
Implementing a
Backward-In-Time Debugger

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Christoph Hofer

Juli 2006

Leiter der Arbeit:

Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Dipl.-Inform. Marcus Denker

Institut für Informatik und angewandte Mathematik

The address of the author:

Christoph Hofer
Eichmatt 38
CH-3326 Krauchthal
hawkie@bluewin.ch
http://www.hawkie.ch

mailto:hawkie@bluewin.ch
http://www.hawkie.ch

Abstract

In both development and maintenance of software, finding and fixing bugs
take a huge percentage of the overall time and resources. Traditional de-
bugging and stepping execution trace are well-accepted techniques to under-
stand deep internals about a program. However in many cases navigating
the stack trace is not enough to find bugs, since the cause of a bug is often
not in the stack trace anymore and old state is lost, so out of reach from the
debugger. Therefore there is a challenge in providing new ways of debugging.

In this work, we present the design and implementation of a backward-in-
time debugger for a dynamic language, i.e., a debugger that allows one to
navigate back the history of the application. We present the design and
implementation of a backward-in-time debugger called Unstuck and show
our solution to key implementation challenges.

iii

Acknowledgements

First of all I thank Marcus Denker for all his work and what he did for me.
He always supported me and I really enjoyed his collaboration. Thanks for
all the discussions we had, for ByteSurgeon, for the unvalued work for
Squeak itself. During my work, it was the most important thing that I could
count on you!

I thank Prof. Dr. Stéphane Ducasse for his reviews and his feedback. I
thank Prof. Dr. Oscar Nierstrasz, the head of the SCG, for giving me the
possibility to work in his group.

I always needed the sport as a balancing for my work. Therefore I thank
Markus Kobel and the rest of the table tennis club. The same applies for
Deborah Hofer for attending me to the university training. You are all my
friends, and it is not only the sport, it is also the time after ;-) Thanks go to
Christof Lüthi and others for all the hours playing beach volley (or billiard)
with me, to Fabian Steiner for playing Squash.

Same important are my other friends: Brige, Linders, WAM, Säm, Möchu
and all the others i forgot. Thank you for all plays, all discussions, all the
fun and the food.

Then I thank my family. I had not enough time for you and I feel sorry.
Especially for you, my dear godchild Joel, because you are to young to un-
derstand. I promise we will catch up on everything right after this work!

Last but not least I would like to thank Steffi Gerber, my “secretary”, for
her (administrative) work for my studies ;-)

Christoph Hofer
July 2006

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Key problems . 2

1.2 Structure of this Document 2

2 Problems with Current Debugging Approach 3

2.1 Why Stack Trace is Not Enough 3

2.1.1 Introducing Example 3

2.2 Recording and Navigating the Complete Trace 5

2.3 A Standard Debugger . 6

2.4 The Squeak Debugger . 7

2.5 The Omniscient Debugger . 7

2.6 Other Approaches . 8

3 Trace-based Debugging 11

3.1 The Trace and Event Model 11

3.2 User Interface for Navigating the Execution 13

3.3 Supporting Trace Navigation 15

3.3.1 Simple Searching . 15

3.3.2 Coloring . 17

4 Examples 19

4.1 Introducing Example . 19

vii

viii CONTENTS

4.2 AST Bug . 20

4.2.1 Starting Position . 20

4.2.2 The Error in the Squeak Debugger 21

4.2.3 Fixing the Bug with Unstuck Debugger 22

4.2.4 Explanation . 25

4.2.5 Conclusion . 25

5 Implementation 29

5.1 Trace Library . 29

5.1.1 Event Processing . 30

5.1.2 State Reconstruction 31

5.2 Event Gathering Using ByteSurgeon 33

5.2.1 Just-In-Time ByteSurgeon 34

5.2.2 Swapping Compiled Methods 35

5.2.3 Combine Just-In-Time ByteSurgeon and Swapping
Compiled Methods . 37

6 Discussion 39

6.1 Performance . 39

6.2 Memory Usage . 41

7 Conclusion and Future Work 45

7.1 Conclusion . 45

7.2 Future Work . 45

7.2.1 Threads . 46

7.2.2 Performance and Memory 47

7.2.3 Scoping and use of reflection framework that provides it 47

A Installation Instructions 49

viii

Chapter 1

Introduction

Computer programs do not work as they should, which makes software de-
velopment costly. Already in the early sixties programs to help debugging
existed to reduce the time consuming task of finding bugs. A first version
of a debugger developed in 1961 called DDT (Dynamic Debugging Tech-
nique [Edwa 63]) offered analog features than today’s debuggers: insertion
and deletion of breakpoints, inspecting and changing registers. Software
systems evolved and got more and more complex, but debuggers did not
improve much. Computers should help to simplify analyzing complex pro-
grams because they have more memory and more power today.

Debuggers offer the ability to stop a program at a chosen place, either due to
an error or an explicit request (breakpoint). They provide the current states
of the involved objects together with a stack trace. However, while stepping
through the code is a powerful technique to get a deep understanding of
a certain functionality [Deme 02], in many cases this information is not
enough to find bugs. The programmer is often forced to build new hypothe-
ses about the possible cause of the bugs, set new breakpoints and restart the
program to find the source of the problem. Often several iterations are nec-
essary and it may be difficult to recreate the exact same context [Lenc 99].

The questions a programmer has are often: “where was this variable set?”,
“why is this object nil?” or “what was the previous state of that object?”.
A static debugger cannot answer these questions, since it has only access to
the current execution stack. There is no possibility to backtrack the state of
an object or to find out why especially this object was passed to a method.
The Omniscient Debugger [Duca 99a,Lewi 03a] is a first attempt to answer
these problems, however it is limited to java and instrumentation is done at
bytecode load time.

1

2 CHAPTER 1. INTRODUCTION

1.1 Key problems

When stopping a program’s execution, a lot of information is not available
to the programmer. The current stack holds methods that have not yet been
finished executing, the other ones are not available anymore. This is a loss
of information, which could help in the process of finding bugs. Another
problem is that only the current state of objects is accessible but the old
state is lost. The state history of objects is important, because faulty values
are the source of errors.

1.2 Structure of this Document

This document contains the following chapters:

• In Chapter 2 we describe the current state of debugging tools and
other approaches to enhance debugging support.

• In Chapter 3 we present our approach, trace-based debugging. We
show an user interface for presenting the execution trace together with
additional user interface features.

• Chapter 5 presents Unstuck, our reference implementation. We show
what is needed to provide the state of objects at any time and other
implementation challenges.

• In Chapter 4 we show examples of finding bugs with Unstuck.

• Chapter 6 contains a discussion about performance and memory usage.

• Chapter 7 concludes and looks at possible future work.

• Appendix A contains installation instructions for Unstuck.

2

Chapter 2

Problems with Current
Debugging Approach

Computer programs often do not work as they should. Finding and fix-
ing bugs is a costly part of software development, therefore debuggers were
developped to help with bug fixing. Debuggers help to assert certain be-
haviour in a program’s execution. This chapters describes the problems and
the current state of debugging tools.

2.1 Why Stack Trace is Not Enough

After an error occured a normal debugger shows the current stack. The
problem is that only methods which have not yet been executed are on the
stack, those that have finished execution are no longer available.

2.1.1 Introducing Example

The following example demonstrates the problem: suppose there is a class
Foo with two instance variables var1 and var2 and the following methods:

Foo�start
self beforeBar.
self bar.
self moreBar.

Foo�initialize
var1 := 0.
var2 := ’’.

Foo�beforeBar

3

4
CHAPTER 2. PROBLEMS WITH CURRENT DEBUGGING

APPROACH

var1 = 0
ifTrue: [var2 := nil.].

Foo�bar
tmp

tmp := 0.
(var1 to: 10) do: [:each tmp := tmp + each].
self var1: tmp.

Foo�moreBar
var2 size > 0

ifTrue: [ˆvar2 at: 1].
ˆ’’

Accessor methods are defined for var1 and var2. Foo new start starts the
program execution. The debugger comes up because of an error, var2 is nil

in method moreBar (see Figure 2.1).

Figure 2.1: Error in the normal Squeak debugger.

In a normal debugger, we see a stack trace: only methods on the stack are
shown, those methods which have been completely executed are not avail-
able anymore. Figure 2.2 shows a complete execution trace of all methods
executed. Only a small part of that (visualized with the dashed box) are
part of the stack trace the debugger can show.

When inspecting objects, only the current state is accessible but the old
state is lost. Even when selecting a method that is not on top of the stack,

4

2.2. RECORDING AND NAVIGATING THE COMPLETE TRACE 5

Figure 2.2: Method calls and the resulting stack trace: only the methods
in the dashed box are in the stack trace when an error occurs in method
moreBar.

the debugger does not revert but presents the same state as before. As-
sume the situation in Figure 2.2: if we select moreBar: or bar:, the debugger
presents the state of the program when the error occurred, even if the state
has been different at the execution of these methods.

Recapitulating there are mainly two issues: loss of execution trace and loss
of objects old state.

2.2 Recording and Navigating the Complete Trace

Our solution to the problem presented before is to offer a debugger based
on traces and a specific interface to navigate backward in time the com-
plete state. During the execution of a program we record runtime data, i.e.,
method calls and state changes of objects. Therefore we can provide the
state an object had in the trace at any time and we know where variables
changed their values.

To understand the challenges faced by building a backward in time debug-
ger, i.e., a debugger that allows one to query the state history of a program,
we developed a backward in time debugger in Squeak called Unstuck. For

5

6
CHAPTER 2. PROBLEMS WITH CURRENT DEBUGGING

APPROACH

its implementation we collect rich information about the program execution
in terms of events, which are used to recreate the state of objects at partic-
ular points in time.

The contributions of this work are:

• A model for a back-in-time debugger.

• An user interface to present and query the massive amount of data
generated by the recording of all the objects states.

• An implementation for Squeak Smalltalk

2.3 A Standard Debugger

Most of the debugging tools today have a common subset of functions and
views:

Breakpoints and Watchpoints. A breakpoint is an intentional stop
of a program’s execution, normally when the execution arrives at a
certain point in the source code (or when a specific event occurs in the
program). A condition can be added to the breakpoint to only stop
when the condition is fulfilled. A watchpoint is basically a breakpoint,
which stops the execution when a given expression (usually a variable)
changes its value.

Call Stack. This stack is also known as execution stack or function stack.
It holds the already called subroutines which have not yet returned
(i.e., the execution of the subroutine is not finished). The last called
subroutine is on top of the stack and usually holds the breakpoint.

Source Code. A programmer orients himself on the source code, which
can be changed or used to modify breakpoints or to use the stepping
functions.

Inspect Expressions. This is the main purpose of the debugging func-
tions. Once a breakpoint stops the programs execution, the program-
mer can evaluate expressions and watch its result, which is used to
examine the current state of the program. The expression can be a
single variable. With this feature a programmer checks if the program
behaves as expected.

Change Values. The programmer can change a variable’s value to cause
and check certain behaviour.

6

2.4. THE SQUEAK DEBUGGER 7

Stepping functions. Usually there are three of them: step one instruction
forward (single step), step to the end of a subroutine and step over (like
single stepping, but any subroutine call is treated as one instruction,
i.e., the execution remains in the same routine).

2.4 The Squeak Debugger

Squeak is the open-source Smalltalk distribution [Inga 97]. Unstuck is im-
plemented in Squeak, therefore we have a deeper look at the current Squeak
debugger.

The Squeak debugger is a typical example for a general debugger. It offers
nearly the same functionality described in Section 2.3. There are some
differences:

No Real Breakpoints. Squeak does not support real breakpoints. It
simulates them by offering the halt method, which is implemented in
class Object. This method simply raises a specific resumeable excep-
tion with the result that the program is stopped and the debugger
pops up. There are helper methods to support conditional halts and
more, but these simulated breakpoints are always part of the source
code, which means that we have to change the source code for putting
a breakpoint. Another disadvantage is that we can not simply remove
all breakpoints.

No Watchpoints. The Squeak debugger does not support watchpoints
at all. A possible solution is to strictly use accessors for changing
instance variables. Therefore a breakpoint in the setter method would
be like a watchpoint.

Restart Methods. The debugger allows one to restart the program’s
execution from any method call. The problem is that the current
state of the objects is not changed to the appropriate state they had.

No explicit Debug Mode. Smalltalk is an interpreted language, thus
there is no need for a debug mode. The Squeak debugger support the
step by step bytecode execution. If an error occurs or a breakpoint is
reached, the debugger pops up automatically.

2.5 The Omniscient Debugger

Lewis in [Lewi 03b] describes the idea of Omniscient Debugging and its Java
implementation (the “ODB”). The ODB works by collecting events at every

7

8
CHAPTER 2. PROBLEMS WITH CURRENT DEBUGGING

APPROACH

state change and every method call in a program. The debugger provides
the state of the program at any desired time. The programmer can select
any variable, see where it was set and what values were assigned. The ODB
integrates an event analysis engine for searching.

Lewis and Ducassé in [Lewi 03a,Lewi 03b] propose to merge the approach
of omniscient debuggers which collect all the run-time information and sup-
ports the exploration of the history and event-based tools that monitors
program execution and allow queries. It is limited to java and instrumenta-
tion is done at bytecode load time.

2.6 Other Approaches

Whyline [Ko 04] implements Interrogative Debugging for Alice 1, a 3D world.
Here the focus lies on providing an interface to ask questions such as why
or why not things are happening in an Alice world. Thus this debugging
facilities are totally tied to the, quite simple, domain model of Alice. Such
an approach does not scale when the domain is more complex as in normal
development.

Visualising debuggers can work directly via instrumentation on the program
being executed, or are based on post-mortem traces [Cons 93,Lang 95]. Vi-
sualisation of dynamic information is also related to our work in the sense
that it is based on a program trace. DePauw et al. [De P 98] and Walker
et al. [Walk 98] use program events traces to visualise program execution
patterns and event-based object relationships such as method invocations
and object creation.

Query-based debugging [Lenc 97,Lenc 99] use logic programming to ex-
press complex queries over a large number of object. Some queries are
triggered at run-time while the program is running. The logic queries act as
clever program probes. Here the intention is different, in our approach we
navigate the history of the program.

Caffeine [Guéh 02] is a Java-based tool that uses the Java debugging API
to capture execution events and uses a Prolog variant to express and exe-
cute queries on a dynamic trace. Caffeine does not support state history
access. TestLog [Duca 06] which uses a logic engine to query the trace of
object-oriented applications, is much closer to Unstuck since it offers the
possibility to query the previous state of objects. However, no user interface

1http://www.alice.org

8

2.6. OTHER APPROACHES 9

is provided.

OPIUM [Duca 99a] is a tool that allows a user to debug Prolog program
using a set of debugging queries on event traces. Prolog is used as a base
language and as meta language to reason about events. The main usage
scenario of OPIUM is the implementation of a high level debugger for Pro-
log that allows forward navigation to the next event that satisfies a certain
condition. Coca [Duca 99b] supports the debugging of C programs based
on events. Opium and Coca are mainly used to show the values of variables.
In addition, both Opium and Coca do not support object-oriented program-
ming. In addition, the history of object state is not available.

Auguston [Augu 98, Augu 95] also uses a trace composed of event mod-
els and test programs. However it is based on procedural programming
languages and does not take into account the specific behavioural aspects
of object-oriented languages such as object creation and the state of objects.

PQL (for Program Query Language) allows programmers to express application-
specific questions about event patterns at runtime and gives the possibility
to act when a match is found [Mart 05]. It’s implementation is for Java
and uses static and dynamic techniques. The queries can only analyze the
current state of objects when a specific query is checked. PTQL [Gold 05]
is a Program Trace Query Language to answer declarative queries about
program behaviour, and PARTIQLE is their compiler to instrument a Java
program by a given query. PTQL is similar to PQL, but more in spirit to
SQL.

9

10
CHAPTER 2. PROBLEMS WITH CURRENT DEBUGGING

APPROACH

10

Chapter 3

Trace-based Debugging

One solution to provide more advanced debugging support is to collect and
retain much more information about the execution of a program. For this
purpose we collect events representing runtime data. For each method we
record the name, the receiver, the arguments and the return value (see Chap-
ter 5). This information is completed by collecting every write access to a
variable (instance and local). This means that we record every state change.
The collected events are basically a data structure containing the specific
runtime information. There is one event for each method executed, its re-
turned value and for every write access to a variable. This data can answer
many of the questions a programmer has during debugging, but simple nav-
igation through this mass of data is needed.

We make a trace out of a set of given classes which are interesting for the
user to debug. We instrument transparently the methods of these classes to
produce the needed data at runtime. Further we will refer to objects from
these classes as instrumented objects.

3.1 The Trace and Event Model

A trace is composed of events, depending on the situation the events are
holding different information depending of the kind of events they represent
and also whether the method execution terminated or not:

• An event representing a message sent describes the selector, the re-
ceiver, the arguments, as well as the definition class of the method,
i.e., the class which defines the method and holds the source code.

• When the method returns, a return event is generated with the re-
turned value.

11

12 CHAPTER 3. TRACE-BASED DEBUGGING

• When the value of a variable (instance or temporary variable) is changed,
a write access event is generated holding the variable name and the
new value.

Additionally every event holds a source range, the mapping between the
bytecode and the sourcecode. The depth of an event (which corresponds to
the number of unfinished methods) and the timestamp are added when the
collector collects the events.

To support object identity checks, each event has a pointer to the original
objects (for example to the receiver, the arguments) and in addition for non
instrumented objects to their copy.

Trace
timestamp
depth
sourceRange
method

Event

selector
receiver
arguments
definitionClass

MessageSend
varName
newValue

Access
returnedValue

Return

1..*

*

Figure 3.1: The Trace and Event model.

Figure 3.1 shows an UML diagram of the model: a trace consists of several
Events. There are specific events, which are containing different information
as mentioned before. The Event class shows which information is common
to all events. For optimizing the model, a tree is built: an Event belongs to
one MessageSend, thus a MessageSend can have multiple Events.

The execution trace holds a huge amount of data, thus we need a method-
ology for interacting with the debugger, which is described in the following
sections.

12

3.2. USER INTERFACE FOR NAVIGATING THE EXECUTION 13

3.2 User Interface for Navigating the Execution

The user interface of the Unstuck Debugger consists of several views on the
collected data from the TraceLibrary, enhanced with search and navigation
functions. In the following we describe these views. They are identified
in Figure 3.2 with numbered black boxes. The corresponding number is
specified in square brackets.

Figure 3.2: The user interface of the Unstuck Debugger.

Method trace [1]. Each line represents a method call. The format is of
the form

receiver# selector(arg1, arg2, ...) -> return value.

Each line is indented according to the depth of the message sends.
Methods can be collapsed if they are of no interest (and of course
expanded as well). Methods can be highlighted for remembering them
easily. We can step through the highlighted lines. For the receiver
and the return value of the selected method the object history can be
viewed in the object history [4] using the context menu. This view

13

14 CHAPTER 3. TRACE-BASED DEBUGGING

selects always the current method in the trace. It can change due to
interaction with another view, too.

Object views [2]. There are two views displaying objects according to
the currently selected method in the method trace: one displays the
receiver of the method and the temporary variables (on the left side:
the first line represents the receiver, beneath the temporary variables
with the variable name), the other one the passed arguments (on the
right side, with the argument’s name). If an object is instrumented,
it can be expanded to display the instance variables. Thus each line
represents an object: these lines can be inspected or used for the object
history over the context menu. If an object is an instance variable of
an instrumented object, the setter methods of this instance variable
and the object it belongs to can be highlighted in the method trace
over the context menu. This is really useful to see where this instance
variable changed. We can step through this highlighted methods in
the method trace, or use the stepping functions provided by the UI:
step to the next/previous/first/last value of this instance variable.

Source code [3]. This view displays the source code of the current se-
lected method in the method trace. Here the source mapping of the
events is used to highlight the current event. Normal debugging steps
are provided to step through the source code (respectively through
the events). The user can select source code and inspect it. He can
also change manually the current focus in the execution trace. The
object history can display the history for the current selected object.
This view is used to program, i.e., the source code can be edited and
recompiled.

Object history [4]. This view displays every occurence of a user-selected
object in the trace. The events are message reception by the object,
object passed as argument, object state change, object’s variable as-
signment or object returned from a method. This is useful for back-
tracking an object, because if we have an occurence in the trace, we
can go backwards through the trace with this object. Back to a pre-
vious occurence, see what happend to the object. We see where it
was passed as an argument, thus we know from where it came, finally
arriving at the first occurrence (normally its creation).

Searching [5]. This pane consists of a simple search field, where the
user can query the events. The method trace [1] highlights the found
events. Section 3.3.1 presents this functionality in more detail.

14

3.3. SUPPORTING TRACE NAVIGATION 15

Variable Search domain
event All events
send Events representing a method send
return Events representing a method’s return
varAccess Events representing a variable store (instance or

local)
instVarAccess Events representing only an instance variable

store
tempVarAccess Events representing only a local variable store

Table 3.1: Predefined search variables

3.3 Supporting Trace Navigation

We need supplementary features to locate interesting events and to mark
interesting objects that will help finding bugs. In the following sections we
describe the searching and coloring functions.

3.3.1 Simple Searching

Searching is important and thus should be simple. This is realized in the
following manner: there is only one search field where the programmer can
provide a boolean expression to identify specific events. Some predefined
variables are available: event for searching in all the trace events (variable
access or message send), send for searching only message send events. Ta-
ble 3.1 presents the predefined variables that the programmer can used. In
the current version, it is not possible to define other variables. Appropriate
accessor methods are available for the events to access the collected runtime
data (as shown in Table 3.2). The expression is used as the selection criteria
on the adequate events. The result of the search is a set of events, which
are then highlighted in the method trace.

The search expression is expressed in the implementation language, here
Smalltalk. With this approach users are familiar with the search language,
they can access the needed data using a known language. In addition, they
have full access to the domain objects (via e.g., event sender). Thus it is
easy to add methods to the domain classes to simplify the more complex
queries.

Figure 3.3 shows a search example in Unstuck. “varAccess varname = ’var2’

& varAccess newValue = nil” is the provided search query, i.e., we search the
trace for any variable access, where the accessed variable is named var2 and
the assigned value is nil.

15

16 CHAPTER 3. TRACE-BASED DEBUGGING

Query Result
send selector = #foo All the executed methods named

”foo”
varAccess newValue class = Foo Every variable assignment, where the

assigned object’s class is Foo
return returnValue > 4 All returns with a return value

greater than 4
events isSend & (event arg1 = 4) &

(event arguments size = 1)

Only methods which have exactly one
argument, which was 4

Table 3.2: Some search expression examples

Figure 3.3: Example for a search query

16

3.3. SUPPORTING TRACE NAVIGATION 17

3.3.2 Coloring

Coloring is a useful tool for the developer as it enables tracking objects. The
user can assign a color for an object in the trace. Various views (method
trace, object views, object history) highlight the object with the assigned
color. So it is easy to see if that object was passed as an argument, or if it
was the receiver of a message or the instance variable of another object.

Figure 3.4 and Figure 3.5 show how to assign a color for an object using
the context menu. Figure 3.6 shows the resulting coloring for an object
(“a RBMethodNode”). The user can easily detect the object in the trace
and quickly see when it was the receiver of a message, an argument or the
returned value.

Figure 3.4: Assigning a color over
the context menu.

Figure 3.5: A color picker that
popped up

17

18 CHAPTER 3. TRACE-BASED DEBUGGING

Figure 3.6: A colored object in the method trace.

18

Chapter 4

Examples

In this chapter we present two examples for finding bugs with Unstuck.
Section 2.1 already introduced the Introducing Example, which is presented
first. Then we show a second example, a bug which cannot easily be fixed
with the normal Squeak debugger.

4.1 Introducing Example

Coming back to the problem presented in Section 2.1, here is how we solve
it with the Unstuck Debugger:

• Start the Unstuck Debugger.

• Select the class Foo and provide the code to start the execution (Foo

new start).

• The Unstuck Debugger instruments the bytecode of the methods of
Foo, starts the program and collects the execution trace and presents
it in the main user window.

• The error is already visible and it is obvious that nil received the mes-
sage size.

• We want to see the code with the call of the message size, thus we step
one back in the source view. The source code shows now that var2

received the message size

• Select var2 in the source code or in the object view.

• Highlight the modifiers of var2 (see Figure 4.1).

19

20 CHAPTER 4. EXAMPLES

• There are two modifiers: one in the initialize method and one in before-

Bar, which is the faulty one.

• Another possibility is to highlight var2 in the object view and use the
stepping functions for the modifiers.

Figure 4.1: Left: highlight the modifiers of a variable over the context menu
in the source view. Right: the result of the action made on the left side:
highlighted methods in which var2 was modified (i.e., changed the value)

The Unstuck Debugger offers us the information we need: the modifiers of
var2. They are only available because the old state and the execution trace
are not lost. We do not have to think about breakpoints but instead can
directly navigate to the source of the bug.

4.2 AST Bug

The following example is a real bug that was not fixed with the normal
Squeak debugger. Section 5.2.2 presented Swapping Compiled Methods,
i.e., if the collector is collecting events, we execute the instrumented method,
otherwise the not instrumented one. This is necessary for Unstuck to build
the trace, because it works on the abstract syntax tree of Smalltalk. Byte-
Surgeon works also on the abstract syntax tree, leading to an endless loop
without Swapping Compiled Methods. This example proofs that Unstuck
is able to debug such programs.

4.2.1 Starting Position

A programmer sent us the (unsolved) bug with the following information:
”The program works on Smalltalk’s abstract syntax trees and the goal of
that part of the program is to store a method’s node. The program makes
a copy of the original tree to do some transformation without touching the
original. During the copy process, some back references are not set correctly
leading to an error while working with the tree.”

20

4.2. AST BUG 21

The programmer guessed that the bug is somewhere in the postcopy imple-
mentation of the nodes. Therefore, we recompile the corresponding method,
because the abstract syntax tree is copied right after recompiling.

4.2.2 The Error in the Squeak Debugger

Figure 4.2: The error in the Squeak debugger

Figure 4.2 shows the debugger after the error occurred. The program tried
to store a JMethodNode. The preparation process of the node sets the func-
tion scope (which is the symbol table for declared local variables of methods
or blocks) to nil, which is done on the original node. The copied node still
holds the function scope, which can not be stored. As there is a reference
to the copied node somewhere in the original tree, the error occurs.

It is hard to find the bug with the normal debugger because of the following
problems:

• Stack Trace. Figure 4.2 shows the stack trace of the error. We have
the ability to look at the full stack, but this does not help, because the
full stack is huge and the bug is in a method that finished executing,
i.e., is not on the stack anymore.

21

22 CHAPTER 4. EXAMPLES

• Copies. A node and its copy are equal, but not identical. The only
difference is the identity hash, thus it is painful to distinguish them
and to know if a node belongs to the copied tree or the original.

4.2.3 Fixing the Bug with Unstuck Debugger

We have to provide a set of classes and the code to start the program for Un-
stuck. Figure 4.3 presents the start window of Unstuck Debugger and
what we choose: all classes from packages that could contain interesting
classes and the following code: JRecompiler new recompile: #exampleInstVar in:

JExamples. JAstCompressor writeAll. We recompile the method exampleInstVar

from JExamples. The method node of this method produced the error.

Figure 4.3: The start window of Unstuck Debugger with the selected
classes and the provided code

Once Unstuck Debugger presents us the resulting trace, we begin to track
down the bug. The first idea is to color the two abstract syntax trees with
different colors to distinguish them. Then we should come across a sus-
picious node. We color the original tree with blue (the one prepared for
storage) and the copy with red (which occurs at the end of the trace).

22

4.2. AST BUG 23

We know that the method #storeDataOn: is of interest, we pull it down to
JMethodNode to have it instrumented.

Color the function scope with green (for better remembering).

Color the JMethodNodes. We color the node containing the function scope
red. A bit earlier in the trace we found a JMethodNode that received the
message #prepareForStorage. We color it blue.

We go down the tree and mark the next nodes in parallel: a JMethodNode

has a RBSequenceNode as the body with the corresponding color.

The RBSequenceNode contains two statements holding two RBAssignmentN-

odes, which are colored too.

Figure 4.4: The beginning of the coloring.

Each RBAssignmentNode holds a variable and a value. In our example the
variable is represented by a RBVariableNode and the value by a RBLiteralNode.
We color these nodes blue (as they belong to the original). Then we like
to do the same with the copied tree and color them red, but they already

23

24 CHAPTER 4. EXAMPLES

appear in blue (see Figure 4.5). We found two suspicious nodes. It seems
that there could be the bug. Taking the first node, the RBVariableNode, we
are interested where it was assigned as the variable of the RBAssignmentNode,
because there the two trees were mixed.

Figure 4.5: Found suspicious nodes: the two nodes colored in blue could be
colored in red too.

We select the RBVariableNode and highlight the modifiers (i.e., where the
instance variable variable of the RBAssignmentNode changed its value), see
Figure 4.6. There is only one place and we go to it (by jumping to the first
highlighted line in the method trace). Since this is the only modifier, it is
probable that the bug is there.

We are in the #postCopy method of RBAssignmentNode and the source code
modifying the instance variable is highlighted (see Figure 4.7). There we
found the bug: variable := variable postCopy should be variable := variable copy.
Two lines beneath (value := value postCopy) there is the cause for the second
suspicious node (the same error).

24

4.2. AST BUG 25

Figure 4.6: Highlight the modifiers of the interesting variable.

4.2.4 Explanation

The faulty code produces these mixed trees: since the subnodes of an
RBAssignmentNode are not copied, the two trees shares them.

The abstract syntax tree is bidirectional, i.e., each node contains a refer-
ence to its parent. The first instance variable of a node is the parent. The
#storeDataOn: method puts all instance variables into a stream. This ex-
plains how the copy of the JMethodNode is called to store itself on the stream
(see Figure 4.9): the original JMethodNode put its RBSequenceNode into the
stream. The RBSequenceNode puts its statements, i.e., the RBAssignmentN-

odes. An RBAssignmentNode put its RBVariableNode into the stream. There the
walkover to the copy happens: the RBVariableNode puts its parent into the
stream, which is an RBAssignmentNode of the copied tree. Then each node
puts its parent, i.e., it is going up the tree to the root, the JMethodNode.
Figure 4.9 shows this way graphically.

4.2.5 Conclusion

The bug’s source is simple, but the consequences are immense. Finding the
bug with the normal Squeak debugger can take hours. It is not even said

25

26 CHAPTER 4. EXAMPLES

Figure 4.7: The place where the only change of the interesting variable
happend.

Figure 4.8: The abstract syntax tree for the method.

26

4.2. AST BUG 27

Figure 4.9: The original abstract syntax tree and its copy, sharing the same
nodes as the result of the bug.

that it would be solved, because the bug was not fixed over three months.
With Unstuck Debugger we fixed the bug within minutes. This examples
shows how easy it is to track objects in the execution of a program, even
structures of objects. Time was not wasted by searching each place where
a variable was modified, these places were just given. All this additional
information is very useful for finding and fixing bugs and should be available
for programmers.

27

28 CHAPTER 4. EXAMPLES

28

Chapter 5

Implementation

Unstuck Debugger is implemented in Squeak, an open-source implemen-
tation of Smalltalk [Inga 97]. Unstuck Debugger is based on the TraceLi-
brary which offers execution trace infrastructure. Basically the debugger
collects the events, orders them and prepares the state reconstruction.

There are a few challenges when implementing our approach. To provide
the state of any object at any time in the execution trace, we need a way to
generate the needed data. Further we need to collect this mass of data and
prepare it for presentation.

To generate events (method invocation, variable access and method return),
the methods are instrumented using ByteSurgeon which is a high-level
library to manipulate method bytecodes [Denk 06]. Figure 5.1 shows the
different layers. The following sections describe each layer and how they
work together.

5.1 Trace Library

The TraceLibrary supports the generation of execution traces from a set
of classes and the code to start the program. ByteSurgeon instruments
the methods of the given classes to generate the events at runtime. During
the execution, a collector gathers these events and forms the program trace.
Section 3.1 describes the events and the resulting trace model. The following
sections shows how events are processed and how we obtain the state of
objects for any time in the trace.

29

30 CHAPTER 5. IMPLEMENTATION

Debugger

Trace Library

ByteSurgeon

uses

uses

Figure 5.1: The TraceLibrary is built on top of ByteSurgeon and the
Unstuck Debugger is build on top of the TraceLibrary.

5.1.1 Event Processing

A collector, a TraceCollector, collects these events at runtime and processes
them to remember the order, to optimize the data structure and to pre-
pare state reconstruction of the objects (receiver, variables and arguments)
participating to the trace.

Order Remembrance. The collector tags the events with a timestamp
to remember the order of the events in which they arisve. The depth of the
event is also calculated by the collector.

Data structure optimization. We create an event tree from a sequence
of events, using the return events as marker of the end of a method execution.
Back pointers to navigate from the subevents to the parent events are also
managed as part of this process.

State reconstruction preparation. The collector handles every occur-
rence of objects in the trace for later state reconstruction. By state recon-
struction we mean the ability to reconstruct the exact state of an object at
any point in time as we will explain in Section 5.1.2. We distinguish three
cases for treating all the objects participating into an event (i.e., receiver, ar-
guments, variables, return values): instrumented objects, not instrumented
objects and collections.

• Instrumented objects: they do not need any special handling. The
collector gets the state changes of such objects from instance variable
write access events. With these changes we are able to provide the

30

5.1. TRACE LIBRARY 31

state of these objects at any time by applying the latest change before
that point in time.

• Non instrumented objects: to remember their state the collector copies
these objects.

• Collections: because a collector does not get any events for changes
in a collection, a copy of a collection is saved with the current times-
tamp. Basically the collector creates a new collection of the same kind
and processes every object of the collection as if it would be in the
trace, i.e., recursively apply the same process: check if the object is
instrumented or not, if it is a collection and process them as described
above. We need to copy the collection, because the original collection
could be modified in the future execution of the program.

When a collector gathers an event from an instance variable write access,
then the new value represents a state change of an instrumented object.
This change, the current timestamp and the variable name is remembered
for the corresponding object. This is useful for later state reconstruction,
because we do not have to go through the whole trace and collect the needed
changes. Note that the previous behavior is not necessary since we could
walk over the trace and collect all changes belonging to an object. Here they
are just ordered at runtime and act as a cache.

5.1.2 State Reconstruction

State reconstruction is the process of reverting an object’s state to any de-
sired point in time in the trace. As explained above a collector prepared the
state reconstruction. Depending on the type of objects, the reconstruction
is different:

• Instrumented objects: for every instance variable we take the latest
change before the desired time and apply this change. The applied
value is reverted to the desired time, too (see Figure 5.2).

• Non instrumented objects: no reconstruction needed, we just take the
copy the collector has made and associated with the event.

• Collections: we take the last occurence of the collection in the trace
and every object inside is reverted to the desired time.

The following examples show the special handling of collections: the first
example adds a collection to the receiver which is aCollection too. Let’s
assume that the method addAll: is not instrumented but the expression is
inside an instrumented method.

31

32 CHAPTER 5. IMPLEMENTATION

Figure 5.2: The state reconstruction process for instrumented objects.

...
aCollection addAll: anotherCollection
...
ˆ someExpression

When the collector treats the MessageSend for the method addAll:, it processes
the two collections (because they were involved in the method’s execution,
as the receiver and as an argument). The collector creates a new collection
with the current objects inside to remember which ones were in the collection
at this time and handles each object inside as it would be an object in the
trace (as described in Section 5.1.1). The same happens when the collector
receives a Return event. To get the state of a collection right before this
method was executed, we take the new collection created by the collector
and reconstruct the state of the objects inside. To get the state of the
collection after this method was executed, we take the second collection
the collector created when it was treating the return event. This collection
includes the newly added objects, thus we get the right state back.

...
aCollection foo: otherCollection
...
ˆ someExpression

with foo defined as:

foo: collection
collection removeFirst

32

5.2. EVENT GATHERING USING BYTESURGEON 33

Similarly to the previous example, let’s assume that the method foo: is not
instrumented. In addition, let’s assume that we have two objects inside oth-

erCollection, one instrumented and other not. After the execution of foo:, the
collector creates a new collection: the instrumented object is put in it, and
a copy of the not instrumented one. Thus we remark that the otherCollection

has changed. To get the state at the end of the method’s execution, we take
the newly created collection and put the two following objects inside: the
reverted instrumented one (by applying the latest changes) and the copy of
the not instrumented object.

5.2 Event Gathering Using ByteSurgeon

ByteSurgeon [Denk 06] is a tool for transforming Smalltalk bytecode at
runtime. It provides high-level abstractions, thus developers do not need
to program at bytecode level. Bytecodes are low-level instructions for the
Virtual Machine stack machine. ByteSurgeon can insert code before, after
or better: instead of an instruction. This code is passed in form of a string
of Smalltalk code. If we insert code after an instruction, it will be executed
right after the execution of the instruction. Additionaly ByteSurgeon
provides the same functionality for methods instead of instructions.

For accessing runtime information (such as the receiver of a message, the
passed arguments), ByteSurgeon provides meta variables. They have a
special syntax (<meta: #var>) and can be added to the string that rep-
resents the code to insert. ByteSurgeon provides the receiver, the argu-
ments and the returned value of a message send, the variable name and the
new value of a write access to a variable. The IRInstruction (an intermediate
representation, which represents a bytecode instruction) delivers the static
information, i.e., the selector and the definition class of a message send and
the source range of all events.

As an example we describe how to generate the method send events of a
method:
ByteSurgeon iterates over the IRInstructions, thus we work with an IRSend,
which represents a message send at bytecode level. It provides the static in-
formation (selector, source range, definitionclass). ByteSurgeon provides
the runtime information over meta variables (the receiver is accessible with
<meta: #receiver>, the arguments with <meta: #arguments>). Byte-
Surgeon takes a string to insert code, thus we generate the string as fol-
lows:

’TraceCollector default take:
(MessageSend withSelector: ’, instr selector printString // include the selector
,’ withArguments: <meta: #arguments> // include the arguments

33

34 CHAPTER 5. IMPLEMENTATION

withReceiver: <meta: #receiver> // include the receiver
withSourceRange: ’, instr sourceRange printString // include the source range
, ’ class: ’, instr superOf printString,’)’ // include the definition class

This generates our needed event and the collector stores it. Then we instru-
ment every send in a method with the following code:

aCompiledMethod instrument: [:instr
instr isSend ifTrue: [instr insertBefore: theString]].

5.2.1 Just-In-Time ByteSurgeon

Instrumenting a method is costly, particularly for longer methods. To save
time in the trace generation process we use the idea of Just-In-Time Byte-
Surgeon: the TraceLibrary instruments only methods that are executed,
which is done at runtime. For realizing this behaviour we use ByteSurgeon
itself: we insert a preamble for each method which has the following func-
tions:

• Instrument the current method.

• Re-execute the current method.

To realize this we need access to the following information:

• The current method.

• Receiver, arguments and the definition class of the current method.

We use the meta variables of ByteSurgeon to make the information avail-
able, if it is not directly provided (like receiver, selector and arguments).
When instrumenting with ByteSurgeon we can pass a dictionary to the
instrumentation process. The dictionary has name value pairs, thus we can
assign a name to an object and then access it with a meta variable in the
code string (with <: #name>).

Therefore the preamble has the following form:

TLUtil instrumentMethod: <: #compiledMethod>.
ˆ<meta: #receiver> perform: <: #selector> withArguments: <meta: #arguments> in-
Superclass: <: #class>.

34

5.2. EVENT GATHERING USING BYTESURGEON 35

We install this preamble before every method with a prepared dictionary
containing the method (which is a CompiledMethod accessible over <: #compiledMethod>),
the selector of the message and the definition class (accessible over <:
#class>).

In Squeak we can send a message (execute a method) programmatically to
an object by using the message #perform:withArguments: or in our case #per-

form:withArguments:inSuperclass:. When providing the superclass the lookup
process starts at the provided superclass and not at the receiver’s class.

5.2.2 Swapping Compiled Methods

Just-In-Time ByteSurgeon raises the problem of circulary dependencies.
Figure 5.3 shows the problem: assume that we have an (already) instru-
mented method Y and an original method X, which is executed. Just-In-
Time ByteSurgeon initiates the instrumentation of method X and Byte-
Surgeon does the instrumentation. If ByteSurgeon uses an already in-
strumented method (like method Y) for the instrumentation process, the
runtime events are generated and the TraceCollector collects them. These
events do not belong to the trace the user wants.

Figure 5.3: The problem of the Just-In-Time ByteSurgeon

The first approach to solve the problem stated before would be to appoint
the TraceCollector to not handle these events and to throw them away. Be-

35

36 CHAPTER 5. IMPLEMENTATION

fore starting the instrumentation process we could tell the TraceCollector that
from now on every event should be rejected.

We introduced a better solution for the problem: swapping compiled meth-
ods. Basically there are two methods, the original one which is not instru-
mented and the instrumented one. Based on the situation the demanded
method is executed. Therefore if the normal trace building process is run-
ning, we execute the instrumented method. If ByteSurgeon is instrument-
ing a method, we execute the not instrumented method. The advantage of
this solution is that no unnecessary events are generated.

There are two preambles to realize this approach: one for instrumented
methods and one for not instrumented methods. These preambles swap the
method if needed. We can tart and stop the TraceCollector to collect events or
not. To decide which of the two methods is executed we take if the TraceCol-

lector is collecting or not as the selection criteria.

The following code represents the preamble for not instrumented methods:

TLTraceCollector isCollecting ifTrue: [
(<: #class> compiledMethodAt: <: #selector>) replaceMyselfWith:

((<: #class> compiledMethodAt: <: #selector>)
properties at: #instrumentedMethod).

ˆ<meta: #receiver>
perform: <: #selector>
withArguments: <meta: #arguments>
inSuperclass: <: #class>.

].

If the TraceCollector is not collecting events, the current method continues,
because it is not instrumented. If the TraceCollector is collecting, the pream-
ble replaces the current method with its instrumented counterpart, which is
stored as a property of the not instrumented method.

The preamble for instrumented methods swaps the method if the TraceCol-

lector is not collecting events.

We use meta variables to provide the needed information, which is stored in
a dictionary and passed to the installation procedure of the preambles (like
installing the Just-In-Time ByteSurgeon preamble in Section 5.2.1).

36

5.2. EVENT GATHERING USING BYTESURGEON 37

5.2.3 Combine Just-In-Time ByteSurgeon and Swapping Com-
piled Methods

To get Just-In-Time ByteSurgeon and Swapping Compiled Methods work-
ing together we need to modify the preamble used in Just-In-Time Byte-
Surgeon (Section 5.2.1) and we need to prepare the methods of the given
classes for tracing. This section describes the modified preamble for Just-
In-Time ByteSurgeon, the preparation process and when methods are
instrumented at runtime.

Preparation. For each method we install the preamble for not instru-
mented methods with the corresponding information (selector, definition
class, the method itself). Further we install the modified version of the
Just-In-Time ByteSurgeon preamble.

Modified preamble for Just-In-Time ByteSurgeon. The modified
preamble looks as follows:

TLTraceCollector isCollecting ifTrue: [
TLTraceCollector stop.
TLUtil instrumentMethod: <: #compiledMethod>.
TLUtil insertInstrumentedPreamble:

<: #class> selector: <: #selector> original: <: #originalWithPreamble>.
TLTraceCollector start.
ˆ<meta: #receiver>

perform: <: #selector>
withArguments: <meta: #arguments>
inSuperclass: <: #class>.

].

The preamble ensures the combination of Just-In-Time ByteSurgeon and
Swapping Compiled Methods:

• If the TraceCollector is not collecting events, the method execution con-
tinues as normal. In the other case we should change to the instru-
mented method. Because of the Just-In-Time ByteSurgeon idea,
there is no instrumented method yet, thus it will be created.

• We stop the TraceCollector for the upcoming instrumentation process.
From this point on only original (not instrumented) methods are exe-
cuted to prevent the creation of unnecessary events.

• The next step is to instrument the original method to produce the
desired events. After this we install the preamble for instrumented
methods.

37

38 CHAPTER 5. IMPLEMENTATION

• After the end of the instrumentation process we start the TraceCollec-

tor, i.e., it will collects events again the instrumented method will be
executed from this point on.

• Finally we re-execute the current method (which will be the instru-
mented one).

Figure 5.4: The resulting methods of Just-In-Time ByteSurgeon and
Swapping Compiled Methods combined

Figure 5.4 shows the resulting methods: in the preparation process we create
two methods from the original one. One with the modified preamble of Just-
In-Time ByteSurgeon, which is the actual method after the preparation,
and one with the preamble for not instrumented methods. When the first
execution runs (and the TraceCollector is collecting events), the instrumenta-
tion process begins (with the original method). We install the preamble for
instrumented methods before the resulting method of the instrumentation.
After the first execution there is still the method with the preamble for not
instrumented methods and the instrumented method with the correspond-
ing preamble.

This solution ensures the desired behaviour: we instrument only methods
that are executed (while the TraceCollector is collecting events). The instru-
mented method is only executed if needed.

In Section 4.2 we describe an example of bug fixing with Unstuck (the
AST bug), where we need Swapping Compiled Methods. Without this
behaviour it is impossible to generate the trace while using Just-In-Time
ByteSurgeon. Therefore Section 4.2 proves that our approach is working.

38

Chapter 6

Discussion

Collecting that much runtime data raises questions about performance and
memory usage. In this chapter we discuss both.

6.1 Performance

In this section we present performance benchmarks 1 for the preparation
time, the instrumentation time and the runtime. We used three examples:

• the Introducing Example, presented in Section 4.1

• the AST bug, presented in Section 4.2

• a Pier trace: we took all test suites from a test package of Pier. We se-
lected every model class from Pier and every model class from Magritte
to debug and ran these nine test suites.

Prepared Methods Time (s) Average (s)
Introducing
Example

10 0.19 0.019

AST Bug 943 17.6 0.019
Pier Trace 1714 30.4 0.018

Table 6.1: Preparation time

First of all, the TraceLibrary prepares all methods from the given classes
for later tracing. This process includes installing the modified preamble for

1Machine used: AMD Athlon 64 3200+ (2GHz), 1GB RAM, Squeak 3.9beta

39

40 CHAPTER 6. DISCUSSION

Just-In-Time ByteSurgeon and the preamble for not instrumented meth-
ods (as described in Section 5.2.3). Table 6.1 presents the results. Preparing
a method takes less than 20 milliseconds. The needed time is constant, a
fact that does not surprise, because we insert the two preambles before a
method and this is independent from the method itself. In Squeak a class
has averaged 16 methods per class, thus we prepare about three classes per
second. The instrumentation seems to take quite long, especially consider-
ing that it is only for preparing and instrumentation and tracing is not done
yet. Later when discussing the instrumentation time, we will show that we
save time with preparing methods. For the preparation process we rely on
ByteSurgeon and the user itself. If the user can select only important
classes, the preparation time is acceptable.

Instrumented Methods Time (s) Average (s)
Introducing
Example

6 0.19 0.03

AST Bug 127 10.2 0.08
Pier Trace 338 28.6 0.085

Table 6.2: Instrumentation time

We measured the time used to instrument methods with ByteSurgeon.
An instrumented method generates all the runtime data we collect for later
debugging. Instrumenting a method takes approximately 80-90 milliseconds.
The 30 milliseconds from the Introducing Exampleare not significant, be-
cause the methods are short and the instrumentation process depends on the
length of a method (longer methods have more instructions, thus we have
to insert more code). The instrumentation time was from the beginning a
problem, thus we introduced Just-In-Time ByteSurgeon. Other improve-
ments outside from Unstuck were made to bring down the instrumentation
time. The problem is the amount of data we produce and the question is
if we can really bring down the instrumentation time significantly. We will
investigate this problem in the future (see Section 7.2.2).

The preparation and instrumentation time measurements proof that the use
of Just-In-Time ByteSurgeon is worthy. In the AST bug example, we
have a preparation and instrumentation time of 27.8 seconds. We have 943
methods and an average of 0.08 seconds to instrument a method. Therefore
instrumenting every method would take approximately 75 seconds (943 *
0.08 seconds), which is more than the 2.5 fold time. The same calculations
shows that in the Pier trace instrumenting every method would take ap-
proximately the 2.5 fold time.

40

6.2. MEMORY USAGE 41

Overall
runtime (s)

Effective
runtime (s)

Simulated
runtime (s)

Introducing
Example

0.65 0.27 0.045

AST Bug 33.5 5.7 1.5
Pier Trace 1350 1291 5.2

Table 6.3: Various runtimes

As the last benchmark we measured the overall runtime used to generate
the trace (including preparation and instrumentation time). Deduced from
this time we have the effective runtime, which is the overall runtime sub-
tracting preparation and instrumentation time. We measured the simulated
runtime too, to have a time to compare. The simulated runtime is the time
used to step through the program in the Squeak debugger, which is done
programmatically (without any user interface). For the AST bug it takes
about the four-fold time to generate the trace compared to the simulated
run. The simulated run does only the stepping, while we record a whole
trace and process the events. The pier trace is an example for a really large
trace (see Section 6.2).

The AST bug is a real scenario. The performance there is good. It takes
round half a minute for Unstuck to get the trace and the preparations.
The bug was solved with Unstuck within minutes, but remained unsolved
with the normal debugger.

With the Pier trace we reached the limit. Normally a user debugs one
test case, but here we ran nine test suites. We plan to test and optimize
the performance and memory usage in more detail (see Section 7.2.2). We
assume that the garbage collector could be the problem: if a certain amount
of space is used, the garbage collector does a full garbage collection instead
of an incremental one. As the trace grows, the garbage collector needs much
more resources, which may be the cause for the slowdown.

6.2 Memory Usage

To get an idea how much memory a trace uses we measured it. We included
the space used by the state preparation process and data structure optimiza-
tion. We used the same three examples presented in Section 6.1. Table 6.4
shows the results.

41

42 CHAPTER 6. DISCUSSION

Number of
events

Memory usage (Kb) Average per
event (Kb)

Introducing
Example

74 16 0.21

AST Bug 2725 800 0.29
Pier Trace 389689 88800 0.22

Table 6.4: Memory usage

The AST bug takes only 800 Kb of memory, which is rather few. The big
Pier trace uses much more memory, but if we take the number of events as
a measurement for the size of the trace, the memory usage is more or less
proportional to the trace size.

Memory usage with
changes (Kb)

Memory usage
with copies (Kb)

Factor

Introducing
Example

16 16 1

AST Bug 800 2300 2.9
Pier Trace 88800 ? -

Table 6.5: Various memory usages

Table 6.5 shows interesting results: we measured the memory usage if we
copy every object in the trace to remember the state at any time. In the In-
troducing Examplethe memory usage remains the same, there are not much
objects participating in the trace, thus the copies do not carry weight. The
AST bug shows a more significant result: the trace working with copies in-
stead of changes uses nearly the three-fold amount of memory. The overall
runtime for generating the trace remains nearly the same. We use more time
to copy objects, but the state preparation process disappears.

We tried to generate the trace with only copying objects for Pier too, but
we did not manage to generate the trace and evaluate it. We did it for one
single test suite which holds a tenth of the events of the full trace. The re-
sulting trace uses nearly the three-fold amount of memory which the normal
full trace uses. This shows that the memory used has to be very large. To-
gether with the evaluation of other single test suites (which were possible to
evaluate), we estimate a memory usage of over two gigabytes for the whole
trace of all nine test suites.

42

6.2. MEMORY USAGE 43

If we copy every object, the trace uses more memory. For the AST bug it is
the three-fold amount, for the Pier trace we can only estimate, but we need
a lot of memory. The system crashes if we try to generate the full trace with
only copying objects (not to mention to evaluate the memory usage). These
are the reasons to work with changes.

43

44 CHAPTER 6. DISCUSSION

44

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In many cases the Unstuck Debugger provides an improvement over con-
ventional debugging: if we have a faulty value it is easy to find the place
where it was set uncorrectly. The bug can be chased in the program history.
Such a kind of behavior is not possible in a normal debugger where this work
has do be done manually using multiple restart and breakpoints. When we
select a message send in the Unstuck Debugger it is like we stopped the
program there with a breakpoint. We have the same information, but there
is no need to put a new breakpoint for stopping the program in another sit-
uation. In the debugger we can just go there. Completed with backtracking
and searching functions the debugger helps us finding bugs much faster.

7.2 Future Work

To have all this information available there is a price to pay: instrumenting
the bytecode and collecting the trace information which slows down appli-
cations. But it needs to be compared to the time won when finding bugs.
Up until now the Unstuck Debugger has been working on a limited still
challenging case studies such as debugging abstract syntax tree and com-
piler internals. We plan to analyze the performance and memory usage in
more detail (Section 7.2.2). In addition as Smalltalk offers a dynamic pro-
gramming style with on the fly recompilation, we plan to investigate if it is
realistic to instrument the complete environment and be able to debug any
application without having to provide a program seed.

Other possible enhancements are support for threads, which is discussed in
Section 7.2.1 and the ability to restart execution in the past: the Unstuck
Debugger should be able restart the execution trace from any point in the

45

46 CHAPTER 7. CONCLUSION AND FUTURE WORK

past which requires to recreate stack execution on the fly. Unstuck provides
this feature, but it is experimental and needs more work to get stable.

7.2.1 Threads

Unstuck is not designed for multi-threaded programs. This sections de-
scribes what is needed to debug multi-threaded programs with Unstuck
and how it can be realized.

Unstuck needs certain adjustments to be able to debug multi-threaded
programs:

• Event assignments to threads. Each event belongs to one thread
resulting in multiple traces, one trace for each thread.

• Global Identifier for events. Events are ordered within a trace,
but we still need a global ordering for events to know if something in
one thread happened before or after another thing in another thread.
Therefore we can catch bugs from bad or not synchronized threads.

• New view for threads. This view displays the threads of a pro-
gram. According to the selected thread, the method trace shows the
corresponding trace.

• Extend navigation functions. Additionally to the new view we
need to extend the navigation functions. Stepping can be scoped to a
thread, but also global steps are desired.

Gathering additional information, like the thread an event belongs to, raises
another problem: Unstuck must not force synchronization between the
multiple running threads. Therefore if we use a synchronized area for event
collecting or processing, we would force an unwanted synchronization be-
tween the threads. Bugs resulting from bad or not synchronized threads
might disappear because of the synchronization effect of Unstuck.

We could use multiple TraceCollectors to avoid the described synchroniza-
tion problem. Each thread has exactly one collector to assure independency
among threads and their trace collecting process.

For detecting the current active thread we need an atomic operation to get
this information. With it we can assign an event to a thread by sending it
to the intended collector. Before that we need to assign a collector to each
thread. We could use our own, small modified threads. These threads know
a collector. Instead of sending the generated events directly to the collector,

46

7.2. FUTURE WORK 47

we let the (active) thread do it. Thus each thread sends the events to the
right collector and we get one trace per thread.

A rather simple solution to get a global identifier for each event is to take the
current timestamp. The problem here is that in Squeak the clock’s precision
is in milliseconds. It is not sure that each event has a different timestamp.
A solution for this problem would be a counter implemented in the virtual
machine as a primitive. A primitive is a call to the virtual machine and
during the call everything else is blocked. Therefore the operation is atomic
and we get the correct global ordering, without any synchronization effect.

7.2.2 Performance and Memory

Generating and collecting the execution trace of a program is costly. We al-
ready analysed the performance and memory usage of Unstuck (Section 6.1
and Section 6.2). We need to do a more detailed performance analysis to
detect exactly which parts of the system take most of the resources. With
this analysis we are able to introduce and validate optimizations to get bet-
ter performance in Unstuck.

The space usage analysis shows that Unstuck requires much memory if the
execution trace grows. We need to test if we can bring the space usage down
to enable the handling of big traces with Unstuck. We could use a sort
of garbage collection for the trace, i.e., we exclude unneeded information.
Another idea would be to compress the trace.

7.2.3 Scoping and use of reflection framework that provides
it

Currently Unstuck uses ByteSurgeon to generate the execution trace.
We could change the backend to a reflection framework that provides scoping
like Geppetto [Röth 06]. If we could scope the event generation process,
numerous problems would disappear. Swapping Compiled Methods (Sec-
tion 5.2.2) is not the nicest solution: with the reflection framework we scope
the event generation to our tracer and get the requested effect, without
swapping the method to execute. To support threads in Unstuck we could
scope the event generation to each thread. Based on the scope a different
collector processes the events.

A problem with a reflection framework is the acquirement of specific infor-
mation, like the mapping of the source code to the bytecode. Unstuck
needs this information which is normally not accessible over the reflection

47

48 CHAPTER 7. CONCLUSION AND FUTURE WORK

framework. In a future evaluation we will check if we can extend the frame-
work to solve this problem and benefit from the advantages (i.e., scoped
reflection) that a reflection framework provide.

48

Appendix A

Installation Instructions

In this appendix we give a short overview on how to install Unstuck.

1. Install ByteSurgeon:

- Use at least a 3.9beta image.

- Load package AST from SqueakSource.

- Load package NewCompiler from SqueakSource.

- Enable the “use new compiler” preference.

- Recompile the image using the “Recompiler” class.

- Install ByteSurgeon from SqueakSource.

Alternatively download a prepared image from the website.

2. Use the Unstuck repository from SqueakSource to the TraceLibrary
and then Unstuck (in this order).

3. Use “Unstuck start” to start the debugger.

49

http://www.iam.unibe.ch/~scg/Research/ByteSurgeon/index.html
http://www.squeaksource.com
http://www.squeaksource.com
http://www.iam.unibe.ch/~scg/Research/ByteSurgeon/index.html
http://www.squeaksource.com
http://www.squeaksource.com/Unstuck.html
http://www.squeaksource.com

50 APPENDIX A. INSTALLATION INSTRUCTIONS

50

List of Figures

2.1 Error in the normal Squeak debugger. 4

2.2 Method calls and the resulting stack trace: only the methods
in the dashed box are in the stack trace when an error occurs
in method moreBar. 5

3.1 The Trace and Event model. 12

3.2 The user interface of the Unstuck Debugger. 13

3.3 Example for a search query 16

3.4 Assigning a color over the context menu. 17

3.5 A color picker that popped up 17

3.6 A colored object in the method trace. 18

4.1 Left: highlight the modifiers of a variable over the context
menu in the source view. Right: the result of the action
made on the left side: highlighted methods in which var2 was
modified (i.e., changed the value) 20

4.2 The error in the Squeak debugger 21

4.3 The start window of Unstuck Debugger with the selected
classes and the provided code 22

4.4 The beginning of the coloring. 23

4.5 Found suspicious nodes: the two nodes colored in blue could
be colored in red too. 24

4.6 Highlight the modifiers of the interesting variable. 25

4.7 The place where the only change of the interesting variable
happend. 26

4.8 The abstract syntax tree for the method. 26

51

52 LIST OF FIGURES

4.9 The original abstract syntax tree and its copy, sharing the
same nodes as the result of the bug. 27

5.1 The TraceLibrary is built on top of ByteSurgeon and the
Unstuck Debugger is build on top of the TraceLibrary. . . . 30

5.2 The state reconstruction process for instrumented objects. . . 32

5.3 The problem of the Just-In-Time ByteSurgeon 35

5.4 The resulting methods of Just-In-Time ByteSurgeon and
Swapping Compiled Methods combined 38

52

List of Tables

3.1 Predefined search variables 15

3.2 Some search expression examples 16

6.1 Preparation time . 39

6.2 Instrumentation time . 40

6.3 Various runtimes . 41

6.4 Memory usage . 42

6.5 Various memory usages . 42

53

54 LIST OF TABLES

54

Bibliography

[Augu 95] M. Auguston. Program Behavior Model Based on Event Gram-
mar and its Application for Debugging Automation. In 2nd Inter-
national Workshop on Automated and Algorithmic Debugging,
Saint-Malo, France, Mai 1995. (p 9)

[Augu 98] M. Auguston. Building program Behavior Models. In European
Conference on Artificial Intelligence ECAI-98, Workshop on Spa-
tial and Temporal Reasoning, Brighton, England, August 1998.
(p 9)

[Cons 93] M. P. Consens and A. O. Mendelzon. Hy+: A Hygraph-based
Query and Visualisation System. In Proceeding of the 1993 ACM
SIGMOD International Conference on Management Data, SIG-
MOD Record Volume 22, No. 2, pages 511–516, 1993. (p 8)

[De P 98] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execution
Patterns in Object-Oriented Visualization. In Proceedings Con-
ference on Object-Oriented Technologies and Systems (COOTS
’98), pages 219–234. USENIX, 1998. (p 8)

[Deme 02] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. (p 1)

[Denk 06] M. Denker, S. Ducasse, and É. Tanter. Runtime Bytecode Trans-
formation for Smalltalk. Journal of Computer Languages, Sys-
tems and Structures, vol. 32, no. 2-3, pages 125–139, July 2006.
(pp 29, 33)

[Duca 99a] M. Ducassé. Opium: An extendable trace analyser for Prolog.
The Journal of Logic programming, 1999. (pp 1, 9)

[Duca 99b] M. Ducassé. Coca: An Automated Debugger for C. In Interna-
tional Conference on Software Engineering, pages 154–168, 1999.
(p 9)

55

56 BIBLIOGRAPHY

[Duca 06] S. Ducasse, T. Gı̂rba, and R. Wuyts. Object-Oriented Legacy
System Trace-based Logic Testing. In Proceedings 10th European
Conference on Software Maintenance and Reengineering (CSMR
2006), pages 35–44. IEEE Computer Society Press, 2006. (p 8)

[Edwa 63] D. J. Edwards and M. L. Minsky. Recent Improvements in DDT.
Research Report AIM-60, MIT Artificial Intelligence Laboratory,
1963. (p 1)

[Gold 05] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
Queries over Program Traces. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’05), pages 385–402, New York, NY, USA, 2005. ACM Press.
(p 9)

[Guéh 02] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No Java without
Caffeine: A Tool for Dynamic Analysis of Java Programs. In
ASE, page 117. IEEE Computer Society, 2002. (p 8)

[Inga 97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, A Practical Smalltalk
Written in Itself. In Proceedings OOPSLA ’97, ACM SIGPLAN
Notices, pages 318–326. ACM Press, November 1997. (pp 7, 29)

[Ko 04] A. J. Ko and B. A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Pro-
ceedings of ACM CHI 2004 Conference on Human Factors in
Computing Systems, volume 1, pages 151–158, 2004. (p 8)

[Lang 95] D. Lange and Y. Nakamura. Interactive Visualization of Design
Patterns can help in Framework Understanding. In Proceedings
ACM International Conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA 1995),
pages 342–357, New York NY, 1995. ACM Press. (p 8)

[Lenc 97] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-Based De-
bugging of Object-Oriented Programs. In Proceedings OOPSLA
’97, ACM SIGPLAN, pages 304–317, October 1997. (p 8)

[Lenc 99] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic Query-
Based Debugging. In R. Guerraoui, editor, Proceedings ECOOP
’99, volume 1628 of LNCS, pages 135–160, Lisbon, Portugal,
June 1999. Springer-Verlag. (pp 1, 8)

[Lewi 03a] B. Lewis and M. Ducassé. Using events to debug Java programs
backwards in time. In OOPSLA Companion 2003, pages 96–97,
2003. (pp 1, 8)

56

BIBLIOGRAPHY 57

[Lewi 03b] B. Lewis. Debugging Backwards in Time. In Proceedings of the
Fifth International Workshop on Automated Debugging (AADE-
BUG 2003), October 2003. (pp 7, 8)

[Mart 05] M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query language.
In Proceedings of Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA’05), pages 363–385, New
York, NY, USA, 2005. ACM Press. (p 9)

[Röth 06] D. Röthlisberger. Geppetto: Enhancing Smalltalk’s Reflective
Capabilities with Unanticipated Reflection. Master’s thesis, Uni-
versity of Bern, January 2006. (p 47)

[Walk 98] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing Dynamic Software System
Information through High-Level Models. In Proceedings OOP-
SLA ’98, pages 271–283. ACM, October 1998. (p 8)

57

	Abstract
	Acknowledgements
	Introduction
	Key problems
	Structure of this Document

	Problems with Current Debugging Approach
	Why Stack Trace is Not Enough
	Introducing Example

	Recording and Navigating the Complete Trace
	A Standard Debugger
	The Squeak Debugger
	The Omniscient Debugger
	Other Approaches

	Trace-based Debugging
	The Trace and Event Model
	User Interface for Navigating the Execution
	Supporting Trace Navigation
	Simple Searching
	Coloring

	Examples
	Introducing Example
	AST Bug
	Starting Position
	The Error in the Squeak Debugger
	Fixing the Bug with Unstuck Debugger
	Explanation
	Conclusion

	Implementation
	Trace Library
	Event Processing
	State Reconstruction

	Event Gathering Using ByteSurgeon
	Just-In-Time ByteSurgeon
	Swapping Compiled Methods
	Combine Just-In-Time ByteSurgeon and Swapping Compiled Methods

	Discussion
	Performance
	Memory Usage

	Conclusion and Future Work
	Conclusion
	Future Work
	Threads
	Performance and Memory
	Scoping and use of reflection framework that provides it

	Installation Instructions

