 0 11
Subject 14 0 2 2 3 2 2 2 0 0 0 0 13
Subject 15 1 2 2 3 2 3 2 0 0 2 2 14
Subject 16 0 3 2 2 1 2 2 1 0 1 1 13
Subject 17 1 3 2 2 2 3 1 1 1 1 1 15
Subject 18 0 1 1 2 1 2 2 1 1 1 1 11
Subject 19 1 2 2 3 1 2 3 2 1 2 3 16
Subject 20 1 3 1 3 2 2 2 2 2 2 0 17
Subject 21 1 2 1 3 2 2 1 1 1 1 1 13
Subject 22 0 2 0 2 1 2 2 1 1 1 2 11
Subject 23 1 3 2 2 3 1 2 2 1 0 0 16
Subject 24 0 2 0 3 1 2 2 1 0 1 1 11
Subject 25 1 2 2 2 2 2 2 1 1 1 1 14
Subject 26 0 1 0 3 2 2 2 1 1 1 1 12
Subject 27 0 2 2 3 2 2 2 3 1 0 0 17
Subject 28 1 2 2 3 2 2 1 1 2 1 2 15
Subject 29 1 2 3 2 1 2 2 2 3 1 2 17
Subject 30 0 1 1 3 1 2 0 1 0 0 0 9

Table C.2: Correctness per task per subject

84 C.3. Correctness Results

Appendix D

Feedback Questionnaire

To finish the experiment each subject was asked to answer the following questionnaire.
Each question is followed by the evaluated answers. The first two questions were
answered by subjects of both groups, while the remaining questions were only relevant
for subjects of the Senseo group.

1. How did you feel about the time pressure?

Subjects selected on of the following statements, which we rated from 5 (high time
pressure) down to 1 (too much time):

• Time pressure was very high; impossible to cope with all tasks.

• Serious time pressure, but could cope with most task.

• Felt no time pressure

• Could have done slightly more task in the time provided

• There was too much time, could have performed many more tasks in these 90
minutes

Results for question 1:

• Arithmetic mean: 2.80 (n = 30)

• Standard aberration: 0.42 (n = 30)

• Arithmetic mean Senseo group: 2.67 (n = 15)

• Arithmetic mean control group: 2.93 (n = 15)

2. Please rate the difficulty of the different tasks:

Subjects rated the tasks on a range from 5 (impossible) to trivial (1)

85

86

Arithmetic mean STD Arithmetic mean Arithmetic mean
(n = 30) (n = 30) Senseo group (n = 15) control group (n=15)

Task 1.1 3.2 0.69 3.0 3.4
Task 1.2 2.8 0.41 2.7 2.9
Task 2.1 3.6 0.25 3.1 4.1
Task 2.2 2.4 0.31 2.5 2.3
Task 3.1 3.2 0.56 3.2 3.2
Task 3.2 3.5 0.41 3.1 3.9
Task 4.1 3.1 0.27 3.0 3.2
Task 4.2 3.2 0.19 2.9 3.5
Task 5.1 2.8 0.86 2.7 2.9
Task 5.2 2.9 0.72 2.9 2.9
Overall: 3.07 2.9 3.2

Table D.1: Question 2 results

The following questions are only answered by subjects from the Senseo group.

3. Please specify for each task which dynamic information provided by Senseo you
used.

Table D.2: Question 3 results
Run-time types Number of Number of Number of CCRC Dynamic

(Tooltip) invocations created objects exec. bytecodes Collaborators
Task 1 33% 53% 33% 27% 7% 53%
Task 2 47% 67% 47% 33% 7% 80%
Task 3 47% 40% 27% 20% 0% 73%
Task 4 20% 27% 13% 7% 0% 33%
Task 5 27% 40% 27% 13% 7% 27%

(Results in the table, n = 15)

4. How useful do you rate dynamic information respectively features provided by Senseo
in a scale from 4 (very useful) to 0 (not useful at all)?

87

Dynamic information / Arithmetic Mean STD
Senseo feature (n = 15): (n = 15)
Tooltip showing
runtime types 3.6 0.45
Ruler column
with dynamic
metrics 3.2 0.38
Overview ruler
column with
dynamic metrics 3 0.41
Package tree
with dynamic
metrics 2.4 0.29
CCRC 2.1 0.94
Collaboration
View 3.7 0.11

Table D.3: Question 4 results

5. Concerning the overall performance of Senseo, do you think it provided you with
added value in terms of:

88

Yes No
(n = 15)

High-level understanding
(e.g. package-level
collaboration) 87% 13%
Low-level understanding
(method structure,
collaboration,
control flow, etc.) 73% 27%
Understanding
dependencies between
different artifacts 80% 20%
Feature localization,
feature understanding
(identifying and
understanding artifacts
implementing a specific
feature) 67% 33%
General program
understanding 73% 27%
Performance assessment
or optimization 53% 47%
Software quality
assessment 53% 47%

Table D.4: Question 5 results

6. After using Senseo, do you think it provides you with added value for your daily
work on maintaining or developing software systems?

• 87%

• 13%

Bibliography

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In PLDI ’97: Proceedings
of the ACM SIGPLAN 1997 conference on Programming language design and
implementation, pages 85–96. ACM Press, 1997.

[2] Erik Arisholm, Hans Gallis, Tore Dyba, and Dag I.K. Sjoberg. Evaluating pair
programming with respect to system complexity and programmer expertise. IEEE
Transactions on Software Engineering, 33(2):65–86, 2007.

[3] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of
instrumented code. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 168–179, 2001.

[4] Thomas Ball. The concept of dynamic analysis. In Proceedings of the European
Software Engineering Conference and ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (ESEC/FSC’99), number 1687 in LNCS,
pages 216–234, Heidelberg, sep 1999. Springer Verlag.

[5] Walter Binder, Jarle Hulaas, and Philippe Moret. Advanced Java Bytecode In-
strumentation. In PPPJ’07: Proceedings of the 5th International Symposium on
Principles and Practice of Programming in Java, pages 135–144, New York, NY,
USA, 2007. ACM Press.

[6] Walter Binder, Jarle Hulaas, Philippe Moret, and Alex Villazón. Platform-
independent profiling in a virtual execution environment. Software: Practice and
Experience, 39(1):47–79, 2009. http://dx.doi.org/10.1002/spe.890.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In OOPSLA ’06: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and Applications,
New York, NY, USA, October 2006. ACM Press.

[8] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:
A taxonomy. In Robert S. Arnold, editor, Software Reengineering, pages 54–58.
IEEE Computer Society Press, 1992.

89

http://dx.doi.org/10.1002/spe.890

90 Bibliography

[9] Brian F. Cooper, Han B. Lee, and Benjamin G. Zorn. ProfBuilder: A package
for rapidly building Java execution profilers. Technical Report CU-CS-853-98,
University of Colorado at Boulder, Department of Computer Science, April 1998.

[10] Bas Cornelissen, Andy Zaidman, Arie van Deursen, and Bart van Rompaey. Trace
visualization for program comprehension: A controlled experiment. In Proceedings
17th International Conference on Program Comprehension (ICPC), pages 100–109.
IEEE Computer Society, 2009.

[11] Brian de Alwis and Gail C. Murphy. Answering conceptual queries with ferret. In
Proceedings of the 30th International Conference on Software Engineering (ICSE),
pages 21–30, New York, NY, USA, 2008. ACM.

[12] Marcus Denker, Orla Greevy, and Michele Lanza. Higher abstractions for dynamic
analysis. In 2nd International Workshop on Program Comprehension through
Dynamic Analysis (PCODA 2006), pages 32–38, 2006.

[13] Peter J. Denning. The locality principle. Commun. ACM, 48(7):19–24, 2005.

[14] Michael Desmond, Margaret-Anne Storey, and Chris Exton. Fluid source code
views. In ICPC ’06: Proceedings of the 14th IEEE International Conference on
Program Comprehension (ICPC’06), pages 260–263, Washington, DC, USA, 2006.
IEEE Computer Society.

[15] Mikhail Dmitriev. Design of JFluid: a profiling technology and tool based on
dynamic bytecode instrumentation. Technical report, Mountain View, CA, USA,
2003.

[16] Mikhail Dmitriev. Profiling Java applications using code hotswapping and dynamic
call graph revelation. In WOSP ’04: Proceedings of the Fourth International
Workshop on Software and Performance, pages 139–150. ACM Press, 2004.

[17] Mikhail Dmitriev. Profiling Java applications using code hotswapping and dynamic
call graph revelation. SIGSOFT Softw. Eng. Notes, 29(1):139–150, 2004.

[18] Stéphane Ducasse and Michele Lanza. The Class Blueprint: Visually supporting the
understanding of classes. Transactions on Software Engineering (TSE), 31(1):75–90,
January 2005.

[19] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and Ilham Alloui.
Package surface blueprints: Visually supporting the understanding of package
relationships. In ICSM ’07: Proceedings of the IEEE International Conference on
Software Maintenance, pages 94–103, 2007.

[20] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic
metrics for java. SIGPLAN Not., 38(11):149–168, 2003.

[21] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. Dynamic
metrics for Java. ACM SIGPLAN Notices, 38(11):149–168, November 2003.

[22] Bruno Dufour, Laurie Hendren, and Clark Verbrugge. *J: A tool for dynamic
analysis of Java programs. In OOPSLA ’03: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 306–307, New York, NY, USA, 2003. ACM Press.

Bibliography 91

[23] Alastair Dunsmore, Marc Roper, and Murray Wood. Object-oriented inspection
in the face of delocalisation. In Proceedings of ICSE ’00 (22nd International
Conference on Software Engineering), pages 467–476. ACM Press, 2000.

[24] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding Program Com-
prehension by Static and Dynamic Feature Analysis. In Proceedings of ICSM ’01
(International Conference on Software Maintenance). IEEE Computer Society Press,
2001.

[25] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Feature-Driven Program
Understanding using Concept Analysis of Execution Traces. In Proceedings of
IWPC ’01 (9th International Workshop on Program Comprehension), pages 300–
309. IEEE Computer Society Press, 2001.

[26] David Erni. Codemap—improving the mental model of software developers through
cartographic visualization. Master’s thesis, University of Bern, January 2010.

[27] Tudor Gı̂rba and Michele Lanza. Visualizing and characterizing the evolution of
class hierarchies. In WOOR 2004 (5th ECOOP Workshop on Object-Oriented
Reengineering), 2004.

[28] Orla Greevy, Stéphane Ducasse, and Tudor Gı̂rba. Analyzing software evolution
through feature views. Journal of Software Maintenance and Evolution: Research
and Practice (JSME), 18(6):425–456, 2006.

[29] Dean Jerding, John Stasko, and Thomas Ball. Visualizing message patterns in
object-oriented program executions. Technical Report GIT-GVU-96-15, Georgia
Institute of Technology, May 1996.

[30] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for IDEs. In
AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 159–168, New York, NY, USA, 2005. ACM Press.

[31] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings ECOOP 2001,
number 2072 in LNCS, pages 327–353. Springer Verlag, 2001.

[32] Adrian Kuhn, David Erni, and Oscar Nierstrasz. Towards improving the mental
model of software developers through cartographic visualization, 2010. Under
submission to NIER track of ICSE 2010.

[33] Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consistent layout for thematic
software maps. In Proceedings of 15th Working Conference on Reverse Engineering
(WCRE’08), pages 209–218, Los Alamitos CA, October 2008. IEEE Computer
Society Press.

[34] Michele Lanza and Stéphane Ducasse. The class blueprint: A visualization of the
internal structure of classes. In Workshop Proceedings of OOPSLA 2001, 2001.

[35] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin Pinzger. CodeCrawler
— an information visualization tool for program comprehension. In Proceedings of
ICSE 2005 (27th IEEE International Conference on Software Engineering), pages
672–673. ACM Press, 2005.

92 Bibliography

[36] Patrik Larsson. Analyzing and adapting graph algorithms for large persistent graphs,
2008.

[37] James R. Larus and Thomas Ball. Rewriting executable files to measure program
behavior. Softw. Pract. Exper., 24(2):197–218, 1994.

[38] Adrian Lienhard. Dynamic Object Flow Analysis. Phd thesis, University of Bern,
December 2008.

[39] Sam P. LLoyd. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28:129–137, 1982.

[40] Welf Löwe, Andreas Ludwig, and Andreas Schwind. Understanding software –
static and dynamic aspects. In 17th International Conference on Advanced Science
and Technology, pages 52–57, 2001.

[41] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile visualization
framework. In ACM Symposium on Software Visualization (SoftVis’06), pages
135–144, New York, NY, USA, 2006. ACM Press.

[42] Philippe Moret, Walter Binder, Danilo Ansaloni, and Alex Villazón. Visualiz-
ing Calling Context Profiles with Ring Charts. In VISSOFT 2009: 5th IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
Edmonton, Alberta, Canada, Sep. 2009.

[43] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an agile
reengineering environment. In Proceedings of the European Software Engineering
Conference (ESEC/FSE’05), pages 1–10, New York NY, 2005. ACM Press. Invited
paper.

[44] Michael Pacione, Marc Roper, and Murray Wood. A novel software visualisation
model to support software comprehension. In Proceedings of the 11th Working Con-
ference on Reverse Engineering, pages 70–79. IEEE Computer Society, November
2004.

[45] Massimiliano Di Penta, R. E. K. Stirewalt, and Eileen Kraemer. Designing your next
empirical study on program comprehension. In Proceedings of the 15th International
Conference on Program Comprehension, pages 281–285, Washington, DC, USA,
2007. IEEE Computer Society.

[46] John Pleviak and Andrew A. Chien. Precise concrete type inference for object-
oriented languages. In Proceedings of OOPSLA ’94, pages 324–340, 1994.

[47] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast type reconstruction for
dynamically typed programming languages. In DLS ’09: Proceedings of the 5th
symposium on Dynamic languages, pages 69–78, New York, NY, USA, 2009. ACM.

[48] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time aspects: efficient
dynamic weaving for Java. In AOSD ’03: Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development, pages 100–109, New York,
NY, USA, 2003. ACM Press.

[49] Jochen Quante. Do dynamic object process graphs support program understanding?
- a controlled experiment. In Proceedings of the 16th International Conference on

Bibliography 93

Program Comprehension (ICPC’08), pages 73–82, Washington, DC, USA, 2008.
IEEE Computer Society.

[50] Pascal Rapicault, Mireille Blay-Fornarino, Stéphane Ducasse, and Anne-Marie
Dery. Dynamic type inference to support object-oriented reengineering in Smalltalk,
1998. Proceedings of the ECOOP ’98 International Workshop Experiences in
Object-Oriented Reengineering, abstract in Object-Oriented Technology (ECOOP
’98 Workshop Reader forthcoming LNCS).

[51] Steven P. Reiss. Visualizing Java in action. In Proceedings of SoftVis 2003 (ACM
Symposium on Software Visualization), pages 57–66, 2003.

[52] Romain Robbes and Michele Lanza. How program history can improve code com-
pletion. In Proceedings of ASE 2008 (23rd International Conference on Automated
Software Engineering), pages 317–326, 2008.

[53] Martin P. Robillard and Gail C. Murphy. Automatically inferring concern code
from program investigation activities. In Proceedings of the 18th International
Conference on Automated Software Engineering, pages 225–234, October 2003.

[54] Martin P. Robillard and Gail C. Murphy. Feat: A tool for locating, describing, and
analyzing concerns in source code. In Proceedings of 25th International Conference
on Software Engineering, pages 822–823, May 2003.

[55] Martin P. Robillard and Gail C. Murphy. Representing concerns in source code.
ACM Transactions on Software Engineering and Methodology (TOSEM), 16(1):3,
2007.

[56] David Röthlisberger. Hermion — exploiting the dynamics of software. European
Smalltalk User Group Innovation Technology Award, August 2008.

[57] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Feature driven browsing.
In Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), pages 79–100. ACM Digital Library, 2007.

[58] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting runtime infor-
mation in the IDE. In Proceedings of the 16th International Conference on Program
Comprehension (ICPC 2008), pages 63–72, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

[59] David Röthlisberger, Oscar Nierstrasz, Stéphane Ducasse, Damien Pollet, and
Romain Robbes. Supporting task-oriented navigation in IDEs with configurable
HeatMaps. In Proceedings of the 17th International Conference on Program
Comprehension (ICPC 2009), pages 253–257, Los Alamitos, CA, USA, 2009. IEEE
Computer Society.

[60] A. Schwind. Visualisierung von Strukturen in Softwaresystemen. Diploma’s thesis,
Fakultaet für Informatik, Universität Karlsruhe, 2000.

[61] Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: Supporting
navigation in software maintenance. In International Conference on Software
Maintenance (ICSM’05), pages 325–335, Washington, DC, USA, sep 2005. IEEE
Computer Society.

94 Bibliography

[62] S. Alexander Spoon and Olin Shivers. Demand-driven type inference with subgoal
pruning: Trading precision for scalability. In Proceedings of ECOOP’04, pages
51–74, 2004.

[63] Sun Microsystems, Inc. Java Virtual Machine Profiler Interface (JVMPI). Web
pages at http://www.webcitation.org/5qDBdghWu, 2000.

[64] Alex Villazón, Walter Binder, Philippe Moret, and Danilo Ansaloni. Major: rapid
tool development with aspect-oriented programming. In PPPJ ’09: Proceedings
of the 7th International Conference on Principles and Practice of Programming in
Java, pages 125–128, New York, NY, USA, 2009. ACM.

[65] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for Java.
In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Proceedings ECOOP ’01,
volume 2072 of LNCS, pages 99–118, Budapest, Hungary, June 2001. Springer-
Verlag.

[66] Norman Wilde and Ross Huitt. Maintenance support for object-oriented programs.
IEEE Transactions on Software Engineering, SE-18(12):1038–1044, December
1992.

[67] Roel Wuyts. RoelTyper, a fast type reconstructor for Smalltalk, 2005. http:
//www.webcitation.org/5qDBnw6kE.

http://www.webcitation.org/5qDBdghWu
http://www.webcitation.org/5qDBnw6kE
http://www.webcitation.org/5qDBnw6kE

	Contents
	List of Figures
	List of Tables
	Introduction
	Shortcomings of Traditional IDE Perspectives
	Senseo - Augmenting Eclipse with Dynamic Information
	Contributions
	Structure of the Thesis

	State of the Art
	Traditional IDEs
	Dynamic Analysis
	IDE Enhancements and Visualizations
	Controlled Experiments in Software Engineering
	Summary

	Motivation
	Reasoning About Complex and Extensible Frameworks
	Understanding Abstract Class and Interface Hierarchies
	Runtime Types
	Invocation Count
	Assessing Runtime Complexity
	Understanding Execution Flow
	Persistent Integration into IDEs
	Summary

	Gathering Dynamic Information
	Dynamic Analysis
	Categories of Dynamic Information
	Performance Evaluation
	Summary

	Senseo - Integrating Dynamic Information in Eclipse
	Information Gathering
	Information Processing
	Enrichments
	Dynamic Metrics Selection
	HeatMaps
	Tooltip
	Calling Context Ring Chart (CCRC)
	Collaboration Overview

	Summary

	Validation
	Solving the Use Cases
	Experimental Design
	Hypothesis
	Subjects
	Subject System and Tasks
	Experimental Procedure
	Variables and Evaluation

	Results
	Time Results
	Correctness Results
	Task-dependent Results

	Feedback
	Qualitative Feedback
	Informal Feedback
	Observations
	Feedback Conclusion

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary

	Discussion
	Conclusions
	Future Work

	User's Guide to Senseo
	Requirements
	Installation
	Gathering Data
	Visualizations / Enrichments
	Tree Metrics
	Ruler Annotations
	Tooltip Metrics
	CCRC
	Collaboration Overview

	Subject Expertise Questionnaire
	Experiment Tasks
	Tasks
	Time Results
	Correctness Results

	Feedback Questionnaire
	Bibliography

