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Abstract

Developers commit changes to the code base of a certain project in order to, for instance, fix
bugs, add features, or refactor the code. In empirical studies, researchers often need to link
commits with issues in issue trackers to audit the purpose of code changes. Unfortunately,
there exists no general-purpose tool that can fulfill this need for different studies. For instance,
while in theory each commit should serve one purpose, in practice developers may include
several goals in one commit. Also, issues in issue trackers are often miscategorized.

We present BICO (BIg COmmit analyzer), a tool that links the source code management
system with the issue tracker. BICO presents information in a navigable form in order to make
it easier to analyze and reason about the evolution of a certain project. It takes advantage of
the fact that developers include issue IDs in commit messages to link them together. BICO
also provides dedicated analytics to detect big commits, i.e., multi-purpose and miscategorized
commits, using statistical outlier detection. In an initial evaluation, we use BICO to analyze
bug-fix commits in Apache Kafka, where our tool reports 9.6% of the bug-fixing commits
as miscategorized or multi-purpose commits with a precision of 85%. This high precision
demonstrates the applicability of the outlier detection method implemented in BICO. A further
case study with Apache Storm shows that the precision of detecting multi-purpose commits
can vary between projects. In addition, BICO also comes with a built-in metric suite extractor
for calculating change metrics, source code metrics and defect counts.
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1
Introduction

Developers commit source code changes for many reasons, e.g., to fix bugs, add features, or clean up
the code. The purposes of these commits are usually documented in the commit messages themselves.
Developers also often include issue IDs in commit messages to link their commits with the issues they
resolve. This ad-hoc style of linking source code management systems with issue trackers motivates
researchers to mine both repositories and deduce knowledge from the evolution of systems, like discovering
bug-fix patterns [1][2][3], predicting changes in the code [4][5], and building datasets for bug prediction [6].
Such studies face three main challenges:

Linking commits with issues Although many techniques have been proposed in the past to approach
this problem (e.g., [7]), there exists no general-purpose tool that can be used off the shelf. Each study has
its own implementation.

Finding clean commits Ideally, commits should not be big and each commit should serve one purpose.
However this is not necessarily true in practice. There are commits that serve multiple purposes at the
same time and vary in size as in Figure 1.1. Studies can produce more reliable results if they rely on clean
commits, i.e., uni-purpose commits.

For example, a refactoring process can touch many files and change many lines of code, but a
NullPointerException1 fix touches only one file.

Revision n

Commit n+1

Revision n+1

Commit n+2

Revision n+2

Commit n+3

Revision n+3

Commit n+4

Figure 1.1: Evolution of a software project with different commit sizes and purposes

1https://issues.apache.org/jira/browse/FLUME-2672
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CHAPTER 1. INTRODUCTION 2

Figure 1.2: A NullPointerException fix in Apache Flume

If a commit has multiple purposes, it is a so called big commit. Herzig et al. [29] describe a big commit
as a tangled commit. We stick to the term big commit in this work. In the Apache Lucene project we found
a commit that was classified as bug by the issue LUCENE-62712. The assigned issue states that a function
does not return consistent values. This sounds like some small bug. But in the commit 3’945 lines of
code and 73 files were changed. Clearly, this is not just a bug fix but rather a big commit. Examining the
commit itself reveals that the commit has many purposes including several new features, optimizations and
bug fixes. The commit message on the master branch says “sync up with trunk”. We now know that is not
particularly a big commit, but also a merge commit. We should differentiate between those types of big
commits in the analysis.

Categorizing issues correctly It has been shown previously that issues in issue trackers are sometimes
miscategorized [8][9]. This threatens the external validity of the studies that rely on accurate categorization.

To address these challenges, we present BICO, a general-purpose tool that links commits and issues,
and provides further analytics to detect suspicious commits that either combine multiple purposes or are
miscategorized. For instance, issue number 6271 in Apache Lucene is actually a refactoring commit.
Eliminating such commits from analysis, or at least the awareness of their controversy, improves the
reliability of further empirical studies in software evolution. BICO implements statistical outlier detection
to detect big commits like this one. An initial evaluation to extract and analyze bug-fix commits in
Elasticsearch shows that BICO could categorize 1’489 commits as fixes, 7% of which are detected as big
commits with a precision of 85%.

BICO represents a first step to build a general-purpose infrastructure for analyzing software evolution.
To demonstrate its usefulness, we built a metric suite extractor on top of BICO for calculating change
metrics [10], source code metrics [11], and defect counts [7] for any analyzed system at the point in time
of any commit. BICO, with its big commit analysis, provides a usable infrastructure that facilitates this
metric extraction.

2https://issues.apache.org/jira/browse/LUCENE-6271
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2
Related Work

Mockus and Votta [13] categorize the changes of software based on the textual content in transaction log
messages in the Extended Change Management System (ECMS) [14].

Śliverski et al. [7] identify the commits that induce fixes in the future. They start from the bug report in
an issue tracker, then navigate to the commit that fixes the issue, identify the changed code in that commit,
and finally track that changed code to the commit that introduces it. Analyzing Eclipse and Mozilla,
Śliverski et al. reveal that the average number of changed files in a fix commit tends to be small: 2.73
in Eclipse and 4.39 in Mozilla. Purushothaman and Perry [15] analyze small changes in software using
change and defect history data. They find that nearly 10% of changes are one-liners and the maximum
number of changes are adaptive (i.e., new features). After a manual inspection of 374 bugs from three
systems, Lucia et al. [12] find that bug fixes that span more than five files are very rare (7% in Rhino,
1% in AspectJ, 10% in Lucene). Herzig et al. [9] manually examined more than 7’000 issues from issue
trackers of five open-source projects. They report that between 37% and 47% of issue reports are wrongly
typed in issue trackers. This type of study can benefit from an off-the-shelf tool such as BICO.

Fischer et al. combine data from Mozilla CVS and the Bugzilla issue tracker into one database called
the release history database as a part of a software evolution analysis framework [16]. Then they use
this combination of data sources to pinpoint and track features in the source code and reveal relationship
between features in Mozilla [17]. BICO provides similar functionality but on a wider scale where many
issue trackers are supported and any git repository can be analyzed.

Dallmeier and Zimmermann [18] propose iBUGS, a tool that extracts bug localization data semiau-
tomatically from software change history. Using patterns like “Fixed 1234” or “Bug #1234” in commit
messages, they discover bug-fix commits, but without linking them to issue trackers. The authors made
many datasets available using iBUGS. BICO provides a step further by linking the commit messages to
issues in issue trackers.

Begel et al. develop a framework called Codebook [19][20][21] that extracts data from several types
of software repositories and combines them into people-artifacts graphs. However, Codebook is tailored to
the infrastructure at Microsoft and cannot be used in other contexts. BICO on the other hand is publicly
available and can work with most of open-source project setups.

Rosen et al. present Commit Guru [22], a tool that can provide commit analytics for any publicly
accessible git repository. The main goal is to identify risky commits (i.e., bug-introducing commit)
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[23][24]. Commit Guru calculates commit-level metrics (e.g., number of modified files, Age from last
change) and uses them to predict how risky every commit is. However, using the approach suggested by
Hindel et al. [25], Commit Guru relies only on the commit messages in order to categorize commits. It
also assumes that each commit belongs to one category. BICO is different from Commit Guru in that it
links issues and commits, identifies big commits, and extracts change and source code metrics at the Java
file level.

Hindle et al. [25] define the term Large Commits as the commits that include large numbers of files.
Hindle et al. carried out a case study on 9 open source projects, and manually analyzed the 1% of the
commits that contain the largest number of files, any files and not only source code files. They concluded
that large commits are likely to be perfective while small commits are likely to be corrective. In this paper
we define big commits differently, as the commits that are miscategorized or serve multiple purposes. We
also categorize large commits, rather than just listing all of them.

Bachmann et al. introduced Linkster [26], a tool that connects version control history and bug report
history to identify defect-fix commits. The main intent of Linkster is to help developers and researchers
navigate and annotate commits. BICO uses similar analysis for linking commits and issues. BICO also
can be used for exploration but is mainly intended for analysis. BICO identifies categories of commits,
identifies big commits, and extract software metrics the analyzed system at any commit.

Although the techniques for linking commits with issues are already explored in the literature, there
exists no tool or implementation that can be used. BICO aims at filling this gap and facilitating reproducible
empirical research in software engineering.



3
Technical implementation

3.1 Architecture
Under the hood, BICO is mainly a batch job tool. Starting from the UI, when a user adds a new project to
be analyzed, BICO starts a batch job in the backend that does the actual heavy lifting. A Spring batch job
can have several steps and each step has three components: the reader, the processor and the writer. Each
batch job in BICO consists of two steps. In the first step BICO clones the repository, parses the commits,
extracts issue IDs from commit messages, and saves the results with the help of the Hibernate ORM and
Java Persistence API in the PostgreSQL1 database. As soon as the first step is successfully completed,
the second step starts, where BICO retrieves all the issues for all the IDs extracted in the previous step
and links them with the commits in the database. In the third and final step, analytics are generated and
big commits are detected. After this step, the user can explore the extracted data via the web interface.
BICO also provides a means to control the batch jobs themselves. Users can stop, restart, pause, and
resume the jobs at anytime. The batch job backend is implemented in Spring Batch and the web front-end
is implemented in Spring MVC2.

Spring Batch

Reader WriterProcessor

Database (PostgreSQL)

Spring Application

Spring Batch
Admin

Front End
Spring MVC

JPA
Hibernate

Step

Figure 3.1: The BICO tool architecture

1https://www.postgresql.org
2https://spring.io
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CHAPTER 3. TECHNICAL IMPLEMENTATION 6

3.2 Database
All data from BICO is stored in a PostgreSQL3 database. This is a very valuable part of the tool since the
database can be queried separately without interacting with the UI.

The main schema is shown in Figure 3.2. The project table is the entry point with a 1:N connection
to commits. We would like to point out that commits and issues have an N:N relationship. This reflects
the reality in software development, where in one commit several issues could be addressed, or several
commits could fix a single issue. Another benefit from this structure is that we will not have any duplicated
issue entries and therefore the batch job does not have to process them multiple times. The commit table
has many 1:N relationships, e.g., to every metrics table and to commit files.

There exist a few other tables starting with “batch ” used for Spring Batch and are not part of the main
data model.

bigcommits

id BIGSERIAL

issuetype INTEGER

commit_id BIGINT

project_id BIGINT

projects

id BIGSERIAL

branch CHARACTER VARYING(255)

changemetriceverycommits INTEGER

changemetrictimewindow INTEGER

changemetricsexcludebigcommitsBOOLEAN

issuetrackerurlpattern CHARACTER VARYING(255)

name CHARACTER VARYING(255)

sourcemetriceverycommits INTEGER

sourcemetricsexcludebigcommitsBOOLEAN

szzmetricsexcludebigcommits BOOLEAN

type INTEGER

url CHARACTER VARYING(255)

changemetrics

id BIGSERIAL

age BIGINT

authors INTEGER

avgchangeset DOUBLE PRECISION

avgcodechurn DOUBLE PRECISION

avglocadded DOUBLE PRECISION

avglocremovedDOUBLE PRECISION

bugfixes INTEGER

codechurn BIGINT

file CHARACTER VARYING(255)

firstcommit TIMESTAMP(6) WITHOUT TIME ZONE

lastcommit TIMESTAMP(6) WITHOUT TIME ZONE

locadded BIGINT

locremoved BIGINT

maxchangeset INTEGER

maxcodechurn BIGINT

maxlocadded BIGINT

maxlocremovedBIGINT

refactorings INTEGER

revisions INTEGER

weightedage DOUBLE PRECISION

commit_id BIGINT

commitfiles

id BIGSERIAL

additions INTEGER

changetype INTEGER

deletions INTEGER

fileextension CHARACTER VARYING(255)

istest BOOLEAN

newpath CHARACTER VARYING(255)

oldpath CHARACTER VARYING(255)

patch TEXT

commit_id BIGINT

commitissueanalysis

id BIGSERIAL

additionspercommit BYTEA

additionsthreshold INTEGER

fileschangedpercommit BYTEA

fileschangedthreshold INTEGER

firstquartileadditions INTEGER

firstquartilefileschanged INTEGER

maxadditionspercommit INTEGER

maxadditionsperfile INTEGER

maxdeletionspercommit INTEGER

maxdeletionsperfile INTEGER

maxfileschangedpercommit INTEGER

medianadditionspercommit INTEGER

medianadditionsperfile INTEGER

mediandeletionspercommit INTEGER

mediandeletionsperfile INTEGER

medianfileschangedpercommitINTEGER

minadditionspercommit INTEGER

minadditionsperfile INTEGER

mindeletionspercommit INTEGER

mindeletionsperfile INTEGER

minfileschangedpercommit INTEGER

numberofresults INTEGER

thirdquartileadditions INTEGER

thirdquartilefileschanged INTEGER

type INTEGER

project_id BIGINT

commitissues

id BIGSERIAL

description TEXT

link CHARACTER VARYING(255)

name CHARACTER VARYING(255)

priority INTEGER

processed BOOLEAN

type INTEGER

typebyclassifierCHARACTER VARYING(255)

sourcemetrics

id BIGSERIAL

cbo INTEGER

classname CHARACTER VARYING(255)

dit INTEGER

file CHARACTER VARYING(255)

lcom INTEGER

loc INTEGER

noc INTEGER

nocb INTEGER

nof INTEGER

nom INTEGER

nomwmopINTEGER

nona INTEGER

nonc INTEGER

nopf INTEGER

nopm INTEGER

nosf INTEGER

nosi INTEGER

nosm INTEGER

rfc INTEGER

type CHARACTER VARYING(255)

wmc INTEGER

commit_id BIGINT

szzmetrics

id BIGSERIAL

bugfix BOOLEAN

bugs INTEGER

deleted BOOLEAN

file CHARACTER VARYING(255)

commit_id BIGINT

commits_commitissues

commitissue_idBIGINT

commit_id BIGINT

commits

id BIGSERIAL

additions INTEGER

deletions INTEGER

ismergecommitBOOLEAN

message TEXT

ref CHARACTER VARYING(255)

timestamp INTEGER

parentcommit_idBIGINT

project_id BIGINT

Figure 3.2: The main BICO database schema

3https://www.postgresql.org
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3.3 Batch processing
The Spring Batch module is essential for managing tasks and jobs. A job consists of at least one step,
where every step consists of a reader, processor and writer, or just of a tasklet.

An Item Reader is the entity of a step that reads data into the spring batch application from a particular
source. It reads one item a time and is represented by the interface ItemReader<OutputObject>.

An Item Processor is a class which contains the processing code, which is executed on every read
record and processes the data. When the given item is not valid it returns null (and the step termi-
nates), else it processes the given item and returns the processed result. The interface ItemProces-
sor<InputObject,OutputObject> represents the processor.

An Item Writer is the part of a step that writes data from Spring Batch application to a particular
destination and writes a specific amount of items (chunks) a time and is represented by the interface
IteamWriter<InputObject>

A tasklet acts as a processor, when no reader and writer are given and it processes only a single task.

3.3.1 Repository mining
This procedure is organized as a job with three steps.

Step 1 clones the repository, reads all commits and parses the issue identifier of the used issue tracker.
For each commit, BICO keeps track of the meta data such as the git reference, number of added lines,
number of deleted lines, and the patch of each changed file in that commit. Figure 3.3 visualizes this step.

Step 1

Clone
repository

Persist to
database

Issue identifier
extraction

Reader Processor Writer

Figure 3.3: Repository mining: cloning the repository

Step 2 uses the issue identifiers to link the commits with issues from the tracker as seen in Figure 3.4.
Currently, there are two basic implementations of getting information from the trackers: retrieval with
HTTP requests and with the GitHub API.

Step 2

Load issue
identifiers

Persist to
database

Issue tracker
querying

Reader Processor Writer

Figure 3.4: Repository mining: linking issues

Step 3 counts some statistic variables and detects big commits Figure 3.5.
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Step 3 Tasklet

Load project 
information

Persist to
database

Statistics
Big commits

Figure 3.5: Repository mining: Analysis

Metrics extraction Tasklet

Load project 
information

Persist to
database

SZZ metrics

Different tasklets

Change 
metrics

Source code 
metrics

Figure 3.6: Metrics extraction tasklets

3.3.2 Metrics extraction
The extraction and accurate categorization of commits in BICO makes it possible to implement a wide
range of software evolution analyses. We have implemented a feature in BICO to extract software metrics
of any analyzed system. The supported metrics are the change metrics proposed by Moser et al. [10],
source code metrics [11], and defect counts from the SZZ algorithm [7]. SZZ can be run once to label
Java classes with bug counts across the evolution of the system. Change and source code metrics can be
calculated for the system on every commit, on every nth commit, or on a specific commit specified by
the commit hash. This functionality allows researchers in the domain of defect prediction to build defect
predictors and carry out empirical studies on any git-based system, and not only on the publicly-available
datasets such as the bug prediction benchmark [6] or the Tera-PROMISE repository.4

For every metric we have a simple tasklet (Figure 3.6) that is managed as a job. These modules are
explained in the next section.

3.4 Linking Commits with Issues
BICO requires the user to provide the Git URL and the issue tracker URL of the project to be analyzed.
BICO detects issue IDs in commit messages and use them to link commits with issues. This technique is
known in the literature and has been used in several studies [7][6] because developers often include in the
commit messages the IDs of the issues resolved by the current commit. For instance, one of the commit
messages in Apache Flume states:

“FLUME-774. Move HDFS sink into a separate module”
This means that this commit resolves the issue “FLUME-774”. BICO uses these IDs to fetch the issues
from issue trackers. However, different projects can have different URLs for their issues and the user

4http://openscience.us/repo

http://openscience.us/repo
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needs to provide the template URL for the projects they need to analyze. Also different issue trackers have
different issue IDs. Currently, BICO supports three issue trackers:

1. JIRA5 is one of the most used issue trackers in the open-source community, provided by At-
lassian. Usually, issue reports can be obtained using the following URL template: https://
issues.apache.org/jira/si/jira.issueviews:issue-xml/%s/%s.xml where
the user puts “%s” to instruct BICO that this is the placeholder for the issue ID. When a project
uses this tracker, BICO looks in the commit messages for the pattern WORD-NUMBER and detects
it as an issue ID, as this is the ID format that JIRA gives to issues, e.g., ZOOKEEPER-2688,
KAFKA-4744, and TIKA-2261. We have created a regular expression to match JIRA identifiers:

(ˆ|\s+|#)\[?(\w+-\d+)\]?(\s|\.|:|;|,)+

We tested the accuracy of this matching algorithm with Apache Kafka, one of the biggest Apache
Java projects. 2850 identifiers were found. 2800 directly belong to the Kafka project. 2 identifiers
are related to the Gradle6 project. Another 41 are Kafka Improvement Proposals (KIP) that are not
listed in the issue tracker but instead in the Apache Wiki7. 15 identifiers were matched that do not
belong to any project, e.g., UTF-8 or SERVER-1. In the end, we only have 58 false positives out of
2850 matches. This results in a precision of 98%. In the second step of the repository mining, all
identifiers that could not be linked to an existing issue in JIRA are thrown away. This ensures that
only true issues are stored in the system.

2. Bugzilla8 is another widely-used issue tracker provided by Mozilla. Similarly to JIRA, the tem-
plate is usually https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=
%s. Since issue IDs are just numbers in Bugzilla, for projects using Bugzilla as an issue tracker,
BICO looks for any number predecessed by “bug” in the commit message and tries to find an issue
with this number as an ID. The used regex is:

bug\s(\d+)

3. GitHub Issues9 is an issue tracker for the projects hosted on GitHub. More and more projects are
moving to GitHub Issues because of its convenience. The user just needs to provide the GitHub URL
as the issue tracker, e.g., https://github.com/elastic/elasticsearch. Similarly to
Bugzilla, GitHub uses plain numbers as issue IDs, sometimes with a number sign in front. The
regular expression is very simple and therefore more error-prone than e.g., the one used for JIRA,
because the commit message could contain other numbers.

\(?#(\d+)\)?

To mitigate false positives, unlinked issue identifiers are discarded. We cannot prevent that a wrong
identifier is detected, but linked to an existing issue. The probability for such a case is fortunately very low.

3.4.1 Issue Analysis
Developers should not blindly trust the issue tracker categorization of issues. As a result, Simon Curty,
a student of the Software Composition Group, implemented a classifier10 based on neural networks that

5https://www.atlassian.com/software/jira
6https://gradle.org
7e.g., https://cwiki.apache.org/confluence/display/KAFKA/KIP-170
8https://www.bugzilla.org
9https://guides.github.com/features/issues

10https://github.com/curtys/issue-analysis

https://issues.apache.org/jira/si/jira.issueviews:issue-xml/%s/%s.xml
https://issues.apache.org/jira/si/jira.issueviews:issue-xml/%s/%s.xml
https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=%s
https://bugzilla.mozilla.org/show_bug.cgi?ctype=xml&id=%s
https://github.com/elastic/elasticsearch
https://www.atlassian.com/software/jira
https://gradle.org
https://cwiki.apache.org/confluence/display/KAFKA/KIP-170
https://www.bugzilla.org
https://guides.github.com/features/issues
https://github.com/curtys/issue-analysis
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Category Keywords
Bug (corrective) bug, fix, wrong, error ,fail, problem, patch
Deprecation deprecation, deprecated
Feature new, add, requirement, initial, create, feature, imple-

mentation
Refactoring refactor, refactoring
Documentation (non-functional) docs, documentation, doc
Improvement (perfective) clean, better, enhancement, improvement, optimiza-

tion
Merge merge
Test (preventive) test, junit, coverage, asset
Dependency upgrade dependency

Table 3.1: Keywords used for commit message analysis

makes a prediction on the best matching category by processing the information given by the issue tracker
entry. We incorporated his work in BICO to have another way to evaluate the category of an issue. In our
example project Kafka we find many issues, where the issue tracker category does not match the classifier’s
result. But this could partly also be the result of the classifier’s limitations. It cannot differentiate between
the same amount of categories as the issue tracker provides. The following categories are supported:
bug, improvement, RFE (request for enhancement). Every project in BICO has a link to its commit
categorization (project options). This list shows every commit with the associated issues, the issue tracker
categorization and the category determined by the classifier. The category based on the commit message is
also displayed. This feature is useful for verifying the results and comparing the different categorization
methods.

3.4.2 Commit Message Analysis
We implemented a simple heuristic-based categorization mechanism to determine the commit category
based on the commit message. Building on the work of Rosen et al. [22], we created the list of keywords
(see Table 3.1) that are associated with different categories. For every keyword match, the associated
category is added to a list. Then the occurrences get counted and the category with the highest keyword
occurrences wins.

We are aware of the limitations of such heuristic based methods, but it can give the developer another
estimation besides the issue tracker categorization. The case studies in chapter 5 reveal that this approach
does not work very well. They give us precisions between 10% and 35%.

3.5 Metrics extraction
We created standalone modules for calculating source code metrics [11], change metrics [10] and defect
counts [7] (SZZ algorithm). The SZZ algorithm locates commits of fix-inducing changes. All modules use
the Repodriller11 framework that supports researchers on mining software repositories. The modules are
published on GitHub12.

Each module provides more or less the same functions. There exist filter mechanisms to restrict the
data base, e.g., setting the first commit hash, setting a range of commits by start and end date or by commit

11http://repodriller.org
12https://github.com/papagei9/scg-metrics

http://repodriller.org
https://github.com/papagei9/scg-metrics
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hashes. Additionally, a commit interval can also be specified. Furthermore, setting a list of commits that
should be excluded from the analysis is supported. After setting all these parameters, a commit list with all
eligible commits is created and ready for further processing.

Source code metrics

We used the proposed metrics from [11], some others provided by Mauricio Aniche and a few determined
by us. They are listed in Table 3.3. The module is based on the CK project13 of Aniche.

Change metrics

The change metrics (Table 3.2) are based on [10] and on Aniche’s change metrics project14.

SZZ algorithm

Automatically identifying commits that induce fixes is an important task, as it enables researchers to
quickly and efficiently validate many types of software engineering analyses. Previous work on SZZ, an
algorithm designed by Sliwerski et al. [7] and improved upon by Kim et al. [30] provides a process for
automatically identifying the lines modified in a bug-fixing commit, and then identifying the fix-inducing
change immediately prior to each line of the bug-fixing commit. SZZ is currently the best available
algorithm for this task. With the help of this work we implemented this algorithm as a separate module for
BICO.

Name Description
File the full file path
Revisions quantity of commits
Refactorings quantity of refactorings that occured (if said in commit msg)
Bugfixes quantity of bugs that file has had (if said in commit msg)
Authors quantity of different authors
locAdded total of LOC added
locRemoved total of LOC removed
maxLocAdded maximum number of LOC added
maxLocRemoved maximum number of LOC removed
avgLocAdded average of LOC added
avgLocRemoved average of LOC removed
codeChurn sum of all LOC added and removed
maxChangeset max number of files committed together with this file
avgChangeset average number of files committed together
firstCommit date of the first commit
lastCommit date of the last commit
weeks difference in weeks from the last commit - first commit

Table 3.2: Change metrics

13https://github.com/mauricioaniche/ck
14https://github.com/mauricioaniche/change-metrics

https://github.com/mauricioaniche/ck
https://github.com/mauricioaniche/change-metrics
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Abb. Name Description
CBO Coupling between objects Counts the number of dependencies a class has.

The tools checks for any type used in the en-
tire class (field declaration, method return types,
variable declarations, etc). It ignores dependen-
cies to Java itself (e.g. java.lang.String).

DIT Depth Inheritance Tree It counts the number of “fathers” a class has. All
classes have DIT at least 1 (everyone inherits
java.lang.Object). In order to make it happen,
classes must exist in the project (i.e. if a class de-
pends upon X which relies in a jar/dependency
file, and X depends upon other classes, DIT is
counted as 2).

NOC Number of Children Counts the number of children a class has.
NOF Number of fields Counts the number of fields in a class, no matter

its modifiers.
NOPF Number of public fields Counts only the public fields.
NOSF Number of static fields Counts only the static fields.
NOM Number of methods Counts the number of methods, no matter its

modifiers.
NOPM Number of public methods Counts only the public methods.
NOSM Number of static methods Counts only the static methods.
NOSI Number of static invocations Counts the number of invocations to static meth-

ods. It can only count the ones that can be re-
solved by the JDT.

RFC Response for a Class Counts the number of unique method invoca-
tions in a class. As invocations are resolved via
static analysis, this implementation fails when
a method has overloads with same number of
parameters, but different types.

WMC Weight Method Class or cyclo-
matic complexity

It counts the number of branch instructions in a
class.

LOC Lines of code It counts the lines of count, ignoring empty
lines.

LCOM Lack of Cohesion of Methods Calculates LCOM metric. This is a not very
reliable version.

NOCB* Number of Catch Blocks Calculates number of catch blocks.
NONC* Number of Null Checks Calculates number of null checks.
NONA* Number of Null Assignments Calculates number of null assignments.
NOMWMOP* Number of Methods with more

than one Parameter
Calculates the number of methods with more
than one parameter.

Table 3.3: Source code metrics

* were added by us to fulfill research requirements.
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3.6 Big Commit Detection
BICO implements an outlier detection method to find big commits, as in Figure 4.5(3). Since BICO keeps
data about the number of changed files and the number of changed lines in each commit, it can calculate
the first quartile Q1 and the third quartile Q3 of these metrics in each category of commits. Using these
quartiles, BICO uses the definition of extreme outliers in statistics to detect big commits. Such outliers are
data points that are smaller than Q1− 3× IQR (i.e., lower outer fence) or larger than Q3 + 3× IQR
(i.e., upper outer fence), where IQR = Q3−Q1 (intermediate quartile range). In BICO, big commits
are commits that have more changed files or lines of code than the extreme outlier threshold within that
commit category. The main rationale behind this approach is that different types of source code changes
have different characteristics. For instance, code refactoring changes tend to be large whereas bug-fix
changes are known to be small [12].

Outlier

lower outer
fence

Q1 - 3*IQR

upper outer
fence

Q3 + 3*IQR

first
quartile

Q1

third
quartile

Q3

median

interquartile range IQR = Q3 - Q1

Figure 3.7: Statistical outlier detection

3.7 Test Repository
We have created a git repository for a synthesized Java project named AcmeStore15. It simulates a simple
article store for CDs, DVDs and Books with customers. This repository contains commits of different
categories connected to GitHub issues and acts as the ground truth to test BICO. We are currently in
the process of expanding this repository to cover more cases and scenarios to be able to test BICO more
extensively in the future. The metrics of the ground truth have been manually measured and can be found
on https://github.com/papagei9/AcmeStore/blob/master/README.md.

15https://github.com/papagei9/AcmeStore

https://github.com/papagei9/AcmeStore/blob/master/README.md
https://github.com/papagei9/AcmeStore


4
Features of BiCo

All extracted data is saved in a database and can be used separately from BICO itself. However, BICO
provides its own UI for users to control the software and explore the extracted data. The UI is explained
step by step and illustrated with examples of analyzing Apache Kafka1 in the following subsections.

Figure 4.1: Adding projects to BICO

1https://kafka.apache.org

14
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2
1

Figure 4.2: Screenshot of the project detail site

4.1 Managing and Processing Projects
To add projects, only very little information is needed as shown in Figure 4.1. Just enter a name, the Git
HTTPS URL, the name of the targeted branch, the issue tracker type and the URL to the issue tracker.
BICO does currently not support SSH access to Git repositories. The tool already shows some issue tracker
examples. These details can be changed later in the project view. Deleting a project may need some
minutes if jobs were already executed and data was saved.

Now clicking on “Start” (Figure 4.2 (1)) will run the background batch process for parsing the
repository and linking the issues to the specified issue tracker. This will need some time in relation to the
repository size. The job could also be managed through the Spring Batch Admin2 interface, linked as
“Batch Job” in the project details. As soon as the job is finished, the user gets an indication (Figure 4.2 (2))
and the commit list as shown in Figure 4.3 will appear and the commits can be browsed.

The commit view (Figure 4.4) contains some information about the commit itself, the linked issue(s)
and a list of changed files. For every file, a highlighted diff is shown to illustrate the changes made in that
specific file.

4.2 Project Analytics
The analytics include a list of possible big commits seen in Figure 4.5 and some statistics about the
issue categories. Big commits are found by an outlier detection explained in the section 3.6 Big Commit
Detection.

4.2.1 Big commits
Big commits are currently separated into two categories: MERGE and OUTLIER. Commits labelled
as MERGE are just merge commits that are very big. OUTLIER commits are detected by our outlier
detection.

2http://docs.spring.io/spring-batch-admin

http://docs.spring.io/spring-batch-admin
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Figure 4.3: Screenshot of the project commit list

Figure 4.4: Screenshot of the commit detail view
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1

2

3

Figure 4.5: Screenshots of BICO showing the main functionality. From the overview of project details (1),
one can navigate to an analysis of the project (2), or to a list of possible big commits (3).

4.2.2 Statistics
The statistics show us “files changed per commit” and “additions per commit” graphs for the issue
categories. e.g., in the Apache Kafka project we clearly find outliers just by looking at the grahps in
Figure 4.6 and Figure 4.7. Defining a sound threshold could expose a part of the commits as not belonging
to that category.

Figure 4.6: Apache Kafka: additions per commit in the Bug category
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Figure 4.7: Apache Kafka: files changed per commit in the Bug category

Figure 4.8: Source code metrics interface of Apache Kafka
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4.3 Metric Suite Extractor
Metrics can always be exported as a CSV file to use for further research. One can decide if the big commits
should automatically be excluded from the metrics calculation. The procedure is the same for every type
of metric.

Figure 4.9: Extract metrics of a specific commit

4.3.1 Single commit metric extraction
To get the metrics of just a single commit, a separate form like in Figure 4.9 exists that takes a commit ref
and the sliding window for the change metrics. Big commits from the analysis could be excluded for more
accurate results. It then calculates the metrics and does not take them from the database, since they could
be missing. After the calculations are finished, the results are delivered as a CSV file.

4.3.2 Source code metrics
The tool lets us extract a list of source metrics. The interface shown in Figure 4.8 provides us with
two simple options: for every nth commit the metrics should be generated and if big commits (from
the analysis) should be excluded. After the first run of the job is done, we get a list ordered by time
(Figure 4.10) of all points where metrics were generated. If we click on a ID in this list, the tool will show
us the generated metrics for every file (Figure 4.11).

4.3.3 Change metrics
Further, the tool is able to generate change metrics of the project files. Again, the same settings as
for source code metrics can be applied. Additionally, a sliding window (Figure 4.12) is defined. At
every commit, source metrics are generated within this time window (from every commit backwards in
history). After running the job, the time points (in the meaning of commits) are displayed as a ordered list
(Figure 4.13). Clicking on an entry ID leads us to the specific change metrics of each file (Figure 4.14).

4.3.4 SZZ algorithm
The SZZ algorithm [7], or also called defect counts has a simpler interface (Figure 4.15). Big commits can
still be excluded if desired. The results are displayed as a file list (Figure 4.16) with commit and bugfix
count. Clicking on a specific file displays a commit list with a bug count shown in Figure 4.17). Further,
each commit that we categorized as bugfix is labelled as BUGFIX.
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Figure 4.10: Incomplete list of source code metrics snapshots of Apache Kafka

Figure 4.11: Incomplete list of source code metrics of at a specific time of Apache Kafka
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Figure 4.12: Change metrics interface of Apache Kafka

Figure 4.13: Incomplete list of change metrics snapshots of Apache Kafka

Figure 4.14: Incomplete list of change metrics of at a specific time of Apache Kafka
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Figure 4.15: SZZ algorithm interface of Apache Kafka

Figure 4.16: Incomplete list of files analyzed by the SZZ algorithm in Apache Kafka

Figure 4.17: Incomplete list of defect counts of a specific file in Apache Kafka



5
Case Studies

5.1 Apache Kafka Case Study
As an initial evaluation, we use BICO to extract and analyze the bug-fix commits in Apache Kafka (4400
commits), a popular publish/subscribe distributed infrastructure implemented on top of Hadoop.1 Kafka
uses GitHub as the source code management system and JIRA as an issue tracker. BICO was able to
categorize 1036 commits as fixes using the categories of the linked issues. However, BICO detects that
100 of the fixing commits (9.6%) are big commits. We manually investigated the reported big commits in
the bug-fix category and observe that only 15 of them are false positives, i.e., they are actually bug-fix
commits. Some have new tests added that confuse the outlier detection, some commits provide fixes for
concurrency problems involving many files. The remaining 85 commits are correctly classified as big
commits: 33 improvement, 19 multipurpose, 15 feature addition, 9 refactoring, 8 test addition, and 2
documentation addition. This precision of 85% suggests that the statistical outlier detection is a reliable
method for detecting big commits and BICO can be used off-the-shelf to analyze project repositories and
aid researchers in related empirical studies.

5.2 Apache Flume Case Study
We also analyze Apache Flume (1730 commits), which is a distributed, reliable, and available system for
efficiently collecting, aggregating and moving large amounts of log data from many different sources to a
centralized data store.2 We use BICO to extract and analyze bug-fix commits. GitHub is used as source
code management system and JIRA as issue tracker. BICO categorized 743 commits as bug fixes using the
categories of the linked issues. 9.6% of the commits (73 out of 761) are detected as big commits by the
statistical outlier detection. While manually investigating the big commits and the related changes, we
re-classified them. This showed us that only 24 are actual bug fix commits. A few commits fix concurrency
problems involving many files. Also many commits have new tests added that blew up the size and
therefore were detected as outlier. The other 49 commits are correctly classified as big commits: 16

1https://github.com/apache/kafka
2https://github.com/apache/flume
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Figure 5.1: Bug-fix big commits investigation of Apache Kafka

improvement, 12 multipurpose, 9 feature addition, 9 non-functional changes, 3 test addition. This results
in a correct detection of big commits in 67.1% of all cases. With the help of the mentioned investigation,
we also examined the accuracy of the issue classifier (subsection 3.4.1) in the case of bug-fix big commits.
Around 65.8% (48 out of 73) of the big commits were correctly classified by the issue classifier as big
commits. Our simple heuristic-based algorithm to categorize a commit by its commit message has an
accuracy of 35.6% (26 out of 73 were categorized correctly) in this context. 39 commits could not be
categorized at all and 8 commits did have a wrong categorization.

5.3 Apache Storm Case Study
To also include a bigger Java project, we took Apache Storm3, a distributed realtime computation system,
with approximately 9000 commits. Over 1300 commits have been categorized as Bug, Feature, etc. with
the help of the issue tracker, and over 390 big commits were found by the analysis (see Table 5.1). 7521
commits are uncategorized due to missing issue tracker identifiers. We analyze the detected big commits to
know how accurate the results are. This includes manual categorization of these big commits. We examine
the precision of the outlier and merge detection (in Table 5.3), and also compare the three used issue
categorization mechanisms: issue tracker, machine learning issue classifier and commit message-based
heuristic approach (in Table 5.3). We split the measurement of the categorization accuracy in two parts: full
match and partial hit. A full match means that the issue category and the manually determined category are
equal. For multi-purpose commits, we can never have a full match since all our automatic categorization
mechanisms only support one category. For partial hits, which means that at least one of the commit
categories must be covered by the issue.

Only the categories Feature, Documentation, Bug and Improvement are taken in account for this case
study. Since the machine learning classifier uses the category RFE (Request for enhancement) in the
meaning of Feature, we treat them as equivalent.

3https://github.com/apache/storm

https://github.com/apache/storm
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Our methodology for investigating the data was to first check the different categorization results for
each big commit in the selected categories. Then read the commit messages and check the file changes. As
a last validation source, we used the Jira issues and the linked GitHub pull requests to determine the best
category, or in case of multi-purpose the best categories.

We now discuss the results and check if the categorization is really correct. This initial categorization
by BICO is based on the issue type given by the issue tracker.

Category Commits Big commits
Feature 148 38
Documentation 42 16
Bug 679 198
Improvement 364 120
Subtask 34 *
Refactor 10 *
Wish 2 *
Test 4 *
Task 15 *
Dependency upgrade 16 *
Other 14 *
N/A 50 20
Uncategorized 7521 -
Total 8899 392

Table 5.1: Overview over categories and commits in Apache Storm project from initial categorization by
the issue tracker
* These categories are not included in the big commit analysis.

Category Outliers Outlier precision Merge Merge precision Multi-purpose Miscategorized
Feature 16 50.00% 22 59.09% 55.26% 44.74%
Documentation 10 0.00% 6 0.00% 0.00% 100%
Bug 131 36.64% 67 34.33% 35.86% 64.14%
Improvement 79 51.90% 41 68.29% 57.50% 42.50%

Table 5.2: Results of the investigation of Apache Storm’s big commit analysis

Category Issue tracker Issue classifier Commit message
Feature 97.37% 94.74% 21.05% accuracy partial hit

42.11% 44.74% 5.26% accuracy full match
Documentation 100% 0.00% 31.25% accuracy partial hit

100% 0.00% 31.25% accuracy full match
Bug 57.07% 45.96% 23.23% accuracy partial hit

35.35% 28.79% 13.64% accuracy full match
Improvement 50.83% 53.33% 19.17% accuracy partial hit

17.50% 20.00% 5.83% accuracy full match

Table 5.3: Categorization of big commits

Feature category
In the feature category we have a total of 148 commits, where 38 are marked as big commits. These 38
big commits are examined further. The manual investigation of the outlier detection shows us that 50%
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of these outliers are actually big commits i.e., multi-purpose commits. For merge labelled big commits,
59.09% are correct. All these big commits typically consists of feature addition, documentation and tests.
44.74% of the as big commit marked commits in this category are actually single-purpose and should not
be listed as big commit. A feature commit can have different appearances. For example, only very few
files touched, but many lines of codes changed. The opposite with many files touched, but only a few lines
of code changed was also observed. This means there is a big discrepancy between feature commits. Good
developers write tests for newly implemented features and improvements. We noticed that this does not
happen every time and therefore a commit including new tests is considered as multi-purpose.

Now, we take a look at the different categorization approaches. The issue categorization has a precision
of 42.11% for full matches. For partial hits we get a precision of 97.37%. The machine learning classifier
performed similar to the issue categorization. 44.74% of the big commits in this category were correctly
full matched. A 94.74% accuracy is achieved for partial hits. The commit message categorization gives
a very low precision of 5.26% for full matches and 21.05% for partial hits. This shows us that a simple
heuristic based approach cannot deliver accurate results in this category. We assumed that it is almost
impossible to categorize merge commits by this method, since the commit message often just contains
“merge branch X of Y into Z”.

Documentation category
This category contains only 42 commits, whereas 16 commits are detected as big commits. The investi-
gation of these big commits shows us that no one actually is multi-purpose but just documentation stuff.
Because of this, the precision of the outlier detection is 0%. 6 of these 16 big commits are merge labelled
commits. This gives us a precision for merge big commits of also 0%. In the end, all big commits in this
category are false positives.

Since the initial categorization is based on the issue tracker, the precisions of the issue tracker full
match and partial hit are both 100%. On the other side, the machine learning classifier failed to predict the
correct category in every single case. The heuristic based approach has a precision of 31.25% over the 16
big commits.

Bug category
The bug category contains 679 commits, where 198 are detected as big commits. Going through these 198
big commits, we see that 131 are marked as outlier and 67 are merge commits. After manual categorization
of these 198 commits, we get a precision of 36.64% for the outlier detection, and 34.33% for the merge
commits. 35.86% of the investigated commits are really multi-purpose, i.e., big commits and 64.14% are
miscategorized. This high false positive rate can be explained by the heterogeneity of this category. Many
big commits in this category actually are not bug fixes but something other, e.g., feature addition. Because
of this diversity, the calculated threshold values for the outlier detection is not adapted to bug-fix commits
but instead to a whole bunch of different types of commits. Due to this, we find that wrongly categorized
uni-purpose commits appear to be marked as outliers more often than correctly categorized uni-purpose
commits.

We noticed that many bug-fix commits contain new tests that test the fixed functionality. We considered
such commits as uni-purpose. Also, when a bug is fixed and an existing test is only adapted to the fixed
functionality, it is considered as uni-purpose, too.

For full matches, the issue tracker has a precision of 35.35% and 57.07% for partial hits. The precision
of the machine learning approach is 28.79% for full matches and 45.96% for partial hits. The commit
message approach gives us precisions of 13.64% for full matches and 23.23% for partial hits.
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Improvement category
In the improvement category are 364 commits, where 120 actually are marked as big commits. The manual
categorization was quite difficult, because deciding between feature and improvement was not an easy task.
This means, this category is predestined to have many false positives. Regarding the amount of changes in
a commit gives us a good estimation if it is too big for just being an improvement and rather should be a
feature addition.

The issue tracker’s precision for full matches is 17.50% and 50.83% for partial hits. The issue classifier
has a precision of 20.00% for full matches and 53.33% for partial hits. The commit message-based
approach has a low precision of 5.83% for full matches and 19.17% for partial hits.

Conclusions
We are aware that we could not define the whole set of relevant (big) commits for each category, because
analyzing 9000 commits by hand is a bit out of scope in this context. Because of this, we never know
if there are any big commits that were not detected and therefore we cannot make any statement about
the recall values. However, in a sample of 1% of normal commits, just 2 multi-purpose commits were
found. The Apache Storm project has many merge commits in comparison with other projects like Apache
Kafka or Apache Flume. We see that the categorization results are not that accurate for big commits. This
mostly comes from the way developers and users create Jira issues for this project. Many bug reports are
not actually bugs but more feature and improvement requests. Also, in many cases the reporters fail to
correctly distinguish between improvement and feature. This supports our finding that the boundaries
between feature and improvement commits are blurry. We should probably treat these two categories as
one. Merging those categories results in a outlier precision of 51.58% and a merge precision of 65.08%
which is not significantly different from the single values of each category.
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Measurements
Category Feature Documentation Bug Improvement
Total commits 38 16 198 120
Total merge commits 22 6 67 41
Total non-merge commits 16 10 131 79
Issue full match 16 16 70 21
Issue full match precision 42.11% 100% 35.35% 17.50%
Issue partial hit 37 16 113 61
Issue partial hit precision 97.37% 100% 57.07% 50.83%
Issue non-merge correct 7 10 41 14
Issue non-merge incorrect 9 0 90 65
Issue non-merge precision 43.75% 100% 31.30% 17.72%
Issue merge correct 9 6 29 7
Issue merge incorrect 13 0 38 34
Issue merge correct precision 40.91% 100% 43.28% 17.07%
Classifier full match 17 0 57 24
Classifier full match precision 44.74% 0% 28.79% 20.00%
Classifier partial hit 36 0 91 64
Classifier partial hit precision 94.74% 0% 46.96% 53.33%
Classifier non-merge correct 8 0 36 18
Classifier non-merge incorrect 8 0 95 61
Classifier non-merge precision 50% 0% 27.48% 22.78%
Classifier merge correct 9 0 21 6
Classifier merge incorrect 13 6 46 35
Classifier merge correct precision 40.91% 0.00% 31.34% 14.63%
Commit full match 2 5 27 7
Commit full match precision 5.26% 31.25% 13.64% 5.83%
Commit partial hit 8 5 46 23
Commit partial hit precision 21.05% 31.25% 23.23% 19.17%
Commit non-merge correct 2 5 27 7
Commit non-merge incorrect 14 5 104 72
Commit non-merge precision 12.50% 50% 20.61% 8.86%
Commit merge correct 0 0 0 0
Commit merge incorrect 22 6 67 41
Commit merge correct precision 0.00% 0.00% 0.00% 0.00%
Multi-purpose commits 21 0 71 69
Multi-purpose non-merge commits 8 0 48 41
Multi-purpose merge commits 13 0 23 28
Multi-purpose of non-merge commits rate 50.00% 0.00% 36.64% 51.90%
Multi-purpose of merge commits rate 59.09% 0.00% 34.33% 68.29%

Table 5.4: All results of the investigation of Apache Storm’s big commit analysis
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Conclusions and Future Work

Analyzing software evolution often requires the purposes of code changes to be determined. BICO, built
with Java Spring, is a tool that links information from software code management systems and issue
trackers to determine the purposes of source code changes, i.e., commits. BICO can be used off-the-shelf
to analyze software projects, build datasets on software changes, extract software metrics for defect
prediction, and explore the collected data. Further, the tool helps diagnosing big commits and provides
simple statistical analytics. The experimental results on real-world systems also demonstrate the usefulness
of BICO. The tool provides a simple user interface to manage projects and navigate through commits
and issues. The data mining and metrics extraction are realized by batch processing for reliable and fast
information gathering. This leads us to future work and limitations.

BICO could support more software repositories. The tool currently does not support more issue
trackers like Mantis1 or Redmine2. Also, the mining of Subversion3 repositories is not implemented.

The tool could be improved to store all metadata about commits and issues that can be retrieved, so
developers will not be restricted if they need more information than we currently provide. For example,
the commit author could be used to get some statistics about a specific developer (how many commits,
lines changed, etc.). Issue trackers provide a detailed issue description and in many cases also patch files.
Issues could link to duplicates and dates of when the issue was created and resolved are also accessible.
There are plenty of other properties that could be used for statistics and improving the user experience.

The entire tool is based on the assumption that developers include issue IDs in commit messages
to link their commits with the issues. There exist several projects whose developers do not apply this
common known rule. This was also confirmed in the studies by Bird et al. [27] and Bachmann et al. [26],
who reported that almost 54% of fixed bugs in bug repositories are not linked to commit documentation.
Researchers have also proposed more complex methodologies to link issues to commits. The approaches
of Wu et al. [28] go beyond the usage of simple string matching algorithms. Such approaches were not in
the scope of this work, but can be used as inspiration for further extensions and improvements.

We saw in the case studies that a multi category classifier that gives us a list of categories with
probabilities for a specific commit would be very useful, because the current sources (issue tracker, commit

1http://www.mantisbt.org
2http://www.redmine.org
3https://subversion.apache.org
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message, machine learning classifier) only propose one category. Additionally, for big commits, the
commit message based approach is not giving us any good results and therefore should be improved or
removed. Currently we only rely on outlier and merge detection for the big commit analysis. Having other
detection mechanisms could improve the analysis significantly.

It would be nice for developers, if the tool was publicly ready-to-use available as a web service. At this
moment, users have to deploy the tool by themselves. But we also provide a Virtual Machine with BICO
already set up. This would require the implementation of an authentication management and some other
improvements in stability and reliability.

Programmatic access through a set of APIs to the features of BICO would be a very useful enhancement
helping developers to directly implement our work in their programs without using the web interface.
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