
Kumpel : Visual Exploration of
File Histories

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Matthias Junker
2008

Leiter der Arbeit:
Prof. Oscar Nierstrasz

Dr. Tudor Gı̂rba
Institut für Informatik und angewandte Mathematik

2

The address of the author

Matthias Junker
Rathausgasse 30
CH-3011 Bern
Switzerland

Abstract

Historical data can serve as a rich source of information for answering questions
about coupling between components, software structure or developer contribution.
The main goal of previous research was mainly to gain a high-level view of an
entire system, to ease the task of examination and analysis. Many approaches
exist which help detect exceptional entities or to understand how developers work
on files. But only little attention has been dedicated to the low-level analysis
of software systems. We address this issue with an interactive visualization called
Kumpel which consists of a history flow diagram and several integrated lightweight
approaches. Furthermore we define patterns which can be used to describe the
structure of a history and how developers work.

3

4

Contents

1 Introduction 7
1.1 Analyzing File Histories . 7
1.2 Our Approach in a Nutshell . 8
1.3 Contribution . 8
1.4 Roadmap . 9

2 Related Work 11
2.1 Authors . 11
2.2 Co-Change Analysis . 13
2.3 Visualizations . 14
2.4 Source Code Processing . 16

3 Kumpel 17
3.1 What history can answer . 17

3.1.1 Developer Questions . 17
3.1.2 Team Leader Questions . 19

3.2 Visualizing File Histories with Kumpel 22
3.3 Discussion . 34

4 Kumpel Visual Patterns 37
4.1 Structural Patterns . 38

4.1.1 Cut . 38
4.1.2 Popular Code Block . 40
4.1.3 Chasm . 42
4.1.4 Extension . 44
4.1.5 Insertion . 46
4.1.6 Stratification . 48
4.1.7 Rupture . 50
4.1.8 Tsunami . 52
4.1.9 Waves . 54

5

6 CONTENTS

4.1.10 Breaker . 56

4.1.11 Concrete Blocks . 58

4.2 Developer Patterns . 60

4.2.1 Collaborator . 60

4.2.2 Intruder . 62

4.2.3 Explorer . 64

4.2.4 Conqueror . 66

4.2.5 Territorial Defender . 68

4.3 Pattern Overview . 70

5 Case Studies 71

5.1 Subversion: auth.c . 73

5.2 Portage: bintree.py . 76

5.3 Mono: tramp-x86.c . 78

5.4 Seam: SeamPhaseListener.java . 80

5.5 Subversion: cmdline.c . 82

5.6 Subversion: translate.c . 84

5.7 Portage: isolated functions.sh . 86

5.8 Mono: aot compiler.c . 87

5.9 Subversion: ch04.xml . 88

5.10 Mono and Subversion: TODO . 90

5.11 Mono: ChangeLog . 92

5.12 Showcase examples . 93

6 YellowSubmarine 95

6.1 Model . 95

6.2 Model Extraction . 97

6.3 Browsing History . 98

7 Conclusions 101

8 Quickstart 103

Chapter 1

Introduction

1.1 Analyzing File Histories

Historical data can serve as a rich source of information for answering questions
about coupling between components, software structure or developer contribution.
The main goal of previous research was mainly to gain a high-level view of an entire
system, in order to ease the task of examination and analysis. Many approaches
exist which help one to detect exceptional entities or to understand how developers
work on files. But only little attention has been dedicated to the low-level analysis
of software systems [29].

In the process of acquiring understanding of a certain part of a system, documen-
tation might be missing, file or module names do not clearly state their purpose,
or developers might not be available. Therefore the necessity of browsing source
code remains, because it simply is the only source of information we can fall back
to. But what are the questions we can answer by examining file histories?

Different parties like developers or project managers have different interests. A
developer might for example ask from whom the last modification on a certain line
originated when he detects a possible bug, or which author has most knowledge
of a certain file if he has to refactor it. A team leader on the other hand might be
more interested in a high level view of file histories when he wants to assess how
useful was the work of a certain developer. Or he might want to estimate future
risks by evaluating how bug-prone or susceptible to maintenance a certain file is.
Versioning systems like Subversion or CVS do not provide a way of browsing and
comparing more than two versions of a file at the same time which makes it difficult
to answer such questions.

7

8 CHAPTER 1. INTRODUCTION

1.2 Our Approach in a Nutshell

In this master thesis we present an integrated interactive visualization called
Kumpel that aims to simplify the analysis of file histories. It provides an overview
of file histories by visualizing the evolution of source code with the goal of present-
ing all useful information on a single screen. It also allows us to further explore
details on demand through interaction. The entire source code of the history of a
file can be browsed by navigating through the visualization. In Figure 1.1 we can
see the main view of Kumpel . The diagram in the middle represents the file history
having on the y-axis the file contents and on the x-axis all revisions in which the
file was involved. The chunks representing the code are colored by the developer
who initially committed the code. Modifications are represented as small dots
which are also colored according to the corresponding developer. The size of the
changed and inserted lines can be seen from the Commit Size Diagram on top of
the main diagram. In the header of the visualization we can find the path and
the top ten file histories which co-changed the most with the current file history.
In the footer the Ownership Overview diagram shows the relative code ownership
of the participating authors for each version. The black vertical line on top of
the main diagram shows the currently selected revision. On top of this line the
Indentation Profile shows the indentation level of the source code in the active re-
vision which allows one to easily spot complex code chunks with high indentation.
If a code chunk is selected it is rendered in a slightly darker color and the corre-
sponding code is displayed on the right side underlaid with a speech-bubble-like
shape. Additionally the previous and next ten lines of code are displayed above
and below in order to provide the context of the selected code. The source code
can be browsed by clicking anywhere on the main diagram, using a mouse wheel
or the arrow keys. Several popups provide details on demand: by hovering over
the author legend entries a pop-up provides detailed information on the behavior
of a certain author, each revision can be browsed for the co-committed files and
each source code line can be browsed for the modifications it underwent.

1.3 Contribution

Even though the questions we ask about file histories have been addressed by
several approaches before, the novelty of our approach is that it allows one to
answer them with a single tool. Besides there already exist a few similar visual-
izations which deal with source code visualization, but since they mainly focus on
how to visualize histories, our goal is rather to focus on the application of such a
visualization.

1.4. ROADMAP 9

Figure 1.1: Overview of Kumpel

The main contributions of this master thesis are the following:

One integrated approach. We provide an approach which helps one to answer
the presented questions with a single interactive visualization.

Vocabulary. We introduce a vocabulary of patterns for describing developer ac-
tivities and structural patterns of file-evolution on the source code level.

Validation. We validate our approach by examining case studies and applying
the introduced vocabulary to describe each situation.

1.4 Roadmap

In chapter 2 we summarize the state of the art in several areas of research and
state how they relate to our work. These areas consist of research on author
behavior, co-change analysis, visualizations and source code and diff processing
techniques.

In chapter 3 we consider a set of use cases and questions different parties might
ask about file histories. Then we introduce our Kumpel visualization and explain
how it was developed with these questions in mind and how we deal with different
challenges by the use of interactivity and the integration of several lightweight

10 CHAPTER 1. INTRODUCTION

approaches.

In chapter 4 we introduce a vocabulary of patterns which occur in file histories. We
distinguish between file structure patterns which depict the historical structure of
a file and developer patterns which aim to describe the behavior of authors.

In chapter 5 we use Kumpel and the vocabulary from chapter 4 to analyze several
case studies from large open source projects. We provide for each a step-by-step
guide for understanding the story of each case study.

In chapter 6 we introduce YellowSubmarine which is used to extract historical
data from any Subversion repository to build a model. We talk about the model
and provide a manual for using YellowSubmarine together with Moose.

In chapter 7 we conclude our approach and discuss its limitations. Furthermore
we also provide an outlook for future work.

Chapter 2

Related Work

In this chapter we summarize the state of art in different areas which are related to
our work. The first area consists of research which takes into account the ownership
of components. The second treats research on co-change analysis. The third gives
an overview of visualizations which deal with either co-change or developer data.
The last section is dedicated to techniques which aim to process source code.

2.1 Authors

Alonso et al. [23] use a rule-based classification approach to identify experts/de-
velopers and contributors. The transaction information is extracted by mining
semi-structured log messages (commit author, file name, time, information about
bug fixes, issue number, etc) and information about the directory structure (e.g.
from documentation) is used to defining topics or categories. A tag cloud visu-
alization is used to further explore the nature of an author. In case studies they
were able to detect specialists and generalists in open source projects, and they
discovered that open source, like industrial projects, have a small developer core
which does most of the work.

Gousios et al. [15] introduce a model for measuring author contribution which
can be extracted from historical data. They identify different actions which can
be considered as positive (beneficial) or negative contributions. Positive actions
are for example: Add/Change code documentation, Commit translation file, First
reply to thread, close a bug, start a new wiki page. Examples for negative con-
tribution actions are: Commit more than x files in a commit, commit with empty
commit comment, commit binary files, etc. Negative actions by a certain author

11

12 CHAPTER 2. RELATED WORK

might not be directly harmful, but lead to problems when other authors try to
understand his work. The different actions are weighted and summed up to form
an overall contribution measurement for an author. By clustering similar projects,
the weights can be extracted automatically from the clusters.

Siy et al. [16] use segmentation on author file activity to identify phases in which
certain activities were carried out. They use a special bar diagram for presenting
the results, which shows for each contributor the segments as rectangles, the width
being the time range and the height the number of files in the segment. The bars
are colored by similarity to the previous segment. The result of the evaluation
were that adjacent segments are usually very different from each other (average
similarity of 6.5%), authors work on different sets of files over time but tend to
stay in the same directories and that segment boundaries often line up with the
release dates.

Schreck [9] et al. develop metrics for measuring the quality of documentation
as for example completeness and quantity. A more sophisticated approach they
present is readability which is based on linguist research. They implemented a
prototype called QUASOLEDO for seeing how documentation has evolved in the
Eclipse IDE, and were able to show with the proposed metrics that the quality
increased over time.

Schuler et al. [24] introduce the concept of usage expertise instead of mere change
expertise. Authors might also be considered to be experts when they use API
methods often.

Hassan et al. [17] present heuristics for dynamic fault prediction (Most Recently
Modified, Most Frequently Modified, Most Frequently Fixed, Most Recently Fixed)
and introduce a caching mechanism for bug-prone entities. They also take into
account other sources for the classification of modifications: log messages can
be used to classify fault repairing modifications, source code to classify general
maintenance modifications (change in indentation, updates in copyright notices)
and feature introduction modifications (all others). The produced warnings for
possible faults had a success rate of more than 60%. Kim et al. [19] additionally
use spatial information about recent bugs to increase performance.

Balint et al. [2] look at how developers copy code. They use CVS annotate which
annotates the source code of a given file version with the name of the author and
the date and version in which the line was last modified. From the lines of all files,
they generate a scatterplot which shows the location of equal lines. An automatic
approach which takes into account the minimum clone length, maximum line bias
and minimum chunk size is then used for identifying interesting patterns. The
results are then displayed in a Clone Evolution view which shows for a detected

2.2. CO-CHANGE ANALYSIS 13

multiplied clone all files in which it occurs with the author, revision and date
information. They were able to find recurring patterns like block cloning by the
same author, block cloning by different authors, consistent cloning of blocks and
lines with multiple authors (different authors are responsible for different parts of
the clone chunks), etc.

2.2 Co-Change Analysis

Co-Change analysis was detected using various techniques. Zimmermann et al.
[31] developed an Eclipse plugin called ROSE with the goal to prevent errors due
to missing changes, and to detect hidden coupling. ROSE browses source code
to detect rules of the form (file, type, name) ⇒ {(file, type, name), ...} which
are then applied on the fly to the changes to give hints about what to change
further. For changes on the case studies dependent on the size and stability ROSE
successfully suggested up to 44% of the related files and 28% of the related entities
(functions,variables,...).

Vanya [27] et al. apply clustering to files using transaction information to de-
tect parts in software systems which can evolve independently. This approach
is new because it does not only take into consideration static relations but also
co-evolution of entities.

Gı̂rba et al. [13] and Zimmermann et al. [5] applied formal concept analysis to
version history information to detect sets of files which changed in the same way.
Gı̂rba et al. then use logic expressions to detect interesting entities like for example
shotgun surgery, parallel inheritance and parallel semantics.

Breu et al. [4] assume that cross-cutting concerns emerge over time and aim to
detect them at the method call level. They implemented scalable history-based
aspect mining by first detecting simple aspects (e.g. lock, unlock). Then these
are combined with complex aspects and reinforced by looking at localities and
ownership of a certain commit to merge aspects which were inserted sequentially
instead of in the same commit. The evaluation of their approach shows that the
results have a high precision of 50-90% dependent on the project size.

Antoniol et al. [1] applies dynamic time warping to file commit signatures to de-
tect groups of co-changing files. By applying this approach to the Mozilla CVS
repository they showed that such groups actually exist. Their approach is useful
for detecting hidden relationships and similar functionality across different direc-
tories or for evaluating the project structure by comparing it with the detected
groups.

14 CHAPTER 2. RELATED WORK

2.3 Visualizations

Weißgerber et al. [30] introduce three visualization techniques which help one to
detect author collaboration on file level. Transaction Overview is a two-dimension
diagram which shows commits. On the y-axis it shows the number of files per
commit and on the x-axis the temporal location. The dots are colored by author.
A File Author Matrix shows on the y-axis the developers and on the x-axis all files.
Each pixel is then linearly colored by the frequency the developer changed a given
file. Dynamic Author File Graph is a graph visualization with developers and files
as nodes (developer nodes having a larger diameter than file nodes). If a developer
changed a file in a given time period an edge is drawn between the file and author
node. The graphs are interactive and animated to show how a project changes
and the time range can be adjusted to hours, weeks, etc. The three visualizations
were applied to detect team collaboration, role detection (e.g. main-, test- or
documentation-developer) and developer responsibility domains.

Seeberger et al. [25] analyze how developers drive software evolution. In order to
answer questions about the number of contributors, ownership of parts of a system
and the behavior of contributors they introduce a measurement of code ownership
and a visualization called Ownership Map. They present several patterns like for
example Familiarization, Expansion, Takeover, Cleaning or Teamwork and validate
their approach by analyzing several large case studies.

Beyer and Hassan [3] introduce an animated visualization called Evolution Story-
board which shows the proximity of files respective to co-change. Files as nodes
are placed in a two-dimensional space. The nodes are layout in an energy-based
layout, using as the attraction force the frequency the files co-changed. They use
two coloring schemes for the nodes: HeatMap which colors the nodes by the over-
all movement during the history and a schema which assigns colors by subsystem
membership. In case studies they found examples for evolution in design, strong
dependencies between subsystems and large files with cross-cutting concerns which
changed with a lot of different files.

Collberg et al. [8] describe a graph drawing technique which can be applied to
visualize inheritance, calls and control-flow of files in software histories. Their
system GEVAL shows time slices for each revision, using colors for authorship,
or how recently parts were modified. This can answer questions like Who was
responsible for what parts?, Which parts are unstable for a long time?, Why is the
program structured the way it is? or When was this part created?. They were able
to detect authors with different roles (architect, programmer) or changes in the
architecture from the visualization.

2.3. VISUALIZATIONS 15

Lungu et al. [21] argue for the importance of not only looking at the evolution
of a single software system, but several parallel systems. In their tool SPO they
provide several visualizations like size, activity or parallel evolution of projects
in super-repositories (repositories which serve as containers for several projects).
They further provide graph-based visualizations for author collaboration and inter-
project-dependencies, and a developer activity line diagram. Filters can be applied
to time-ranges or projects.

Lanza et al. [20] introduce the evolution matrix which combines metrics and
visualization. It shows the evolution of all classes of a system in a matrix, each
column representing a version and each row representing the versions of a class.
Each class version is represented in the matrix as rectangle, whose height and
width is used to reflect metric measurements (e.g., number of methods for width
and number of attributes for height). Based on the experience with the evolution
matrix they introduce a vocabulary which denotes different evolution categories
like White Dwarf, Pulsar, Red Giant or Supernova.

There are several visualizations which deal with the flow of histories. The movie
chart visualization from www.xach.com1 shows the sales for each movie in the
charts for each week. Each movie is represented as a flow which changes the
size depending on the sales amount. Scrutinize2 is a web-based tool for exploring
a source code repository. Developers, modules and commits can be navigated
and selected for getting additional information. For example by clicking on a
module, it shows us who performed most changes to this particular module and
which commits were involved. It provides an interactive time-line visualization
which shows the number of commits over time (e.g., by selecting an author all his
commits are highlighted).

The revisionist software 3 generates a single visualization of the evolution of the
lines of all files in a software system. The lines are only connected if the lines
actually changed between two revisions.

Voinea [29] developed a tool called CVSScan for visualizing file histories at the
level of individual lines. Two layouts were proposed: The file-based layout which
shows the actual file size for each revision, but does not keep track of the lines, and
the line-based layout which shows for each text line a straight line and keeps track
of the evolution of single lines. Different coloring modes are used to analyze the
structure of the file, ownership or status (modified, inserted, constant or deleted)
on line-level. The visualization can be browsed interactively and several metrics

1http://www.xach.com/moviecharts/
2http://scrutinize.webfactional.com/
3http://benfry.com/revisionist/

16 CHAPTER 2. RELATED WORK

allow to detect exceptional parts. The approach was validated by several user
studies which showed that even developers with no prior knowledge of system can
quickly assess the important activities in the evolution of a file.

Viegas et al. [28] present history flow, a tool for visualizing wiki pages. It is
similar to CVSScan but only provides a file-based layout. The text fragments
are colored by the initial author. They were able to detected several patterns of
collaboration and conflict. For example they found “edit wars” where authors
alternately removed each others text or that vandalism on pages (e.g., removal of
all content) was always repaired quickly.

Telea and Auber[26] present source code evolution of a file with a flow visualization.
The syntax tree of the source code of each revision is displayed as an icicle plot
which is used to show its depth in each revision. It is vertically mirrored for each
file version and the code chunks which occur in two subsequent revision are linked
together as spline curves (tubes) instead of straight lines and chunks are colored
by the historical identity instead of developers as in [28]. This supports an easy
detection of moved, swapped, inserted or deleted code over the entire file.

2.4 Source Code Processing

Hindle et al. [18] use source code indentation as a proxy for complexity metrics
in language-independent code fragments (diffs). They showed that indentation is
regular across languages, cheap to calculate and either together with the lines of
code, or alone a better proxy for complexity than lines of code alone.

Canfora et al. [7] develop a technique for diff files to keep track of modifications
of lines rather than just additions and deletions. The similarity is measured by
tokenizing lines and calculating the cosine similarity. Therefore no parsing is re-
quired which makes this approach language-independent. By manual inspection
on random samples from ArgoUML they assessed a high precision (96%) and recall
(95%).

Chapter 3

Kumpel

In this chapter we consider the interests of different parties in source code history
information. We present several scenarios and use cases, which raise several ques-
tions. In general questions about file histories are about How is the source code
structured at a given time?, How does the structure evolve? and Who changed it
and when? However when different parties like programmers or team leaders ask
these questions, they have different intents. Therefore we group these questions by
interested parties and present them in dedicated subsections. In each subsection
we present possible scenarios which might lead to those questions. In the second
part we present an integrated interactive visualization called Kumpel , which is our
approach for browsing and analyzing file histories. We provide a detailed descrip-
tion of all features and we explain their usefulness related to the questions from
the first section.

3.1 What history can answer

3.1.1 Developer Questions

When a developer is newly introduced to an existing piece of software and has
to deal with tasks like fixing bugs, or extending or adding new functionality, the
questions he asks are targeted to a detailed understanding of a particular set of files.
However the documentation might not be up to date, the responsible developers
are often not available and additionally he does not know the other developers
including their roles and responsibilities. After he detects an initial set of possibly
relevant files he concentrates on:

17

18 CHAPTER 3. KUMPEL

Question 1: What is the age of a certain part?

Parts which were introduced at the same time may have hidden dependencies.
When one part is moved or modified it might be necessary to take a look at the
other parts too. Any information about such hidden coupling might help one
to avoid faults due to missing changes[2]. Or if a new developer has to refactor
complicated code, information about which parts originate from the same author
or have the same signature might help one to find independent fragments which
can be easily separated[27]. Discovering recently inserted code can grant insight
into what the most recent requirements are. Code that existed from the beginning
can help one to understand what the original function has been and removed
parts can provide information about what parts did not fit with the current design
anymore.

While Question 1 focuses on inserts and removals of code segments, another point
of interest for the new developer is the modifications the code underwent:

Question 2: What was the impact of a particular change?

Modifications can vary in scope for example because a bug fix might affect only
few lines and have a local impact, or it might be spread over many files. The
insertion of a large source code fragment might make adjustments to the existing
code necessary, so the context might change too. Knowledge about the scope and
context of previous work on a similar task can help one to estimate effort on future
tasks.

Having acquired a basic understanding of the relevant files by finding answers
for Question 1 and Question 2, the next step is to understand the details of the
existing code. This can be a lot easier if developers who contributed to a certain
file are available for questioning[21]:

Question 3: Whom do I ask questions related to a certain file?

The author who created a file might not anymore be the one with most knowledge.
A developer who performed modifications on the file recently might have a more
up-to-date understanding than the developer who wrote it a year ago. Or maybe
the examined part was never modified, so the initial author might still be the
expert[30]. Finding out who currently has most knowledge of a file can be useful
for getting more accurate answers [14].

When the developer finally proceeds from discovery to the actual implementation
work, more detailed questions about a specific piece of code may arise. Having
examined the initially focused points the developer might better understand its
context by finding similar or related methods which were either introduced together

3.1. WHAT HISTORY CAN ANSWER 19

or have some co-change relationship[31][13]:

Question 4: Where do I find related parts?

To understand which parts in a file might lead to problems in the future, it can
be advantageous to know which ones led to problems in the past[17]. If a line was
modified over and over again, it must be central and important in some way, and
it probably will be changed in the future again as well[11].

Question 5: How many modifications did a set of lines undergo?

Assuming the developer completed his task and returns to the files at a later time
he wants get a quick overview of what happened during his absence. He is mainly
interested in his old code and the changes it underwent in the meantime, so he
can resume his previous work:

Question 6: What happened to my code?

The developer may want to know whether his code is still at the same place or if
anything was changed. Or the environment of his code might be different, so he
has to adjust his code to fit new requirements. Furthermore the developer also
might want to know whether his code is still present in the current version and
how many modifications his code underwent in the meantime or how many bugs
were fixed in his code.

3.1.2 Team Leader Questions

A team leader is in charge of quality assessment, risk management and developer
evaluation, and he focuses on the following questions:

Question 7: What was the contribution of a certain developer to a file?

Contribution can for example consist in the implementation of new functionality or
modification of existing code (e.g., bug fixes or maintenance tasks). By examining
the contribution of a certain developer the project leader might be able to classify
his behavior and evaluate how useful his work was[15]. If for example the code of
the developer gets removed or is involved in many bug-fixes, this could indicate
that the contribution was rather substandard. Alternatively, it could mean that
the requirements for this part of the application are highly unstable, or even that
the architecture of the application is defective.

To understand and assess the contribution and behavior of a developer, the rele-
vance of a file to certain developer’s overall work is also necessary to get a com-
prehensive impression. The contribution of a certain author to a file can be part

20 CHAPTER 3. KUMPEL

of his main work, or it can be only marginal. The author might have a narrow
focus on a certain part of a system which makes him an expert[23], or he might
be a generalist whose work is distributed over the whole system:

Question 8: How important is a certain file compared to the overall activity of
this author?

Among the responsibilities of the team leader is also the monitoring of progress
on issues and bugs. To get an overview of the progress on a certain issue he might
want to take a look at the parts which were involved:

Question 9: Which parts are involved in a certain bug or issue?

Keeping track of the impact of a bug fix or issue can as well be useful for design
assessment. If a bug has impact on various files which have no direct relation to
where the bug was expected or if simple issues require rewriting large parts of files,
this could be as an indicator for flaws in the architecture.

Risks can become difficult to estimate when the team leader only has a high
level view on the project, because some problems might not be obvious by only
looking at a high-level abstraction of a system. Therefore to understand risks
better, it may be necessary to take a closer look at files to understand where
exactly time was invested in the past. Especially if progress is dragging, the team
leader will want to know in which parts developers spent too much time. Code
which constantly gets rewritten might indicate unresolved problems in the design
or unclear responsibilities:

Question 10: Which components are time-consuming?

Answering Question 10 can also help us to estimate future efforts. Hassan et al.
[17] state that the number of modifications some code fragment underwent can be
used as a measurement for predicting faults. Recently and often modified code is
more susceptible to contain bugs than other code. Therefore if code with many
modifications is found, this information can be used to focus testing and early
bug warnings. But not only fixing bugs consumes time. Changing requirements
may challenge the existing design, so it is important that code can easily be re-
structured. Therefore complex parts in code are hard to maintain due to the
fact it takes time to understand and to rewrite them. Also cross-cutting concerns
might make maintenance harder, because modifications have to be made at several
places[4].

Question 11: Can this file be considered stable?

Frequent replacement or movement of code parts might indicate that the file

3.1. WHAT HISTORY CAN ANSWER 21

is unstable[8], lacks clearly defined responsibilities or might undergo frequently
changing requirements. Furthermore young code might not have been thoroughly
tested yet and therefore might be prone to bugs and be subject of maintenance
efforts.

22 CHAPTER 3. KUMPEL

3.2 Visualizing File Histories with Kumpel

Our approach is novel because it provides a single visualization for looking at
different aspects in a file. For example it can be used to browse co-changed files of
a certain file or to analyze the stability of a file. But it also provides the possibility
to spot complex code fragments or cross-cutting concerns. Or it can be used to
analyze the contribution of the different developers and to detect experts on a file.
All these issues have been researched before and were addressed with dedicated
approaches, but so far there was no approach which addressed all these issues
together. Our approach therefore has a high flexibility in terms of how it can be
used to analyze file histories even though the different integrated approaches are
only lightweight and do not have the depth of a dedicated approach.

Many of the questions from the previous section aim at very detailed understanding
of files at a source-code level. The main problem with analyzing source code history
is the large amount of data available. Source code repositories offer the possibility
to browse the changes between two file versions (diffs), load the whole file content
of a given file version and annotate it with metadata (e.g., last author or time
and revision in which a certain line changed the last time). However even more
sophisticated approaches like diff editors only allow for comparing two versions of
a file[26]. This can make the analysis of file histories with many revisions a tedious
task. Using visualizations is one approach for this issue. However visualizations
which deal with large amounts of data omit details and if we want to answer
questions which require a low-level understanding of files, we have to be able to
obtain a more detailed view of interesting areas on demand.

We address these issues with an interactive visualization called Kumpel 1 with
several integrated lightweight approaches. Kumpel ’s approach is to show as much
as possible on one screen and provide further details on demand. This section
explains how Kumpel deals with the discussed challenges and how it helps to
answer the questions from the previous section.

Overview. In Figure 3.2 we see the main view of Kumpel . The large diagram in
the middle is the history flow and shows the source code history of the file (inspired
by the History Flow visualization for Wikipedia pages [28]). The orientation of the
main diagram is from top to bottom representing the order of source code. The
y-axis shows all commits in which the file was involved. Code chunks in time are
represented by lines which start at the revision they were inserted and stop at the

1The name of Kumpel originates from the German word for miner, but is also commonly used
as synonym for friend.

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 23

Figure 3.1: Overview of Kumpel

24 CHAPTER 3. KUMPEL

current revision or at the revision they were deleted in. When a chunk is inserted
we can see a white triangle which points to the left (like a ¡) on it’s left side.
When a chunk is deleted we can see a white triangle on the right side of it. The
triangles indicate that code was inserted or deleted at the place they occur from
one to the next revision. The height of the chunk depends on the size of the code
chunk. Kumpel can be used to browse the source code of all revisions of a file. This
requires interactive two-dimensional navigation because typically code files consist
of several hundreds of lines for each revision and consequently not all data can be
displayed at the same time on a single screen. By selecting a code chunk in the
main diagram, the corresponding text appears on the right side. Other components
are interactive as well: Additional details about authors and commits appear when
hovering over the according label and keyboard commands can be used to view
the commit comments or to open other tools. The header of the diagram consists
of information which relates to the entire file history like its path and age, the
average line age percentage (ALAP), the average modification count per commit
(AMPC) and the list of files with which it changed most frequently.

Code Chunks. Instead of showing separate lines, Kumpel groups lines which
fulfill certain conditions into chunks. The first condition for lines to belong to
the same chunk is that they were introduced together (hence each chunk only
belongs to a single author) and therefore have the same age. We will refer to this
property from now on as the age of a chunk. The second condition is that lines
in a chunk are adjacent to each other. The goal of this grouping is an abstraction
from single lines to logical change units which provide a better overview of the file.
For example in a large method there might be parts which were extended a lot and
other parts which stayed the same since the beginning. These fine-grained chunk
areas indicate concentrated work and can answer questions about the location of
frequent changes, complex components and time-consuming work. Large logical
chunks denote parts which were written and introduced at the same time. As
a side-effect, displaying chunks instead of lines also has the advantage of faster
rendering speed.

Coloring. Questions about file history can be about the temporal structure of
the history or about the developer activity, which means there are two possible
ways of coloring the history flow. Coloring them by ownership can sometimes
answer both types of questions, but if there is only one author working on a file,
the history is colored in a single color, making it hard to distinguish the different
chunks. Due to removal or insertion of chunks the view on the flow of lines can
become obstructed. So if we still want to answer questions about the chunk age,

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 25

a chunk-based coloring obtains better results. This is why Kumpel provides two
coloring modes. The first one colors the chunks according to the author. The color
palette has only ten different colors, which is as much as can be well distinguished
by the human eye, according to Stephen Few [10]. Colors in this mode are assigned
according to the area on the screen owned by an author. The author with the
overall highest ownership over time is always assigned the color red, the second
green etc. If a file has more than ten authors all the rest are assigned the color
gray.

The second mode (chunk coloring) colors the chunks based on their age (point
of introduction and age). This makes it easy to keep track of chunks which were
committed together, even if they are distributed over the file. Figure 3.2 is an
example of a file with only one author. Because of numerous small removals of
code it becomes difficult to see exactly which parts were removed. By using the
second coloring mode this becomes obvious.

Figure 3.2: Coloring by author (left) and by age (right)

Line Modifications. For each modification a line has undergone, Kumpel shows
a small dot in the main diagram which is colored by its author. This makes it easy
to get an overview of areas with concentrated modifications. But because Kumpel

26 CHAPTER 3. KUMPEL

uses a chunk- instead of line-based approach, it can be difficult to give answers
to more detailed questions like How many times was a certain line modified? or
Which exact lines were involved in a certain bug-fix?. When a code chunk is se-
lected, the corresponding lines are annotated with the line number and a set of
squares, which represent the changes to the line. For the insertion and each mod-
ification there is one square. The leftmost square always stands for the insertion
of the line. Each square is colored by the corresponding author. If the square is
filled instead of hollow, it means that the currently displayed line corresponds to
this very modification.

Figure 3.3: List of all changes a certain line underwent, annotated by revision,
author and line-number per revision

Even though it is possible to see which author last modified a line, it is still not
possible to see which lines exactly were changed in a particular revision. For
example if we want to know which lines were involved in a bug fix, the exact
location of a modification is important information. Therefore if the currently
selected version matches exactly the version represented by a square, it is rendered
slightly higher than the others. If the line was not changed in the currently selected
revision, the square which corresponds to the last modification is displayed at the
regular size. In the example from Figure 3.3 we can see two squares on line 282
and 289 which are filled and slightly taller than the other squares. This means
that these two modifications were performed in revision 96656, which is currently
selected.

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 27

This gives us information about the location of changes, but we still have to browse
back and forth through the revisions to see the actual content of the modification.
To avoid this, each line can be interactively browsed for details about the changes
as the pop-up in Figure 3.3 illustrates. For each modification there is one line
annotated as well with the author and revision and line number in that revision.
The line which is currently displayed in the main view is rendered darker than the
other lines in the pop-up.

Cross-Cutting Modifications and Topics. When analyzing modifications in
file histories, an important piece of information is the impact of a change. It might
be that a change only occurred at one place in one file, but it might also be that
the same sort of change was performed several files. Kumpel handles the latter by
identifying topics.

A topic is defined as set of words for each commit. A commit has a topic, if
a set of words which were added or removed occur in a certain ratio within the
overall changed lines. In Kumpel we chose 50% as threshold. For example in
the file trunk/mono/mono/io-layer/mutexes.c of the open source project Mono in
revision 57331 we detected the topic equal and pthread. In 18 places similar lines
were modified in the same way as the following.

Sample 1 Cross-Cutting Modifications in file mutexes.c of Mono project

43267 173 mutex_handle->tid==pthread_self()){

57331 153 phtread_equal(mutex_handle->tid,pthread_self()))

42844 264 namedmutex_handle->tid == pthread_self()){

57331 228 pthread_equal(namedmutex_handle->tid,pthread_self()))

46313 308 mutex_handle->tid == tid){

57331 299 pthread_equal(mutex_handle->tid,tid))

The log message of this commit confirms that comparing pthread t with == is not
portable, which is why this was changed to use pthread equal(). If Kumpel detects
modifications which match with the topic, instead of showing a small square, a
cross indicates that the change to this line is similar to other changes to other lines
in this commit. Additionally the topic with the associated frequency is displayed
at the bottom. Commits with topics can be considered to have a cross-cutting or
distributed character.

Interestingly in projects in which the commits are well documented, the detected
topics correlate with the comments. For example in Mono, a large open source
project, on average 60% of the detected topics also occur in the corresponding
commit message. Because the calculation of topics can be very time-consuming

28 CHAPTER 3. KUMPEL

when projects have commits in which a lot of files are changed, this calculation
is disabled by default and can be globally enabled from the context menu of the
visualization.

Navigation. The history can be navigated interactively with mouse and key-
board. Clicking anywhere in the main diagram selects a chunk and the left-most
revision relative to the mouse position, and can be used to move quickly to inter-
esting points in the source code history. The mouse wheel can be used to scroll
through the code as in any text editor, which is a comfortable way of browsing
the source code from the same revision. The arrow keys can be used to navigate
through source code and revisions step-by-step, which is useful for examination
with a narrow focus, for example to keep track of how a specific line and its en-
vironment have evolved. A vertical line shows the currently selected revision, and
the selected source code is emphasized by rendering a speech balloon shape around
the code which corresponds with the selected chunk as can be seen in Figure 3.4.
Note that to preserve the context of the selected code, the next and previous lines
are displayed as well. The distinction between the selected and the context lines
is made by shading the background of the selected lines.

Figure 3.4: Selected chunk with corresponding text

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 29

Version Selection. Even
though an abstraction of
the source code is pro-
vided, it can still be te-
dious to keep track of
which parts actually are
still present in some re-
vision or who mainly
lost ownership due to re-
moval of code. This es-
pecially is the case when
the line chunks are fine
grained and the files are
large. To address these
issues, Kumpel provides
the possibility to select

and highlight all chunks which are present in the currently selected revision (press-
ing the ‘a’ key while a revision is selected). This means all chunks which lie under
the vertical line which represents the currently selected revision are highlighted.
The highlighted chunks are rendered in a darker version of the regular color. Fig-
ure 3.2 shows an example where all chunks of a revision have been selected. It
becomes obvious that most code of the red author was only inserted after the
selected revision and that the blue author’s code was inserted before the selected
revision and got removed shortly after it.

Indentation Profile. Areas with a fine granularity of code chunks
can indicate repeated work and complex code. Another approach for
answering the question of where and whether complex code can be
found in a file is the usage of source code indentation as a proxy
for complexity, as suggested by Hindle et al. [18]. This is especially
useful because this metric is independent of the used programing lan-
guage. The indentation is displayed in Kumpel as a vertical profile
line which is aligned with the vertical line marking the currently se-
lected revision. By positioning it on top of the diagram instead on
the side it aligns with the code chunks of the currently selected re-
vision and serves as an indicator for interesting code. It can also be
used to detect the range of methods, since the beginning and the end
of a method usually has the same indentation with all the code in

between being further intended. So without looking at the code itself it is possible
to estimate the number and size of methods.

30 CHAPTER 3. KUMPEL

Ownership Overview. Because the color of a chunk never changes, even in the
case when there are a lot of modifications from authors other than the originator,
the exact overall ownership of the file might not always be obvious by looking at the
main diagram. When we ask questions like Who is the current owner of a particular
file? or What is the impact of an author over time? we require information
about ownership regarding modifications as well. For that reason we introduced
the ownership overview, which shows the percentage of code ownership for each
author in a stacked line diagram. In this diagram when an author modifies or adds
a new line, he becomes the owner of that line. Note that this is slightly different
from the main diagram, where a modification does not change the ownership of a
line. The modified line is still colored with the same color after the modification.
In the Ownership Overview when an author modifies a line he becomes the owner
of the line. Therefore the Ownership Overview and the History Flow do not
necessarily correspond. A commit with many modifications have a large impact
on the Ownership Overview (the area of the owner of the commit grows), while in
the History Flow we only see one dot for each modified line.

Figure 3.5: Ownership Overview

Code Finder. Browsing all source code might still not be convenient in the case
where we are interested in getting an overview of a file. For example we might
want to know what public or private methods, includes, TODOs, comments, etc
exist in a particular file. For this kind of question Kumpel lets you filter the source
code by searching for terms (by pressing the ‘f’ key). The chunks containing the
searched term are all selected and the corresponding text displayed. To make it
easier to spot the exact matching lines in a large chunk, the lines which contain
the keyword are displayed in bold. This approach provides a filtered view on the
file and still shows the context (because the code of the whole chunk is shown) and
the location of the results. In Figure 3.6 this feature is used to see where debug
statements can be found.

Author Browsing. The legend at the bottom shows for each author the as-
signed color with the number of times the currently browsed file has been commit-
ted. If the file has more than ten authors, there will also appear a legend entry
for others. By moving the mouse over this label a list appears with the authors

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 31

Figure 3.6: Search for expression DEBUG

who were assigned the color gray. By hovering the mouse over a regular legend
entry, a pop-up appears showing detailed information about an author, and a bar
chart. The bar chart is a distribution chart of the commit ownership. It shows
for a certain author how many files he touched and shows the percentage of com-
mits he owned of these files. For example if there is a single bar with the value
“10”and a label on the x-axis “90-100%”in the distribution chart this means that
the author touched ten files. Of these ten files he owns 90-100% of the commits
of each file. A high bar on the left side of the chart means that the author owns
a large percentage of the commits of those files represented by the bar. Therefore
he might be a specialist on these files. A high bar on the right side means that
the author touches a lot of files, but only owns a small percentage of the commits
in these files. This would be the case for a bug-fixer who works on many files, but
only rarely commits. The bar representing the currently browsed file is colored
black. If for example an author owns 8% of the commits of the currently browsed
file, the bar with the label “0-10%”would correspond to this file and be rendered
with black. This allows one to estimate the importance of the currently browsed
file compared to the overall activity of an author. Summarized this diagram helps
one to answer two questions: How much is the author concerned with the currently
browsed file? and Is this author more a generalist or a specialist?. A specialist
would have higher bars on the left side of the diagram, while a generalist would

32 CHAPTER 3. KUMPEL

have higher bars on right side. For example in Figure 3.7 we can see that the
author dietmar owns 0-10% of the commits of the currently browsed file.

Figure 3.7: Author Details

Commit details. Knowledge about events in a file history can help one to better
understand the current state of the file. Interesting events can for example be
refactorings, bug fixes, large modifications or the introduction of new functionality.
But events can also span multiple commits which lead us to the related question
whether for example we can find phases during which only a single author worked
on a file or several authors collaborated. So the knowledge about the responsible
authors of events represents important information. All these questions could
be answered by examining the main diagram closely. However due to the fact
that the events might be distributed over the whole file, it becomes difficult to
compare the different phases and events in the diagram. Additionally different
events might have different impacts on files. For example a phase where an author
constantly makes small additions and adjustments might be overlooked in the main
diagram because of the sparse occurrence of visual representatives compared to a
sudden change in naming conventions of variables which involves the modification
of several more lines. To overcome these issues we provide several visual aids.
The revision labels are colored by author, which allows for an efficient detection
of subsequent groups of commits from the same author. On top of the revision
labels, vertical bars represent the number of inserted plus modified lines for each
commit. By using this visual information large modification efforts are easier to

3.2. VISUALIZING FILE HISTORIES WITH KUMPEL 33

spot, even when they are spread over the whole file. The bars as well are colored
by the author to express their correspondence to the revisions.

Commit Message Finder. The easiest way to find out what happened in a
certain commit is to read the commit message, if there is one. Kumpel allows
one to view the commit message of the currently selected revision on demand (by
pressing the ‘c’ key) and to filter it for a certain expression (by pressing the ‘l’
key). The Commit Message Finder shows the results by rendering the revision
label in bold. This is for example useful if we want to find out which commits
were part of a certain bug or issue from a tracker system.

Commit log. To find out what the impact of a certain change on other files was,
one has to be able to browse the corresponding commit log. In Kumpel this can be
done by hovering over a revision label. The appearing pop-up holds a range bar
diagram showing for each file in the commit a horizontal bar. The range of the bar
represents the lifetime of the file. To indicate the current commit, a vertical line is
drawn over the whole diagram. The currently browsed file history is displayed in a
slightly darker gray and is always on top of the diagram. For each bar the commit
activity is indicated by vertical lines. If another file was committed together with
the current file, the vertical line which corresponds to this commit is rendered with
a black line (instead of a dark gray one). This means that every bar has at least one
black vertical line, since they all have one commit in common by definition. The
number of shared commits also defines the order of the bars. The file histories
with most shared commits appear closer to the top than those with few. This
makes it easier to detect files which co-change often with the currently browsing
file and therefore might have a closer relation. Figure 3.8 shows the commit log of
a commit from the author lupus. From the order of the bars and the number of
black lines which show when the files co-changed with the current file threadpool.c
we see that ChangeLog and threadpool.h co-changed most frequently with our
example file. We can also see that ChangeLog changed in almost every single
revision, which means it is probably not as related to threadpool.c as for example
threadpool.h, which shares all commits with it except for one.

The next step after having detected another interesting file history is to take a
closer look a it. Kumpel provides a convenient way of opening a new instance
of Kumpel , by selecting the chosen file history in the context menu of the com-
mit.

34 CHAPTER 3. KUMPEL

Figure 3.8: Commit log details

3.3 Discussion

Besides simple diff editors there already exists a tool similar to Kumpel which deals
with analyzing file histories. CVSScan is an integrated multiview environment
which visualizes the history of a file. The fundamental difference to Kumpel is
the granularity of the visualization. CVSScan shows a one-pixel wide line for
each source code line, while Kumpel groups lines to chunks, and shows a bar for
each chunk with the width being equal to the number of lines of the chunk. The
advantage of this approach that it is possible to study which parts have a logical
relation in respect of evolution.

CVSScan allows one to visualize file histories using two different layouts. The
first is a line-based layout which shows for each line of code that ever existed a
horizontal line. This keeps track of the evolution of a single line of code. The
second layout is called file-based layout and is similar to Kumpel ’s main diagram.
It shows all lines stacked on top of each other, so it is possible to keep track of the
file size. Furthermore in CVSScan one can switch the coloring mode. The lines
can be colored by author, by construct (comment, file reference, nesting level) and
line status (constant, modified, inserted, deleted). Kumpel tries to avoid switching
modes as much as possible. Therefore the line status can be studied by looking
for white space for insertion and deletion and dots for modification of lines. At
the same time the chunks are colored by author. Instead of having a second
layout which allows for following the evolution of a single line, in Kumpel the
line chunk of interest can be highlighted which allows one to study its evolution
easily. This approach combines the advantages of both layouts of CVSScan. In
addition Kumpel provides the second coloring mode which allows one to keep track
of chunks with equal signatures and makes it easier to spot which are related in
respect of their signature.

3.3. DISCUSSION 35

The strength of Kumpel lies in its lightweight approaches: it allows one to browse
the changes a file underwent at once while in CVSScan this is only possible by
navigating through the revisions. The Ownership Overview allows one to gain
an overview of who owned a file at a certain point and the author detail pop-up
provides detailed information about the behavior of a certain author. Another
difference between Kumpel and CVSScan lies in the filtering feature. Kumpel
allows to filter out lines by the use of simple regular expressions (e.g., filtering out
empty lines, brackets, comments,etc) which is not possible in CVSScan.

36 CHAPTER 3. KUMPEL

Chapter 4

Kumpel Visual Patterns

In this chapter we introduce a vocabulary for describing recurring visual patterns
in file histories. We divide these into two groups:

Structural patterns. Structural patterns describe the structure of file histories
independent of ownership. Structural patterns describe shapes Kumpel ’s
main view at various levels. Some of them relate to small parts like code
blocks or even lines while others can be used to describe the entire evolution
of a history.

Developer patterns. Developer patterns are related to the ownership of lines and
describe behavior patterns of developers.

For each pattern we provide the name, a description and several examples. We
explain the causes of why and when these patterns occur and illustrate them with
examples we found by manual inspection of several large case studies, which will
be introduced in detail in Chapter 5. Even though we show the entire view for
each example, we only focus on a single pattern in each example.

37

38 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1 Structural Patterns

4.1.1 Cut

Description. A Cut in Kumpel is a vertical line which is formed by dots or
crosses which belong to the same commit. Cuts can occur concentrated on a
smaller part in a file or they can span over the entire history.

Causes. Most often Cuts occur due to renamings of methods or variables which
affect the entire file. Cuts also occur due to cross-cutting modifications like changes
in exception or error handling, or the introduction of cross-cutting concerns like
locking mechanisms.

Figure 4.1: Cut pattern from the Subversion project: swigutil pl.c.

Examples. swigutil pl.c contains four cuts which occur due to different reasons.
The first cut represents the replacement of a symbol by an enum which was neces-
sary to prevent naming conflicts. The second cut occurred because of two reasons:

4.1. STRUCTURAL PATTERNS 39

Six method signatures were changed to become static, and casts to type void were
added to avoid compiler warnings. The third and the fourth cut occurred mainly
due to renaming operations. A closer look revealed that the cuts repeatedly con-
cern the same code blocks which all represent a similar invocation of an external
method.

Figure 4.2: Cut pattern from the
Mono project: mini-codegen.c. mini-
codegen.c holds architecture inde-
pendent code generation functional-
ity with nine cuts. The first three oc-
cur in subsequent revisions of the file.
After a patch was aplied this revision
was reverted right afterwards, so the
patch had to be reapplied in the fol-
lowing version. The next three cuts
represent optimizations and the next
two cuts represent refactorings. The
last cut is accompanied by the inser-
tion of code and represents a merge
of a branch which was developed over
years. Responsible for the low level
changes and optimizations was exclu-
sively the red author. The reason for
the cuts is the repeated use of the
the same data structures and helper
methods in the low level code.

Figure 4.3: Cut pattern in Sub-
version project: trunk/subver-
sion/po/sv.po Figure 4.3 shows
an extreme example for the Cut
pattern. sv.po is one of several
translation files from the Subversion
project with many cuts. Together
with the translated string it stores
the exact location (file name and
line number) where the translation
should be applied. The location
points to other regular code files
where the expressions to be trans-
lated occurs. Every time these
translatable files change due to the
insertion or removal of new code,
obviously the line numbers change
as well and have to be updated in
sv.po and the other translation files.
The countless cuts all originate from
the same author.

40 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.2 Popular Code Block

Description. Popular Code Blocks are code fragments which undergo a large
number of modifications. Usually the modifications are performed by several au-
thors and occur in a small distinct areas. In our visualization this appears as an
area with a large number of horizontal dots.

Causes. Popular Code Blocks can be anything from a frequently changing method
signature to a code segment from a configuration file. Sometimes Popular Code
Blocks also occur in groups distributed over the whole file. A good example for
this pattern is a configuration file with a version number which gets updated with
every release. But more usual cases are just frequently modified code blocks.

Figure 4.4: Popular Code Block pattern in Blender project: BKE blender.h

Examples. In BKE blender.c we find very few modifications except for two lines
which get modified repeatedly. The first line represents the major release number
which gets adjusted very frequently in the early history. Then a second line is

4.1. STRUCTURAL PATTERNS 41

introduced representing the minor release number that gets modified often as well.
From this point on the modification frequency of the major release number is much
lower than before, which means they only did a major release after several minor
releases.

Figure 4.5: Popular Code Block pat-
tern from the Subversion project:
subversion.spec. subversion.spec is
the specification file for the Subver-
sion project and among other things
it contains its dependencies. The
Popular Code Block pattern in this
example occurs in the first couple of
lines where for each dependency, the
version number is defined and gets
updated regularly. The most popu-
lar line was modified 18 times in 73
revisions.

Figure 4.6: Popular Code Block pat-
tern from the Mono project: make-
file.am. Makefile.am handles the
build process of the Mono project
and includes in the header a list of all
subdirectories. This list is modified
22 times over 130 revisions by several
developers. This is again an example
for a Popular Code Block due to some
configuration that has to be adjusted
manually over and over again.

42 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.3 Chasm

Description. Chasms occur due to the removal and the subsequent insertion
of large parts of a file. They are represented as gaps which go through the main
diagram and span between two subsequent revisions. In the case of incomplete
replacements usually thin threads span over the gap, denoting the code fragments
that survived the replacements. Chasms can be easily spotted due to the abrupt
color change of the entire history after the chasm.

Causes. The most common causes for this pattern are renamings, relocations or
replacements of files. A less frequent cause for Chasms consists of a file being com-
pletely rewritten because of fundamental changes, like for example the migration
to a completely different backend, framework or technology.

Figure 4.7: Chasm pattern from the Subversion project: reporter.c

Examples. Figure 4.7 looks at first glance like a renaming or a move of a file
because of the large gap, but a closer look shows that the header of the file survives

4.1. STRUCTURAL PATTERNS 43

the chasm. reporter.c was changed to use temporary files instead of database
transactions due to performance reasons. The large Chasm shows that this change
was so extensive that the entire file had to be rewritten in order to implement
the new behavior. The size of the file almost doubled, which is rather atypical
for a chasm. It is interesting that the red author was responsible for this large
change because he only performed four small modifications before the Chasm and
afterwards only committed five times of 112 commits. Chasms of this size due to
rewritings are very rare. Possibly, the red author did not know the file very well,
which could be the reason why he rewrote the file from scratch instead of reusing
existing parts or just modifying existing parts.

Figure 4.8: Chasm pattern from the
Subversion project: subversion.spec.
Subversion.spec is an example for the
most common case of a Chasm pat-
tern. It occurs at about the middle
of the file and spans across the en-
tire file. The Chasm occurred be-
cause the file was moved to another
directory. The move and rename op-
erations are the most frequent causes
which lead to Chasms.

Figure 4.9: Chasm pat-
tern from the Mono project:
trunk/mono/mono/io-layer/wait.c.
wait.c is another example for an
incomplete gap. Large parts are
replaces and some survive the gap,
while the file shrinks about 80 lines.
The Chasm occurred because almost
all code got rewritten by the red
author with the goal to redesign the
handle waiting functionality. The
surviving code consists mainly of
debug switches, comment fragments,
parenthesis and a large method at
the end of a file which was almost
untouched by the rewriting process.

44 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.4 Extension

Description. Extensions are additions of code blocks mainly at the end of a
file. They usually have a size larger than ten lines and occur in small numbers.
The Extension pattern does not refer the individual extensions, but to the more
interesting cases when file histories grow mainly in this way. In the visualization
this pattern can be detected by looking for hard edges on the file contour. If code
blocks are inserted elsewhere, the contour has slopes instead.

Causes. Extensions often indicate that the growth of the file is due to extension
of the functionality of a file. The extension usually consists of several methods
which have some relation to each other and form logical units because they repre-
sent the implementation of a certain feature. Therefore they are often treated as
independent parts, which means that the impact of a modification on this logical
units often stays within its borders. Other cases we encounter frequently are test
classes which grow mainly because new tests are added.

Figure 4.10: Seam: trunk/src/main/org/jboss/seam/core/Init.java

4.1. STRUCTURAL PATTERNS 45

Examples. Init.java is a storage for Seam configuration settings and grows lin-
early due to the extension of the file with new configuration settings. In Figure ??
the chunk coloring mode is used because most work was performed by a single
author. In this case, using the author coloring mode would not reveal the pat-
tern because all chunks would have the same color. The extensions are mainly
setter and getter methods for the configuration settings (e.g., setHotDeployPaths,
getTimestamp, getConvertersByClass, getInstalledFilters, getRootNamespace, ge-
tUserTransactionName). This case is typical for the Extension pattern because
new code is always added in blocks and at the end of the file.

Figure 4.11: Extension pattern from
the Subversion project: diff file.c.
diff file.c holds routines for calculat-
ing diffs between files. The file un-
dergoes two extensions by the author
of the file. The first step represents
the implementation effort for provid-
ing support for the unified diff for-
mat. The second step is an extension
to support output for yet another diff
format (diff3). Both parts are in-
serted at once and rarely get modi-
fied. Due to this and the size of the
Extension the pattern can be easily
detected by the stair-like shape.

Figure 4.12: Extension pattern from
the Subversion project: path-test.c.
path-test.c as the name suggests con-
tains tests for the path related func-
tions. Several test cases are added by
different authors over 130 revisions.
The steps of the stair-shape of the
history are much smaller than in the
previous example because in a com-
mit the file is only extended with a
single new test. The tests are not in-
serted exactly at the end of the file.
The reason for this is because the
file contains at the end of the file a
structure holding the test descriptors
which have to be extended for each
new test.

46 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.5 Insertion

Description. Insertion is similar to extension, only Insertion characterizes in-
ternal growth of a file represented by code mainly inserted between existing code
blocks. The code fragments are usually rather small. The difference between the
two patterns can be seen in the contour of a shape which appears as overall slope
rather than a stair. Due to the internal insertion typically the visualization also
contains many small white triangles which open to the right.

Causes. The occurrence of this pattern is often an indication that existing func-
tionality was extended due to the insertion of code in existing methods. Insertion
frequently occurs at the beginning of a file history indicating a continuous imple-
mentation process.

Figure 4.13: Mono: trunk/mono/mono/mini/mini-ia64.c

Examples. mini-ia64.c is a backend for the Mono code generator. It is developed
exclusively by the red author. During the first third of the history he keeps working

4.1. STRUCTURAL PATTERNS 47

on the integration of the support for IA64 processor architecture. This phase
mainly consists of modifications and small insertions of code in existing methods.
After this phase the main implementation effort seems to be complete and the
file stabilizes and remains about the same size, the only modifications being small
fixes and optimizations. This is a characteristic case for the Insertion pattern that
mainly occurs in files which are slowly changed over time.

Figure 4.14: Insertion pattern of
the Seam project: ConversationIn-
terceptor.java. ConversationInter-
ceptor.java is a file which slowly
grows over time. The small inserts
extend the existing methods and are
distributed over the entire file . New
methods are only rarely added. This
case too represents the ongoing work
of a single author who keeps improv-
ing and adjusting a file. The differ-
ence to Figure 4.13 is that in Conver-
sationInterceptor.java code gets not
only added but also removed fre-
quently. This indicates that the file
does not merely undergo a simple lin-
ear implementation process, but goes
through constant changes where code
is also removed.

Figure 4.15: Insertion pattern of
the Subversion project: mailer.py.
Mailer.py starts as a small file and
grows by insertions of many small
code chunks all over the file. Dur-
ing the first revision the initial func-
tionality is slowly implemented and
then tweaked. Over time the mail-
ing functionality also gets small ex-
tensions like the possibility to send
mails to multiple persons or the abil-
ity to produce file diffs, however the
impact of the extensions in mailer.py
is rather small because it just uses
existing functionality instead of im-
plementing it itself. In the middle
of the history the file becomes stable
and the implementation effort can be
considered as done.

48 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.6 Stratification

Description. A Stratification mostly occurs in a single part in a file and hap-
pens due to numerous small insertions by many authors. Stratifications usually
grow over a long period of time and manifest in the visualization as parts that are
extended repeatedly with small chunks. This pattern can be spotted by looking
for areas which contain a large number of small, differently colored chunks. Strat-
ifications usually occur in a particular part of a file (local), but can also concern
entire files in some rare cases (global). The granularity of the chunks can vary as
well. In most cases however they have a height of a single or only a few lines.

Causes. The reason for Stratifications are often large, complex methods which
are modified and extended over time by a single or several authors. These stratified
parts usually represent time-consuming and complex functionality that is hard to
understand and to maintain. Another cause for Stratifications can be maintenance
operations that continue over a long period of time.

Figure 4.16: Stratification pattern in Subversion project: main.c

4.1. STRUCTURAL PATTERNS 49

Examples. Main.c is with 397 revisions and 36 authors the most frequently
modified file of the Subversion command line client. It is responsible for the
command-line argument parsing, and the execution of the corresponding func-
tions. Additionally it serves as storage for help texts. Every time a new feature is
implemented, the frontend has to be adjusted as well, and as different developers
work on different parts of the client, they are also responsible for implementing the
corresponding frontend functionality. This leads to the global Stratification in this
file which spans over almost the entire file history except for the rather homogenous
area from the cyan and blue author at the beginning of the history.

Figure 4.17: Stratification pattern
from the Subversion project: dead-
props.c. deadprops.c is a special
case of a global Stratification because
the granularity is more coarse (up to
seven lines) than in the other exam-
ples. The file is largely stable and
the only changes are maintenance op-
erations like tweaks, bug fixes and
adaptions to changes in the envi-
ronment (e.g., different allocation
mechanism for errors #8794, chang-
ing namespace qualifiers #20899,
double-underscore policy for utility
functions #20998) from many differ-
ent authors. At the end of the his-
tory no author has much more than
10-15% code ownership even though
no large parts were inserted at once.

Figure 4.18: Stratification Pattern
from the Subversion project: utf.c.
utf.c is an example for a local Strat-
ification. It has a large region at the
end of the file that is different from
the others because it it contains a
lot of small chunks from different de-
velopers. The cause for the strat-
ified part is not one large method,
but many small methods having sim-
ilar functionality and implementa-
tion, namely the conversion from and
to different UTF formats. Multiple
modifications and insertions in those
similar methods lead to an increasing
Stratification of this part of the file.

50 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.7 Rupture

Description. A Rupture consists of many Insertions by a single author over a
short time period. The Insertions are spread over the entire file. A Rupture looks
similar to a Stratification because of the fine grained chunks in the history. The
difference however is that in a Rupture the small chunks emerge in a single commit
or during a short time period, while Stratification is a gradual process. Ruptures
can also look like Chasms. The difference is that in a Chasm a file gets rewritten
or replaced and therefore old code is removed. A Rupture only consists of the
insertion, but not the removal of code.

Causes. Ruptures often represent the sudden insertion of a new concern in a file.
Frequent cases of Ruptures are the insertion of missing documentation (method
comments) or cross-cutting inserts of code blocks.

Figure 4.19: trunk/mono/mono/metadata/file-io.c

4.1. STRUCTURAL PATTERNS 51

Examples. Figure 4.19 shows an immense Rupture which at first glance looks
like a Stratification due to the fine granularity of the chunks. However all of them
are introduced in the same revision by a single author. The reason for the rupture
in this example was a change in the error handling convention. Previous to the
rupture errors were recovered by calling the GetLastError method. However due to
problems with further internal method invocations errors got overwritten and this
approach did not work anymore and had to be rewritten. The Rupture represents
the insertion of error handling code in all existing methods which allows one to
return the error state in a method parameter.

Figure 4.20: Rupture pattern from
the Subversion project: svn xml.h.
svn xml.h is an example for a Rup-
ture due to the use of a new technol-
ogy. In the entire file the purple au-
thor extended the existing documen-
tation in a single commit. The com-
mit message shows that the purpose
of the change was to make it compati-
ble with the Doxygen documentation
generator tool which requires to add
several tags in the existing documen-
tation. However some parts of the
documentation were duplicated and
they had to be removed in a later re-
vision.

Figure 4.21: Rupture pattern from
the Seam project: Query.java.
Query.java is an example of a Rup-
ture due to the insertion of docu-
mentation. It is characteristic be-
cause the documentation is only in-
serted at a late point in time. Be-
fore the Rupture comments in that
file only existed for the class, but not
the methods. Rather exceptional is
that the comments are not inserted
by the owner of the file, but by the
blue author who only did three more
rather insignificant commits on this
file.

52 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.8 Tsunami

Description. A Tsunami describes a large wave-like shape. Tsunamis can occur
several times in a file, but usually appear only once. The waves are easy to spot
because they have a short wavelength and a high amplitude, which means an
extreme increase in the size of the file over a short period of time with a following
shrinking phase. Characteristic for a Tsunami is that the code which existed
already before the Tsunami is not removed afterwards which means the “ground-
water level” remains the same as before.

Causes. In a Tsunami the growing and shrinking phase can occur due to several
reasons. In the first phase the file grows quickly usually due to the implementation
of a new feature or functionality. This phase is usually dominated by a single
author which commits large parts in short time. In the second phase these parts
get refactored, split or removed which results in the fast shrinking of the file.
Causes for the shrinking phase can be that the functionality becomes obsolete and
gets removed or when that he new parts are abstracted and moved to dedicated
files.

Figure 4.22: Tsunami pattern of the Subversion
project: commit-cmd.c

Examples. Figure 4.22 shows
a double-tsunami. Responsi-
ble for the growth phase is
in both cases the red author,
and for the shrinking phase
in both cases the cyan au-
thor. The first large insert
represent the implementation
of a new feature which allows
for editing the commit mes-
sage “in your favorite editor”.
Shortly after, a first shrink-
ing phase occurs. The com-
mit message states that some
code got moved to an util-
ity class and existing code is
cleaned up and further ab-
stracted. However the diagram shows that almost all parts of the file were rewrit-
ten. The red author who was responsible for the first wave returns right afterwards
and initiates the second wave with the purpose of improving the feature from the

4.1. STRUCTURAL PATTERNS 53

first wave and to introduce proper error handling. Interestingly the red author
reintroduces with slightly different names the methods the cyan author just re-
moved and removes the newly introduced code completely. After that the red
author’s code gets removed by the cyan author again. The cyan author appar-
ently worked on a new commit system which he tried to introduce at the end of
the first Tsunami. However the red author did not agree and reverted the change
completely which resulted in the second Tsunami. Only after the second Tsunami
the cyan author finally managed to properly establish his new system.

Figure 4.23: Subversion: checkout.c.
checkout.c contains a single Tsunami
with a slower growing phase than
in the other examples. During this
phase the blue author keeps working
on the implementation of a new fea-
ture which allows for declaring and
checking out modules from a sub-
version repository. After he con-
cluded the work on the new fea-
ture he moved most of the related
code into a separate file externals.c
to make it available to functionality
other than checkout. This reveals a
common form of a Tsunami: an au-
thor keeps developing some new func-
tionality, but later realizes that it
can be abstracted away and reused
in other contexts.

Figure 4.24: Tsunami pattern in Sub-
version project: default editor.c. In
default editor.c the growing phase of
the Tsunami occurs due to the imple-
mentation of new functionality. How-
ever over time the editor interface
had to be redesigned which led ul-
timately to the removal of the old
code. Even though this Tsunami
looks the same as the others, the dif-
ference is that shrinking phase only
began 1000 revisions after the grow-
ing phase, which means the code sur-
vived for quite a long time but was
only rarely modified until the new de-
sign was introduced.

54 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.9 Waves

Description. The Waves pattern describes histories which are characterized by
wave-like shapes due to alternate growth and shrinking. Code chunks in this type
of file are rather short-lived as code gets replaced often.

Causes. There are two main causes for files with waves. The first case occurs
when a file is taken over frequently by different authors. Typically in this case
each take-over is accompanied by the removal of most code from the previous
owner. The result is that each author only owns a certain phase of the file. The
second case occurs when the code in a file is rather unstable which means the file
grows constantly but most new code gets quickly removed, rewritten or moved
again.

Figure 4.25: Wave pattern from the Seam project: BusinessProcessInterceptor.java

Examples. Figure 4.25 shows a file history with two large waves. Responsible
for the first wave is the red author, who constantly loses code ownership to the

4.1. STRUCTURAL PATTERNS 55

blue author. The code in the file is rather short-lived with an Average Line Age
Percentage of 24.3%. The blue author removes much of the code from the red
author which leads to the first trough. The second wave is originated by the blue
author.

Figure 4.26: Wave pattern from the
Seam project: BusinessProcessCon-
text.java. Figure 4.26 shows a file
history with three waves. Each of the
waves is wider than the previous one
which means that the file becomes
increasingly stable. The reason is
that in the starting phase much code
was refactored, rewritten and moved
which results in a rather low ALAP
of 26.1%. Only in the last third of
the history can the file be considered
stable. Furthermore, it is interesting
that the waves are accompanied by
Chasms due to several rewritings.

Figure 4.27: Mono: tramp-x86.c.
tramp-x86.c’s history can be split
into two parts. During the first part,
the red author was the one who did
most of the work. Cyan wrote the ini-
tial versions of some code blocks, but
never touched it again. The red au-
thor’s reorganization of the code with
the consequent move of the archi-
tecture independent code forms the
transition to the second part. Be-
sides the header, only code from the
blue and the red author survives the
refactoring. The red author reorga-
nized all of his code and moved some
of it to other files and the code of
the cyan author disappears (except
for the file header).

56 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.10 Breaker

Description. Breaker denotes a wave which breaks at a shore. In Kumpel this
pattern is similar to a Tsunami concerning the shrinking phase, but this type of
history keeps growing for a much longer time until the file contains up to thousands
of lines of code.

Causes. Breakers often occur in files which get a growing set of responsibilities
over time. With the changing and growing requirements the files grow as well
which then results in the necessity of a refactoring and division of the source code
in multiple files. In our case studies we found that Breaker is a rather frequent
pattern and often is a good sign because developers realize that a certain file
becomes too large and should be refactored.

Figure 4.28: Breaker pattern from the Mono project: Makefile.am

Examples. Makefile.am represents the main file for building the entire Mono
project in the right order. With the project growing, the build script was ex-

4.1. STRUCTURAL PATTERNS 57

tended over 30’000 revisions (extensions for different building stages, used libraries
changed, etc.). The size of the file at its peak is rather low for a Breaker with only
250 lines. The repeated work on the file made it hard to understand the build-
ing process. Therefore the red author simplified it which resulted in the removal
of large parts. Interestingly the red author only reworked the parts he owned
and the small part from the cyan author but did not touch code from the other
developers.

Figure 4.29: Breaker pat-
tern from the Mono project:
debug mono symfile.c. de-
bug mono symfile.c is mainly
worked on by the red author. The
file grows mainly by Insertion up to
1000 lines of code over a span of 5000
revisions. Then in a single commit
the red author removes about 700
lines. In this commit all code that
deals with the Mono debugger was
moved to a separate file, so that
in debug mono symfile.c only the
code which dealt with a symbolic file
remained.

Figure 4.30: Breaker pattern from
the Mono project: mono-debug-
debugger.c. The removal of the
code from the previous example
debug mono symfile.c led to the
creation of the file mono-debug-
debugger.c. Surprisingly this new
history also results in a Breaker. The
file keeps growing again up to 1500
lines exclusively written by the red
author. Then the entire debugger
code got rewritten by the same au-
thor. In this process the file collapsed
to about a third of the previous size.

58 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.1.11 Concrete Blocks

Description The Concrete Blocks pattern describes code blocks that are in-
serted and never modified or extended again. This pattern can be spotted by
looking for large code chunks which remain of the same size over time and which
contain no modification dots. It can occur as single block in a history or can de-
scribe the structure of the entire history. In the latter case all the code which is
inserted is never touched again.

Causes. Characteristic is always that the concrete blocks are one-time efforts
for code which deals with functionality that never changes. Often a concrete block
represents a piece of code which has a well-defined distinct functionality like an
algorithm or a parsing routine. Concrete Blocks also appear in test classes. In
many case studies test cases are inserted and never modified again.

Figure 4.31: Concrete Block pattern from the Mono project: aot compiler.c

4.1. STRUCTURAL PATTERNS 59

Examples In Figure 4.31 a single Concrete Block is inserted at once by the blue
author and with some small exceptions is never modified or extended again. The
first commit in this history was a preparation for the compiler to allow different
backends. The large block which was inserted right afterwards represents a bi-
nary writer with a new backend implementation which is rather complicated and
consists of low-level code. Because the binary format is probably well-defined the
blue author was able to implement the writer as a one-time effort. Furthermore,
the rest of the code in the file gets modified quite often in contrast with the Con-
crete Block. The reason for this could be the high complexity of the code in the
Concrete Block.

Figure 4.32: Subversion: diff-
tests.py. diff-tests.py shows a his-
tory which consists almost entirely
of Concrete Blocks at the bottom of
the visualization. The file contains
test cases which are written by dif-
ferent developers once and are never
touched again. This could for exam-
ple indicate that the interface which
was tested remained stable during
the entire time. It also shows that
the tests are not written all at once
but co-evolved with the tested code.

Figure 4.33: Subversion:
lock tests.py. lock tests.py is
yet another example for different
developers who keep extending the
test class by subsequent addition
of new tests. Like in the previous
example they never get modified,
extended or removed. There are
several developers introducing new
tests over and over again.

60 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.2 Developer Patterns

4.2.1 Collaborator

Description. Collaborator histories can be detected in the visualization by look-
ing for recurring, alternating author activity. The collaborating authors have a
high modification count on each others code. This can be seen in the author de-
tail pop-up by looking at the modifications a certain author performed on other
author’s code. In the Collaborator pattern authors repeatedly work on the same
parts. This can be seen from the alternate coloring of the revision labels. Usually
they also have a similar ownership and impact on the file which can be seen in the
ownership overview.

Causes. The occurrence of the Collaborator pattern signifies that several authors
share the responsibility for a file. In our case studies this pattern was rather rare.
Even though many file histories look like Collaboration because they have several
authors working on a file in most cases when taking a closer look we found out
that there is either only a single author working on a file during a certain phase
and the others are just contributing from time to time or that there are too many
authors at the same time who contribute with no alternation.

Examples. Identity.java (Figure 4.34) shows a collaboration of two authors dur-
ing a long period. The modifications and insertions stem from both developers and
are equally distributed over the entire file, which means that there is no part of
the file where only a single author works. Each author not only modifies his own
code but also performs modifications on the other authors code. This collabora-
tion ends in the last quarter of the history when the cyan author takes over the
file.

blender softbody.c in Figure 4.35 shows the work of two Collaborators during a
time of over 800 revisions. The cyan and the red author work on the file since the
beginning and both keep modifying and extending it. The cyan author modified
the red author’s code 169 times and the red author modified the cyan’s code 130
times which can be learned from the author detail pop-up. During the time of the
collaboration the ownership remained fifty-fifty until after the half of the history
when the cyan author left and the red author ultimately took over the file.

4.2. DEVELOPER PATTERNS 61

Figure 4.34: Collaborator pattern from the Seam project: Identity.java

Figure 4.35: Collaborator pattern from the Blender project: blender softbody.c.

62 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.2.2 Intruder

Description. This pattern occurs when an author quickly takes over a file by an
insertion of a large amount of code and the modification of the large parts of the
existing code. In Kumpel this manifests itself in a sudden change of color which
occurs in a short time - usually in a single commit.

Causes. An Intruder is an author who quickly takes over an entire file mainly
by inserting new code. The causes usually are large refactorings or branch merges.
The impact of the newly inserted code also affects the existing code, which often
gets modified in the same commit too. Intruders can therefore be characterized as
authors who extend or reorganize code quickly and with large impact.

Figure 4.36: Intruder pattern from the Subversion project:
trunk/tools/client-side/bash completion

Example. The Intruder in Figure 4.36 is the blue author who merges a patch
from a branch (#17458). To the end of the file the pink author keeps working on

4.2. DEVELOPER PATTERNS 63

the changes from the patch and adds some large blocks. Later, he keeps extending
the existing code which can be considered as a second occurrence of the Intruder
pattern.

Figure 4.37: Intruder pat-
tern from the Mono project:
trunk/mono/mono/mini/tramp-
sparc.c. Figure 4.37 is an example
for an intruder due to changing
responsibilities. This file was
initially created by the blue au-
thor for providing support for the
SPARC microprocessor architecture.
However the code was not even
compilable in the first six revisions.
Line 23 in Revision 16892 documents
this: #warning Not Sparc ready!.
The red author then invested a large
implementation effort to make it
compilable by rewriting or extending
the existing code. With the refactor-
ing the mentioned line gets removed
which indicates that this was the
first working version of the code.

Figure 4.38: Intruder pattern from
the Blender project: Camera.c. The
cyan author takes over more than
50% of the file in a single commit by
the introduction of a large code block
at the end and the modification of
large parts of the existing code. This
is also the beginning of the activity
phase of the cyan author. He keeps
working on the file doing fixes and
cleanups which can be seen on the
revision labels which are colored in
cyan.

64 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.2.3 Explorer

Description An Explorer can be spotted by looking for an author who slowly
starts modifying a file and then also inserts small code chunks. Over time more
and more and bigger chunks from that author appear which implies a growing
ownership of the file.

Causes. An Explorer is a new author who slowly familiarizes himself with a file.
Typically this starts with small modifications over the whole code, and results in a
slow growth of ownership, usually it is also accompanied by insertion of new code
blocks. The familiarization phase is rather long and ultimately leads to a take-over
of the file. Cautious Familiarization often happens with a single author, but can
also occur consecutively with several authors in a file.

Examples. portage vartree.py is a larger example of an Explorer with a longer
familiarization phase. But even though the blue author owns most commits of the
file, the red author still owns a large part of the file and also keeps modifying the file
from time to time and even makes more additions. Still the blue author probably
has more expertise because he has more knowledge of the current version.

4.2. DEVELOPER PATTERNS 65

Figure 4.39: /trunk/pym/portage/dbapi/vartree.py

66 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.2.4 Conqueror

Description Conqueror describes a situation that occurs when an author first
sets foot in a file by starting work mainly at the end of a file. Usually the Conqueror
just works on his own part. After this initial phase he also starts conquering the
other parts of the file by performing modifications or small additions to the existing
file.

Causes. The Conqueror pattern is a combination of the Extension and the Ex-
plorer pattern because first the author adds code at the end of the file because
he works for example on new functionality of a certain class. In this process he
familiarizes himself with the rest of the file and also continuously starts modifying
the existing parts usually because adjustments become necessary due to the new
functionality.

Examples. The cyan author starts adding new code at the end of the file, and
afterwards starts extending the other code. The inserted code is part of a caching
mechanism which represents a new requirement. The insertions and modifications
of the existing code afterwards are mainly bug-fixes which means he took over
responsibility for the file.

4.2. DEVELOPER PATTERNS 67

Figure 4.40: main/trunk/pym/portage/getbinpkg.py

68 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.2.5 Territorial Defender

Description. Territorial Partitioning describes a file that is split into large ar-
eas with strictly separated colors. This pattern should not be confused with the
Concrete Block Pattern. Both patterns have regions which show a homogeneous
coloring. The difference however is that in Territorial Partitioning the areas usu-
ally are modified and grow, while in the other case, the initial blocks remain of
the same size and rarely get modified.

Causes. This pattern occurs when authors work on their own code only, like for
example in files that are used as storage for different unrelated functionality (e.g.,
utility classes). This can also occur in the case of complex code, where modifica-
tions require a detailed understanding which only a single developer possesses. In
practice this pattern often does not occur through an entire file but only in some
part of the file where a single author “defends”only a part of the file.

Example. util.py consists of three parts which never get touched by any authors
other than the originators. It is therefore a typical case of the Territorial Defender
pattern because it contains utility methods. Utility classes often show this pattern
because usually the different utility methods do not have much in common and
are not related. Each developer working on the file has his own code area.

4.2. DEVELOPER PATTERNS 69

Figure 4.41: /trunk/pym/portage/util.py

70 CHAPTER 4. KUMPEL VISUAL PATTERNS

4.3 Pattern Overview

Figure 4.42: Overview of all presented patterns.

Chapter 5

Case Studies

In this chapter we validate our approach by presenting several cases we detected by
manually inspecting a large number of file histories from the projects in Table 5.
Each of the inspected files had more than 40 revisions and at least five contributors.
To show the flexibility of our approach we present file histories which contain
source code in different languages and are of different types. The case studies
from Section 5.1, Section 5.3, Section 5.5 and Section 5.6 are written in C, the
one from Section 5.2 in Python, and the one from Section 5.7 is a Shell Script.
In Section 5.9 we analyze an XML documentation file and in Section 5.10 and
Section 5.11 we present histories of unstructured files which contain meta-data
about the development process.

Each of the first six case studies were chosen because they are well-suited for
emphasizing one of Kumpel ’s lightweight approaches. Therefore in each section
we explain how it was utilized and provide a detailed view. The last three sections
show how Kumpel also can be used to analyze source code, but also documentation
or loosely structured text file histories.

Project Authors Commits Files Diffs Main Language Diff Lines

Portage 11 4’637 455 11MB Phyton 281’442
Seam 37 8’125 11’405 127MB Java 2’705’526

Mono 161 14’437 2’981 90MB C 2’391’617
Subversion 140 22’184 5’294 241MB C 5’706’761
ArgoUML 49 14’307 15’867 281MB Java 5’182’606
Blender 73 13’667 8’585 325MB C 8’032’226

71

72 CHAPTER 5. CASE STUDIES

Mono. Mono1 is a collection of platform-independent .NET compatible tools
and is a rather large project with 161 authors and about 3000 files. It is written
mainly in C and contains low-level functionality like byte-code generators.

Subversion . Subversion2 is a version control system which was built to replace
the CVS version control system. It is written mainly in C except for the tests
which are written in Python. With about 20’000 revisions it has become a rather
large project.

Seam . Seam 3 is a web application framework for JBoss which integrates tech-
nologies like Enterprise Java Beans 3 and Java Server Faces and can be used to
build Web 2.0 applications. For its size it has relatively few developers (37) and a
large number of files (11’405).

Portage. Portage 4 is a package management system which is used by the Gen-
too Linux distribution. It can be used to download, compile and install software
easily via the command line tool called emerge. Compared to the other projects
this one is rather small both in terms of number of authors and in terms of number
of files.

ArgoUML. ArgoUML 5 is a Java based Universal Modeling Language tool. It
is able to create and save all standard UML diagrams. ArgoUML also has the
ability to reverse engineer compiling Java code and generate UML diagrams for
it. It is written in Java and is despite its low number of contributors one of the
largest case studies in terms of files and diff size.

Blender . Blender 6 is the free open source 3D content creation suite, available
for all major operating systems. It is the largest case study project analyzed and
is special because it does not have as many files as ArgoUML but a lot of files are
much larger than in the other projects.

1http://www.mono-project.com
2http://subversion.tigris.org/
3http://www.jboss.com/products/seam
4http://gentoo-portage.com/
5http://argouml.tigris.org/
6http://www.blender.org/

5.1. SUBVERSION: AUTH.C 73

In each section of this chapter we focus on a single file history, describing the
occurring patterns and offering an explanation of why they occur and how Kumpel
was used to analyze them. Each section provides a overview of Kumpel ’s main view
annotated with the important patterns and events. Additionally in Section 5.1,
Section 5.9 and Section 5.10 we present related files in order to show a larger
picture. In the first eight examples we show how to detect the various patterns from
the previous chapter in larger and more complex file histories, because the goal of
this chapter is also to deepen the understanding of the patterns we introduced in
the previous chapter and to communicate how they can be recognized.

5.1 Subversion: auth.c

In the examples from the previous chapter for each pattern we presented examples
in which more or less only one particular pattern occurred. However only rarely
do we find a single pattern in a history, instead we usually find several. auth.c
is an example of how several of the patterns from the last chapter appear in a
single file history. The file is constantly modified by eight authors during the first
half of the history. This leads to a Stratification which we can see in the history
flow because of the numerous fine-grained chunks. The code undergoes several
small modifications and extensions until the blue author performs the first step
for restructuring this code: He inserts as an Intruder a large amount of code in a
single commit. In revision 4948 the refactoring ultimately leads to the removal of
the “old, vestigial auth system” 7 which was the code with most modifications so
far. The remaining code is at that point mainly owned by two authors (blue and
purple). Afterwards, a branch was merged into this file by the red author which
results again in a rapid growth of the file. By looking at the source code we found
out that the file contains many authentication providers methods which are in a
next step moved to a separate file in revision 7404. The remaining part which
was introduced to search for authentication information locally (commit message
of revision 4184) also gets deleted with the file in the next revision, because the
authentication information is no longer kept in the local working copy after this
commit (commit message of revision 7942).

This file is an example for growing complexity due to multiple authors. This
led to a decay of the file which probably could not keep up with the upcoming
requirements. Therefore the functionality had to be rewritten. This becomes
apparent by the increasing number of small chunks in the history and then by the
sudden growth of the file. Finally the file was split and removed. Because of the

7commit message from the red author in revision #4948

74 CHAPTER 5. CASE STUDIES

characteristic shape and the evidence from the commit message the entire history
can be described as Breaker. Finding out the details about what happened was
possible because the commits in Subversion are overall very well documented.

By looking at the eight file histories which co-changed the most with auth.c in
Figure 5.1 we can see that they all are similar in number of commits (about 100)
and the large number of authors. In all of them we can find the Stratification
pattern. This means that the files are probably as old and complex as auth.c was
before the restructuring.

Figure 5.1: Subversion: auth.c

5.1. SUBVERSION: AUTH.C 75

Figure 5.2: Overview of histories co-changed with auth.c

76 CHAPTER 5. CASE STUDIES

5.2 Portage: bintree.py

bintree.py is owned by two authors: the initiator who only worked on it during
the first two revisions of the file and the blue author who slowly took over the file.
Even though the large number of modifications of lines are spread over the whole
file, many of them repeatedly affect the same lines Figure 5.2. Those modification
are mostly adjustments to changes in environment. In Figure 5.3 for example we
can see that from the three subsequent modifications we selected the last one. The
corresponding code is displayed on the right. From the squares we can see that the
selected line was modified three times by the blue author. By moving the mouse
over it the pop-up shows all the modifications to this line and we can see that
some method rename was used, then the line was changed to use another utility
method move Afterwards, the change got reverted and finally the line was split
and the os.path.join part was put on a separate line. On the displayed code on the
right side we can see that the blue author introduced the new line with another
method invocation.

Figure 5.3: Repeated Modification in bintree.py

Overall there are only two commits by the blue author in which a considerable
amount of code was inserted. All other commits only include modifications or
small inserts. Among the ten most used words used in the commit message are
the words ‘fix’ and ‘bug’. A look at the indentation profile and the source code
reveals that the region with most changes and inserts consists of the two methods
‘inject’ and ‘populate’ which form the lower half of the file (Figure 5.2). We
conclude that the growth of the file is due to the numerous modifications, and not
the addition of new functionality which corresponds to the Insertion pattern. The
blue developer can be considered an Explorer because he only inserts small code
chunks slowly.

5.2. PORTAGE: BINTREE.PY 77

Figure 5.4: /trunk/pym/portage/dbapi/bintree.py

78 CHAPTER 5. CASE STUDIES

5.3 Mono: tramp-x86.c

tramp-x86.c at first glance does not clearly match with any pattern (Figure 5.3).
Therefore in order to understand how this file changed we also look at developer
activity diagram of the several contributors (Figure 5.5).

Figure 5.5: Overview of Author Details

As we can see from the revi-
sion label colors the cyan author
(miguel) only did the initial com-
mit and never worked on the file
again. The blue author (lupus)
is an Intruder in the early phase
of the history because he inserts
about 200 lines in a single com-
mit. However over time he only
performs 17 modifications in 10
small commits and can be classi-
fied as one-time contributor. Af-
ter the Intruder phase of the blue
author, the red author (zoltan)
starts working on the file insert-
ing a significant amount of code
in a single commit which leads
to a Rupture in the blue authors
code. The red author inserted
several type checking statements
in this commit. He keeps work-
ing regularly on the file and has
an ownership of 50-60% of the
commits and of the code. After
a slow growing phase before the
middle of the history the file sud-
denly shrinks rapidly. According to the commit message the red author restruc-
tured the code to match with other similar files and then moved parts which are
independent of the x86 processor architecture to the file mini.c . A search for the
word “move” in the commit messages shows that according to the messages in at
least five more commits code was moved there as well. Looking at the co-changed
histories we can see that mini.c was the file which was most frequently committed
with tramp-x86.c. In the end there is another Rupture from the violet author
(mprobst) which probably represents the initial phase of a take-over because the
violet author also owns the last subsequent commits.

5.3. MONO: TRAMP-X86.C 79

Figure 5.6: trunk/mono/mini/tramp-x86.c

80 CHAPTER 5. CASE STUDIES

5.4 Seam: SeamPhaseListener.java

SeamPhaseLister.java is changed over and over again which results in the Wave
pattern. The red author is the main author of the file. The blue author only
inserted 137 lines which did not remain in the file for a long time. The wave-
phase consists of several refactorings, bug fixes, improvements and adjustments to
several new requirements like timeout handling for conversations or the migration
to another logging library. The file is rather unstable in this phase because new
code is introduced and removed or moved to a separate file. By looking at the
commit messages and the Commit Overview of the commits after the first peak
we found out that the reason for the shrinking phase was the introduction of
a ConversationManager class. This class was subsequently refactored. The file
remained unstable for the first hundred revisions. The most significant event in
the history of the file is the sudden growth of the file after about hundred commits.
The file tripled in size.

The purpose of this commit according to the commit message of the red author
was to support auto-installation of the phase-listener. By looking at the commit
overview of this commit in Figure 5.7 we can see that several other phase-listener
classes were removed in this commit. By looking at the source code using the code
finder for finding methods which were removed in the other files, we found that
these listeners were merged into the SeamPhaseListener class. This is similar to a
Tsunami in the growing phase however the code does not get removed afterwards.
This also can be considered the opposite of a Breaker because there the files get
split and refactored, and in SeamPhaseListener.java the file is merged with several
other files.

Figure 5.7: Commit Detail of the largest commit of SeamPhaseListener.java

5.4. SEAM: SEAMPHASELISTENER.JAVA 81

Figure 5.8: SeamPhaseListener.java

82 CHAPTER 5. CASE STUDIES

5.5 Subversion: cmdline.c

cmdline.c contains helper functions for command-line programs. It can be hori-
zontally split into two parts. The upper part consists of a large command-line-
initialization function which sets up the encoding and locales, sets up subsystems
and holds platform-dependent code. This method can be best described as Strat-
ification (because several authors keep extending this function) even though the
granularity is rather coarse Figure 5.5.

The lower part grows by Extension because of the addition of several new meth-
ods by several authors. These extension are mainly Concrete Blocks because they
seldom change. Modifications are rather sparse (Average Modification Count per
Commit is only 2.8) and are mainly performed by each author on his own code.
Therefore the behavior of the developers can be best described as Territorial De-
fender. The exception is the red author who performed a Cut of about 100 line
modifications on the history by formating the code to use a no-space-before-param-
list-parenthesis-style as can be learned from the commit message. But other than
the red author the other authors only performed a maximum of 30 modifications
on cmdline.c. In Figure 5.9 we can see from the revision label coloring that there
are no phases where a certain author performs most commits. Each author only
has a small commit ownership as can be seen in the Ownership Overview (Fig-
ure 5.9). The brown author for example owns 14 commits. This makes him the
author with the highest commit ownership. Of 31 modifications, he performed 30
modifications on his own code. This makes him a Territorial Defender.

Figure 5.9: Excerpt of revision labels and ownership overview of cmdline.c

5.5. SUBVERSION: CMDLINE.C 83

Figure 5.10: Subversion: trunk/subversion/libsvn subr/cmdline.c

84 CHAPTER 5. CASE STUDIES

5.6 Subversion: translate.c

In Subversion one can place keywords like Author, Date, Revision in a file which
then gets replaced at each revision (e.g., the author who did the last commit on
the file, the last date on which it last changed or the last revision in which the file
was involved).

Figure 5.11: Indentation Profile of trans-
late.c

This requires some parsing func-
tionality which is provided by the
translate.c file as can be learned
from the class comment. The main
method of translate.c in the half of
the history is a large parsing rou-
tine which handles the conversion of
end-of-line characters to any end-of-
line-style and the expansion of key-
words on the local working copy.
This method can be easily spot-
ted by looking at the Indentation
Profile which shows a large range
with a high indentation (see Fig-
ure 6.2). The file is a Breaker be-
cause the file grows until the half of
the history up to 1200 lines of code
and then abruptly shrinks again.
In a following commit by the red
author a fix is introduced which
leads to a Cut and guarantees the
atomicity of operations in the pars-
ing routine. Because this routine
is also used to convert end-of-line
characters in commit messages it
is then abstracted by the blue au-
thor to deal with streams instead
of files. Then the file shrinks in a
single commit to about a third be-
cause the parsing routine is not only
needed in the working copy but also in the file system module. Because Subversion
has a layered architecture this would not be possible so most code is moved to the
subroutine module where it is accessible for all modules. After that phase there
are only several small adjustments made. Interestingly after the shrinking phase

5.6. SUBVERSION: TRANSLATE.C 85

more developers start working on the file and the initial authors (blue and red)
stop which leads to a mixed ownership. The only one with a significant number
of commits is the cyan author (see Figure 5.12). He owns 13 subsequent commits
on the file as can be seen by the commit labels. In these commits he refactors the
file in order to centralize the file translation functionality.

Figure 5.12: translate.c

86 CHAPTER 5. CASE STUDIES

5.7 Portage: isolated functions.sh

After the red author initially created isolated functions.sh the cyan author started
inserting several small code blocks during the first four revisions. This represents
a Rupture even though the inserts are spread over some commits (Figure 5.13).
According to the commit messages, the red author took code from an old version of
another Gentoo project called baselayout. The Rupture in this file occurs because
it had to be modified to match with an up-to-date version of the copied code that
was broken. In the lower part of the file we can find a Territorial Defender pattern
of the blue author. Modifications on his code are only performed exclusively by
the same author. This occurs as in the previous case study because the related
functions are mainly utility functions.

Figure 5.13: /main/trunk/bin/isolated-functions.sh

5.8. MONO: AOT COMPILER.C 87

5.8 Mono: aot compiler.c

In aot compiler.c we find four patterns (see Figure 5.14). The blue author clearly
is an Intruder because he commits around 700 lines of code in a single commit.
The blue author only performed six commits on this file even though he owns more
than one third of the file as can be seen in the Ownership Overview. Out of this
six commits only two are significant. One contains many modifications (Cut) and
the other one is the Intruder commit which introduces code which is almost never
modified, while all the other parts undergo many modifications. Therefore the
inserted code is a Concrete Block. The detailed Author Overview pop-up shows
that the red author modified his own code 551 times while he only modified the blue
authors code 28 times. The red author can therefore be considered a Territorial
Defender. The blue author never ever modified his own code but modified the
red authors code 157 times of which most are performed in a single commit. A
look at the commit message of this large modification commit reveals that the first
commit of the blue author was a preparation to support different backends. The
large Intruder commit of the blue author consisted of a binary writer with ELF
backend implementation as can as well be learned from the commit message.

Figure 5.14: /trunk/mono/mono/mini/aot compiler.c

88 CHAPTER 5. CASE STUDIES

5.9 Subversion: ch04.xml

ch04.xml is a documentation file from the Subversion project. The documentation
is provided in several languages. However the translation was not witten all at
once but over time. The English documentation was written first, and then copied
to all the other language folders. The file got translated part after part starting
on the top by a single author. Interestingly the author never translated more than
10-20 lines in a single commit.

Figure 5.15: trunk/doc/translations/spanish/book/ch04.xml

A similar phenomenon took place in the XML files of the other chapters. In
Figure 5.9 we can see the an overview of the six most interesting chapters. The
first one is representative for the first three chapters which were translated from the
beginning and therefore do not show the described pattern. The second diagram is
very similar to Figure 5.15: The first paragraphs of the file were already translated
from the beginning. Because in this chapter there are many xml tags which are
not translated, some red lines remain unchanged through the entire history. In
the next chapter the translation was just begun by the blue author but not yet
completed. In the fourth image we see that the file also grew with the translating

5.9. SUBVERSION: CH04.XML 89

process which is because the original English paragraphs were not removed but
only flagged to be removed. This and the last examples all look different than
the previous ones because the they were translated by the same developer who
initially created the file.

Figure 5.16: Overview of Chapters

90 CHAPTER 5. CASE STUDIES

5.10 Mono and Subversion: TODO

TODO has an initial size of 200 lines and shrinks constantly. TODO holds the
names of several methods and macros which are not yet implemented or which are
unused. During the development of Mono over time the TODO list was adjusted
as the listed methods were implemented. This list only contains methods which
were related to the module eglib. Compared to other TODO files from Mono this
module probably was well planned because the list was complete from the start and
almost never got extended after the initial creation. For example, in Figure 5.18
and Figure 5.19 we can see two other TODO file from the Subversion project
which have several shrinking and growing phases. This means that in these files
new TODOs are constantly added and processed.

Figure 5.17: Mono: TODO

5.10. MONO AND SUBVERSION: TODO 91

Figure 5.18: Subversion: doc/book/TODO

Figure 5.19: Subversion: notes/locking/TODO.txt

92 CHAPTER 5. CASE STUDIES

5.11 Mono: ChangeLog

ChangeLog is one of the files of Mono with most revisions. It has the purpose to
store all commit messages of the interpreter module. New commit messages always
are inserted at the top of the file. The entries are never modified and their order
never changes. The entries are just pushed down when a new entry is inserted
which leads to the regular pattern we can see in Figure 5.20. This also gives us
an overview of who contributed most with respect to the commit message size and
the number of commits. From the author details (number of lines inserted and
number of commits) we can calculate that the average size of a commit message
for this module was about 6 lines. It is also easy to identify phases of when authors
worked on this module. For example in the beginning mainly the red, blue and
cyan authors worked on it. Then the green and the purple authors had a smaller
phase where they exclusively committed. After that in the last phase the brown
and then the orange authors seem to have taken over the module while the other
authors only rarely commit anymore.

Figure 5.20: Mono: ChangeLog

5.12. SHOWCASE EXAMPLES 93

5.12 Showcase examples

Figure 5.21: More showcase examples which demonstrate what other histories can
look like.

94 CHAPTER 5. CASE STUDIES

Chapter 6

YellowSubmarine

In this chapter we present YellowSubmarine, our tool support. It is written in
Visualworks Smalltalk and is used for extracting a model from Subversion reposi-
tories. It is implemented on top of the Moose 1 analysis platform[22] and uses an
optimized version of the Hismo meta-model to model software history[12]. The
history data of a certain file history is then used to build the Kumpel visualiza-
tion. In the first section we provide an overview of the model and in the second
part we explain how the tool can be used to navigate and browse the history of a
system.

6.1 Model

The model used in YellowSubmarine is based on Hismo [12] which models history
as first class entities. It was already implemented in Shrew [6], an approach for
analyzing and presenting Subversion repositories. In Hismo evolution information
is represented using three entities: History, Version and Snapshot. A snapshot is
a placeholder for the studied entity and can belong to one or several versions. A
Version in Hismo serves as layer which stores the history information (time) for
a snapshot. A history is a container of versions. Each version belongs to exactly
one history.

One issue that had to be addressed in order to analyze large software systems
was to make the model scalable. In a first implementation we used Hismo as it
was for modeling the history of the Subversion project. Snapshots were used in
order to store the directory hierarchy. Because there are about 22’000 revisions

1http://moose.unibe.ch/

95

96 CHAPTER 6. YELLOWSUBMARINE

and about 5’000 files this resulted in about 100 million objects only for file version
objects. This approach consumed too much memory. The next step was to merge
the Snapshot and the Version because in YellowSubmarine we did not have an
actual entity on top of which to build the history. The hierarchy relation was
moved to the history entity. The version entity also provides the ability to model
the hierarchy information but is only loaded lazily from the corresponding history.
This was done out of convenience rather than necessity. The next step was to
reduce the large number of version entity objects. This was achieved by only
modeling file versions explicitly when the file actually changed in that revision.
This greatly reduced the number of objects to about 60’000. The final model can
be seen in Figure 6.1.

Figure 6.1: Model used in YellowSubmarine

A repository is represented as the project history. It contains all developers and
all commits. Each project history has one root directory. Directory histories store
all children histories which can be either file or directory histories. Each node
history also stores the relation to its parent history which is always a directory
history. Each node version also stores the relation to its project version and each
project version can be queried for the node versions which were involved in the
corresponding commit.

6.2. MODEL EXTRACTION 97

6.2 Model Extraction

Figure 6.2: Layered model
extraction

YellowSubmarine has a layered architecture for
building a model of a repository. The lowest layer
provides access to the Subversion client library via a
package called DLLCC which allows us to invoke C
functions from Smalltalk. This layer corresponds to
the C client API. The second layer provides a higher
level of abstraction of the Subversion client inter-
face and allows a simple Smalltalk usage of the client
without having to deal with C data types. The third
and final layer uses the underlying layer for building
the model of a repository by invoking the appropri-
ate Subversion client methods and transforming the
returned data. This logic is encapsulated in a single
ModelBuilder class which provides a simple interface

for building models (e.g., a model can be build from all commits or only of a certain
range of commits).

A graphical interface to this class is provided in the Moose browser by YellowSub-
marine. By pressing the ‘...’ button in the Moose browser and selecting “Import
from Subversion repository into new YellowSubmarine model” a model can be
extracted from a repository. The model building process can be configured by
specifying the commit range which should be extracted. Additionally login in-
formation can be entered for non-anonymous access. Possible errors which occur
during the model building process are displayed on the Transcript of the Visual-
works image.

After the model building process is done, by right-clicking on the loaded project it
is also possible to load the differences between all subsequent file versions (called
diffs) by selecting “Load Diffs”. This detailed import is required to use the Kumpel
visualization. Because a high number of requests to the Subversion repository is
required the diff loading process may take a long time depending on the response
time of the server, the number of files and the commits. Therefore YellowSubma-
rine also allows you to interrupt the loading process and to continue at a later
time. When the diff loading process is started again it will continue after the most
recently loaded entry. It is however important that the files with the .diff extension
are kept in the same directory as the Visualworks image directory.

At any time the model can be exported and imported to the MSE format by
right-clicking on the project in the Moose browser and selecting the corresponding
menu entry.

98 CHAPTER 6. YELLOWSUBMARINE

At this point the model building process is only suppported under Linux and Mac
with Subversion 1.5 or higher.

6.3 Browsing History

Figure 6.3: Overview of a YellowSubmarine project in Moose browser.

The idea behind YellowSubmarine is to make browsing the history of a project as
easy as possible. When selecting a project it is possible to browse several entities:
a list all file histories authors or commits (project versions) can be displayed. The
list of project version is ordered by revision number and can be used to look at the
different commits of a project. By selecting any project version one can browse
the node versions which were involved in a certain commit. The author list can be
used to navigate the commits of each author. For obtaining additional information
for each entity one can always right-click and select “Inspect” from the context
menu to browse the entity. Additionally the hierarchy of a project can be browsed
similarly to the Finder application of the Mac operating system.

6.3. BROWSING HISTORY 99

When a project is selected the directory hierarchy can be browsed by clicking on
the entry with an ‘@’ which stands for the root of the repository. To the right the
child directories and files will be displayed. Each file or directory history entry
in the list will be displayed in the form path@first revision(number of revisions).
Because a file or directory can be deleted and inserted again in a history it is
possible that a directory holds several children with the same name. However they
never have the same start revision because they cannot exist at the same time.
For an easy detection of interesting histories it is possible to show and order by
properties like the number of authors or the age for a history. When a node history
is selected the corresponding revisions and in the case of a directory history also
the child nodes can be navigated. In the later case it is possible to show a list of
all direct child nodes or of all child nodes recursively.

When browsing the versions of a file history it is also possible to view the file
content for each version. This can be done by right-clicking on a file version and
selecting “Load Content”. If the file diffs are loaded the file contents will be
constructed from the local diff information. Otherwise the contents will be loaded
from the Subversion repository which requires access to the the corresponding
repository. Instead of showing the entire content YellowSubmarine also allows to
browse only the diffs of a file version to the previous version by selecting “Get Diff
to previous version”.

The Kumpel visualization can be opened by right-clicking on any file history in
the Moose browser and selecting the menu entry “Kumpel” from the context
menu.

100 CHAPTER 6. YELLOWSUBMARINE

Chapter 7

Conclusions

In this thesis we presented several questions different parties may ask about file
histories like for example:

• What is the age of a certain part?

• What was the contribution of a certain author to a file?

• Can a file be considered stable?

We presented Kumpel , an interactive integrated visualization which was designed
with this kind of questions in mind. Kumpel aims to simplify the analysis of file
histories by visualizing the history of a file on a single screen and allows to navigate
easily through all contents of the file versions. Furthermore, it provides several
lightweight techniques like the Ownership Overview, the Commit Size Diagram
or the Commit Detail diagrams. Even though these kinds of visualizations have
been used in similar contexts, Kumpel is the first to combine all these lightweight
approaches in a single interactive visualization.

As another contribution in this thesis we present several visual patterns which form
a vocabulary for describing file histories. They can be grouped in the two categories
of Structural and Developer patterns. Structural pattern describe the evolution
of a file structure. Developer patterns describe how developers contribute to a file
(e.g., what impact they have on a file). For each pattern we describe the visual
appearance and provide possible causes and examples from real life systems.

We then presented several case studies showing how the different patterns can
occur together in a history and how they can be detected. We provided a detailed
insight into how Kumpel and its different lightweight approaches can be used to
analyze large and complex file histories.

101

102 CHAPTER 7. CONCLUSIONS

Chapter 8

Quickstart

In order to install YellowSubmarine and Kumpel on Linux, perform the following
steps. 1

1. Install the latest version of Subversion (at least version 1.5.0).

2. Download and install VisualWorks Smalltalk (at least version 7.6) from
http://smalltalk.cincom.com/.

3. Create a new VisualWorks image by copying visualnc.im and visualnc.cha
from the image directory and start visualnc.im. Make sure you have write
access to the directory in which you put visualnc.im and visualnc.cha.

4. From the main menu select Store - Connect to repository... and enter the
following and connect:

• Environment: db.iam.unibe.ch:5432 scgStore

• User Name: storeguest

• Password: storeguest

Then select Store Published Items and first load Moose Config and after that
YellowSubmarine.

5. In the main window of VisualWorks select the blue M icon from the tool bar.
In the opening Moose browser select the ... button and select Import from
Subversion Repository into a new YellowSubmarine Model. In the dialog
window enter the path of the Subversion repository from which you want

1For support on Mac and Windows check http://moose.unibe.ch/tools/yellowsubmarine/ for
updates.

103

104 CHAPTER 8. QUICKSTART

to build a model (e.g., http://svn.repos.com/svn/trunk). In the next two
dialog windows enter the credentials or leave the fields empty if the repository
allows anonymous access. In the last two dialog windows enter from which
revision up to which revision you want to build the model . If you want
to build a model of all revisions in the repository simply leave these fields
empty. Then the building process will start and you will get a confirmation
message when it is done.

6. In the Moose Browser in the left panel the built model will appear. Select
it and then select the All projecthistories entry (if it does not appear, right-
click on the left-most panel and select Utilities - Initialize meta descriptions
and select the model again). On the right side a panel for the Project History
will appear. By selecting the header panel of the Project History a context
menu will appear where you can chose Load Diffs. This will start loading
the file diffs which might take a long time depending on the project history
size.

7. After the loading process is done select All File Histories (recursive). From
the new panel on the right you can select any file history and chose Kumpel
from the context menu to open the Kumpel visualization.

Bibliography

[1] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature identification: a novel
approach and a case study. In Proceedings IEEE International Conference on
Software Maintenance (ICSM’05), pages 357–366, Los Alamitos CA, Septem-
ber 2005. IEEE Computer Society Press.

[2] Mihai Balint, Tudor Gı̂rba, and Radu Marinescu. How developers copy. In
Proceedings of International Conference on Program Comprehension (ICPC
2006), pages 56–65, 2006.

[3] Dirk Beyer and Ahmed E. Hassan. Animated visualization of software history
using evolution storyboards. In WCRE ’06: Proceedings of the 13th Working
Conference on Reverse Engineering, pages 199–210, Washington, DC, USA,
2006. IEEE Computer Society.

[4] Silvia Breu and Thomas Zimmermann. Mining aspects from version history.
In Proceedings of the 21st IEEE International Conference on Automated Soft-
ware Engineering (ASE’06), pages 221–230, Washington, DC, USA, 2006.
IEEE Computer Society.

[5] Silvia Breu, Thomas Zimmermann, and Christian Lindig. Mining eclipse for
cross-cutting concerns. In MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages 94–97, New York, NY, USA,
2006. ACM.

[6] Philipp Bunge. Shrew — a prototype for subversion analysis. Bachelor’s
thesis, University of Bern, February 2007.

[7] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying
changed source code lines from version repositories. In MSR ’07: Proceed-
ings of the Fourth International Workshop on Mining Software Repositories,
page 14, Washington, DC, USA, 2007. IEEE Computer Society.

[8] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin
Wampler. A system for graph-based visualization of the evolution of software.

105

106 BIBLIOGRAPHY

In Proceedings of the 2003 ACM Symposium on Software Visualization, pages
77–86, New York NY, 2003. ACM Press.

[9] Thomas Zimmermann Daniel Schreck, Valentin Dallmeier. How documenta-
tion evolves over time. Saarland University, Saarbrcken, Germany.

[10] Stephen Few. Show me the numbers: Designing Tables and Graphs to En-
lighten. Analytics Press, 2004.

[11] Tudor Gı̂rba. Modeling History to Understand Software Evolution. PhD thesis,
University of Berne, Berne, November 2005.

[12] Tudor Gı̂rba and Stéphane Ducasse. Modeling history to analyze software
evolution. Journal of Software Maintenance: Research and Practice (JSME),
18:207–236, 2006.

[13] Tudor Gı̂rba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and Daniel
Raţiu. Using concept analysis to detect co-change patterns. In Proceedings of
International Workshop on Principles of Software Evolution (IWPSE 2007),
pages 83–89. ACM Press, 2007.

[14] Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How
developers drive software evolution. In Proceedings of International Workshop
on Principles of Software Evolution (IWPSE 2005), pages 113–122. IEEE
Computer Society Press, 2005.

[15] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring de-
veloper contribution from software repository data. In MSR ’08: Proceedings
of the 2008 international working conference on Mining software repositories,
pages 129–132, New York, NY, USA, 2008. ACM.

[16] Mahadevan Subramaniam Harvey Siy, Parvathi Chundi. Summarizing devel-
oper work history using time series segmentation. Department of Computer
Science, University of Nebraska, Omaha, Nebraska 68182, USA.

[17] Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault pre-
diction. In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, pages 263–272, Washington, DC, USA, 2005. IEEE
Computer Society.

[18] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Reading beside the
lines: Indentation as a proxy for complexity metric. In ICPC ’08: Proceedings
of the 2008 The 16th IEEE International Conference on Program Comprehen-
sion, pages 133–142, Washington, DC, USA, 2008. IEEE Computer Society.

BIBLIOGRAPHY 107

[19] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas
Zeller. Predicting faults from cached history. In ICSE ’07: Proceedings of
the 29th international conference on Software Engineering, pages 489–498,
Washington, DC, USA, 2007. IEEE Computer Society.

[20] Michele Lanza and Stéphane Ducasse. Understanding software evolution us-
ing a combination of software visualization and software metrics. In Proceed-
ings of Langages et Modèles à Objets (LMO’02), pages 135–149, Paris, 2002.
Lavoisier.

[21] Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Reinout Heeck. Reverse
engineering super-repositories. In Proceedings of WCRE 2007 (14th Working
Conference on Reverse Engineering), pages 120–129, Los Alamitos CA, 2007.
IEEE Computer Society Press.

[22] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of the European Software
Engineering Conference (ESEC/FSE’05), pages 1–10, New York NY, 2005.
ACM Press. Invited paper.

[23] Michael Gertz Omar Alonso, Premkumar T. Devanbu. Expertise identification
and visualization from cvs. Leipzig Germany.

[24] David Schuler and Thomas Zimmermann. Mining usage expertise from ver-
sion archives. In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 121–124, New York, NY,
USA, 2008. ACM.

[25] Mauricio Seeberger. How developers drive software evolution. Master’s thesis,
University of Bern, January 2006.

[26] Alexandru Telea and David Auber. Code flows: Visualizing structural evolu-
tion of source code. Comput. Graph. Forum, 27(3):831–838, 2008.

[27] Adam Vanya, Lennart Hofland, Steven Klusener, Piërre van de Laar, and
Hans van Vliet. Assessing software archives with evolutionary clusters. In
ICPC ’08: Proceedings of the 2008 The 16th IEEE International Conference
on Program Comprehension, pages 192–201, Washington, DC, USA, 2008.
IEEE Computer Society.

[28] Fernanda Viégas, Martin Wattenberg, and Kushal Dave. Studying coopera-
tion and conflict between authors with history flow visualizations. In In Pro-
ceedings of the Conference on Human Factors in Computing Systems (CHI
2004), pages 575–582, April 2004.

108 BIBLIOGRAPHY

[29] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan: visualization of
code evolution. In Proceedings of 2005 ACM Symposium on Software Visual-
ization (Softviz 2005), pages 47–56, St. Louis, Missouri, USA, May 2005.

[30] Peter Weissgerber, Mathias Pohl, and Michael Burch. Visual data mining
in software archives to detect how developers work together. In MSR ’07:
Proceedings of the Fourth International Workshop on Mining Software Repos-
itories, page 9, Washington, DC, USA, 2007. IEEE Computer Society.

[31] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In 26th International Con-
ference on Software Engineering (ICSE 2004), pages 563–572, Los Alamitos
CA, 2004. IEEE Computer Society Press.

