
CiteWise
The Citation Search Engine

Master Thesis

Aliya Ibragimova

University of Fribourg

Faculty of Natural Sciences
University of Bern

June 2015

Prof. Dr. Oscar Nierstrasz

Haidar Osman, Boris Spasojević

Software Composition Group
University of Bern, Switzerland

Abstract

Nowadays the number of documents in the World Wide Web grows at extremely fast
rate1. Tools that can facilitate information retrieval (IR) present a particular interest
in the modern world. We believe that considering meta information helps us to build
enhanced search systems that can facilitate IR. Particularly, we target an IR task for
scientific articles. We consider citations in scientific articles to be important text
blocks summarizing or judging previous scientific findings, assisting in creating new
scientific work.

We propose CiteWise, a software system that automatically extracts, indexes and
aggregates citations from collections of scientific articles in a PDF format.

We evaluated the capabilities of CiteWise by conducting user evaluation experi-
ments that compare it with alternative approaches. In the first set of experiments, we
measured the efficiency of our system, i.e. how fast users can find relevant results in
comparison with Google Scholar. We found that CiteWise performs equally well
as Google Scholar. Secondly, we developed a citation aggregation feature to create
automatic summaries of scientific articles and asked domain experts to evaluate
summaries created by CiteWise and TextRank algorithms. We found that CiteWise
outperforms TextRank algorithm in generating article summaries.

1http://googleblog.blogspot.ch/2008/07/we-knew-web-was-big.html

1

http://googleblog.blogspot.ch/2008/07/we-knew-web-was-big.html

Contents

1 Introduction 4
1.1 Thesis statement . 4
1.2 Contributions . 5
1.3 Outline . 5
1.4 Glossary of Terms . 7

2 Technical background 8
2.1 Typical Web Search Engine . 8
2.2 Inverted Index . 9
2.3 Dynamic Indexing . 13
2.4 Retrieving Search Results . 13

3 Related Work 15
3.1 Citations In Scientific Publications . 15
3.2 Popular Academic Search Engines . 16

3.2.1 CiteSeerx . 16
3.2.2 Google Scholar . 17

4 CiteWise 18
4.1 System Overview . 18
4.2 Parser . 19

4.2.1 PDF Processing . 19
4.2.2 Document Publishing . 24

4.3 Indexer . 27
4.3.1 Solr’s Ranking Model . 28

4.4 Web Search Interface . 29
4.4.1 CiteWise Main Page . 29
4.4.2 Search by Bibliography Page . 29

2

CONTENTS 3

5 Evaluation 34
5.1 Experiment Setup . 35

5.1.1 Data and Tools . 35
5.1.2 Participants . 35
5.1.3 Process . 35
5.1.4 Tasks . 36

5.2 Questionnaires . 38
5.2.1 Pre-experiment Questionnaire . 38
5.2.2 Debriefing interview . 38
5.2.3 Post-experiment Questionnaire . 38

5.3 Evaluation Results . 38
5.3.1 Results for Task 1a . 39
5.3.2 Results for Task 1b . 41
5.3.3 Results for Task 2 . 41
5.3.4 Final Questionnaire . 42
5.3.5 Results Summary . 43

6 Conclusion 46

7 Future Work 47

A User Guide for CiteWise Deployment 53
A.1 Solr Installation . 53

A.1.1 Solr Configuration . 54
A.1.2 Enhanced Solr Search Features . 56

A.2 MongoDB Installation . 57
A.2.1 MongoDB configuration . 57

A.3 Running the parser . 58
A.4 Search Interface Deployment . 59

1
Introduction

1.1 Thesis statement

The increasing amount of research literature produced by the scientific community poses a number
of challenges to the task of finding relevant prior art to newly written papers and filed patents.
Thus, searching for prior related work becomes an extremely hard task for an individual or a
small group of researchers, which has been studied for cases such as patent search [11]. Other
works [26] even claim that this will result in a “fundamental phase transition in how scientific
results are obtained, represented, used, communicated and attributed”, and propose their own
system to organize and navigate scientific knowledge [1].

This work focuses on the specific problem of finding relevant citations for claim statements.
During the process of writing of a paper, one of the main difficulties is to validate proposed claims
with the right citations. The claims are required in many situations to construct a valid argument,
but only if supported by appropriate citations. Current solutions to the problem, such as full-text
search engines, are typically based on keyword search, and thus do not always work well for the
case of finding relevant citations. This happens due to the fact that they do not take document
structure into account, i.e, that some sentences in a document are more likely to contain claims
than others. Therefore, such systems return a large amount of irrelevant results. A more suitable
approach is to look at what other people used in their papers as references for their claims. In

4

CHAPTER 1. INTRODUCTION 5

other words, if we have a previous paper using certain claims, we can see what citations the
authors used to support those claims.

We address the described problem by introducing CiteWise, a novel search engine for
scientific literature based on citations. In contrast to ordinary information retrieval (IR) systems
that index entire content of articles, we focus on indexing citations extracted from articles. We
study the structure of citations and design an algorithm that aggregates citations referring to the
same source. We use the aggregation mechanism of CiteWise to generate automatic summaries
of papers. CiteWise provides a web search interface that supports the following use cases: 1)
finding relevant citations based on statements and 2) searching for bibliographic entries using
meta-information, such as author names and venues. Additionally users can look up all citations
of a given article in other articles.

1.2 Contributions

The following are the main contributions of this work:

• A novel IR system for scientific articles based on citations.

• A search interface to discover relevant scientific results based on a statement query.

• A new method of summary generation by means of citation aggregation.

• An empirical evaluation of the system by means of user study experiments.

1.3 Outline

The rest of the paper structured as follows:

chapter 1 gives a high overview of the architecture of a typical web search engine. It describes
the main steps to construct an inverted index.

chapter 3 surveys the research related to citations in scientific publications. It overviews two
popular academic search engines: Google Scholar and CiteSeer.

chapter 4 describes the design of CiteWise. It first shows overall architecture of the proposed
system and then shows details of implementation of each component.

chapter 5 describes user evaluation experiments and analyzes the results.

chapter 6 concludes the work.

CHAPTER 1. INTRODUCTION 6

chapter 7 describes potential future work.

appendix provides a user guide for the CiteWise deployment.

CHAPTER 1. INTRODUCTION 7

1.4 Glossary of Terms

Citation A citation is a piece of text (usually a claim, within the body of an article), including a
(bibliographic) link to a bibliographic reference (in a references section of the article), that
identifies a source text (another work) justifying that claim.

Bibliographic link or link Bibliographic link is a link to a bibliographic reference. It consists
of a unique identifier of the bibliographic reference, normally within square brackets (e.g.
“[23]”, “[Giles97]”).

Bibliographic reference is a bibliographic entry in a references section of the article identifying
another work.

Document a broader term, having multiple meanings. In this work we can use a term document
to refer to a single file, i.e a PDF article. A document term can be used to refer to a basic
storage unit, i.e basic storage unit of an Indexes storage or a MongoDB database.

2
Technical background

2.1 Typical Web Search Engine

Figure 2.1 illustrates a high level architecture of a standard web engine. It consists of three main
components:

• Crawler

• Indexer

• Index Storage

• Search interface

A Web Crawler is a program that browses the World Wide Web reading the content of web
pages in order to provide up-to-date data to the Indexer. The Indexer decides how a page content
should be stored in an index storage. Indices help to quickly query documents from the index
storage. Users can search and view query results through the Search Interface. When a user
makes a query the search engine analyzes its index and returns best matched web pages according
to specific criteria.

Web crawlers that fetch web pages with the content in the same domain are called focused or
topical crawlers [7]. An example of a focused crawler is an academic-focused crawler that crawls

8

CHAPTER 2. TECHNICAL BACKGROUND 9

Web Crawler Indexer

Index Storage Search Interface

Figure 2.1: A high-level architecture of a typical web search engine

scientific articles. Such crawlers become components of focused search engines. Examples of
popular academic search engines are Google Scholar1 and CiteSeer2. Chapter 3 gives an overview
of these search engines.

2.2 Inverted Index

Search engines like CiteSeer or Google Scholar deal with a large collection of documents. The
way to avoid scanning the text of all documents for each query is to index them in advance.
Thereby we are coming to the concept of inverted index, which is a major concept in IR. The
term inverted index comes from the data structure storing a mapping from content, such as words
or numbers, to the parts of a document where it occurs. Figure 2.2 shows an example of an
inverted index. We have a dictionary of terms appearing in the documents. Each term maps to a
list that records which documents the term occurs in. Each item in the list, conventionally named
as posting, records that a term appears in a document, often recording the position of the term
in the document as well. The dictionary on Figure 2.2 has been sorted alphabetically and each
posting list is sorted by document ID. A document ID is a unique number that can be assigned to
a document when it is first encountered. The construction of the inverted index has the following
steps:

1. Obtaining a document collection (usually performed by the crawler);

2. Breaking each document into tokens, turning a document into a list of tokens;

3. Linguistic preprocessing of a list of tokens into normalized list of tokens;

4. Index documents by creating an inverted index, consisting of a dictionary with terms and
postings.

1https://scholar.google.ch/
2http://citeseerx.ist.psu.edu/index

https://scholar.google.ch/
http://citeseerx.ist.psu.edu/index

CHAPTER 2. TECHNICAL BACKGROUND 10

java 1 2 4 11 31 45 173

smalltalk 1 2 4 6 16 57 132 174 ...

compiler 2 31 54 101

.

.

.

Terms Postings

Figure 2.2: Example of an inverted index. Each term in a dictionary maps to a posting list
consisting of document IDs, where this term occurs. Dictionary terms are sorted alphabetically
and posting lists are sorted by document IDs

Once all documents are collected (for example, by the crawler), one can begin to build an
inverted index.

We begin the index construction by breaking up each document into tokens. Tokens can be
thought of as the semantical units for processing. For example, it might be a word or a number.
During tokenization, some characters, such as punctuation marks, can be thrown away. An
example of the tokenization process is shown below:

Input: Sometimes, I forget things.
Output: Sometimes I forget things

The next step in the index construction is normalization. Consider an example of querying the
word co-operation. A user might also be interested in getting documents containing cooperation.
Token normalization is a process of turning a token into a canonical form so matches can occur
despite lexical differences in the character sequences. One way of token normalization is keeping
relations between unnormalized tokens, which can be extended to manual constructed synonym
lists, such as car and automobile. The most standard way of token normalization however is
creating equivalence classes. If tokens become identical after applying a set of rules then they are
in the equivalence classes. Common normalization rules are:

Stemming and Lemmatization Words can be used in different grammatical forms. For instance,
organize, organizes, organizing. However in many cases it sounds reasonable for one
of these words to return documents that contain other forms of the word. The goal of
stemming and lemmatization is to reduce the form of the word to a common base form.

CHAPTER 2. TECHNICAL BACKGROUND 11

Here is an example:

am, are, is → be

car, cars, car’s, cars’ → car

The result of applying the rule to the sentence:

three frogs are flying → three frog be fly

Stemming and lemmatization are closely related concepts however there is a difference.
Lemmatization usually refers to finding a lemma, common base of a word, with the
help of a vocabulary and morphological analysis of a word. Lemmatization may require
understanding the context of a word and language grammar. Stemming however refers to
reducing inflected (or sometimes derived) words to their word stem. The word’s stem is not
necessarily identical to its lemma.

Here is an example:

better → good, can only be matched by lemmatization since it requires dictionary look-up

picked → pick, can be matched by both lemmatization and stemming

meeting → meeting (noun) or to meet (verb), can be matched only by lemmatization
since it requires the word context

In general, stemmers are easier to implement and run faster. The most common algorithm
for stemming is Porter’s algorithm [25].

Capitalization/Case-Folding A simple strategy is to reduce all letters to a lower case, so that
sentences with Automobile will match to queries with automobile. However this approach
would not be appropriate in some contexts like identifying company names, such as General
Motors. Case-folding can be be done more accurately by a machine learning model using
more features to identify whether a word should be lowercased.

Accents and Diacritics Diacritics in English language play an insignificant role and simply can
be removed. For instance cliché can be substituted by cliche. In other languages diacritics
can be part of the writing system and distinguish different sounds. However, in many cases,
users can enter queries for words without diacritics.

The last step of building the inverted index is sorting. The input to indexing is a list of pairs
of normalized tokens and documents IDs for each document. Consider an example of three
documents with their contents:

• Document 1: Follow the rules.

CHAPTER 2. TECHNICAL BACKGROUND 12

• Document 2: This is our town.

• Document 3: The gates are open.

After applying tokenization and normalization steps of the listed documents the input to the
indexing is shown in Table 2.1. The indexing algorithm sorts the input list so that the terms are

Term DocumentID
follow 1
the 1
rule 1
this 2
be 2
our 2
town 2
the 3
gate 3
be 3
open 3

Table 2.1: Input to the indexing algorithm is a list of pairs of a term and document ID, where this
term occurs.

in alphabetical order as in Table 2.2. Then it merges the same terms from the same document

Term DocumentID
be 2
be 3
follow 1
gate 3
open 3
our 2
rule 1
the 1
the 3
this 2
town 2

Table 2.2: Indexing algorithm sorts all terms in a alphabetical order. The result is a list of sorted
terms with document IDs

by folding two identical adjacent items in the list. And finally instances of the same term are
grouped and the result is split into a dictionary with postings, as shown in Table 2.3.

CHAPTER 2. TECHNICAL BACKGROUND 13

Term Postings
be 2 3
follow 1
gate 3
open 3
our 2
rule 1
the 1 3
this 2
town 2

Table 2.3: Indexing algorithm groups the same terms with creating postings. The result is a
dictionary with terms as keywords and values as postings.

The described above index construction algorithm is an application of the MapReduce
framework, a general architectural pattern for distributed computing3. Normally web search
engines work with very large collections of documents and, therefore, use distributed indexing
algorithms for the index construction.

2.3 Dynamic Indexing

So far we assumed that the document collection is static. However there are many cases when the
collection can be updated, for example, by adding new documents, deleting or updating existing
documents. A simple way to deal with dynamic collections is to reconstruct the inverted index
from scratch. This might be acceptable if the changes made in the collection are small over
time and the delay in making new documents searchable is not critical. However if one of the
aforementioned conditions is violated, one might be interested in another more dynamic solution
like keeping an auxiliary index. Thus we have a large main index and we keep an auxiliary index
for changes. The auxiliary index is kept in memory. Every time a user makes a query the search
runs over both indexes and results are merged. When the auxiliary index becomes too large it can
be merged with the main index.

2.4 Retrieving Search Results

When a user makes a query he prefers to get a result document containing all query terms, so
that the terms appear close to each other in the document. Consider an example of querying a

3https://en.wikipedia.org/wiki/MapReduce

https://en.wikipedia.org/wiki/MapReduce

CHAPTER 2. TECHNICAL BACKGROUND 14

phrase containing 4 terms. The part of the document that contains all terms is named a window.
The size of the window is measured in number of words. For instance the smallest window for
4-term query will be 4. Intuitively, smaller windows represent better results for users. Such a
window can become one of the parameters ranking a document in the search result. If there is
no document containing all 4 terms, a 3-term phrase can be queried. Search systems hide the
complexity querying from the user by introducing free text query parsers [18].

3
Related Work

3.1 Citations In Scientific Publications

Citations are the subject of many interesting scientific studies. Bradshaw et al. [5] showed that
citations provide many different perspectives on the same article. They believe that citations
provide means to measure the relative impact of articles in a collection of scientific literature. In
their work the authors improved the relevance of documents in the search engine results with a
method called Reference Directed Indexing (RDI). RDI is based on a comparison of the terms
authors use in reference to documents.

Bertin and Atanassova [2] [3] and Bertin et al. [4] automatically extract citations and annotate
them using a set of semantic categories. In [4] and [2] they used linguistic approach, which
used the contextual exploration method, to annotate automatically the text. In [3] they proposed
a hybrid method for the extraction and characterization of citations in scientific papers using
machine learning combined with rule-based approaches.

There are several studies that used citations to evaluate science by introducing a map of
science. A map of science graphically reflects the structure, evolution and main contributors of a
given scientific field [9] [15] [17] [30].

Kessler [14] first used the concept of bibliographic coupling for document clustering. To
build a cluster of similar documents Kessler used a similarity function based on the degree of

15

CHAPTER 3. RELATED WORK 16

bibliographic coupling. Bibliographic coupling is the number of bibliographic references two
documents have in common. The idea was developed further by Small in co-citation analysis [29].
Later co-citation analysis and bibliographic coupling was used by Larson [16] for measuring the
similarity of web pages.

Another approach is to use citations to build summaries of scientific publications. There
are three categories of summaries proposed based on citations: an overview of a research
area (multi-document summarization) [23], an impact summary (single document summary with
citations from the scientific article itself) [19] and a citation summary (multi- and single document
summarization, in which citations from other papers are considered) [27]. In work by Nakov et
al. citations have been used to support automatic paraphrasing [22].

An expert literature survey on citation analysis was made by Smith [31], she reviewed hundred
of scientific articles on this topic.

3.2 Popular Academic Search Engines

3.2.1 CiteSeerx

CiteSeerx is built on the concept of a citation index. The concept of citation index was first
introduced by Eugene Garfield [10]. According to Eugene Garfield citations are bibliographic
references linking scientific documents. In his work Eugene Garfield proposed an approach
where citations between documents were manually cataloged and maintained so that a researcher
can search through listings of citations traversing citation links either back through supporting
literature or forward through the work of later researchers [6].

Lawrence et al. automated this process in CiteSeerx 1 [12], a Web-based information system
that permits users to browse the bibliographic references between documents as hyperlinks.
CiteSeerx automatically parses and indexes publicly available scientific articles found on the
World Wide Web.

CiteSeerx is built on top of the the open source infrastructure SeerSuite2 and uses Apache
Solr3 search platform for indexing documents. It can extract meta information from papers such
as the title, authors, the abstract and bibliographic references. The extraction methods are based
on machine learning approaches such as ParseCit [8]. CiteSeerx currently has over 4 million
documents with nearly 4 million unique authors and 80 million citations.

CiteSeerx indexes bibliographic references while in CiteWise we intend to index not only
bibliographic references but also cited text in a body of a document. If by indexing bibliographic

1CiteSeer, http://citeseerx.ist.psu.edu/
2SeerSuite, http://citeseerx.sourceforge.net/
3Apache Solr. http://lucene.apache.org/solr/

http://citeseerx.ist.psu.edu/
http://citeseerx.sourceforge.net/
http://lucene.apache.org/solr/

CHAPTER 3. RELATED WORK 17

references CiteSeerx mainly aims to simplify navigation between linked documents, in CiteWise
we focus on simplifying retrieval of documents containing a text of interest.

3.2.2 Google Scholar

Google Scholar is a freely accessible web search engine that makes full-text and metadata
indexing of scientific literature 4. Besides the simple search, Google Scholar proposes a unique
ranking algorithm that ranks documents “the way researchers do, weighing the full text of each
document, where it was published, who it was written by, as well as how often and how recently
it has been cited in other scholarly literature” 5. The “Cited by” feature allows one to view
abstracts of articles citing the given article. The “Related articles” feature shows the list of closely
related articles. It is also possible to filter articles by author name or publication date. Google
Scholar contains roughly 160 million documents by May 2014 [24].

Google Scholar is based on keyword search, and thus does not work well for the case of
finding relevant citations. This happens due to the fact that it does not take document structure
into account, i.e, that some sentences in a document are more likely to contain claims than others.
Therefore, Google Scholar might return a large number of irrelevant results for statement queries.

4Google Scholar, http://scholar.google.ch/
5https://scholar.google.com/scholar/about.html

http://scholar.google.ch/
https://scholar.google.com/scholar/about.html

4
CiteWise

4.1 System Overview

The components of CiteWise are shown in Figure 4.1. CiteWise allows one to perform the three
following main operations: parsing PDF files, indexing document collections and querying the
resulting indexes. Correspondingly, there are three major components responsible for carrying out
these operations: Parser, Indexer and Search Web App. The system has two more components for
storing data: Indexes Storage and Meta Data Storage. We use Indexes Storage for storing indexes
built on citations. This storage is very simple and was not designed to represent any relations
in data structures. Moreover, it does not allow one to perform any sophisticated operations over
the stored data. Therefore, we use Meta Data Storage to represent complex data structures and
perform sophisticated queries, like aggregating citations referring to the same article.

The workflow of the system is shown in Figure 4.2. The first operation performed by the
system is parsing. The Parser converts a PDF file into text. Then it extracts meta information,
like citations and references, from the textual representation of the file. Next it packages extracted
information into data units corresponding to formats acceptable by Indexer and Meta data storage.
A data unit publishable to the Indexer consists of a citation that should be indexed and additional
information related to this citation (citation context, a file URI, bibliographic references) that
should be stored. A data unit publishable to the Meta data storage consists of a citation, a source

18

CHAPTER 4. CITEWISE 19

Parser

Indexer

Search Web App

Indexes Storage

Meta Data Storage

Figure 4.1: Component diagram of CiteWise.

paper identifier and bibliographic references. We use Meta data storage for aggregating citations
referring to the same source. Once the Parser has processed the PDF file it can proceed to the
next paper if there are any left. When all papers are processed, the user can make queries with the
Search Web App.

The next sections of this chapter describe the implementation of each component in detail
and show the reasons behind choosing a particular solution.

4.2 Parser

It is practical to divide the work of the Parser into two phases: PDF processing and Document
publishing, as in Figure 4.3. The output of the PDF processing phase is the input to the Documents
publishing phase.

4.2.1 PDF Processing

The main role of the PDF processing phase is to parse scientific articles into text and extract
citations and bibliographic references to create documents for publishing. Parsing PDF files
from different sources is a very challenging task due to the large variation in the structuring of
article content. Thereby, building a universal parser is very hard in practice. In our case, we try to

CHAPTER 4. CITEWISE 20

Parsing a PDF article

Extracting meta
information, like citations,

references, etc

Packaging and
publishing data

Querying

[no PDFs left]

[PDFs left]

Storing data

Indexing data

[data should be
indexed]

[data should not be indexed]

Figure 4.2: Activity diagram of CiteWise.

identify common patterns covering the structure of majority of the scientific articles or at least
the articles found in our dataset.

The PDF processing phase starts with recursively walking though the directory tree of the
collection of PDF documents. While walking through the directory, the Parser filters non-pdf
files and parses and processes each PDF file separately. We use Apache PDFBox library1. The
library extracts full text from PDF files, but without any hints to the initial structure of the article.
To find citations and bibliographic references in text, we search them in different parts of the
article. Therefore, we implemented an algorithm to break the PDF text into sections.

Generally, we are interested in identifying the body of a document where we can find citations
and the references section where we can find bibliographic references. One way of finding these
sections can be using keywords that might signify the beginning or the end of some sections.
Based on those keywords, one can extract different sections of a document. Figure 4.4 shows a
sample text of a parsed PDF document with keywords.

One can notice the following characteristics of scientific articles:
1Apache PDFBox, https://pdfbox.apache.org/

https://pdfbox.apache.org/

CHAPTER 4. CITEWISE 21

Processing Publishing

PDF files Documents Storages

Figure 4.3: Parser workflow

• The body of a document comes before the references section.

• The appendix or author’s biography sections can come after the references section.

• Each document contains the “Abstract” and the “References” words and might contain the
“Appendix” word. We call these words keywords.

The keywords can be written in different formats, like using upper or lower cases. Table 4.1
illustrates variations of the keywords.

body references appendix
Abstract References Appendix
ABSTRACT References: APPENDIX

REFERENCES

Table 4.1: Keywords identifying different sections in a document

After breaking a document down into sections as shown in Figure 4.4, the text is presented in
one-column format. There are two aspects regarding this format. First, sentences can be split by
new line symbols at the end of a line. Second, words can be split by dash symbol at the end of
a line. We introduce a normalization step where new lines are substituted by white spaces and
dashes are removed in the end of a line to obtain continuous text.

As a result of the normalization step, we have a document divided into body and references
sections. Before searching citations in the body of a document, we break the body into sentences.
In general, breaking text into sentences is not an easy task. Consider a simple example with a
period. A period not only indicates the end of a sentence but also can be encountered inside the
sentence itself, like an item of a numbered list or a name of a scientist. Besides, not all sentences
end with a period, like the title of a section or an item of a list. We use the Stanford CoreNLP
library which employs natural language and machine learning techniques to extract sentences
[13].

CHAPTER 4. CITEWISE 22

Keywords

Body

References

Figure 4.4: Sample text of the parsed scientific article. Keywords help to break the document into
sections.

Next, we search for the citations in the body and for the bibliography references in the
references section. When an author cites a work she puts a link to a bibliographic reference in the
sentence. It is common to use square brackets ([]) to link to a bibliographic reference from the
sentence. Thus, we can identify citations by detecting square brackets in the text. After analyzing
some set of articles we found multiple patterns in using square brackets for citations, as shown in
Table 4.2.

We also need to extract bibliographic references from the references section. For that we
studied most common variants of composing the references sections. Table 4.3 summarizes
these findings. To extract bibliographic references we used a list of regular expressions matching
the patterns listed in Table 4.3. By parsing identifiers (e.g. numbers in square brackets) from
bibliographic references we can match citations with bibliographic references using bibliographic

CHAPTER 4. CITEWISE 23

Patterns of using [] Example in text
[21] Our conclusion is that, contrary to prior pes-

simism [21], [22], data mining static code at-
tributes to learn defect predictors is useful.

[20, 3, 11, 17] In the nineties, researchers focused on special-
ized multivariate models, i.e., models based
on sets of metrics selected for specific applica-
tion areas and particular development environ-
ments [20, 3, 11, 17].

[24, Sections 6.3 and 6.4] Details on the life-cycle of a bug can be found
in the BUGZILLA documentation [24, Sec-
tions 6.3 and 6.4].

[PJe02] In a lazy language like Haskell [PJe02] this is
not an issue - which is one key reason Haskell
is very good at defining domain specific lan-
guages.

Table 4.2: Frequent patterns in using square brackets ([and])for citing

links.
The pipeline of the PDF processing stage described above is shown in Figure 4.5. The last

step in the PDF processing stage is extracting titles from bibliographic references. The objective
point of extracting titles from bibliographic references is to collect citations referring to the the
same source (scientific article). In general case, different formats of bibliographic references can
identify the same source or scientific article. For example, an article may have different editions,
published in different journals in different years or simply different authors may use different
style formatting. What we consider to be identical for all bibliographic references citing the same
paper is the paper’s title.

Parsing an
article into text

Divide document
into sections

Normalize text
in sections

Extract citations
and bibliographic

references

Match citaions
with bibl.

references

Extract titles
from bibl.

references

Figure 4.5: Pipeline of the PDF processing stage

CHAPTER 4. CITEWISE 24

References section templates
[1] J. Bach. Useful features of a test automation system (partiii) . . .
[2] B. Beizer. Black-Box Testing. John Wiley and Sons, . . .
. . .
1. J. R. Hobbs, Granularity, Ninth International Joint Conference . . .
2. W. Woods, What’s in a Link: Foundations for Semantic Networks, . . .
. . .
[1]. Arnold, R.S., Software Reengineering, ed. . . .
[2]. Larman, C., Applying UML and Patterns. 1998, . . .
. . .
[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: . . .
[AU73] A.V. Aho and J.D. Ullman. The theory of parsing, translation . . .
. . .

Table 4.3: Frequent patterns of writing bibliographic references in a references section

Processing bibliographic references We try to recognize common patterns covering the ma-
jority of bibliographic references. Table 4.4 shows some examples of bibliographic references.
First, we noticed that if a bibliographic reference contains some sort of quotation marks, for
example, double quotes (“”) or single quotes (‘’), then it is highly probable that a title is enclosed
by these quotes. Then, we made some observations for bibliographic references without quotes.
Very often, a bibliographic reference is structured as follows: it begins by listing the paper’s
authors, then the title, and then comes the rest of the reference (see Figure 4.6). We use Core
NLP library to break a reference into parts according to our view. In most of cases it is enough to
take the second part of the bibliographic reference to be a title.

 R. P. Wilson and M. S. Lam. Effective context sensitive pointer analysis for C programs. In PLDI, pages 1–12, June 1995. 289

Authors Title Rest

Figure 4.6: Common structure of a bibliographic reference

4.2.2 Document Publishing

There are two systems where documents are published to: Solr and MongoDB. Solr corresponds
to the Indexer and Indexes Storage components and MongoDB corresponds to the Meta Data
Storage component in Figure 4.1. We use Solr for indexing citations and storing indexes. We use
MongoDB for aggregating citations referring to the same source paper.

CHAPTER 4. CITEWISE 25

Conradi, R., Dyba, T., Sjoberg, D.I.K., and Ulsund, T., “Lessons learned and
recommendations from two large norwegian SPI programmes.” Lecture notes
in computer science, 2003, pp. 32-45.”
P. Molin, L. Ohlsson, ‘Points & Deviations - A pattern language for fire alarm
systems,’ to be published in Pattern Languages of Program Design 3, Addison-
Wesley.
R. P. Wilson and M. S. Lam. Effective context sensitive pointer analysis for C
programs. In PLDI, pages 112, June 1995. 289
Allen, Thomas B. Vanishing Wildlife of North America. Washington, D.C.:
National Geographic Society, 1974.
I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. Towards a Theoretical
Model for Software Growth. In Proceedings of the 4th International Workshop
on Mining Software Repositories, Minnesotta, USA, May 2007.

Table 4.4: Some examples of bibliographic references

The data stored in Solr is very ‘flat’, which means that Solr cannot store hierarchical data
[32][28]. In our case, along with the references, we intend to store the title of the scientific article
parsed from the reference string, so we can aggregate citations referring to the same scientific
article. We are also interested in a solution that does not require reviewing all Solr documents to
find citations referring to the same scientific article as it will be too slow and will decrease the
quality of the user experience. Thus we use an external storage solution that can keep the titles of
scientific articles and all the citations referring to a specific article. As there are few relations
in our data and we would like to have a scalable solution we decided to use MongoDB as an
external storage.

Publishing documents to Solr The common way to interact with Solr is using a REST API2.
Solr provides client libraries for many programming languages to handle interactions with Solr’s
REST API. In our project we used the SolrJ3 client library for Java language. The basic Solr
storage unit is called document. For every detected citation we compose a document to publish.
Figure 4.7 represents a structure of documents we publish to Solr.

Every document representing one citation consists of the following fields:

• id: document unique id, mandatory field for publishing to Solr
• text: text of the citation that we want to index
• context: citation with a text framing it, we take 1 sentence before and 1 after the citation
• path: URL of a document where citation was found

2http://en.wikipedia.org/wiki/Representational_state_transfer
3https://cwiki.apache.org/confluence/display/solr/Using+SolrJ

http://en.wikipedia.org/wiki/Representational_state_transfer
https://cwiki.apache.org/confluence/display/solr/Using+SolrJ

CHAPTER 4. CITEWISE 26

Document

- id: int
- text: String
- context: String
- path: String
- references : List

Figure 4.7: Document structure publishing to Solr

• references: list of bibliographic references from the references section matching this
citation

Publishing documents to MongoDB MongoDB is a document-oriented NoSQL database that
stores data in JSON-like documents with dynamic schema4. To connect to the database we used a
Java driver provided by MongoDB. Although MongoDB is a ‘schemaless’ database we adhere
to the JSON structure of the document shown in Listing 1. The JSON document consists of
following fields:

• id: document id, field automatically assigned by MongoDB
• title: title of a scientific article
• citations: citations with its references of the scientific article identifying by title field

Every time we send a new citation with a paper title to MongoDB, we check if a document
with the same title already exists. If so, we add a new citation to the document, otherwise we
create a new document.

4MongoDB database, http://www.mongodb.org/

http://www.mongodb.org/

CHAPTER 4. CITEWISE 27

{

"_id" : ObjectId("547ef1b219795f049d6a0ad0"),

"title" : "Re-examining the Fault Density-Component Size Connection",

"citations" : [

{

"citation" : "Hatton, [19], claims that there is compelling empirical

evidence from disparate sources to suggest that in any

software system, larger components are proportionally more

reliable than smaller components.",

"references" : [

"[19] L. Hatton, Re-examining the Fault Density-Component Size ..."

]

},

{

"citation" : "Hatton examined a number of data sets, [15], [18] and

concluded that there was evidence of macroscopic behavior

common to all data sets despite the massive internal

complexity of each system studied, [19].",

"references" : [

"[15] K.H. Moeller and D. Paulish, An Empirical Investigation of ...",

"[18] T. Keller, Measurements Role in Providing Error-Free Onboard ...",

"[19] L. Hatton, Re-examining the Fault Density-Component Size ..."

]

}]

}

Listing 1: Sample document stored in MongoDB

4.3 Indexer

We use Solr for indexing citations. Solr is a software from Apache Software Foundation built
on Apache Lucene. Apache Lucene is an open source, IR library that provides indexing and full
text search capabilities5. While web search engines focus on searching content on the Web, Solr
is designed to search content on corporate networks of any form. Some of the public services
that use Solr as a server are Instagram (photo and video sharing social network), Netflix (movie
hosting service) and StubHub.com (public entertainment events ticket reseller).

Figure 4.8 illustrates a high level architecture of Solr. Solr is distributed as a Java web
application that runs in any servlet container, for example, Tomcat or Jetty. It provides REST-like
web services so external applications can make queries to Solr or index documents. Once the
data is uploaded, it goes through a text analysis pipeline. In this stage, different preprocessing

5Apache Lucene, http://lucene.apache.org/core/

http://lucene.apache.org/core/

CHAPTER 4. CITEWISE 28

phases can be applied to remove duplicates in the data or some document-level operations prior
to indexing, or to create multiple documents from a single one. Solr comes with a variety of
query parser implementations responsible for parsing the queries passed by the end user as search
strings. For example, TermQuery, BooleanQuery, PhraseQuery, PrefixQuery, RangeQuery, Multi-
TermQuery, FilteredQuery, SpanQuery and others. Solr has xml configuration files (schema.xml
and solrconfig.xml) to define the structure of the index and how fields will be represented and
analyzed (see Appendix A.1 for Solr installation and configuration).

REST web
services

Documents Users

Java Web App

Solr Core

Document
add/update/del

Query
processing/caching

Indexing Querying

solrconfig.xml

schema.xml

Text analysis
pipeline

Lucene Index

Figure 4.8: High level architecture of Solr

4.3.1 Solr’s Ranking Model

Solr’s ranking model is based on the Lucene scoring algorithm, also known as a TF-IDF model
[18]. This model takes into consideration following factors:

• tf - term frequency, a frequency of the term in a document. The higher the term frequency,
the higher a document score.

CHAPTER 4. CITEWISE 29

• idf - inverse document frequency, an inverse frequency of the term in all documents. The
rarer the term occurs in all documents, the higher its contribution to the document’s score.

• coord - coordination factor, takes into account the number of query terms in a document.
The more query terms in a document, the higher score it has.

The exact scoring formula with the description of all factors can be found on the official web
page of the Lucene documentation6.

4.4 Web Search Interface

Web Search interface is a Java web application running in a servlet container. Figure 4.9 shows
an architecture of a web search application. The application is based on the MVC (model-view-
controller) architectural pattern implemented with Struts7. The application communicates with
the Solr via Solr’s REST API and with Mongo database via Java database connector.

4.4.1 CiteWise Main Page

The main page of CiteWise presents a simple search interface allowing the user to search for
citations. Figure 4.10 shows a sample response to the user query “software testing is time-
consuming”. As a result the user sees a list of documents matching the query. Each document
has a citation with a list of bibliographic links supporting this citation. A user can click to “Show
context” link to see a text surrounding the citation in the original paper. If the source paper is
available then user can open it using a link “See pdf on SCG resources”.

If a reference has a title recognizable by CiteWise then a user can see all citations referring
to the paper from this reference by clicking on the button next to the reference. Figure 4.11
demonstrates this feature. A user can see all citations of the paper “Software maintenance and
evolution: a roadmap” in a popover dialog. Users can get more information about each citation
by following a “View details” link.

A user can take advantage of using enhanced search query syntax. The query syntax is
explained on the help page of the CiteWise interface and in the Appendix of this article.

4.4.2 Search by Bibliography Page

Another feature provided by CiteWise is the possibility to search by bibliography entries. For
example, a user can search by authors, title or publication venue. An example of a search by

6Apache Lucene, scoring formula
7Struts framework, https://struts.apache.org/

http://lucene.apache.org/java/3_5_0/api/core/org/apache/lucene/search/Similarity.html
https://struts.apache.org/

CHAPTER 4. CITEWISE 30

Servlet Container

Java web app

MVC (Struts)

.java class
files

Model

ActionServlet .jsp files

Controller View Web Browser

Solr REST
API MongoDB

HTTP Java Driver

Figure 4.9: Architecture overview of a web search application

author is shown in Figure 4.12. A user sees a list of bibliographic entries with searched author
name. If an entry has an extractable title then user can see citations from other papers referring to
the entry.

CHAPTER 4. CITEWISE 31

Figure 4.10: A screenshot of the main page of the CiteWise interface showing results for a
statement query “software testing is time-consuming”

CHAPTER 4. CITEWISE 32

Figure 4.11: A screenshot of the main page of a CiteWise interface showing citations referring to
the article with the recognizable title “Software maintenance and evolution: a roadmap.”

CHAPTER 4. CITEWISE 33

Figure 4.12: A screenshot of the ‘search by bibliography’ page of a CiteWise interface illustrating
a search for citations based on a meta-information query. Here a user searches for citations of
scientific articles authored by Mircea Lungu.

5
Evaluation

To measure the effectiveness of CiteWise we conducted evaluation experiments comparing it
with other search engines. We had two main candidates to compare CiteWise with: CiteSeerX
and Google Scholar. There are many aspects on how search engines might be compared. In our
experiments we focused on comparing efficiency and usability of search engines. By efficiency
we mean how quickly users can find documents and by usability we mean simplicity of search
interfaces and personal impression. Preliminary tests showed that CiteSeerX is too slow in
showing results. Moreover, users complained that resulting documents are not relevant. Too many
results were from a different domain than Computer Science, like Biology or Physics. Thus, in
the first part of our experiments we compared CiteWise with Google Scholar.

In the second part of our experiments, we used an aggregation feature of CiteWise to build
summaries of scientific articles. We compared those summaries with summaries built using a
TextRank [21] algorithm.

34

CHAPTER 5. EVALUATION 35

5.1 Experiment Setup

5.1.1 Data and Tools

For evaluation experiments we used a dataset of scientific articles collected by members of
the Software Composition Group (SCG)1 over decades. The collection contains about 16000
scientific articles and covers various topics in computer science. The Google Scholar dataset
is much larger than the dataset used in our experiments, so we reduced the search space to
the domain of Software Engineering and Programming Languages. During the experiment, all
participants were provided with a laptop (MacBook Air, OS X version 10.10.3) and their actions
were recorded with a screen casting application (QuickTime Player).

5.1.2 Participants

We intentionally looked for experts in the domain of Software Engineering and Programming
Languages that can participate in experiments. Nine experts with different experiences (7 PhD
candidates, 1 postdoctoral researcher, 1 professor) participated in the experiments (see Table 5.1).

ID Position Domains of Interest Years of Experience
P1 Professor researcher Software Engineering and Programming Languages 35
P2 PostDoc researcher Software and Ecosystem Analysis 11
P3 PhD candidate Software Quality 2
P4 PhD candidate Ecosystem Analysis 2
P5 PhD candidate Dynamic Analysis 2
P6 PhD candidate Software Architecture 3
P7 PhD candidate Development Tools 3
P8 PhD candidate Parsing 3
P9 PhD candidate Software Visualization 1

Table 5.1: The table describes experts which participated in the experiments, their domain of
interests and academic experience in years.

5.1.3 Process

Participants were split into two groups. All experiments were conducted over two days and each
day was dedicated to one group. Both groups were asked to perform the same tasks. However the
second group was asked to do one more additional task (see Table 5.2). The idea of giving an

1http://scgresources.unibe.ch/Literature/

http://scgresources.unibe.ch/Literature/

CHAPTER 5. EVALUATION 36

additional task to the second group came after conducting experiments with the first group on the
first day. Time given to complete each task was limited to 5 minutes. All tasks are described in
subsection 5.1.4.

Groups Participants Tasks to perform
Group1 P1, P3, P4, P5, P6 Task 1a, Task 2
Group2 P2, P7, P8, P9 Task 1a, Task 1b, Task 2

Table 5.2: Devision of participants by groups and tasks given to each group.

Each experiment was set up to last for approximately 45 minutes and each experiment
involved only one participant. An experiment starts with a short training session, where we
introduce the participant to: 1) user interfaces of both CiteWise and Google Scholar, 2) standard
syntax query common to both search engines. Every task in the experiment was orally explained
to the participant.

5.1.4 Tasks

Task 1a As a first task, a participant was asked to find a reference to a claim from one of his
papers written in the past using CiteWise or Google Scholar. We specified the type of the search
engine in the beginning of the task. A test subject can read the cited sentence as well as the
context of this sentence but is not aware of the referred source paper. The task is to find a paper
that proves the given claim. We use following procedure to conduct Task 1a:
Before the experiment.

1. We look for a paper published by the test subject.

2. We extract four citations from that paper.

3. We delete extracted citations from CiteWise so the test subject could not find an exact
match using CiteWise.

During the experiment.

1. We let the test subject read one cited sentence as well as the context of this sentence.

2. We ask the test subject to find a referred paper that proves the given claim using the given
search engine (CiteWise or Google Scholar).

3. We repeat steps for four citations every time changing the used search engine. In the first
run of the Task 1a we asked the participant P1 to find a paper using CiteWise. Then, in the

CHAPTER 5. EVALUATION 37

second run we asked P1 to complete the same task using Google Scholar and so on. We
asked the participant P2 to use Google Scholar for the first run, CiteWise for the second
run and so on. Thus, we alternated a search engine type for the first run and then alternated
search engine types for all remaining runs respectively.

During the execution of tasks, we observe the following:

• Search time, the time spent by participant to find a paper supporting the given cited text.
• Number of queries, the amount of queries made by participant to find a reference.
• Number of words in each query, numbers of words in each query made by the test subject

while searching.
• Participant comments, any comments made by the test subject during the task execution.

Task 1b Task 1b was given to the second group as an extra task. By conducting this task, we
would like to know which search engine would the test subject use if it is not specified in the task
description. As in Task 1a a test subject was also given a citation to find a reference to, but this
time a search engine was not specified and a citation was taken from a paper not authored by the
test subject. Every participant received only one citation for this task. As for the previous task the
citation was removed from CiteWise before the experiment. During Task 1b, we observed which
search engine was used to find a reference.

Task 2 In Task 2 we asked participants to compare two summaries generated with CiteWise and
TextRank algorithms. The TextRank algorithm is a graph-based ranking algorithm for Natural
Language Processing (NLP) [20]. It extracts sentences from the text based on their importance.
We use the following procedure to conduct Task 2:
Before the experiment.

1. We ask every participant in advance to provide a paper that she thinks is important in her
research field.

2. We verify that a provided paper was cited at least by ten other papers in the CiteWise
dataset.

3. We build a first summary using the TextRank algorithm. We use a Python implementation
of this algorithm that can be found on GitHub 2. We extract the text of a paper and feed it
to TextRank. We limit the size of summaries to the size of an abstract in a paper, that is
approximately 9-10 sentences.

2https://github.com/adamfabish/Reduction

https://github.com/adamfabish/Reduction

CHAPTER 5. EVALUATION 38

4. We build a second summary using citations to the paper collected by CiteWise. CiteWise
might collect more than ten citations of a paper. In this case we pick ten sentences randomly.
Again we limit the size of summaries to the size of an abstract in a paper.

During the experiment.

1. We let the test subject read two summaries.

2. We ask test subjects to assess the quality of summaries by giving a score from 0 to 10.

5.2 Questionnaires

5.2.1 Pre-experiment Questionnaire

Before the beginning of the experiment we ask the test subjects to provide preliminary information
by filling in a pre-experiment questionnaire. The goal of the pre-experiment questionnaire is to
gather general statistics about the participants’ experience in using various search engines. We
ask the participants to fill in a form with questions shown in Figure 5.1.

5.2.2 Debriefing interview

After completing Task 1a and Task 1b we conduct a semi-structured interview with participants,
that lasts approximately 5 minutes. The main goal of the debriefing interview is to get an
immediate feedback on using Google Scholar and CiteWise. During the interview the participants
have the chance to share their impression on using both search engines. Sample questions asked
during the interview: 1) What did you like/dislike about using each search engine? and 2) What
difficulties did you have?

5.2.3 Post-experiment Questionnaire

Right after the experiment we ask the participant to fill in a post-experiment questionnaire. The
main goal of the post-experiment questionnaire is to gather further feedback on using CiteWise
and Google Scholar. We ask the participants to fill in a form with following questions: 1) Has the
experiments changed your opinion on the two search engines? and 2) Would you consider using
one of these search engines?

5.3 Evaluation Results

The pre-experiment questionnaire showed that almost all participants (8 experts) use Google
Scholar to find scientific literature. Some participants mentioned that they use IEEE Xplore,

CHAPTER 5. EVALUATION 39

Figure 5.1: Pre-experiment questionnaire

ACM digital library and DBLP as well (see Table 5.3). Half of the respondents (4 participants)
use search engines daily, 2 respondents use search engines a few times per week (see Table 5.4).

Four respondents answered positively on the question if they have ever used CiteWise.
However all of them mentioned that they used CiteWise only a few times.

5.3.1 Results for Task 1a

In Task 1a we measured search time. Each participant performed Task 1a 4 times: 2 times with
CiteWise and 2 times with Google Scholar. In overall, we made 18 measurements for CiteWise
and 18 measurements for Google Scholar. Figure 5.2 illustrates results for search time in Task 1a

CHAPTER 5. EVALUATION 40

Participants Google Scholar DBLP IEEE Xplore ACM Library
P1 X X
P2 X X
P3 X X X
P4 X
P5 X
P6 X
P7 X X
P8 X
P9 X

Total 8 2 2 2

Table 5.3: Pre-Experiment Questionnaire. The table shows total number of participants using
particular search engine to find scientific literature.

using boxplots 3. Table 5.5 shows the mean and standard deviation of search times for both search
engines. From Table 5.5 we observed that the average time to find a reference for a given citation
is approximately 2.5 minutes. Participants were slightly faster with finding results using CiteWise.
However, there is no statistically significant difference between search times of CiteWise and
Google Scholar according to t-test with significance level p = 5%.

Figure 5.3 illustrates results for number of queries in Task 1a using boxplots. It shows median
and mean values for number of queries for both search engines. From Figure 5.3 we conclude
that in 50% of cases for CiteWise in Task 1a, participants found a supporting paper in less than 2
queries.

Table 5.6 shows average values and standard deviations for number of queries made by
participants to find references and average number of words in queries. We did not see any
significant differences in a number of queries and average number of words in a query between
two search engines. From Table 5.6 we concluded that on average participants made 2-3 queries
before finding a referred paper and that the average number of words in a query was 4.

During the experiments we noticed that participants were more familiar with Google Scholar’s
search interface so participants spent some time exploring the CiteWise interface. This could
affect search time for CiteWise making it longer.

We also noted that the way search engines present results is an important factor of the search
engine usability. For example, most of the participants admitted that they like that CiteWise
shows the exact place from the article where match was found. In contrast, Google Scholar shows
a title of the article and a beginning of the abstract, so it is not clear where the match was found.
In this case participants had to open the article and make a manual search over the text.

3http://en.wikipedia.org/wiki/Box_plot

http://en.wikipedia.org/wiki/Box_plot

CHAPTER 5. EVALUATION 41

Participants Every day A few times per week Once a week or less
P1 X
P2 X
P3 X
P4 X
P5 X
P6 X
P7 X
P8 X
P9 X

Total 4 2 3

Table 5.4: Pre-Experiment Questionnaire. The table shows how often participants use search
engines to find scientific literature.

Mean (sec) Std (sec)
CiteWise 150 97

Google Scholar 160 78

Table 5.5: The mean and standard deviation of search times for CiteWise and Google Scholar in
Task 1a.

5.3.2 Results for Task 1b

Task 1b was given to four participants. Table 5.7 shows in what search engine a supporting paper
was found and the order in which a participant used search engines. For example, the participant
P6 first searched for a paper in CiteWise, then he switched to Google Scholar and finally he
switched to CiteWise where he found the result paper. From Table 5.7 we concluded that all
participants found a supporting paper using CiteWise. Meanwhile three of participants used both
search engines and one participant did not use Google Scholar at all.

5.3.3 Results for Task 2

Results for Task 2 are shown in Figure 5.4. It illustrates scores from 0 to 10 given by participants
to summaries generated with TextRank and citation from CiteWise. All participants except one (6
participants) gave better scores to the summary composed by citations from CiteWise. We could
not generate summaries for participants P4 and P6 since they did not provide us with papers.
According to t-test with a significance level p = 5% there is a significant difference between scores
given to summaries generated with TextRank and CiteWise. Participants noted that a summary
generated with TextRank consists of sentences either too general or not important for understand-

CHAPTER 5. EVALUATION 42

Citation Search Google Scholar

S
ea

rc
h

tim
e(

se
c)

50

100

150

200

250

300

Figure 5.2: Boxplot of search times in Task 1a for both search engines. The red band inside a box
is a second quartile (the median). The bottom and top of the box are the first and third quartiles.
The end of whiskers represent the minimum and maximum values for search times.

ing the paper. According to participants’ opinions, the summary composed with citations tends to
contain sentences more relevant for understanding the summarized paper. However, sometimes
cited sentences rephrase each other expressing the same idea. Also, compared to TextRank there
is no natural flow in the summary from citations. In other words sentences in a summary are not
ordered to make a story.

5.3.4 Final Questionnaire

The final questionnaire shows that all participants answered positively when they were asked
whether they are willing to continue to use CiteWise. Some participants specified that they
will use Google Scholar and CiteWise for different purposes. According to the opinion of two
participants CiteWise is more appropriate to search for related work on the given topic. Others (5
participants) think that CiteWise is good to prove claims while writing a scientific paper. One
participant opinion states that CiteWise is useful for discovering new works in the given domain.

CHAPTER 5. EVALUATION 43

CiteWise Google Scholar

N
um

be
r

of
 q

ue
rie

s

1

2

3

4

5

6

Figure 5.3: Boxplot of number of queries in Task 1a for both search engines. The red band inside
a box is a second quartile (the median). The black band inside a box is a mean value. The bottom
and top of the box are the first and third quartiles. The end of whiskers represent the minimum
and maximum values for number of queries.

Participants appreciated the possibility to see citations with a context and the possibility to search
by bibliographic entries.

5.3.5 Results Summary

In our evaluation experiments we compared CiteWise with Google Scholar. During the experi-
ments we collected statistics on search time, number of queries and average number of words
in queries. The results show that CiteWise performs slightly better for mean value of search
time, but there is no statistically significant difference among search engines. We noticed that in
50% of cases participants found a supporting paper in CiteWise using only one query. Overall,
given that Google Scholar is one of the most popular academic search engines, CiteWise might
complement Google Scholar. Indeed, when participants have a possibility to choose between two
search engines, all participants succeeded in the task accomplishment using CiteWise.

The results for the comparison show that summaries generated with citations give a better

CHAPTER 5. EVALUATION 44

Mean Std
Number of queries

CiteWise 2.1 1.5
Google Scholar 2.9 1.7

Average number of words in a query
CiteWise 4.3 1.7

Google Scholar 4.2 1.2

Table 5.6: The mean and standard deviation values for a number of queries and avearge number
of words in a query in Task 1.

Participants How search engines were used
P6 CiteWise, Google Scholar, CiteWise
P7 Google Scholar, CiteWise
P8 Google Scholar, CiteWise
P9 CiteWise

Table 5.7: The table illustrates results for Task 1b. It shows the order in which participants used
search engines during the task accomplishment. The search engine where a supporting paper was
retrieved is marked red.

description of a paper. The automatic citation aggregation feature of CiteWise could be used
to generate summaries or even judge the importance of a paper, for example, by counting the
number of citations.

CHAPTER 5. EVALUATION 45

6	

5	

8	

6	
 6	
 6	

4	

0	

3	

2	

5	

0	

7	

2	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

P1	
 P2	
 P3	
 P5	
 P7	
 P8	
 P9	

Sc
or
e	

fr
om

	
 0
	
 to

	
 1
0	

Par.cipants	

CiteWise	

TextRank	

Figure 5.4: Scores from 0 to 10 given by participants in Task 2 to the summaries generated with
TextRank and citations from CiteWise.

6
Conclusion

In this work we address the problem of IR for scientific articles. We believe that considering
meta-information helps us to build enhanced search systems. We particularly focused on citations
considering them as important text blocks. We designed and implemented CiteWise which
automatically extracts and indexes citations from scientific articles in PDF format. Moreover we
studied the structure of citations and built an algorithm that aggregates citations referring to the
same source. We used this feature of CiteWise to generate automatic summaries of papers.

We evaluated our system by conducting user evaluation experiments. In the first part of
our experiments, we compared our system with the popular academic search engine, Google
Scholar. We observed how fast users are in finding results using both search engines. Our results
showed that CiteWise performs equal to or better than Google Scholar. In the second part of our
experiments, we used an aggregation feature of CiteWise to build summaries of scientific articles.
We compared those summaries with summaries built using a TextRank algorithm. Our results
showed that CiteWise gives a better description of scientific articles according to participant’s
opinion.

46

7
Future Work

One of the ways the CiteWise parser can be improved is finding cited sentences that do not
contain any specific identifiers. Indeed the task is straightforward when a sentence contains
square brackets, for example, ‘[34]’ or ‘[Ali86]’. However, sometimes a link to bibliography
can be composed only from the authors’ names. In this case it becomes difficult to distinguish a
citation from any other sentence (see Figure 7.1).

The mistake-counting model that we use is essentially the same as a
model discussed in Barzdin and Freivald (1972). See Angluin and Smith
(1983) for a survey that compares a number of learning models.

Figure 7.1: An example of citations from the article “Learning Abound: Quickly When Irrelevant
Attributes A New Linear-threshold Algorithm” authored by Nick Littlestone. In both sentences a
link to a bibliographic reference composed from authors’ names makes it hard to distinguish a
citation from any other sentences.

Another issue in using square brackets as citation identifiers arises when square brackets are
used not as links to bibliography. For example, a parser might mix up an array in a code snippet
with a link to bibliography (see Figure 7.2). Usage of code snippets are common in computer
science literature so it would be nice to have a method to distinguish a snippet of source code

47

CHAPTER 7. FUTURE WORK 48

from natural text.

epre.Counter.bump() ≡ [τ = ǫ]
epost.Counter.bump() ≡
 [(this.lstnr 6= null) ⇒
 ((|τ| = 1)
 ∧ (τ[1].hm
 = this.lstnr.actionPerformed))]
 ∧ [(this.lstnr = null) ⇒ τ = ǫ]

Figure 7.2: An example of the code snippet from the article “Modular Verification of Higher-Order
Methods with Mandatory Calls Specified by Model Programs” authored by Steve M. Shaner et
al. The code snippet is wrongly considered as a citation and is matched to the first bibliographic
entry.

Bibliography

[1] K. Aberer, A. Boyarsky, Philippe Cudré-Mauroux, Gianluca Demartini, and O. Ruchayskiy.
Sciencewise: A web-based interactive semantic platform for scientific collaboration. In
10th International Semantic Web Conference (ISWC 2011-Demo), Bonn, Germany, 2011.

[2] Marc Bertin and Iana Atanassova. Semantic enrichment of scientific publications and
metadata : Citation analysis through contextual and cognitive analysis. D-Lib Magazine,
18:8, 2012.

[3] Marc Bertin and Iana Atanassova. Extraction and characterization of citations in scientific
papers. In Valentina Presutti, Milan Stankovic, Erik Cambria, Ivn Cantador, Angelo Di Iorio,
Tommaso Di Noia, Christoph Lange, Diego Reforgiato Recupero, and Anna Tordai, editors,
Semantic Web Evaluation Challenge, volume 475 of Communications in Computer and
Information Science, pages 120–126. Springer International Publishing, 2014.

[4] Marc Bertin, Jean-Pierre Desclés, Brahim Djioua, and Yordan Krushkov. Automatic
annotation in text for bibliometrics use. In FLAIRS Conference, pages 313–318, 2006.

[5] Shannon Bradshaw. Reference directed indexing: Redeeming relevance for subject search
in citation indexes. In Traugott Koch and IngeborgTorvik Slvberg, editors, Research and
Advanced Technology for Digital Libraries, volume 2769 of Lecture Notes in Computer
Science, pages 499–510. Springer Berlin Heidelberg, 2003.

[6] Shannon Glenn Bradshaw. Reference directed indexing: Indexing scientific literature in the
context of its use. Northwestern University, 2002.

[7] Soumen Chakrabarti, Martin Van den Berg, and Byron Dom. Focused crawling: a new
approach to topic-specific web resource discovery. Computer Networks, 31(11):1623–1640,
1999.

[8] Isaac G. Councill, C. Lee Giles, and Min yen Kan. Parscit: An open-source CRF reference
string parsing package. In International Language Resources and Evaluation. European
Language Resources Association, 2008.

49

BIBLIOGRAPHY 50

[9] Gaizka Garechana, Rosa Rio, Ernesto Cilleruelo, and Javier Gavilanes. Visualizing the
scientific landscape using maps of science. In Suresh P. Sethi, Marija Bogataj, and Lorenzo
Ros-McDonnell, editors, Industrial Engineering: Innovative Networks, pages 103–112.
Springer London, 2012.

[10] Eugene Garfield et al. Science citation index — a new dimension in indexing. Science,
144(3619):649–654, 1964.

[11] Roya Ghafele, Benjamin Gibert, and Paul DiGiammarino. Driving innovation through patent
application review: The power of crowdsourcing prior art search. Journal of Intellectual
Property Rights, 16:303–308, 2011.

[12] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An Automatic Citation
Indexing System. In Proceedings of the Third ACM Conference on Digital Libraries, DL
’98, pages 89–98, New York, NY, USA, 1998. ACM.

[13] The Stanford Natural Language Processing Group. Stanford CoreNLP API.
http://nlp.stanford.edu/software/corenlp.shtml.

[14] M. M. Kessler. Bibliographic coupling between scientific papers. American Documentation,
14(1):10–25, 1963.

[15] Richard Klavans and Kevin W. Boyack. Toward a consensus map of science. J. Am. Soc.
Inf. Sci. Technol., 60(3):455–476, March 2009.

[16] Ray R Larson. Bibliometrics of the world wide web: An exploratory analysis of the
intellectual structure of cyberspace. In PROCEEDINGS OF THE ANNUAL MEETING-
AMERICAN SOCIETY FOR INFORMATION SCIENCE, volume 33, pages 71–78, 1996.

[17] Loet Leydesdorff, Stephen Carley, and Ismael Rafols. Global maps of science based on the
new web-of-science categories. CoRR, abs/1202.1914, 2012.

[18] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-
mation retrieval, volume 1. Cambridge university press Cambridge, 2008.

[19] Qiaozhu Mei and ChengXiang Zhai. Generating impact-based summaries for scientific
literature. In Proceedings of ACL-08: HLT, pages 816–824, Columbus, Ohio, June 2008.
Association for Computational Linguistics.

[20] Rada Mihalcea. Graph-based ranking algorithms for sentence extraction, applied to text
summarization. In Proceedings of the ACL 2004 on Interactive poster and demonstration
sessions, page 20. Association for Computational Linguistics, 2004.

BIBLIOGRAPHY 51

[21] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts. Association for
Computational Linguistics, 2004.

[22] Preslav I. Nakov, Ariel S. Schwartz, and Marti A. Hearst. Citances: Citation sentences for
semantic analysis of bioscience text. In In Proceedings of the SIGIR04 workshop on Search
and Discovery in Bioinformatics, 2004.

[23] Hidetsugu Nanba and Manabu Okumura. Towards multi-paper summarization reference
information. In Proceedings of the 16th International Joint Conference on Artificial Intel-
ligence - Volume 2, IJCAI’99, pages 926–931, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[24] Enrique Orduña Malea, Juan M. Ayllón, Alberto Martı́n-Martı́n, and Emilio Delgado
López-Cózar. About the size of google scholar: playing the numbers, July 2014.

[25] M. F. Porter. Readings in Information Retrieval, chapter An Algorithm for Suffix Stripping,
pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[26] Roman Prokofyev, Alexey Boyarsky, Oleg Ruchayskiy, Karl Aberer, Gianluca Demartini,
and Philippe Cudré-Mauroux. Tag recommendation for large-scale ontology-based infor-
mation systems. In Proceedings of the 11th international conference on The Semantic
Web-Volume Part II, pages 325–336. Springer-Verlag, 2012.

[27] Vahed Qazvinian and Dragomir R. Radev. Scientific paper summarization using citation
summary networks. In Proceedings of the 22Nd International Conference on Computa-
tional Linguistics - Volume 1, COLING ’08, pages 689–696, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

[28] Jonathan Rochkind. Thinking like Solr its not an rdbms.
https://bibwild.wordpress.com/2011/01/24/thinking-like-solr-its-not-an-rdbms/.

[29] Henry Small. Co-citation in the scientific literature: A new measure of the relation-
ship between two documents. Journal of the American Society for Information Science,
24(4):265–269, 1973.

[30] Henry Small. Visualizing science by citation mapping. J. Am. Soc. Inf. Sci., 50(9):799–813,
July 1999.

[31] Linda C. Smith. Citation analysis. https://www.ideals.illinois.edu/

bitstream/handle/2142/7190/librarytrendsv30i1i_%20opt.pdf?

sequence=1, 1981.

https://www.ideals.illinois.edu/bitstream/handle/2142/7190/librarytrendsv30i1i_%20opt.pdf?sequence=1
https://www.ideals.illinois.edu/bitstream/handle/2142/7190/librarytrendsv30i1i_%20opt.pdf?sequence=1
https://www.ideals.illinois.edu/bitstream/handle/2142/7190/librarytrendsv30i1i_%20opt.pdf?sequence=1

BIBLIOGRAPHY 52

[32] Solr Wiki. Why use Solr? http://wiki.apache.org/solr/WhyUseSolr.

A
User Guide for CiteWise Deployment

A.1 Solr Installation

Solr installation requires JDK and any servlet container to be installed on the server machine.
Here we describe the configuration of Solr for Apache Tomcat container. We need to download
the Solr distribution that can be found on the official Solr home page 1. Solr is distributed as an
archive. After unzipping the archive, the extracts have following directories:

• contrib/ - directory containing extra libraries to Solr, such as Data Import Handler, MapRe-
duce, Apache UIMA, Velocity Template, and so on.

• dist/ - directory providing distributions of Solr and some useful libraries such as SolrJ.

• docs/ - directory with documentation for Solr.

• example/ - Jetty based web application that can be used directly.

• Licenses/ - directory containing all the licenses of the underlying libraries used by Solr.

Copy the dist/solr.war file from the unzipped folder to $CATALINA HOME/webapps/solr.war.
Then point out to Solr location of home directory describing a collection:

1Apache Solr, http://lucene.apache.org/solr/

53

http://lucene.apache.org/solr/

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 54

• Java options: one can use following command so that the container picks up Solr collection
information from the appropriate location:

$export JAVA_OPTS="$JAVA_OPTS -Dsolr.solr.home=/opt/solr/example"

By a collection in Apache Solr one indicates a collection of Solr documents that represents one
complete index.

The Solr home directory contains configuration files and index-related data. It should consist
of three directories:

• conf/ - directory containing configuration files, such as solrconfig.xml and schema.xml

• data/ - default location for storing data related to index generated by Solr

• lib/ - optional directory for additional libraries, used by Solr to resolve any plugins

A.1.1 Solr Configuration

Configuring Solr instance requires defining a Solr schema and configuring Solr parameters.

Defining Solr schema A Solr schema is defined in the schema.xml file placed in the conf/
directory of the Solr home directory. The Solr distribution comes with a sample schema file that
can be changed for the needs of the project. The schema file defines the structure of the index,
including fields and field types. The basic overall structure of the schema file is:

<schema>

<types>

<fields>

<uniqueKey>

<copyField>

</schema>

The basic unit of data in Solr is document. Each document in Solr consists of fields that
are described in the schema.xml file. By describing data in the schema.xml, Solr understands
the structure of the data and what actions should be performed to handle this data. Here is an
example of a field in the schema file:

<field name="id" type="integer" indexed="true" stored="true" required="true"/>

Table A.1 lists and explains major attributes of field element.
Here is a fragment of schema file defining fields of a document in CiteWise collection:

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 55

Name Description
default default value if it is not read while importing a document
indexed true if field should be indexed
stored when true a field is stored in index store and is accessible while

displaying results
compressed when true a field will be zipped, applicable for text-type fields
multiValued if true, field can contain multiple values in the same document.

Table A.1: Major attributes of field element in a schema.xml file

<fields>

<field name="_version_" type="long" indexed="true" stored="true"

multiValued="false"/>

<field name="id" type="string" multiValued="false"/>

<field name="text" type="text_en" indexed="true" multiValued="false"/>

<field name="context" type="string" indexed="false" multiValued="false"/>

<field name="path" type="string" indexed="false" multiValued="false"/>

<field name="reference" type="string" indexed="false" stored="true"

multiValued="true" />

</fields>

Every document represents a citation with matching bibliographic references. In the schema
file we indicate that we want to index a text field which is the citation text. We store an id of a
citation, that is a generated value, calculated from the hash of the citation string. Specifying the
id is particularly useful for updating documents. We also store a context for a citation and a path
to the scientific article where the citation was found. As a citation can refer to multiple sources,
we make the reference field multivalued.

In the schema configuration file, one can define the field type, like string, date or integer and
map them to Java classes. This can be handy when we define custom types. A field type includes
the following information:

• Name

• Implementation class name

• If the field type is a TextField, it will include a description of the field analysis

• Field attributes

A sample field type description:

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 56

<fieldType name="text_ws" class="solr.TextField" positionIncrementGap="100">

<analyzer>

<tokenizer class="solr.WhitespaceTokenizerFactory"/>

</analyzer>

</fieldType>

Other elements in the Solr schema file listed in Table A.2:

Name Description
uniqueKey specifies which field in documents is a unique identifier of a docu-

ment, should be used if you ever update a document in the index
copyField used to copy a field value from one field to another

Table A.2: Description of some elements in schema.xml

Configuring Solr Parameters To configure a Solr instance we need to describe the solrcon-
fig.xml and solr.xml files.

solr.xml The solr.xml configuration is located in solr home directory and used for configuration
of logging and advanced options to run Solr in a cloud mode.

solrconfig.xml The solrconfig.xml configuration file primarily provides you with an access to
index-management settings, RequestHandlers, listeners, and request dispatchers. The
file has a number of complex sections and mainly is changed when a specific need is
encountered.

A.1.2 Enhanced Solr Search Features

Solr provides a number of additional features that can enhance the search system. One of the
features we use is synonyms. To use this feature you need to specify synonyms.txt file with listed
synonyms. This file is used by synonym filter to replace words with their synonyms. For example,
a search for ”DVD” may expand to ”DVD”, ”DVDs”, ”Digital Versatile Disk” depending on the
mapping in this file. This file can be also used for spelling corrections. Here is an example of
synonyms.txt file:

GB, gib, gigabyte, gigabytes

MB, mib, megabyte, megabytes

Television, Televisions, TV, TVs

Incident_error, error

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 57

Additionally, there are other configuration files that appear in the configuration directory. We
are listing them in Table A.3 with the description of each configuration:

Name Description
protwords.txt file where you can specify protected words that you do not wish

to get stemmed. So, for example, a stemmer might stem the word
”catfish” to ”cat” or ”fish”.

spellings.txt file where you can provide spelling suggestions to the end user.
elevate.txt file where you can change the search results by making your own

results among the top-ranked results. This overrides standard
ranking scheme, taking into account elevations from this file.

stopwords.txt Stopwords are those that will not be indexed and used by Solr in
the applications. This is particularly helpful when you really wish
to get rid of certain words. For example, in the string, ”Jamie and
joseph,” the word ”and” can be marked as a stopword.

Table A.3: Additional configuration files in Solr

A.2 MongoDB Installation

MongoDB is a NoSQL document-oriented database. Data in MongoDB is stored in JSON-like
documents with a dynamic schema. The format of stored data is called BSON, which stands
for Binary JSON. BSON is an open standard developed for human readable data exchange2.
MongoDB requires a little amount of configuration to start to work with.

To install MonogoDB follow instruction on the official web site http://docs.mongodb.
org/manual/installation/.

A.2.1 MongoDB configuration

Once the MonogDB distribution the is downloaded, it is very easy to set up a database server. All
we need to start the MongoDB server is to type mongod command. In our case we would like to
specify database location with –dbpath parameter and default listening port:

> mongod --dbpath /home/aliya/mongodb2 --port 27272

MongoDB provides REST API. To enable REST API use parameter –rest:

> mongod --dbpath /home/aliya/mongodb2 --port 27272 --rest true

2BSON specification, http://bsonspec.org/

http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://bsonspec.org/

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 58

The simple way to communicate with the MongoDB server is to use the MongoDB shell, in
our case we specify –port parameter to connect to our instance of MongoDB:

> mongo --port 27272

Compared to relational databases MongoDB operates with a collection, which is equivalent
to a table, and a document, which is equivalent to a record in relational databases. MongoDB
does not require creating databases and collections explicitly. Databases and collections can be
created while starting to use MongoDB. To see list of databases or collections, type show dbs in
mongo shell:

> show dbs

MongoDB shell allows one to make queries, updates, deletes on collections, get various statistics
on data and server usage, and manipulate with data with map-reduce interface, full documentation
can be found on the official web site3.

A.3 Running the parser

Before running the parser the Solr web application should be deployed on the Tomcat web server
and the MongoDB instance should be run. One should use Java version 7 or above to run the
parser. Get the parser distribution:

> git clone git@scg.unibe.ch:citation-search-engine

The cloned directory consists of three modules:

• solr - Solr related configuration files,

• citation search - a parser of scientific articles, that extracts meta-information and publish
documents to Solr and MongoDB,

• citation search web - a web application for searching citations.

All files related to the parser are located in the citation search directory. The citation search
directory has a standard Maven project layout4. Go to the resources parser.properties according
to your development environment. Table A.4 describes properties of a parser.properties file with
sample values.

One can change default logging properties for the Log4j library in a logj4.properties file. Once
property files are configured, build a jar file executing following command from the directory
containing a pom.xml file:

3MongoDB database, http://www.mongodb.org/
4Apache Maven, https://maven.apache.org

http://www.mongodb.org/
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 59

Property Description Sample value
solr.url.citations Endpoint for publishing ci-

tations.
http://localhost:8088/solr/collection1/

solr.url.bibliography Endpoint for publishing
bibliographic references.

http://localhost:8088/solr/collection2/

db.host MongoDB host server IP
address.

127.0.0.1

db.port MongoDB listening port. 27272
db.name MongoDB database name. CS
db.collection MongoDB database col-

lection name.
papers

pdfs.path Location of pdf files. /home/aliya/Library

Table A.4: Explanation of properties of a parser.properties file.

> mvn assembly:assembly -DdescriptorId=jar-with-dependencies DskipTests

Maven will generate a jar file citation search-1.0-jar-with-dependencies.jar in a target folder.
To execute the jar file run following command:

> java -jar citation_search-1.0-jar-with-dependencies.jar

A.4 Search Interface Deployment

All web application related web files are located in a citation search web directory. The directory
has a standard Maven project layout 5. Change a search.properties file in a resources folder. Table
A.5 describes properties of a search.properties file with sample values .

Property Description Sample value
solr.url.citations Endpoint for querying ci-

tations.
http://localhost:8088/solr/collection1/

solr.url.bibliography Endpoint for querying bib-
liographic references.

http://localhost:8088/solr/collection2/

Table A.5: Explanation of properties of a search.properties file.

One can change default logging properties for Log4j 6 library in a logj4.properties file. Once
5Apache Maven, https://maven.apache.org
6Apache Log4j, http://logging.apache.org/log4j/2.x/

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://logging.apache.org/log4j/2.x/

APPENDIX A. USER GUIDE FOR CITEWISE DEPLOYMENT 60

property files are configured, build a war file executing following command from the directory
containing a pom.xml file:

> mvn package -DskipTests

Maven will generate a war file in a target folder. Deploy to the Tomcat web server by putting
a warfile in a Tomcat webapp directory or use a Tomcat web interface to deploy through Tomcat’s
manager.

	1 Introduction
	1.1 Thesis statement
	1.2 Contributions
	1.3 Outline
	1.4 Glossary of Terms

	2 Technical background
	2.1 Typical Web Search Engine
	2.2 Inverted Index
	2.3 Dynamic Indexing
	2.4 Retrieving Search Results

	3 Related Work
	3.1 Citations In Scientific Publications
	3.2 Popular Academic Search Engines
	3.2.1 CiteSeerx
	3.2.2 Google Scholar

	4 CiteWise
	4.1 System Overview
	4.2 Parser
	4.2.1 PDF Processing
	4.2.2 Document Publishing

	4.3 Indexer
	4.3.1 Solr's Ranking Model

	4.4 Web Search Interface
	4.4.1 CiteWise Main Page
	4.4.2 Search by Bibliography Page

	5 Evaluation
	5.1 Experiment Setup
	5.1.1 Data and Tools
	5.1.2 Participants
	5.1.3 Process
	5.1.4 Tasks

	5.2 Questionnaires
	5.2.1 Pre-experiment Questionnaire
	5.2.2 Debriefing interview
	5.2.3 Post-experiment Questionnaire

	5.3 Evaluation Results
	5.3.1 Results for Task 1a
	5.3.2 Results for Task 1b
	5.3.3 Results for Task 2
	5.3.4 Final Questionnaire
	5.3.5 Results Summary

	6 Conclusion
	7 Future Work
	A User Guide for CiteWise Deployment
	A.1 Solr Installation
	A.1.1 Solr Configuration
	A.1.2 Enhanced Solr Search Features

	A.2 MongoDB Installation
	A.2.1 MongoDB configuration

	A.3 Running the parser
	A.4 Search Interface Deployment

