
APROCO

A Programmable Coordination Medium

Diploma Thesis

of the Faculty of Sciences
University of Berne

by

Daniel Kühni

October, 1998

Supervisors:
Juan Carlos Cruz
Sander Tichelaar

Prof. Dr. Oscar Nierstrasz
Institute of Computer Science and Applied Mathematics

2

Typesetting done with much endurance using LATEX and its companions.

Author’s address:

Software Composition Group
University of Berne
Institute of Computer Science and Applied Mathematics (IAM)
Neubrückstrasse 10
CH-3012 Bern
Switzerland
Email: dkuehni@iam.unibe.ch or daniel.kuehni@computer.org
WWW: http://www.iam.unibe.ch/ ˜ scg/

Abstract

To keep up with rapidly changing requirements applications are increasingly built out of software
components. A new trend is now to give those software components control over their own actions,
to turn them into concurrently running software agents. These software agents have to be relatively
independent to keep them exchangeable. Although independent, they still need to interact in order
to achieve the application’s overall goal. This results in the need to coordinate their interactions.

A number of coordination models were created to express common coordination solutions.
Linda is one of the most prominent representatives of such coordination models. Linda is widely
used because it offers simple means to separate coordination code from computational code within
a single agent. Linda also offers a high degree of decoupling of agents through its generative com-
munication style. However, Linda offers no direct support for the concentration of the coordination
aspects of a whole application in a single location. Furthermore, Linda only offers a set of primi-
tive operations and leaves the user with the task to construct realistic coordination abstractions out
of them.

Coordinationabstractions are often hard-coded into the participant agents’ protocols and there-
fore neither flexible nor reusable. They are typically spread all over the application and it is almost
impossible to identify them. It is not easy to encapsulate coordination abstractions because coordi-
nation typically affects multiple agents, and in open systems other requirements, such as flexibility
and security, must also be dealt with.

We propose an open, flexible and extensible architecture for explicit coordination abstractions
in open systems, called APROCO.

Our solution is based on the insight that separation of concerns (coordination and computation)
is a necessary precondition for building reusable parts. The client agents of APROCO communi-
cate through shared data spaces known from Linda using its generative communication style. The
coordination between the participating agents is managed through special coordination agents that
implement the used coordination abstractions. We present a list of coordination abstractions in
open systems and show the applicability of the approach with some examples.

i

Acknowledgments

First and foremost I want to thank my supervisorJuan Carlos Cruz for his endurance in support-
ing me, discussing the numerous problems and obstacles I ran into, and providing me with tons of
scientific papers to read and incorporate in this thesis. He also deserves thanks for tossing me into
the art of graphology of ancient Egyptian hieroglyphs, at least this is what his comments on draft
versions of this thesis looked to me.

To the same extend I want to thank my second supervisorSander Tichelaar for his inspiring
ideas and feedback and for invaluable remarks on several drafts of this thesis. He also never
stopped to encourage me when I couldn’t see the light at the end of the tunnel.

I want to thank Dr.Stéphane Ducassefor his comments and critical remarks on drafts of this
thesis.

Writing my thesis within the Software Composition Group (SCG), lead by Prof. Dr.Oscar
Nierstrasz, was a great experience for me. I enjoyed the friendly atmosphere, the inspiring discus-
sions, and the interesting presentations from group members and visitors from all over the world.
Thanks to the whole group for sharing your ideas and occasionally cakes and cookies with me.
Thanks go to the whole group, but especially to:

� Franz for the good teamwork during my time as teaching assistant in the programming
languages lecture and his help to build up a nice LATEX environment for the Java code in this
thesis.

� Matthias for occasional concoctions of dark fluids considered as coffee.

Furthermore I want to thank my fellow students:

� Fredi for introducing me to the political landscape of central Switzerland.

� Manuel for mentioning me in the acknowledgment of his master’s thesis.

� Michael for sharing the pleasure of having lunch in the mensa.

� Michele for his courageous fight for our ZIP drive.

� Tobias for philosophic discussions that prevented me from taking my work too serious.

A very special thanks goes to my best friend and wife Sarah for her enduring support and
understanding throughout the ups and downs associated with a master’s thesis.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Context . 2

1.1.1 Open Systems . 2
1.1.2 Separation of Concerns . 2
1.1.3 Coordination . 2

1.2 Problem Description . 3
1.3 APROCO: A Programmable Coordination Medium 4
1.4 Structure of the Thesis . 5

2 Problem Domain 7
2.1 Agents . 7

2.1.1 Agents versus Active Objects . 8
2.1.2 Agent Actions and Configurations . 8

2.2 Coordination . 8
2.2.1 Coordination Models and Languages. 9
2.2.2 The Problems with Coordination . 10
2.2.3 Linda . 11

2.3 Related Work . 16
2.3.1 Linda . 16
2.3.2 Objective Linda . 17
2.3.3 Programmable Coordination Media . 17
2.3.4 Coordination Components. 18
2.3.5 Synchronizers . 18

3 Approach 19
3.1 Requirements . 19
3.2 Architecture . 20
3.3 Clients . 21
3.4 Coordination Medium . 24

3.4.1 Shared Data Spaces 24

iii

iv CONTENTS

3.4.2 Forms . 27
3.4.3 Coordination Agents . 28

3.5 List of Used Coordination Agents in APROCO 29
3.6 Relationship Between the Client Agents and the Medium 33
3.7 A First Example: Multicast . 33
3.8 Precisions and Justifications of Design Choices 34

3.8.1 Configurations . 34
3.8.2 Dynamic Composition and Re-composition 36
3.8.3 Multiple Data Spaces 39
3.8.4 Designs Using Private Data Spaces. 42
3.8.5 Access Rights on Data Spaces. 44
3.8.6 Forms . 45
3.8.7 Form Example . 48

3.9 Properties . 49
3.10 Evaluation of The Approach . 50

3.10.1 APROCO Fulfills its Requirements . 50
3.10.2 Limitations . 51

4 Implementation 53
4.1 Implementation Overview . 53

4.1.1 Java . 53
4.1.2 Jada . 54

4.2 Interface Notation and Implementation . 55
4.3 Recipe for Building an APROCO Agent . 57
4.4 Polling Versus Internal Threads . .. 59

5 Sample Applications 62
5.1 Fault Tolerance Service . 63

5.1.1 Description . 63
5.1.2 Coordination Problems . 63
5.1.3 Solution . 64
5.1.4 Evaluation / Discussion . 66

5.2 Observer . 67
5.2.1 Description . 67
5.2.2 Coordination Problems . 68
5.2.3 Solution . 68
5.2.4 Evaluation / Discussion . 71

5.3 Electronic Vote . 72
5.3.1 Problem Description . 72
5.3.2 Coordination Problems . 73
5.3.3 Solution . 73
5.3.4 Evaluation / Discussion . 77

5.4 Administrator / Worker . 78
5.4.1 Problem Description . 78

CONTENTS v

5.4.2 Coordination Problems . 78
5.4.3 Solution . 78
5.4.4 Evaluation / Discussion . 84
5.4.5 Possible Improvements . 84

5.5 Discussion of the Examples . 84
5.5.1 Classification of the Used Coordination Agents 86

6 Conclusions 87
6.1 A Programmable Coordination Medium . 87
6.2 Dynamic Exchange of Policies . 90
6.3 Future Work . 91

A Jada 93
A.1 Object Spaces. 94
A.2 Object Matching in Jada . 94

A.2.1 The Tuple Class . 95
A.3 Remote Access to Object Spaces. 95

A.3.1 Example: Remote Ping-Pong . 96
A.4 Limitations . 96
A.5 Form Implementation in Jada . 99
A.6 Special Operations on Forms . 99

A.6.1 Update . 101
A.6.2 Merge . 102

B Code Samples 103
B.1 Coordination Agents . 103

B.1.1 Multicast Agent . 103
B.1.2 Fault Tolerance Agent . 105
B.1.3 Registration Agent . 108
B.1.4 Authentication Agent . 111

B.2 A Complete Example . 113
B.2.1 Fault Tolerance Service . 113
B.2.2 Server Agent . 114
B.2.3 Client Agent . 115

Bibliography 117

List of Figures

2.1 Coordinated behavior in the object-oriented paradigm: two possible solutions for
the design of a traffic junction . 11

2.2 Linda in action: three agents communicating through a shared data space 12
2.3 Dining philosophers in Linda (using C as computation language). 14

3.1 Overview of the coordination medium APROCO 21
3.2 Java code for the creation of a typical client agent 23
3.3 Coordination using shared data spaces: mutual exclusion. 26
3.4 An example of a form as we use it in APROCO and its notation in the text 28
3.5 Java code for the creation of a typical coordination agent 29
3.6 Multicast example . 34
3.7 The setup of a typical configuration in APROCO 35
3.8 Specify the relative order of coordination agents using the order agent 36
3.9 Dynamical re-configuration of coordination agents in APROCO 38
3.10 Use of multiple shared data spaces . 40
3.11 Coordination agent with single shared data space 40
3.12 Subconfigurations in APROCO . 41
3.13 Private data spaces versus single shared data space 42
3.14 Liveness problem with single shared data space 43
3.15 Pattern matching for forms . 46
3.16 Transformation of tuples into forms . 47
3.17 An example using forms: server with different generations of clients 49

4.1 Example of a typical interface of a client agent in APROCO 56
4.2 The creates part of the interface and its implementation 56
4.3 The consumes part of the interface and its implementation 57
4.4 Standard idiom to access information from a data space. 57
4.5 Creation of data spaces. 58
4.6 Exposing data spaces for the use by other agents. 58
4.7 Attaching to a data space . 59
4.8 Polling style using non-blocking operations. 60
4.9 New thread for each inspection using blocking operations. 61

5.1 Solution for the fault tolerance service example 64

vi

LIST OF FIGURES vii

5.2 Solution for the observer example . 68
5.3 Solution for the electronic vote example . 73
5.4 Solution for the administrator / worker example 79
5.5 Design of the policy interface . 82
5.6 Dynamic change of used policy . 82

6.1 Dynamic exchange of actually used policy . 91

A.1 Tuple matching in Jada: tuple tb provided as template matches tuple ta. 95
A.2 Coordination of remote applications using the Jada ObjectServer class 96
A.3 The Ping Applet: an Object Space client using Jada 97
A.4 The Pong Application: an Object Space client using Jada 98
A.5 Access of a Form object wrapped into a Tuple object. 99
A.6 The Form class: implementation of forms using Jada and JGL 100
A.7 Special operations on forms:update andmerge 101
A.8 Theupdate operation on forms . 101
A.9 Themerge operation on forms . 102

List of Tables

5.1 Overview of the used coordination agents in the sample applications 85

viii

Chapter 1

Introduction

It is widely accepted today that we cannot keep up with the pace of the changing user require-
ments with closed and proprietary software systems anymore. Most modern software applications
are built out of ideally small, manageable pieces of software, possibly originating from different
sources; the software components. Components are considered to be the best solution at hand to
tackle the evolution of requirements, because when the requirements change, at least in theory,
only the affected components need to be unplugged and reconfigured [ND95]. A current trend
is to give those software components control over their own actions, to turn them into software
agents. Software agents run concurrently on a computer system and have to communicate with
each other in order to achieve a common goal. Because the software agents run concurrently and
access resources concurrently, they not only have to communicate, they have to coordinate their
actions in order to achieve the common goal. If we can divide an agent’s behavior into a compu-
tation and a coordination part, this gives us the needed separation of concerns to be able to focus
on a particular aspect. This separation is hard to achieve, because the coordination code is usually
intermixed with the computational code. Furthermore, the coordination code is often hard-coded
into the agents themselves and therefore neither adaptable to changing requirements nor reusable
in different settings. To achieve reusability and flexibility we need to factor out the coordination
code and make it explicit.

The idea of factoring out coordination code is all but new, Toby Bloom [Blo79] pointed out al-
ready in 1979 the need to factor out synchronization code to achieve ease of use and modifiability.
As a more recent area of research aspect-oriented programming (AOP) [KLM+97] allows differ-
ent aspects of an application (coordination is one of these aspects) to be expressed in a special
programming language separated from the computational parts of the application. If we encapsu-
late this coordination code into an explicit entity that can be modified or exchanged, we achieve
the desired flexibility. To achieve the desired reusability it is necessary to find common coordina-
tion solutions and abstract them from its concrete participants. It has been shown in the domain of
object-oriented software construction that explicit connector objects are well-suited for coordinat-
ing active objects that communicate via message-passing [G¨un98]. We take an agent to be a more
general concept than an active object. Following [Hol97] we take an agent to be an abstraction
for modeling concurrent entities, while the term active object is used to emphasize the view of an
entity as encapsulating an active thread of control and thus denotes a possible implementation of

1

2 CHAPTER 1. INTRODUCTION

an agent. Because of this broader concept of agents, we used software agents as the active entities
to study the coordination problems with their interaction.

In this thesis we describe an architecture to express and study coordination abstractions in
agent-based open systems. The coordination abstractions are encapsulated into agents themselves
to provide flexibility and reusability. The agents communicate using the so calledgenerative com-
munication style[Gel85] known from the coordination language Linda [CG90]. In the generative
communication style, agents communicate through a shared data storage by producing and con-
suming data items. The resulting decoupling of sender and receiver is an important property in
open systems.

1.1 Context

1.1.1 Open Systems

Open systemsare application systems that are open in terms of topology, platform and evolution of
requirements [Tsi89]. Open systems are best suited to keep up with the changes we experienced
in the use of computers in the last decades: from huge, monolithic and proprietary mainframe
solutions towards thin, networked, configurable and plug-extendable applications. The size and
complexity of the applications has almost exploded, but the need for thinner applications, that can
be adapted to the user’s needs has been widely recognized to be a major goal of the years to come.

To be able to keep up with changing requirements, applications are best built out of compo-
nents, because changes can then be coped with by reconfiguring or exchanging only the affected
components instead of the whole application [ND95]. The software industry is developing com-
ponent models (e.g. JavaBeansTM [Ham97] from Sun or COM(+) [Rog97] from Microsoft) and
integration techniques to allow us to build components and to assemble them into applications.

As an aspect of openness in topology, open systems can be seen as evolving systems of inter-
acting entities (“objects”, “agents”, or“actors”). This implies that those entities can join or leave
the actual setting of the system at any time.

1.1.2 Separation of Concerns

It has proven fruitful in many areas to split complex problems down to simpler problems that are
more accessible to our inherently limited minds. This is especially true for the domain of software
development, where today’s applications are of remarkable complexity. The best way to divide
complex problems is along orthogonal aspects, meaning that they are as independent as possible
from each other. Therefore it is important to identify such orthogonal aspects.

In the domain of coordination as described in the next section the starting point of all research
is to consider coordination as an orthogonal aspect to computation [CG90].

program = computation + coordination

1.1.3 Coordination

Coordination research has recently attracted a lot of attention in various scientific communities
(see the next chapter for an overview of widely used definitions). In the area of open systems,

1.2. PROBLEM DESCRIPTION 3

coordination has to do with the management of the communication and synchronization between
concurrent entities. Some results from the research in coordination are various coordination mod-
els and languages such as Linda [CG90], ActorSpace [CA94] or Gamma [BLM93], just to mention
a few (see e.g. [Cia97] or [PA98] for a survey). Coordination models based on generative commu-
nication [Gel85] are considered well-suited for the domain of open systems [Hol97]. Generative
communication is based on ashared data spacefor the agents to communicate and synchronize
with each other. With generative communication the sender generates data items and stores them
in the shared data space. The receiver can then inspect the shared data space for specific data
items and read or consume them. Generative communication offers a good basis for open systems
support, because it uncouples communicating agents. This means that introducing new agents to
a system does not lead to the necessity to identify them to all the existing agents to allow them to
communicate with each other as would be necessary using message-passing. Furthermore, agents
that leave the system do not leave other agents with invalid references to them.

1.2 Problem Description

Coordination research is a new way of understanding the complex interaction patterns that results
from a potentially high number of concurrently running active entities constituting a single appli-
cation. The long-term goal of the activities in this scientific community is to find simple ways to
express and reuse solutions to common coordination problems. In the domain of open systems the
flexibility of the coordination solutions is of major importance [Tic97]. Flexibility is understood
as the property to be able to cope with openness in topology, platform, and user requirements.

To achieve flexibility and reusability in the coordination solutions it is recognized that the co-
ordination part of the active entities needs to be separated from the computational part. This can be
partly done using a coordination language such as Linda, which offers a small set of simple prim-
itives that can be added to standard programming languages to express the coordination actions
taken by an active entity. However, this separates coordination from computation only on the level
of single program statements. The coordination code is still intermixed with the computational
code. For a clean separation of concerns it is necessary to be able to separate all coordination
code into explicit entities. This separation can also be seen in the domain of software architec-
ture design, where an application is split up intocomponentsandconnectors[GS94]. Connectors
represent design decisions concerning the collaboration of software components. Specification
languages for such connectors can help to describe designs that have specific properties such as
component substitutability. Such design properties can only be safely transfered into the imple-
mentation if the programming language supports appropriate constructs for connectors.

We want to investigate Linda’s properties in conjunction with the capabilities of agents as the
encapsulation of coordination solutions. Linda is small and simple and offers some useful prop-
erties in the domain of open systems, but pure Linda has also some disadvantages: (i) Linda is
not a concrete language, it is rather a set of “add on” primitives, which results in a very limited
expressive power. One still has to program realistic coordination abstractions on top of the ones
offered by the model. (ii) The coordination code is often intermixed with the computational code
within a component. (iii) The coordination solution is spread all over the participating compo-
nents. This prevents one from successfully reusing the coordination solution in different settings.

4 CHAPTER 1. INTRODUCTION

Furthermore, an adaption of the coordination behavior to changed requirements is not feasible,
because it needs the adaption of every single component.

1.3 APROCO: A Programmable Coordination Medium

We propose that to be able to reuse a coordination solution it is necessary to abstract it from the
coordinated agents and to encapsulate it into an explicit entity, acoordination agent. We want
to use agents to encapsulate the coordination abstractions, because agents allow us to describe
coordination services that are not merely reactive. This means, the client agents do not have to
initiate these services in order to turn them operational.

We propose that by combining coordination agents into acoordinationmediumthat delivers all
the desired coordination services to its client agents, it is possible to take the coordination aspects
out of the client agents’ protocols and make them cleaner and easier to understand and reuse as
well. A coordination medium is the means to enable communication between the agents and serves
to aggregate agents into an ensemble. The coordination medium, APROCO, that we describe in
this thesis is more than a coordination medium as just defined; it offers coordination services to
its client agents that can be exchanged and modified and is thus a programmable coordination
medium [DNO97] as we will show in chapter 3.

In this thesis we present the architecture of APROCO. APROCO is based on generative com-
munication and uses the standard Linda operations to allow the client agents to communicate with
each other. The information exchanged between the client agents is wrapped intoformsand stored
in shared data spaces. A form is a set of bindings of labels with corresponding values. The idea of
agents communicating using forms is taken from [LAN98]. We used Linda-like operations (work-
ing on forms instead of tuples, as we describe in detail later) as the basic coordination level in
APROCO because of their simplicity and easy implementation in usual programming languages.
To overcome the limitations of Linda we encapsulated the coordination solutions into explicit enti-
ties, the coordination agents. They are coordinating the activities of the client agents connected to
the coordination medium using the same basic Linda operations on shared data spaces to inspect
and possibly transform the flow of information between the client agents. We present a list of
coordination agents that we found to be useful in sample applications.

We are using Linda as the basis for APROCO because of its decoupling of senders and potential
receivers of data. Linda is the “coordination assembler” that we use to build our agent-based
coordination medium APROCO upon.

Architecture. We describe an architecture for the study of coordination problems with software
agents in open systems. The architecture consists of client agents and a coordination medium that
offers coordination services to the clients.

Coordination Agents. The coordination services provided to the clients of the coordination
medium are implemented in coordination agents. The coordination code is encapsulated in an
explicit entity that can be replaced or changed and even reused in different settings, because it is
abstracted away from the real participants. The encapsulation of the coordination services into
agents yields flexibility as well as the possibility of defining pro-active services, i.e. services

1.4. STRUCTURE OF THE THESIS 5

that are operational without being activated by a client. If all agents are using only generative
communication, we found that we need multiple data spaces to allow the coordination agents to
control the flow of information between the client agents.

List of Useful Coordination Abstractions. We present a list of useful coordination abstractions
encapsulated into coordination agents that can be used within APROCO. We took an experimen-
tal approach to find these coordination abstractions by investigating small but typical real-world
applications. The presented list of coordination agents is not complete and can be extended as
needed. It can be found in section 3.5.

Needed Properties of a Coordination Medium for Agents. While constructing APROCO we
found a list of properties that a coordination medium for agents in open systems must provide.

� Clean separation of concerns.To address the problem of reusable and flexible coordination
solutions, a clean separation of coordination aspects from the computational aspects of an
application is a prerequisite.

� Explicit representation of the coordination solution. The possibility to express a coor-
dination solution in an explicit entity addresses the problem of easy flexibility. The coor-
dination solution can be adapted by only changing one single component, the coordination
agent.

� Dynamic re-composition. The possibility to dynamically join or leave a configuration
addresses the problem of openness. The agents need to be as loosely coupled as possible (as
with generative communication) to enable composition and re-composition as well as the
clean encapsulation of the coordination solutions.

� Access rights on data.Access rights on data addresses the problem of secure communica-
tion between participating agents.

Implementation. The coordinationmedium APROCO and the examples have been implemented
in Java using the Linda implementation Jada [CR96] for the implementation of shared data spaces
and the basic Linda operations. All the material presented in this thesis is freely available at the
author’s web page (URL:http://www.iam.unibe.ch/ ˜ dkuehni/aproco.html).

1.4 Structure of the Thesis

The thesis is organized as follows:
The next chapter defines some basic notions and concepts we use throughout this thesis and

shows to which aspects we will constrain our work. It also shows the limits of standard Linda to
directly express reusable high-level coordination abstractions.

In chapter 3 we present the architecture APROCO. APROCO is based on generative communi-
cation and uses the standard Linda operations to allow the client agents to communicate with each
other. The information exchanged between the client agents is wrapped into forms and stored in

6 CHAPTER 1. INTRODUCTION

shared data spaces. The coordination between the client agents is performed by the coordination
agents inside the coordination medium. The coordination agents encapsulate solutions for specific
coordination problems, abstracted from the real participants. We present a list of coordination
agents that we found to be useful in sample applications. We give justifications for the design
decision we made and conclude the chapter with an evaluation of our approach.

In chapter 4 we present an overview of the implementation of APROCO using Java and a Linda
implementation, called Jada (“Java Linda”).

Chapter 5 demonstrates the benefits of APROCO using a small set of sample applications.
We show the coordination agents in actual configurations and describe their functionality in more
detail. We discuss the properties of APROCO that are used in the examples and evaluate the
solutions.

Chapter 6 summarizes the main contributions of the thesis and outlines areas for further re-
search.

Chapter 2

Problem Domain

In this chapter we describe the problem domain of coordination in open systems. We define
what we mean with often and differently used (and sometimes abused) terms such as “agent”
and “coordination” and show to which aspects we constrain this work. We show an example of
a software systems design and show the necessity of encapsulating the coordination code into
a separate entity to gain flexibility and reusability. The decoupling of the software agents is an
important property of a coordination medium suited for open systems that evolve over time. We
present the coordination model Linda and its generative communication style that delivers the
means for decoupling of agents necessary in open systems. We present an example Linda program
and show its simplicity to express low-level coordination abstractions as well as its limits in terms
of flexibility and reusability.

2.1 Agents

There are probably as many definitions of the term agent as there are people interested in this topic.
A good survey on agent definitions can be found in [FG96]. The essence of all agent definitions is
the following definition that we adopt for the agents used in this thesis.

“An autonomous agentis a system situated within and a part of an environment that
senses that environment and acts on it, over time, in pursuit of its own agenda and so
as to effect what it senses in the future.”
Stan Franklin and Art Graesser[FG96]

This definition requires an agent to have at least the following properties:

� Autonomous: they exercise control over their own actions.

� Reactive: they respond in a timely fashion to changes in the environment.

� Goal-oriented: they do not simply act in response to the environment.

� Temporally continuous: they are continuously running processes.

7

8 CHAPTER 2. PROBLEM DOMAIN

The agents we are using in this thesis are software agents with all these properties and addi-
tionally they are communicative, meaning that they are communicating with other agents to be
able to achieve a common goal. We will go into more detail when we introduce the different parts
of the architecture of APROCO.

2.1.1 Agents versus Active Objects

There is a blur between the notions of agents and active objects that has been the source of lively
discussions. For some, agents are active objects with some intelligent behavior, while others see
the difference mainly in active objects being the technology to implement agents as the modeling
abstractions. In fact, we are using active Java objects (an object encapsulating an active thread of
control) for the implementation of the coordination medium APROCO.

2.1.2 Agent Actions and Configurations

The agents we use in APROCO are interacting to achieve a common goal. We state some defini-
tions taken from [Kie97] that we use throughout this thesis.

Action. The actions performed by agents can be divided into two different classes:

1. Inter-agent actions:theses actions perform the communication between different agents.
They are the subject of coordination models.

2. Intra-agent actions:these actions are all actions belonging to a single agent. They contain
computations as well as all communication of an agent outside the coordination model, such
as primitive I/O operations or interactions with users.

Configuration. A configurationconsists of

� a set of interacting agents,

� a set of data spaces, and

� the connections between these agents and these data spaces.

2.2 Coordination

We all have an intuitive understanding of the term “coordination” as something that has to be paid
attention to when active entities (mostly people) interact to achieve some result. When we watch a
winning soccer team, we may notice how well coordinated the actions of a group of people can be.
However, coordination is most clearly visible when it is lacking, and as a consequence the trainer
of the soccer team in our example gets fired.

Coordination as a research topic has got a lot of attention and is being investigated in a large
variety of contexts, such as computer science, organization theory, management science, psychol-
ogy, and economics. Malone and Crowston [MC94] made an overview of the different approaches
in this different scientific fields in their interdisciplinary study of coordination.

2.2. COORDINATION 9

Some frequently used definitions of coordination:

“Coordination is the additional information processing performed when multiple,
connected actors pursue goals that a single actor pursuing the same goals would not
perform.”
Thomas W. Malone[Mal88]

“Coordination means managing the inter-agent activities of agents collected in a con-
figuration.”
Thilo Kielmann[Kie97]

“Coordination is the integration and harmonious adjustment of individual work efforts
towards the accomplishment of a larger goal.”
B. Singh[Sin92]

“Coordination is the act of managing dependencies between activities.”
Thomas W. Malone and Kevin Crowston[MC94]

“Coordination is the process of building programs by gluing together active pieces.”
David Gelernter and Nicolas Carriero[GC92]

These definitions show that coordination is concerned with

� managing the communication which is necessary due to the distributed nature of the appli-
cation and

� the composition of concurrent systems.

Because coordination as research area is quite new, no convergence of definitions can be found yet.
It is still unclear which topics clearly belong to this research area and which clearly not. However,
in this thesis we focus on the first two definitions given by Thomas Malone and Thilo Kielmann
respectively.

2.2.1 Coordination Models and Languages

Coordination of agents can be expressed in terms of coordination models and languages. We
clarify these two different notions in the following.

Coordination Models

A coordination modeldefines how active pieces (i.e. agents) interact and how their interactions
can be controlled. This covers the aspects of creation and destruction of agents, communication
among agents, spatial distribution of agents, as well as synchronization and distribution of actions
over time.

A coordination model consists of three parts [Cia96]:

10 CHAPTER 2. PROBLEM DOMAIN

� Coordinated Entities (Components):These are the buildingblocks which are coordinated.
Examples: agents, processes, active objects, tuples, atoms.

� Coordination Media (Connectors): These are the media enabling communication between
the agents. Coordination media can serve to aggregate a set of agents to form a configura-
tion. Examples: channels, shared variables, data spaces, bags

� Coordination Laws: These laws describe how agents are coordinated by making use of
the given coordination medium. Example: rule set based on chemical reactions used with
Gamma [BLM93].

Coordination Languages

A coordination languageis the “linguistic embodiment of a coordination model” [GC92], provid-
ing a syntactical framework in which a coordination model can be used for realizing applications.
We introduce a prominent example of a coordination model, namely Linda, in section 2.2.3, and
show an example code using the coordination language C-Linda, which is one of several linguis-
tic embodiments of the Linda model in a computational programming language (C in the case of
C-Linda). Hence, a coordination model provides the semantics whereas a corresponding coordi-
nation language provides a syntax to use the model within an implementation.

2.2.2 The Problems with Coordination

Coordination of active entities has often been studied in connection with object-oriented software
development [AB92, AF+94, FA93]. Several authors have pointed out the lack of constructs in
conventional object-oriented programming languages for coordinated object behavior. The mes-
sage send model that the object-oriented paradigm is based on, is considered too low-level to
express coordinated behavior of multiple objects [AB92]. We take the example from [AB92] to
show the main problems with multi-object coordination.

Figure 2.1(a) shows the interaction pattern of a possible specification of a system describing a
traffic junction using a current object-oriented method. This illustrates a number of problems:

� No abstraction. The coordination solution used to coordinate the different objects are
“hard-wired” into the participants. In the example in figure 2.1(a) the traffic laws that we
use for crossing a traffic junction have to be coded into all the different participants.

� No extensibility. The coordination solution is spread across the whole application and thus
not easily extensible. In figure 2.1(a) the traffic laws cannot be easily extended if say a new
kind of participant is added that needs to be treated in a special way.

� No flexibility. The coordination solution cannot be easily changed due to the absence of
an explicit representation. In figure 2.1(a) the traffic laws cannot be easily changed because
they are coded into all the different participants.

� No reuse.It is not possible to reuse the implemented coordination solution separated from
the participating objects. If we want to reuse the traffic laws used for the system shown in
figure 2.1(a) we cannot do it separated from the participants.

2.2. COORDINATION 11

Pedestrian

Car Traffic
Lights

Truck

JunctionBicycle

Pedestrian

Car Traffic
Lights

Truck

JunctionBicycle

Laws
Traffic

(a) Distributed to the objects (b) Abstracted within a module

Figure 2.1: Coordinated behavior in the object-oriented paradigm: two possible solutions for the
design of a traffic junction

� No easy enforcement of laws.Even if all the participants hold a full set of the actually
valid traffic laws, no one can play the role of an independent “police” entity to enforce those
laws. Every participant is only able to enforce its own behavior to adhere to the laws, but
this is not a real enforcement. In our example in figure 2.1(a) the enforcement of the traffic
laws cannot be easily done, because they are spread among the participants.

This list of problems reveals the need of an explicit representation for the coordinationbetween
active entities as shown in figure 2.1(b). It also shows the difficulties that arises from such an
undertaking.

� The coordination code is inside the protocol of the participant entities.

� The coordination code is usually intermixed with application code.

� The coordination code is spread all over the whole application, because it affects more than
one single entity.

To be able overcome these problems and limitations we define an architecture which allows
us to express coordination abstractions in explicit entities that can be reused and adapted. We
construct this architecture and the coordination medium APROCO that we describe in the next
chapter using shared data spaces and the basic Linda operations applied on forms instead of tuples.
Thus we present a short introduction in Linda and show its limits.

2.2.3 Linda

Linda [CG90] is a coordination model based on processes connected to a shared data space. As
mentioned above, a coordination language is the syntactical embodiment of a coordination model.

12 CHAPTER 2. PROBLEM DOMAIN

The coordination language of the coordination model Linda is a set of primitives used within a
usual programming language. Because coordination is thought of as an orthogonal aspect to com-
putation, a coordination language is only used to express the coordination part of an application
whereas the “host” programming language is concerned with the computational part inside the
agents constituting the application. Because Linda consists only of a small set of simple coordina-
tion primitives that are independent of the host programming language, it has been added to a large
variety of different programming languages, such as C, Pascal, Ada, Prolog, Lisp, Eiffel and Java
to name but a few (see e.g. [PA98] and [Kie97] for a survey). Linda was originally developed for
parallel programming but proved to be a much general approach for coordinating active entities.

Linda has often been referred to as “high-level coordination model” (e.g. in [BCG97]) but
this is only true if compared to low-level communication models that are seen as coordination
models such as the Message Passing Interface [SO+96] used to program parallel systems which
is the original home domain of Linda. What makes Linda appealing is not primarily its level of
abstraction, but its simplicity.

12, "a string"out(12, "a string")
...

...

Agent A
Shared Data Space

Agent C

...

...

...

...

Agent B

in(12, ?s)

in(17, 15, 28)

Figure 2.2: Linda in action: three agents communicating through a shared data space

Linda is able to express simple coordination - via producing and consuming data items (tuples)
in a shared data space (calledtuple space) as shown in figure 2.2. Linda offers basically four
operations for this purpose:

� out(t) inserts the tuplet in the data space with no regard whether such a tuple already
exists or not. The executing process continues immediately.

� in(p) causes some tuplet that matches thepattern tuple pto be withdrawn from the data
space. A pattern tuple1 is a series of typed fields; some are values, others are typed place-
holders, indicated through a prefixed question mark. Oncein(p) has found a matchingt,
the values in the tuplet are assigned to the corresponding place-holders in the pattern tuple
p, and the executing process continues. If no matchingt is available, the executing process

1The original name for the pattern in [CG90] isanti-tuple, but since an “anti-thing” is usually not matching in any
sense with the “thing”, we chose a different name for it.

2.2. COORDINATION 13

suspends until one is, then proceeds as before. If many matching tuples are available, one is
chosen arbitrarily.

� rd(p) has the same behavior asin(p) except that the matched tuplet remains in the data
space.

� eval(t) is the same asout(t) , except thatt is evaluated after it enters the data space:
eval(t) implicitly creates one new process to evaluateeach field oft. When all fields are
completely evaluated,t becomes an ordinary passive tuple.

There are two more primitives that are variants of thein andrd operations with non-blocking
(and non-clear) semantics:

� inp(p) attempts to locate a matching tuple and returnsfalse if it fails; otherwise it
returnstrue , and performs the assignment of values to place-holders as with the blocking
in operation. It is not clear from the description in [CG90] whether a matching tuple is
removed from the tuple space or not.

� rdp(p) has the same behavior asinp(p) . Here again, it is not clear, whether a matching
tuple is removed from the tuple space or not.

An Example: Dining Philosophers

The famous example of the “dining philosophers” originally posed by Dijkstra is a classical prob-
lem in the domain of concurrent and parallel programming and can be found in many textbooks.
Thus, we just present it the short way2: a round table is set with some number of plates (usu-
ally five); there is a single chopstick between each two plates, and a bowl of rice in the center of
the table. Philosophers think, then enter the room, eat, leave the room and repeat the cycle. A
philosopher can only eat with the two chopsticks to the left and to the right of the plate he is seated
in hand. If all philosophers simultaneously grab, say their left chopstick, no right chopsticks are
available and no philosopher can eat, so deadlock occurs.

We present a deadlock-free solution for this classical textbook example using Linda taken from
[CG90]. As mentioned above, Linda is a genuine coordination model and can only describe the
coordination aspects of an application. For an application such as this example we also need to
describe the computational aspects and for this purpose we need a normal programming language.
In this example the programming language C is used for the computational tasks. There areNum
philosophers in total. The solution uses a “room ticket” to only letNum - 1 of them into the
dining room at the same time to prevent the mentioned deadlock situation.

Theeval operation in the code shown in figure 2.3 is not really used as it should be according
to the just presented introduction. Usually, theeval operation ends up in a passive tuple in the
shared data space that can be consumed with anin operation later on. This is not the case in
the shown example: the philosopher processes calledphil(i) run forever, thus they cannot

2This version of the dining philosophers is derived from the one posed by Dijkstra in which a philosopher was
thought to be unable to eat spaghetti just with one fork, he needed two forks to do this. Because this was not very realistic
even for philosophers, Professor Ringwood changed the example to philosophers eating rice with two chopsticks. Of
course, this did not really answer all the questions.

14 CHAPTER 2. PROBLEM DOMAIN

phil(i)
int i;

f
while(1) f

think();
in ("room ticket");
in ("chopstick", i);
in ("chopstick", (i+1)%Num);
eat();
out ("chopstick", i);
out ("chopstick", (i+1)%Num);
out ("room ticket");

g
g

initialize()
f

int i;
for (i = 0; i < Num; i++) f

out ("chopstick", i);
eval (phil(i)); See remark in the text
if (i < (Num - 1) out ("room ticket");

g
g

Figure 2.3: Dining philosophers in Linda (using C as computation language)

eventually end up in a passive tuple. Nevertheless, theeval operation has to be used in our
example, because it offers the only way in Linda to create concurrent processes. It it therefore not
a “hack” here, it is the standard idiom to be used, even if there is no resulting passive tuple at the
end of the processing of the operation.

Note that the solution presented in figure 2.3 is not fair, in the weak sense of fairness, meaning
that if a process continuously makes a request, eventually it will be granted: it is possible that a
slow philosopher remains blocked on anin("room ticket") statement while a speedy one
repeatedlyout s a room ticket and then grabs it again, leaving the slow philosopher still blocked.
We can of course solve the problem - as done in [CG90] - by stating that the the implementation
of the operations has to ensure fairness of this kind. If we know that the programming language
cannot guarantee this (like e.g. in Java3) we have to change the solution accordingly.

3The scheduling of threads is not guaranteed to be fair in any Java run-time system. Threads with the same priority
are not necessarily preempted in favor of each other. See [Lea97] for details.

2.2. COORDINATION 15

Properties

Linda embodies three main principles with its primitive operations:

� Anonymous communication. The producer of a data item does not need to know the
consumer and vice versa.

� Universal associative addressing.Data space items - tuples - are addressed by the values
of some of their fields and not by their location in the tuple space.

� Independent data. The data stored in the tuple space is independent from its creator pro-
cess.

This properties significantly contribute to the suitability of Linda for the use in dynamically
changing environments, i.e. open systems. The simplicityof its operations allows an easy mapping
of low-level coordination problems like synchronization of concurrent processes.

The simplicity is what makes Linda a perfect basis for a coordination architecture that offers
higher-level coordination abstractions to the user. This thesis presents such an architecture.

Limits

As can be seen in the presented example in figure 2.3 it is easy to describe a particular solution
to a coordination problem in Linda, especially if it is a quite low-level coordination problem such
as synchronization. Nevertheless, Linda has some serious problems and defects that needs to be
addressed in a system that is meant to allow one to easily express flexible and reusable coordination
abstractions.

� Linda is not a concrete language. Linda is a set of simple “add on” primitives that are
easy to understand and use, and fit into almost any computational model. This in contrast
means that Linda offers only a very limited functionality. One still has to program realistic
coordination abstractions on top of the ones offered by the model.

� The coordination code is not strictly separated from the computational code within a com-
ponent. The conceptually different parts of the functionality of a component are intermixed
and thus not easily adaptable and reusable independent from each other.

� The coordination solution is spread all over the participating components. Linda does not
enforce the designer of an application to strictly separate the coordination components from
the computational components. Although the coordination is explicit through the use of co-
ordination primitives offered by Linda it is still the most common design to use coordination
intermixed with computation in the same component. This prevents one from successfully
reusing the coordination solution in different settings. Furthermore, an adaption of the coor-
dination behavior to changed requirements is not feasible, because it requires the adaption
of every single component of the application. The Linda example shown in figure 2.3 is not
necessarily fair as mentioned above. If fairness is a requirement for the application, we have
to change every participant’s code to realize it. In this special case we are lucky, because all
the participants share the same code and thus we only have to change it in a single location,

16 CHAPTER 2. PROBLEM DOMAIN

but in a more general situation, we would have to change every participant’s code to adapt
the used coordination solution.

These limits pose serious problems to the construction of flexible and reusable coordination
solutions in the domain of open systems. This directly results in the need to express the coor-
dination abstractions in explicit entities. These entities can still use Linda’s shared data spaces
and its primitive operations to realize their coordination purposes, while being explicit they offer
flexibility and reusability. This combination yields the advantages of the decoupling of partici-
pants offered by Linda and the flexibility and reusability offered by explicit entities. Furthermore,
using explicit entities allows the coordination code needed in the participants to be reduced to a
minimum. This results in more reusable participant components as well.

2.3 Related Work

We compare the main ideas of APROCO with the most prominent coordination models and with
the work that directly influenced APROCO.

2.3.1 Linda

We presented a detailed description of Linda [CG90] in the preceding section 2.2.3. Linda is based
on processes (agents) connected together via a single shared data space. The communication and
synchronization between these processes is achieved using a small set of primitives that allow a
process to generate a tuple to be stored in the shared data space, inspect the shared data space for a
specific “type” of tuple, or consume such a tuple from the shared data space. These operations can
either be done in a blocking or a non-blocking manner. The creation of new processes can be done
by generating a special type of tuple containing expressions to be evaluated concurrently. Linda
offers separation of coordination aspects from computational aspect of a process on the level of
single statements in its program code.

APROCO uses Linda’s decoupling of agents using shared data spaces and its primitive oper-
ations for generative communication. APROCO extends Linda by offering the means to strictly
separate coordination entities from computational entities by introducing coordination agents (see
section 3.4.3). This allow us to adapt or reuse the coordination entities independently from the
computational entities, which is a prerequisite for the needed flexibility and reusability. Using
coordination agents as implementations of coordination abstractions APROCO offers the means
to construct useful coordination solutions on top of Linda’s primitive operations with a higher
level of abstraction from the concrete situation. APROCO extends Linda’s notion of tuples by
incorporating forms as the basic carriers of information. This results in easy extensibility of the
applications as we will show in section 3.8.6.

We want to point out that Linda by itself is sufficient to solve most of the problems in the do-
main of coordination. The model is simple and easy to understand and offers important properties
such as decoupling of agents and associative addressing. However, Linda does not enforce the
user to strictly separate coordination and computation on the level of separate entities. This is a
major obstacle for flexibility as well as reusability of such entities. In this sense APROCO extends
Linda with a natural way to cleanly separate coordination from computation using coordination

2.3. RELATED WORK 17

agents and furthermore makes life easier for the user by offering extensible forms instead of the
rigid tuples.

2.3.2 Objective Linda

As mentioned in section 2.2.3 Linda can be embedded in a variety of programming languages,
including object-oriented ones. Objective Linda [Kie97] is a coordination model that seamlessly
incorporates object-oriented concepts into the Linda model. Objective Linda is built for object-
oriented parallel programming.

APROCO incorporates a lot of ideas from Objective Linda. The dynamic composition model
of agents dynamically connecting to and detaching from multiple shared data spaces is adopted
from Objective Linda and from the related approach of Tom Holvoet [Hol97]. APROCO shares
the notion of agents with Objective Linda. Agents are the active entities whose interactions need
to be coordinated by the model. Objective Linda is carefully defined as being a coordination
model suited for coordination solutions for open systems while APROCO offers an architecture
for explicit, flexible and reusable coordination abstractions as coordination agents on top of such
a model. This means that APROCO can be seen as a natural extension to Objective Linda rather
than a competitor.

2.3.3 Programmable Coordination Media

APROCO is strongly influenced by a paper from Denti, Natali, and Omicini [DNO97] in which
they present their idea ofprogrammable coordination media. In their work, the shared data space
used for the global communication can be programmed to react differently on different commu-
nication events. The connected agents are generating communication events that are trapped by
the programmable coordination medium and handled according to its program. To be able to do
this, the reactive tuple space was designed as full-fledged logic theory. The reactive behavior of
the tuple space can be changed by changing its program using “reaction programming”. Reac-
tion programming is based on the notion of reaction (borrowed from the chemical metaphor used
in Gamma [BLM93]), triggered in response to logical events’ occurrence, and specified through
special tuples of the formreact(Event, Body) in the shared data space. The reaction body
Body is the collection of the primitive operations to be executed when the logical eventEvent
occurs. Reactions allow the medium to perform operations on the tuple space items in a way that is
not perceptible for the connected agents. They can only see the final effect of the whole reaction.
Thus, reaction programming is a straight-forward way to implement transactional behavior on a
shared data space.

The behavior of the coordination medium APROCO can be changed by adding, adapting, or
exchanging its coordination agents. In contrast to the reactions used by Denti et al. the coordi-
nation agents in APROCO are pro-active, i.e. they can initiate operations on shared data spaces
on their own behalf. This enables the coordination medium to offer services to its clients that go
beyond the capabilities of communication events such as time-dependent behavior. APROCO also
hides intermediate states of shared data spaces from its clients because the coordination agents use
internal shared data spaces that are not accessible to the client agent. Furthermore, APROCO can
fulfill its coordination purposes in a much easier and cleaner way by only using one communica-

18 CHAPTER 2. PROBLEM DOMAIN

tion paradigm, namely generative communication, and one abstraction for activity, namely agents
compared to the different concepts needed by the programmable coordination media from Denti
et al.

2.3.4 Coordination Components

APROCO is also influenced by the work of Sander Tichelaar [Tic97]. He describes a component-
based approach to coordination as opposed to the language-based approaches such as Linda. His
work shows the need for separating the coordination from the rest of the application on a com-
ponent level. This separation is adopted by APROCO by using coordination agents as explicit
representation of the coordination aspects of the application. Coordination Components are based
on message passing in object-oriented systems. APROCO is more general and uses generative
communication between agents that can be implemented in any programming language. The co-
ordination entities used in APROCO are “enhanced components”, they are agents and thus can
have pro-active behavior.

The concept of exchangeable (pluggable) coordination policies is taken from the work of
Sander Tichelaar. In his solution the policy can be supplied as a parameter at application setup.
In APROCO the policy used for a specific action from a coordination agent can be exchanged
dynamically at run-time.

2.3.5 Synchronizers

Synchronizers [FA93] are special objects able to express coordination patterns within a multi-
object language framework based on specifying and enforcing constraints that restrict invocation
of a set of objects. They support the separation of concerns and the reuse of coordination code.
The separation of coordination code into a special object is similar to the coordination agents
in APROCO. Synchronizers are abstracted from the underlying programming language and the
protocol used to enforce the required object properties. The coordination agents in APROCO are
independent of the programming language as well, but they are based on generative communi-
cation as the means to control interactions, opposed to the message-passing communication that
synchronizers are based upon. Synchronizers cannot be changed dynamically and their connec-
tions to the participating objects are static. In APROCO the coordination agents can be adapted
dynamically and they have no direct connections to the participating agents, thus they are operating
on a higher level of abstraction. Furthermore, coordination agents are not bound to constraining
the coordination participants, they can also pro-actively initiate some actions.

Chapter 3

Approach

In this chapter we are presenting the architecture of our coordination medium APROCO and ex-
plain and justify some design decisions we made. The first section lists the requirements for a
coordination medium suited for the domain of open systems.

Section 3.2 describes the architecture of APROCO consisting of client agents and the coor-
dination medium itself. The client agents communicate using generative communication. The
coordination medium is itself built out of coordination agents that communicate with each other
over shared data spaces and coordinate the activities of the client agents by inspecting or trans-
forming the flow of data items between the client agents. All data is wrapped into forms to allow
the system to be easily extended.

Section 3.7 shows a first simple example of a coordination problem solved within APROCO.
We show the different parts of the architecture and how they work together.

In section 3.8 we explain and justify design decisions we made. We present the dynamic
composition model incorporated into APROCO to allow dynamic composition and re-composition
of an agent configuration. We explain why we used multiple shared data spaces to implement
APROCO instead of just a global one for all the agents. We discuss the advantages of designs
using private data spaces, and access rights on data spaces in general. The section is concluded by
a presentation of forms and an explanation why they provide extensibility.

Section 3.9 summarizes the main properties of APROCO and section 3.10 concludes the chap-
ter with an evaluation of our approach.

3.1 Requirements

From the discussion of open systems and coordination in the preceding chapters a list of require-
ments result that a coordination medium suited for this domain must fulfill.

� Clean separation of concerns

� Explicit representation of the coordination solution

� Reusability of this representation

� Flexibility

19

20 CHAPTER 3. APPROACH

� Decoupling of the active entities

� Dynamic re-composition of the active entities

In the following sections we present the coordination medium APROCO that fulfills these
requirements.

3.2 Architecture

Thecoordination mediumAPROCO is built uponshared data spacesas used in the coordination
language Linda [CG90]. In short, shared data spaces allow for a special communication style -
calledgenerative communication style[Gel85] (see section 2.2.3 for an introduction into Linda)
- to be used for the connected agents to communicate with each other. With generative commu-
nication the sender generates data items and stores them in a data storage accessible to both the
sender and all possible receivers. The receiver can then inspect this data storage for specific data
items and read or consume them. This shared data storage is mostly called shared data space, but
sometimes alsoblackboard[BMR+96].

The data items stored in the shared data spaces areformsin our case, opposed to the normally
used tuples. A form as we use it here is a set of bindings of labels with corresponding values.
Forms allow one to build easily extensible systems, as we discuss later in this chapter.

The customers of the coordination medium are calledclient agents. They are active entities
that have the necessary properties to be called autonomous agents according to the definition in
[FG96] presented in chapter 2. A client agent is connected to the coordination medium through
at least one shared data space. All data items - forms in our case - inside a shared data space are
potentially accessible to a client agent that has got a reference for this data space. An agent can
get a data space reference either statically at compile-time or dynamically at run-time. Such a data
space reference can be wrapped into a form and exchanged through another data space.

The coordination between the client agents of the coordination medium is performed by the
coordination agentsinside the medium. A coordination agent has the same properties as a client
agent and operates on data spaces the same way as a client agent. The only difference lies in
the privileged location of the coordination agent, it resides “inside” the coordination medium and
thus has more information about the configuration of the whole application. A coordination agent
encapsulates the solution for a specific coordination problem, abstracted from the concrete partic-
ipants. A coordination agent use generative communication to read out, transform existing forms
or add new forms to to the flow of forms between the client agents, thus realizing its coordination
purpose. APROCO can have an arbitrary number of coordination agents that can be combined
to provide the client agents with the “coordination services” they need, e.g. security or fault-
tolerance. Coordination agents can be combined by connecting them together using multiple data
spaces arranged according to the needs of the application.

A collection of interacting agents (both client and coordination agents) together with their
connections is called aconfiguration. The actual configuration can be changed dynamically in
APROCO, i.e. client agents can enter and leave a configuration at any time.

APROCO is a programmable coordination medium[DNO97], because it is possible to add,
change or remove coordination agents that are part of the medium and together constitute its

3.3. CLIENTS 21

coordination services for the clients. If we change the coordination agents we change the behavior
of the coordination medium as a whole and its reactions to the client agent’s communication. This
means that the medium as a whole is programmable. In fact, the coordination medium APROCO is
pro-active and thus more powerful than the reaction programming used by Denti et al. [DNO97].

Client
Agent

Client
Agent

Coordination
Agent A

Coordination
Agent B

Client
Agent

Coordination Medium

Shared Data Space
with forms

Shared Data Space
with forms

Shared Data Space
with forms

Figure 3.1: Overview of the coordination medium APROCO

The general architecture of APROCO is shown in figure 3.1. The arrows denote the allowed
communication paths using generative communication. We will introduce the different parts of
the architecture and their relationship in the following subsections.

3.3 Clients

The clients of the coordination medium APROCO are active, self-contained entities performing
actions on their own behalf. According to the definition and classification found in [FG96], these
entities areautonomous agentswith the following properties1:

� Autonomous: they exercise control over their own actions.

� Reactive: they respond in a timely fashion to changes in the environment.

� Pro-active: they do not simply act in response to the environment.

� Temporally continuous: they are continuously running processes.

� Communicative: they communicate with other agents.

1Agents often have connotations of being intelligent or mobile, but we are not interested in these aspects in this
thesis.

22 CHAPTER 3. APPROACH

All clients are connected to the coordination medium. In fact, each client has at least one refer-
ence to a shared data space and uses Linda-like communication primitives [CG90] to communicate
with the medium and thus with the other clients. All communication between clients takes place
via the coordination medium using the following Linda-derived communication primitives2:

� out inserts a form in the data space with no regard whether such a form already exists or
not. The executing agent continues immediately.

� in removes a form that “matches” the provided pattern form from the data space and reads
in the values of this form. If such a form could be found in the data space the executing agent
continues immediately. If no matching form is available, the executing agent suspends (in
the blocking version of this operation, see next paragraph). As soon as a matching form gets
available, the suspended agent is woken up and continues. If more than one matching form
is in the data space, one is chosen arbitrarily. For details on matching operations see section
3.8.6.

� read 3 has the same behavior asin , except that it is non-destructive.

Thein andread primitives can both be called in a blocking or a non-blocking manner. The
blocking operations block the calling agent, waiting for a matching item to be inserted into the data
space by another agent with anout operation. The non-blocking operations return immediately
with an indication whether the operation was successful or not (e.g. a boolean return value). The
unclear semantics of the non-blockinginp andrdp operations in standard Linda as described in
section 2.2.3 is remedied by the operations we chose in APROCO:

� in nb attempts to find a matching form in the data space and removes this form from the
data space and returns it as the result of the operation if successful; otherwise it returns
null . The executing agent continues immediately in both cases.

� read nb has the same behavior asin nb, except that in the case of a successful matching
of a form, it remains in the data space.

Tasks

A client of APROCO can perform the following tasks that are relevant to the coordination medium.
A client can:

� produce (with out), read (with read), andconsume(with in) forms from the data spaces
it has got references for - either statically through the programming language or dynamically
acquired as shown later - and can this way participate in the overall tasks of the application.

2The names for the operations are taken from original Linda [CG90]. Note that they take the agent’s perspective: to
put an item into a data space, an agent has to call theout operation, and to take an item out of a data space, it has to
call thein operation.

3The original name in Linda for this operation wasrd but for the sake of “readability” we chose to change it into
read .

3.3. CLIENTS 23

� create new data spaces on its own and perform the same operations on them as on those
data spaces that it initially had the references for.

� exposeits own created data spaces for other clients to attach to them. This is done by
wrapping a reference to this data space into a form and putting it with anout operation into
a well-known data space representing a global environment, theglobal configuration data
space.

� attach itself to existing data spaces. This is done with anin or read operation on the
global configuration data space to get a form with the reference for the desired data space.
If the data space was created by another client, it has first to be exposed before the client
can attach to it.

Besides those tasks a client can perform whatever tasks it likes, as long as they do not interfere
with the medium, as would e.g. direct method invocations or a different kind of interaction with
the medium or other clients, than listed above.

Life cycle

Client agents are created in APROCO by instantiating and activating an object possessing its own
thread of control4. To be a useful part of the whole application, an agent needs to get access
to at least one already existent data space. This can either be done statically at compile-time or
dynamically at run-time by attaching to an exposed data space.

/* Create a voter agent */
new Thread(new Voter(globalspace)).start();

Figure 3.2: Java code for the creation of a typical client agent

The creation of a typical client agent in APROCO is shown in figure 3.2. The parameter of the
example client agent is a standard reference for the global configuration data space that is - among
other things - needed for the dynamic acquisition of data space references.

A client agent is active as long as it has not deliberately stopped its processing or its execu-
tion environment has terminated the execution. It can be either running and performing tasks as
mentioned before or be blocked because of anin or read operation that could not yet deliver a
matching form from a data space.

Client agents cannot be terminated by other agents. They either terminate themselves or are
terminated by the execution environment, in our case the Java virtual machine. It is up to the agent
to perform some cleaning up tasks before termination.

4In standard Linda theeval primitive is used to dynamically create new processes. This operation createsactive
data itemsin the data space that are processed and eventually end up as normal passive data items. We simulate this
behavior by creating a new Java thread that eventually generates a form containing the result of the processing.

24 CHAPTER 3. APPROACH

3.4 Coordination Medium

The medium as shown in figure 3.1 consists of shared data spaces and coordination agents that
operate on them to deliver their “coordination services” to the client agents. The clients are directly
connected to some of the shared data spaces inside the medium, so the border line of the medium
is really only a conceptual one.

3.4.1 Shared Data Spaces

The building blocks of the coordination medium are the shared data spaces used for communica-
tion and coordination purposes. A shared data space is a multi-set of items, i.e. identical items
may exist in a data space. As mentioned we use forms as data space items in APROCO. Agents
can only communicate with other agents through at least one shared data space. They use genera-
tive communication to interact with each other to achieve the overall goal of the whole application.
The shared data spaces we employ in APROCO are derived from the coordination language Linda
[CG90] and use its primitives to generate, read, and consume forms. All these operations are
atomic and work on a single form. The used primitives are as mentioned earlier:

� out(f) inserts formf into the data space. The executing agent continues immediately.

� in(p) removes a formf that matches the provided pattern formp from the data space, and
reads in the values fromf. If such a form could be found in the data space the executing
agent continues immediately. If no matching form is available, the executing agent suspends
(in the blocking version of the operation). As soon as a matching form gets available, the
suspended agent is woken up and continues. If more than one matching form is in the data
space, one is chosen arbitrarily.

� read(p) has the same behavior asin(p) , except that the matched form remains in the
data space.

The in(p) and read(p) operations can also be used in a non-blocking variant called
in nb(p) andread nb(p) as described in section 3.3.

Forms and pattern forms. A form is a set of bindings of labels (or keys) with corresponding
values. The values can be of arbitrary type, even another form is a possible value. Thein and
read operation requires a pattern form to be supplied as parameter. Apattern formis a normal,
possibly empty form. This pattern form is used to find a matching form in a data space using
pattern matching with a matching operation defined for forms. The matching operation we used in
APROCO is very simple: a pattern formp matches a formf, if the labels ofp are a subset of those
of f, and the corresponding values of these labels are identical.

A detailed discussion of forms and the matching operation can be found in section 3.8.6. An
short introduction and an example of a form including the program code is presented in section
3.4.2.

3.4. COORDINATION MEDIUM 25

Main properties of shared data spaces. The main properties of shared data spaces are:

� Anonymous communication: an agent only puts items into a shared data space or consumes
data items from there.

� Associative addressing of data: the data is read or consumed through a pattern that is pro-
vided and not e.g. through its “position” in the data space.

� Independent data: the data lives independently from its creator.

Constraints imposed by the used Linda implementation.

� All operations work on a single form. It is not possible toin or read more than one form
atomically.

� If more than one form matches a pattern formp, one is chosen arbitrarily. This means, that
subsequentread operations can return the same form, even if more than one matching form
would exist in the data space. This problem is known as the “Linda multiple rd problem”
[RW96]. Thus, it is not possible to read all the matching forms in a data space simply by
repeatedly calling theread operation until the same form will be returned twice.

� There is no support for security in standard Linda. Linda does not offer means for access
rights on tuples in the data space. As we will show later, it is necessary to have access rights
to be able to establish security.

Private data spaces. A client agent can create new data spaces on its own. These data spaces
are initially “private”, i.e. no other agent hasaccess to them except the one that created them.
To play any useful role in the whole application, a data space needs to be accessible at least to
the coordination agents inside the coordination medium. This can be done by exposing the data
space to other agents as described before. If a data space is only used by one client agent and the
coordination medium but not by other client agents, we call it aprivate data space. Private data
spaces are shared data spaces as well, but they have only one client agent attached to them (see
the multicast example in section 3.7 for a first example of private data spaces).. It is up to the
application programmer to decide whether a specific data space should be a shared or a private
data space depending on the application design. As soon as another client agent has attached to a
private data space we cannot call it private any more. We discuss the advantages of designs using
private data spaces in section 3.8.4.

Coordination using a shared data space. Shared data spaces and the concept of generative
communication can be used to coordinate active entities. To illustrate this, we show a simple
example of a shared resource used to solve the problem of mutual exclusion of critical parts of two
processes.

Figure 3.3 shows two processes that synchronize over a shared data space holding a shared
resource, in this case simply a string object. The situation shows process A running, because
it could grab the string object from the shared data space, while process B is blocked on the

26 CHAPTER 3. APPROACH

Shared Data Space

"mutex"

while(true) {

 do critical stuff
 out("mutex")
}

 in("mutex")

Process A

while(true) {

 do critical stuff
 out("mutex")
}

 in("mutex")

Process is running

Process is blocked at the operation indicated by the dashed line

Process B

(1)

(2)

Figure 3.3: Coordination using shared data spaces: mutual exclusion

in("mutex") operation waiting for the shared resource to be put back again. A new process
that has to protect its critical part against the other ones can simply be connected to the same
shared data space and use the same operations for coordination.

Note that the solution shown in figure 3.3 is not fair, in the weak sense of fairness, meaning
that if a process continuously makes a request, eventually it will be granted: if two processes are
blocked, waiting for the same item to appear in the shared data space, one process is nondeter-
ministically chosen and gets woken up. Thus we cannot be sure, that say process A not always
grabs the item before process B gets woken up. Of course, we can delegate the problem to the
implementation of the primitives we used to access the shared data space and state that they have
to be programmed in a way that fairness can be guaranteed.

Evaluation. The main advantage of the use of shared data spaces is the decoupling of produc-
ers and consumers of information. This decoupling means anonymity as well as asynchrony.
Anonymity, because the producer and the consumer do not have to know each other in order to
have successful communication. Asynchrony, because the producer can proceed with its task with-
out having to wait for the consumer to be ready. Both properties combined yield the generative
communication style [Gel85] that enables one participant to communicate with another even if the
other one is non-existent at the time. Coordination models based on generative communication
are well-suited for the domain of open systems [Hol97].

Shared data spaces are suitable to describe solutions for traditional coordination problems
such as synchronization, shared resources, etc. These problems have in common that they are
quite low-level and thus they map easily to the low-level Linda primitives used with shared data
spaces. If we like to describe higher-level coordination problems that have their origin in real-
world applications, e.g. transactions, the mapping is much more complicated and not straight-
forward anymore. This is the reason why we introduced a coordination medium that allows one to
describe higher-level coordination abstractions in the form of coordination agents that themselves
are built upon the simple Linda primitives.

3.4. COORDINATION MEDIUM 27

Global Configuration Data Space

In an open system client agents can join and leave a configuration at any time. To enable the
system to keep track of the participating client agents, it is necessary to introduce at least one
globally reachable data space for configuration information. This global configuration data space
represents aglobal environmentas found in many other systems. Client agents that enter an
existent configuration have to register with this global configuration data space by providing a
reference to their private data spaces, if existent. They can also provide the medium with other
useful information for the coordination agents such as the agent’s processing capabilities in a
“farm of workers” setting to enable a coordination agent (called workload manager) to distribute
processing requests according to a specialist parallelism [CG90] based distribution policy.

Coordination services like the just mentioned processing distribution can be realized in a flexi-
ble way by storing an explicit representation of the actually usedpolicy in the global configuration
data space. The term “policy”, according to the American Heritage Dictionary [Mor81], means “a
general principle that guides the actions taken by a person or group”. With this definition, we take
a policy to be the general principle that guides the actions taken by a specific coordination agent in
our coordination medium. The explicit representation of the policy as apolicy objectenables the
clean separation of the policy from its implementation. The policy object is wrapped into a form
and stored in the global configuration data space. Every time a coordination agent has to perform
an action according to the actual policy the corresponding policy object is consulted. This allows
the dynamic exchange of the currently used policy by simply exchanging the form containing the
policy object in the global configuration data space.

3.4.2 Forms

A form as we use it in APROCO is a set of bindings of labels (or keys) with corresponding values.
These values can be of arbitrary type. Because we are using the object-oriented programming
language Java to implement APROCO all objects that can be described in Java are valid values in
a form. This especially allows for the construction of nested forms, because a form itself is a valid
form value. Note that the basic datatypes in Java must be wrapped into objects to be valid form
values.

The use of forms in APROCO is motivated by the extensibilityconsiderations found in [LAN98],
where it is shown that with forms it is easy to extend functionality without breaking the existing
behavior. This is done by introducing new labels for the new functionality. We show an example
of this mechanism in section 3.8.7.

Form Example and Notation

Figure 3.4 shows the Java code for an example form as we use it in APROCO, and the shorter
notation that we use throughout the thesis. The code for the form implementation can be found
in section A.5. For the implementation of the forms we used an object container from the Java
class library JGL [Obj97]. TheHashMap class we used from JGL is similar to the standard Java
Hashtable class, but offers more useful functionality.

28 CHAPTER 3. APPROACH

Form f = new Form();
f.put("Type", "RegisterClient");
f.put("ClientID", new Integer(15));
f.put("Handle", privspace);

Type = "RegisterClient"
ClientID = 15
Handle = {Run-time object reference}

Figure 3.4: An example of a form as we use it in APROCO and its notation in the text

3.4.3 Coordination Agents

A coordination agent has the same properties as a client agent and operates on data spaces using
generative communication the same way as a client agent. The main difference lies in the privi-
leged location of the coordination agents, they are within the medium’s boundaries and thus have
access to more information about the whole configuration.

A coordination agent provides the client agents with a specific “coordination service” such as
fault tolerance. These coordination services represent implementations of specific coordination
abstractions. A coordination abstraction is a solution for a coordination problem abstracted from
the concrete participants and situation. These coordination services are encapsulated into the
coordination agents, because of the agents’ ability to behavepro-activelyinstead of only reactively
to the environment. Pro-active behavior is necessary for services that need more information that
can be available through the inspection of the information traffic that goes over the shared data
spaces. If a coordination service needs to perform an action that is not related with the participants
actual state such as time dependent actions, such a service cannot be realized using only reactive
behavior. The possible pro-active behavior implies that coordination agents have the ability to
initiate an action by inserting an appropriate form into a data space without being requested to
do so by a client agent. Thus, coordination services in APROCO are operational without being
activated by the client agents, if desired.

Tasks. A coordination agent can perform the following tasks that are relevant for the clients of
the coordination medium. It can:

� produce, read, transform, and consume forms froma client’s data space.

� produce, read, transform, and consume forms from adata space that it shares with an-
other coordination agent to coordinate with the other one’s service.

� attach itself to existing data spaces. This is done the same way as for the client agents.

Access to client communication. A coordination agent does not have any special means to get
involved with the communication between client agents than through inspection of the data spaces
that it has access to. This implies that - without leaving the generative communication style - it is
not possible to give the coordination agent a higher priority to read or consume a particular form
in a data space than a client agent competing for the same form. In some cases the client agent
would be able to consume the form before the coordination agent could read it or perform some
transformations on it. It is thus necessary either to use multiple shared data spaces or to simulate

3.5. LIST OF USED COORDINATION AGENTS INAPROCO 29

them on a single shared data space to allow the coordination agents to fulfill their coordination
purpose. This simulation can be done using a special identifier (e.g. a string object) in each data
space item to show to which logical partition of the single shared data space the item belongs to.

Life cycle. Coordination agents are created the same way as client agents by instantiating and
activating an object possessingan own thread of control. To enable a coordination agent to perform
its coordination service it must be given access to some shared data spaces that it should operate
on by providing it with references for them.

/* Create the security coordination agent */
new Thread(new SecurityAgent(agentspace, globalspace)).start();

Figure 3.5: Java code for the creation of a typical coordination agent

The creation of a typical coordination agent in APROCO is shown in figure 3.5. The first
parameter of the example coordination agent is a reference for a data space that is only used by
the coordination agents of this application. The second parameter is a standard reference for the
global configuration data space which has the same function as with the client agents.

A coordination agent is active as long as it has not deliberately stopped its processing or its
execution environment has terminated the execution. Like the client agents, coordination agents
can be running and performing tasks as mentioned before, or be blocked because of anin or
read operation that could not yet deliver a matching form from a data space.

Coordination agents cannot be terminated by other agents. They either terminate themselves or
are terminated by the execution environment, in our case the Java virtual machine. They normally
run until the whole application is ended.

3.5 List of Used Coordination Agents in APROCO

We offer a number of coordination agents to be used within APROCO. We introduce them here
and shortly describe the coordination service they implement. They are grouped according to
the number of data spaces they need to be connected to (or will get the data space references
dynamically). Note that this list is by no means complete, because a complete list of coordination
agents would imply a closed coordination medium and APROCO is an open coordination medium.

1. Operating on one shared data space:

� Registration: The registration agent listens for new client agents registering their
presence with the coordination medium through the global configuration data space
and transforms this information into special forms for the coordination agents inter-
ested in it. The registration agent maintains a list of the currently registered client
agents in the global configuration data space and can also send a notification on the

30 CHAPTER 3. APPROACH

registration of a new client to coordination agents that are waiting for such a notifica-
tion addressed to them. This is useful for coordination agents that need to react on the
registration of a new client agent. Those coordination agents (e.g. the collector agent)
need to register their interest in such notifications with the registration agent providing
their name for addressing purposes.

The registration agent is first used in the Observer example in section 5.2.

� Client Information: The client information agent listens for new client agents regis-
tering their presence with the coordination medium through the global configuration
data space. The clients are providing the coordination medium with specific infor-
mation about themselves such as the processing capabilities of a worker agent. This
information is maintained by the client information agent as a special form in the
global configuration data space for the coordination agents to consult.

The client information agent is similar to the registration agent, except that it maintains
more information about the client agents, but is not able to send notifications about
newly registered clients to interested coordination agents.

The client information agent is first used in the Administrator / worker example in
section 5.4.

� Policy: The policy agent can dynamically exchange the policy that a coordination
agent is actually using for a specific action. This policy is encapsulated into a policy
object and wrapped into a form stored in the global configuration data space. The
coordination agent that is using this policy consults this policy form every time before
it performs the specific action that this is the policy for. To dynamically exchange
the actual policy the policy agent only has to exchange this policy form with one that
includes the new policy object. The next action of the coordination agent using this
policy will be performed using the new policy object. All valid policy objects need to
implement the same interface.

The policy agent is first used in the Administrator / worker example in section 5.4. In
this section the mechanism of dynamic exchange of policies is discussed in detail.

� Order: The order agent can be seen as a meta-level coordination agent. It is used for
the dynamic re-configuration of coordination of coordination agents. The order agent
maintains a list with the relative order of the coordination agents that are interested
to get the forms that are passed around in the coordination medium using the same
shared data space. When a new coordination agent is registering with the medium
to get access to this shared data space, it will be dynamically inserted into this list.
Every coordination agent is only allowed to consume those forms that are explicitly
addressed to it, and after it is finished with its manipulations it has to consult this order
list to find out who is next to get the form, and explicitly address the form to it.

The order agent is not used in one of the examples in chapter 5, because of the very
restrictive protocol it requires the coordination agents to use. We discuss the order
agent and the mechanism in section 3.8.2 in detail.

3.5. LIST OF USED COORDINATION AGENTS INAPROCO 31

2. Operating on two shared data spaces:

� Transport: The transport agent is a very simple coordination agent. It only transfers
forms back and forth from one data space to the other. Because of its simplicity it can
be used as skeleton to build more complex coordination services with by implementing
additional transformations to the transported forms such as an adding an identification
to every form to allow the coordination agents to correctly identify it throughout its
flow through the medium.

The transport agent in its simplest form is not used in one of the examples. A variation
using a special protocol presented with the order agent is shown in section 3.8.2.

� Fault Tolerance: The fault tolerance agent is connected to two data spaces and trans-
ports requests from one data space into the other and transports answers back in the
other direction. The fault tolerance agent maintains a timeout for each request form it
has transported and creates copies and resends them if there was no response in time.
It puts an error response form into the client agent’s data space, if a given number of
retries were without response. The fault tolerance agent filters out request repeats orig-
inating from the client agent due to an own repetition mechanism to prevent the client
agent that processes the requests (usually called server agent) to use system resources
unnecessarily.

The fault tolerance agent is only applicable in request / answer (client / server) settings.
The client agent that sends the requests must be ready to accept error answers. The
fault tolerance agent is first used in the Fault tolerance service example in section 5.1.

� Vote Controller: The vote controller is used within the Electronic vote example de-
scribed in section 5.3. This example defines rules that all participants have to follow
during the vote. The vote controller is used to enforce these rules. It announces new
vote rounds to the participants, checking and counting the incoming votes, and an-
nouncing the results to the participants again. The transport of the information to and
from the client agents is done by other coordination agents. All this information is
accessible for the vote controller in a single shared data space. To be able to decide
about the outcome of a particular vote the vote controller needs to know the number of
participating voters, this information is available in the global configuration data space
(maintained by a registration agent). Together with the authentication agent the vote
controller prevents the participating agents from cheating.

The vote controller agent is first used in the Electronic vote example in section 5.3.

3. Operating on multiple shared or private data spaces:

� Multicast: The multicast agent is connected to one data space that it shares with other
coordination agents. Its job is to deliver a copy of the forms in this data space into
some client agents private data spaces. The group of client agents that are interested
in getting those forms can dynamically change, thus the multicast agent needs the
list of actually registered client agents and a reference for their private data spaces to
be operational. This information is available in the global configuration data space
(maintained by a registration agent). Every time a new form is available in the shared

32 CHAPTER 3. APPROACH

data space to be distributed the multicast agent updates its internal list of registered
client agents.

The multicast agent is first used in a variant in the Multicast example in section 3.7. In
this example the multicast agent is updating its internal list of registered agents directly
with the registration information provided by the client agent themselves instead of
with the information provided by the registration agent.

� Collector: The collector agent is the counterpart of the multicast agent. It is also
connected to a data space that it shares with other coordination agents, but this data
space is used to put the forms into that it collects from the client agents private data
spaces. The information about the actual group of registered client agents could also
be fetched from the global configuration data space, but because the collector agent
does not have a form that it can fetch from the shared data space and use as a trigger
to update its list of registered client agents, it needs a different mechanism to do so.
It needs to get a notification form in the global configuration data space whenever a
new client agent registered with the medium. This notification form is provided by the
registration agent, assumed that the collector agent has registered with it beforehand.

The collector agent in its simplest form is not used in one of the examples in chapter
5. The authentication agent presented in the next paragraph is based on the collector
agent and used in the electronic vote example in section 5.3.

� Authentication: The authentication agent is an enhanced collector agent. It collects
forms from the clients private data spaces and transports them into a specific shared
data space that is only accessible for the coordination agents to ensure security. Ad-
ditional to the transportation of those forms the authentication agent assigns a unique
identification to every form originating from the same private data space. This identi-
fication enables other coordination agents to check the forms for their origin.

The authentication agent is used in the Electronic vote example in section 5.3 to ensure
a part of the security for the votes given by the voter agents.

� Workload Manager: The workload manager is connected to two shared data spaces
and transports requests and answers back and forth the same way as the transport agent.
The workload manager assigns a destination identification to each of the request forms
according to a specific policy that is encapsulated into a policy object. This policy ob-
ject is wrapped into a form and stored in the global configuration data space. The
workload manager consults it each time a new request arrives and needs a destination
to be assigned to. The used policy possibly needs additional information about the
actually available destination agents that is available in the global configuration data
space (maintained by a worker information agent). The actual policy can be dynam-
ically exchanged through the policy agent by exchanging the policy form containing
the policy object in the global configuration data space.

The workload manager is used in the Administrator / worker example in section 5.4.

3.6. RELATIONSHIP BETWEEN THE CLIENT AGENTS AND THE MEDIUM 33

3.6 Relationship Between the Client Agents and the Medium

Client agents. The coordinated behavior of all client agents together forms the behavior of the
whole application. To be able to be a useful part of the application a client agent needs to com-
municate and coordinate with its fellow client agents. The only allowed way of communicating
in APROCO is by generative communication using shared data spaces. The only way for client
agents to coordinate their actions to achieve the overall goal of the whole application is through
exchanging forms over the coordination medium.

Client agents to the coordination medium. Every client agent is connected to the coordination
medium through at least one shared data space. Clients can create new data spaces if they like. To
be serviced by the medium they have to expose those data spaces in the global configuration data
space to enable the coordination agents to attach to them.

Client agents to coordination agents. Client agents put forms into data spaces to get them
delivered to other clients. The transport of this forms to the other client agents in the application is
done by the coordination agents inside the medium. Because there is no fixed number of services
that a single client agent can require the coordination medium (and with that the coordination
agents inside) to perform, there is no fixed relationship between the number of clients and the
number of coordination agents constituting the whole application.

Coordination agents. All coordination agents in the coordination medium need to get access to
the flow of forms that the clients are passing around to be able to fulfill their job. This means that
the coordination agents need at least one shared data space in between them to pass around the
forms before they get finally delivered to the target client agent. If a coordination agent needs to
be in a special position to transform these forms, e.g. the last one to do any changes before the
delivery, the design of the configuration needs to be done accordingly.

3.7 A First Example: Multicast

As a first simple example we show a situation similar to the one used in the Observer pattern
[GHJV95] where one client agent needs to notify other client agents about something, e.g. changes
to its state. It is convenient for the sender agent if it does not need to know what receiver client
agents are interested in getting the notifications. APROCO is suitable for open systems where
client agents can enter and leave a configuration at any time and the information about the actual
configuration is only available to the coordination agents in the medium, but typically not for the
client agents. Thus the only place for the information about the actual set of client agents that are
interested in getting the notifications in open systems is within the medium.

The presented solution shown in figure 3.6 consists of a sender agent with a shared data space
to put the notifications in, a set of receiver agents each with a private data space where they can
fetch the notifications from, and a coordination agent (called multicast agent here) that is waiting
for new notifications and multicasts them into the receiver client’s private data spaces. The arrows
denote the direction of the flow of information.

34 CHAPTER 3. APPROACH

Agent
Receiver

Agent
Receiver

Agent
Receiver

Private
Data Space

Private
Data Space

Private
Data Space

Agent
Multicast

Shared
Data SpaceAgent

Sender

Data Space
Global Config.

1

4

2
3

5 6

Coordination Medium

Figure 3.6: Multicast example

Actions. The sequence of actions in this example is as follows:

1. The receiver agents register their presence with the global configuration data space. They
supply a reference to their private data spaces that they created themselves. This step is only
done once in the application lifetime.

2. The sender agent wraps the information that the notification should carry into a form and
puts it into the shared data space.

3. The multicast agent takes the notification form out of the shared data space.

4. The multicast agent inspects the global configuration data space to see if new interested
client agents registered in the meantime and updates its list.

5. The multicast agent puts a copy of the notification form into every interested client’s private
data space.

6. The client agents can fetch the notification form as soon as they are ready to do so.

The easiest solution for the multicast example would have been to use only one shared data
space and to connect the sender and the receivers directly to it, as with standard Linda. We discuss
the problems that can arise with such a solution in section 3.8.4.

3.8 Precisions and Justifications of Design Choices

3.8.1 Configurations

A configuration is a collection of interacting agents (both client and coordination agents) together
with their connections. A useful configuration consists of at least one shared data space, at least

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 35

one client agent connected to this data space, and at least one coordination agent connected to
the data space. An initial configuration can be set up statically at application startup. The actual
configuration can be changed dynamically in APROCO, i.e. client agents can enter and leave a
configuration at any time.

Configuration Setup

The initial configuration of an application in APROCO is done by instantiating and activating Java
objects and connecting them by passing references for the objects representing the shared data
spaces. A typical configuration setup can be seen in figure 3.7.

package aproco.examples.multicast;

import jada.*;

public class MulticastExample f

public static void main (String args[]) f

ObjectSpace senderspace = new ObjectSpace(); // The sender’s data space.
ObjectSpace globalspace = new ObjectSpace(); // The global configuration data space.

Form emptyForm = new Form(); // The empty form matches all forms.
Form formsToListen[] = femptyForm g;

/* Create the multicast agent */
new Thread(new MulticastAgent(globalspace,

senderspace,
formsToListen, // All forms that the agent listens to.
1)).start();

/* Create the sender agent */
new Thread(new Sender(senderspace)).start();

/* Create the receiver agents */
Receiver receivers[] = new Receiver[5];

for (int i=0; i<5; i++) f
receivers[i] = new Receiver(i, globalspace); // The receivers have an ID just for
new Thread(receivers[i]).start(); // testing purposes.

g
g

g

Figure 3.7: The setup of a typical configuration in APROCO

36 CHAPTER 3. APPROACH

3.8.2 Dynamic Composition and Re-composition

The dynamic change of agent configurations is part of adynamic composition modelas described
in [Hol97] and necessary as APROCO has to deal with open systems. Such a model allows the dy-
namic assembling and re-assembling of configurations and is thus suited to deal with the problems
of evolution in open systems. The following features are required: agent creation and termination,
data space creation and deletion, exposing and hiding data spaces, and attaching to and detaching
from data spaces.

Creation and termination of client agents

Client agents are created in APROCO by instantiating and activating an object possessing its own
thread of control. A client agent is active as long as it has not deliberately stopped its processing
or its execution environment has terminated the execution. Client agents cannot be terminated by
other agents. They either terminate themselves or are terminated by the execution environment, in
our case the Java virtual machine.

Creation and termination of coordination agents

New coordination services can be introduced to APROCO by adding new coordination agents that
implement those services. Coordination agents are very similar to the client agents of the system,
except that each coordination agent has to take care of participating in the flow of information
through the coordination medium that its service needs to get involved with. Coordination agents
do not have any special means to control the flow of forms through a specific data space. As
shown in section 3.8.3 multiple data spaces are used to enable the coordination agents to control
the traffic. If we add a new coordination agent, we must enable it to be part of the information
flow through the system to be able to provide its service. This can be done in two ways:

1. By a meta-level coordination agent and using a special protocol:
We introduce a coordination agent that allows another coordination agent to be inserted into
the list of coordination agents that get the forms passed around between the client agents
and are able to manipulate them, if required.

Coordination
Agent 1Agent

Order

Data Space
Client

Data Space
Agent

Data Space
Client

Data Space
Configuration

nation Agent
New Coor-

1

2 3

Transport
Agent 1

Transport
Agent 2

Figure 3.8: Specify the relative order of coordination agents using the order agent

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 37

In figure 3.8 theorder agent as a meta-level coordination agent is listening to new coor-
dination agents registering with the system (1) through the global configuration form space
providing their name and the desired position in the information flow (first, last or don’t
care). The order agent removes the “order form” that indicates the relative order of the coor-
dination agents from the global configuration data space (2) and adds the new coordination
agent to this list and puts the new form back into the data space (3). In our example shown
in figure 3.8 the relative order for forms passing the coordination medium from left to right
before the introduction of the new coordination agents was e.g.(Transport Agent
1, Coordination Agent 1, Transport Agent 2) and after the introduction
of the new coordinationagent(Transport Agent 1, Coordination Agent 1,
New Coordination Agent, Transport Agent 2) .

In order to allow this mechanism to work properly all coordination agents have to follow a
specific protocol: they are only allowed to retrieve forms from the shared data space that are
explicitly addressed to them, and after they performed their tasks they have to consult the
“order form” in the global configuration data space maintained by the order agent to find
out which coordination agent is next on the list and explicitly address the form to it.

Problems and limitations. This mechanism only allows for a flow architecture of the
coordination agents, i.e. every coordination agent has a position in the list of the order agent
and will get the forms addressed to it exactly once in each direction. This is only suitable
for client / server kind of applications with only one type of server agents. As soon as we
have more complicated interaction schemes we need other kinds of designs.

The need for a specific protocol for all the participating coordination agents is limiting its
applicability. The mechanism cannot be easily added to an existing application without
changing all the existing coordination agents.

2. By dynamically reconfiguring the connections using a special interface:
By extending the interface of the coordination agents we can achieve the ability to dynami-
cally reconfigure the coordination medium. We can extend the coordination agents interface
with a method to get all the data space references that it has at the moment and a method to
set those data space references. In the implementation these methods look like this:

� getReferences(CoordinationAgent):[ObjectSpace]

� setReferences(CoordinationAgent, [ObjectSpace])

In the general case the setter method can only accept an identical number of data space
references as the corresponding coordination agent actually has. Without any special func-
tionality in the coordination agent, it is only possible to reconfigure the connections between
the coordination agent and the data spaces it is actually connected to. All this references are
used within the coordination agent’s code, and it is not guaranteed that an arbitrary coordi-
nation agent can handle more or less data space references in a useful way.

Figure 3.9 shows how a newly created coordination agent and a newly created data space are
inserted into the coordination medium. The new coordination agent needs to get a reference

38 CHAPTER 3. APPROACH

Coordination
Agent 1

New Coordi-
nation Agent Data Space

New

Data Space
Client

Data Space
Client

Figure 3.9: Dynamical re-configuration of coordination agents in APROCO

for the existing client data space and the existent coordination agent 1 needs to exchange
its existing reference to the client data space with one to the new data space. This can be
achieved by the two mentioned methods in the following way:

(a) Call the getter method of the coordination agent 1 to get the reference of the new data
space.

(b) Use this reference to set the new coordination agents reference to the client data space
by calling its setter method.

(c) Call the setter method of the new coordination agent with the references for the client
data space and the new data space as parameters.

Problems and limitations. The dynamic reconfiguration of coordination agents can only
be done by the designer of an application and not by the agents themselves, because an agent
cannot directly manipulate another agent via method invocations.

Creation and deletion of data spaces

Agent configurations are built around data spaces. Every agent can create new data spaces at any
time. Every newly created data space is initially a private data space onlyaccessible to its creator.
To enable other agents - including the coordination agents - to get access to a data space it must
be exposed to them.

The deletion of a data spaces would only be allowed, if no agent is possessing a reference for
it any more (except for the one that wants to delete it, of course). Such a deletion cannot be done
explicitly, because of the nature of open systems that prevents reasoning on the number of agents
that may hold a reference for a given data space at a given time. A data space can be garbage
collected when no agent is actually holding a reference to a data space any more and no other data
space is containing an item holding a reference for this data space. Such a garbage collection is
automatically done in our implementation of APROCO, because of the built-in automatic garbage
collection of the programming language Java.

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 39

Exposing and hiding data spaces

Every agent needs at least access to one data space in order to participate usefully in the system.
This access can be obtained either statically at compile-time or dynamically by getting a reference
to an existing data space from a well-known place - the globally accessible configuration data
space. Every agent that likes a private data space to be accessible to other agents can insert a
reference to it wrapped into a form into the global configuration data space as any other form. In
APROCO the data space references are first class objects that can be (wrapped into forms) passed
around like any other data space items. In open systems this can easily lead to problems with
dangling references. We could have introduced special constructs like thedata space logicals
used with Objective Linda [Kie97], which are additional wrappers for the real references into
independent representations. With this solution, it is necessary to declare another operation that
transforms the logicals back into valid references for an agent to be usable. Because we limited this
work to the core part of a coordination medium, and because of the time limitations, we decided
to keep the medium as simple as possible and did without such a special construct. A commercial
system surely has to incorporate a similar solution to this problem, e.g. by using Objective Linda
as the base system to build up the coordination medium.

If a data space reference is not meant to be used by other agents any more it is possible to
remove it from the global configuration data space to prevent newly created agents from getting
access to it. This can be seen as an operation to hide this data space, but only for newly created
agents. All the agents that already obtained the handle before cannot be forced to surrender it any
more.

Attaching to and detaching from data spaces

To be able to attach to an existing data space is a core feature of dynamic composition of agent
configurations. In APROCO an agent can attach to a data space by obtaining a data space reference
for it through the global configuration data space.

To detach from a data space does not need any particular action. Because we do not provide
the means for explicitly deleting a data space as mentioned before, we do not need to know if
there are still agents around with references to a particular data space. However, for the automatic
garbage collection offered by Java to work properly within APROCO, it is necessary for agents
that stopped to use a particular data space to explicitly give up their references to it. This is done in
Java by assigning the constantnull to the variable that denotes this specific data space reference.

3.8.3 Multiple Data Spaces

For APROCO we employ multiple data spaces instead of just a single one as with the standard
Linda model. Several approaches have been presented to extend standard Linda with multiple
data spaces (see e.g. [Kie97] for a discussion). We shortly discuss the reasons for our decision to
use multiple data spaces in APROCO.

No special communication required. The coordination agents in APROCO need a way to con-
trol the flow of information between client agents in order to provide their coordination services.

40 CHAPTER 3. APPROACH

This can either be done with the introduction of a special type of connection to a single shared
data space to enable a higher priority for the coordination agents (e.g. by generating an event
when something happens in the shared data space), or by introducing multiple shared data spaces
as shown in figure 3.10. The use of multiple shared data spaces enable us to use only one type of
communication throughout the whole application, namely generative communication.

Coordination
Agent

Client Client

1

2 3

4

Private
Data Space

Private
Data Space

Figure 3.10: Use of multiple shared data spaces

Figure 3.10 shows a very simple situation where the two client agents operate on private data
spaces. To make this system work, a coordination agent has to “connect” these two private data
spaces together by transporting the forms from one data space into the other. By doing this, the
coordination agent simulates the behavior of a single shared data space for the client agents.

Consider the client agent on the left side in figure 3.10 wants to send a form to the client agent
on the right side. It just puts the form into the only data space that is available for it (1) and possibly
waits for an answer to show up in this data space. The coordination agent is grabbing the form
from the private data space of the left client agent (2) and possibly does some transformations to it
to fulfill its coordination purpose and finally puts the form into the private data space of the right
client agent (3). Now the client agent on the right can grab the possibly transformed form from its
private data space (4) and do whatever it likes with it.

The simplest coordination agent in APROCO is the one that simply transports the forms from
one data space into the other without adding or changing anything.

Coordination
Agent

ClientClient

1

2

2

Shared
Data Space

Figure 3.11: The coordination agent would need a special type of connection to the shared data
space to be operational.

To compare this, we show a situation with only one shared data space in figure 3.11. If in this
situation the client agent on the left wants to send something to the client agent on the right, it
equally puts the form into the only accessible shared data space for it (1). But now, without any
special type of connection, the coordination agent has no priority in grabbing the form before the

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 41

client agent on the right gets it (2). Both agents wants to grab (or at least read) the item but only
one will get it. If it is the coordination agent that gets the form, it can fulfill its task, but if it is the
client agent, the coordination service most probably will fail.

Large Systems. When the model has to deal with large systems, it is vital to be able to divide
the overall configuration into smallersubconfigurations. This means that it must be possible to
treat entire configurations like single agents at a more abstract coordination level.

Coordination
Agent

Client Client

Coordination
Agent

Coordination
Agent

Client Client

Coordination
Agent

Coordination
Agent

Subconfiguration

(a) (b)

Shared
Data Space

Shared
Data Space

Shared
Data Space

Shared
Data Space

Figure 3.12: Subconfigurations can be seen as single agents (a) in APROCO, but not (b) in standard
Linda.

It is not possible to view subconfigurations as single agents with a single shared data space as
shown in figure 3.12. It is not possible to draw a clear border line between two subconfigurations.
This leads to the necessity of introducing multiple shared data spaces into a model that is able to
deal with large systems. Of course, multiple shared data spaces can be simulated using a single
shared data space by logical partitioning the single shared data space. This can be done with a
special object that every data space item has to carry to mark to which logical partition of the
shared data space it belongs to. However, the agents’ access to such marked data space items must
be managed by convention, thus this mechanism cannot solve security problems as shown in the
next paragraph.

Security and Naming. Multiple data spaces are important for security and naming [BCG97].
For security reasons, it is necessary to allow agents or collections of agents to use their own data
space “sandboxes”. It is easier to provide an untrusted agent with its own data space than try to
restrict its access to a shared data space on a level needed for security issues without preventing
the agent from being operational at all.

Naming is necessary if we want to provide each agent with its own name space, but still let it
inter-operate with other agents. This can be solved elegantly using multiple data spaces that can
be exchanged as a whole or can have some data space items transported from one to the other, as
done in APROCO.

42 CHAPTER 3. APPROACH

3.8.4 Designs Using Private Data Spaces

Private data spaces are shared data spaces that are only used by one client agent and the coor-
dination agents inside the coordination medium but not by other client agents. In the multicast
example (see figure 3.6) we used private data spaces for the notification recipients. We discuss the
advantages of designs like this and show the necessity of private data spaces.

Agent
Receiver

Agent
Receiver

Agent
Receiver

Agent
Coordination

Agent
Receiver

Agent
Receiver

Agent
Receiver

Agent
Coordination

Private
Data Space

Private
Data Space

Private
Data Space

Shared
Data Space

Figure 3.13: Private data spaces versus single shared data space

In figure 3.13 we show a part of the multicast example presented earlier using private data
spaces and for comparison, using a single shared data space for all the recipients. The solution
using a single shared data space employs a standard protocol in standard Linda systems (see e.g.
[MU97]) to enable the recipients to proceed independently: the data space items are explicitly
addressed to the client that should get them and all the clients are only allowed to remove those
items that are explicitly addressed to them. This solution is very often used, but very inflexible in
terms of client protocol. If only one client agent is not following the protocol and consumes items
that are not explicitly addressed to it, the application behavior cannot be guaranteed any more. The
solution based on private data spaces is much less dependent on the client protocol and allows the
client agents to be as independent as possible. We list some reasons for introducing private data
spaces as a design choice in APROCO.

Security. The main reason for introducing private data spaces as a design choice is to ensure
security. Using private data spaces, we can guarantee that no client agent can interfere with the
communication of another client agent. This is guaranteed by the fact, that no other client agent
can get a reference to one agent’s private data space and a reference is required for gettingaccess
to a data space.

Of course, even with private data spaces we cannot prevent a client agent from publicizing a
reference to its private data space in a place that is accessible to other client agents and thus let them
attach to it. This means that the mechanism of private data spaces alone cannot fully guarantee
security. As we will discuss in section 3.8.5, access rights on data spaces are also required for this
purpose.

Liveness. With private data spaces it is possible to create settings where guarantees for liveness
of all client agents can be given, supposing the coordination medium works correctly. In this case

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 43

every client agent gets the right forms delivered to its private data space where no other client
agent has access to.

Shared
Form Space

Agent
Greedy

Receiver
Agent 1

Agent 2
Receiver

blocked
waiting for an item
addressed for it

blocked
waiting for an item
addressed for it

"RecAg1",
"response"

Agent
Coordination

running

Figure 3.14: Liveness problem with single shared data space

To illustrate possible liveness problems using a single shared data space we show a situation in
figure 3.14, where all client agents are using the same shared data space for their communication.
In this case, it is possible, that one “speedy” and “greedy” client agent can always overtake the
meant recipient of a form and grab it before the recipient agent gets woken up. If we suppose,
that the implementation of the operations is not preventing one process from being indefinitely
bypassed, we cannot give a guarantee for the liveness of this client agent.

If instead we use a solution with a private data space for each of the receiver agents in figure
3.14, liveness of all receiver agents can be guaranteed, because no other client agent is able to
access the private data space of a particular receiver agent and “steal” its forms. Thus liveness
considerations are strongly coupled with the security aspects we discussed above. In particular,
liveness can only be guaranteed if security can be guaranteed, and this is only possible in conjunc-
tion with access rights on data spaces, as we will discuss in section 3.8.5.

Atomicity. Private data spaces are an easy solution for the problem of interference of agents
trying to consume multiple data space items. As mentioned earlier, it is not possible in Linda and
most of its derived systems to atomically retrieve more than one data space item5. We can imaging
situations, where this behavior can lead into trouble.

If a client agent needs to read out all the items in a shared data space, it has to repeatedly
consume one item after the other until there are no more items left. This is only possible, if the
client agent can be sure that there is no other client agent interfering with this action and e.g. trying
to do the same at the same time. Private data spaces are an easy solution for this problem, because
every client agent can be sure to be the only client that has access to all the items in the data space
and thus, it can read them out without being disturbed by other clients.

5An exception is e.g. Objective Linda [Kie97], where it is even possible to specify the minimal and maximal number
of items that will be read or retrieved simultaneously in order to succeed.

44 CHAPTER 3. APPROACH

3.8.5 Access Rights on Data Spaces

An agent can get access to a shared data space either statically at compile-time through the pro-
gramming language or dynamically through the acquisition of a reference to the data space at run-
time. In APROCO data space references are wrapped into forms that can be exchanged through
another data space like any other forms.

Access rights on data spaces are an essential part of APROCO, because different access rights
are necessary to implement security mechanisms in open systems.

Consider an example where different client agents are asked to give a vote for a specific issue
and they are guaranteed that their votes are held secret from the other clients (see the full descrip-
tion of the problem and the solution in section 5.3). We have to take into account that the solution
should be suited for open systems. This implies that the voting participants must be allowed to
enter or leave the configuration at any time. To enable the system to service them correctly, the
clients are required to register their presence with the system. Because of the reasons mentioned
in section 3.8.4, an optimal solution should incorporate a private data space for each client to put
its votes into. Private data spaces have special access rights: they are only accessible for the client
that created the data space and all the coordination agents of the system. The coordination agents
do not have a special way to access a shared data space, this means that a new client has to provide
the system with a reference to its private data space in order to have successful communication
with the system and thus with the other clients. This reference must be put into a place where
all the interested coordination agents can get it, but a potential cheater among the clients is not
allowed to grab it from there. Hence, a solution that really ensures security needs private data
spaces for the clients and a registration data space (possibly the global configuration data space)
with write-only accessfor all the clients.

There are only a few products around that supports special access rights on shared data spaces,
one is Paradise [Sci94] from Scientific Computing Associates and another one is called T Spaces
[IBM98a] and is an ongoing research project at IBM. Paradise provides multiple tuple spaces with
different degrees of visibility and degrees ofaccess to them. Tuple spaces are either private, ac-
cessible only within a single application, or semi-private, accessible for related applications, or
public, accessible for all applications. Every process within an application can have full access
to a specific tuple space, read-only access or write-only access. The access rights are coded into
tuple space references, that can be exchanged over other tuple spaces as normal tuples, as done in
APROCO using forms. A commercial coordination medium is required to support access restric-
tions of this kind to enable security.

Deadlocks. Restrictions on access rights do not introduce new potential deadlock situations, if
they are realized by encoding the respective rights into the references themselves (or in a wrapper
structure for the references), and the operations are programmed in a way, that it is not possible to
call them if the required access rights are not granted to the calling agent. A potential deadlock
situation would be, if an agent could send a request to a data space that it did not have the appro-
priate rights for and waits for an answer delivered back to it. Such a situation is not possible, if
the agent would be prevented from sending a request into a data space without having sufficient
rights, e.g. with an error message.

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 45

3.8.6 Forms

A form is a set of bindings of labels (or keys) with corresponding values. The values can be of
arbitrary type, even another form is a possible value. This way nested forms can be constructed.

The concept of forms we used here is based on ideas found in incrementally “grown” systems
like electronic mailwhere new features (e.g. electronic signatures) are simply added to the stan-
dard mail documents using new tags. It is important to note that the introduction of such new tags
do not break all the older clients that do not know them, they simply ignore those new tags and
work with the known ones.

Forms as holder of information are known for a long time already. To the author’s knowledge
Lisp [Ste90] was the first programming language that incorporated a similar concept. They are
successfully used in areas where extensions to the standard behavior are frequent. Hence, the use
of forms is well-proven and wide-spread, although not in conjunction with Linda-like shared data
spaces, where tuples are the basic means of interaction.

We used forms instead of the standard tuples as information items in the shared data spaces
because forms have the following useful properties:

� Extensibility: Extensibility can be described as the possibility to add new functionality to
an existing piece of code without affecting the previous behavior. See e.g. [LAN98] for
more details. With forms it is easy to add new tags and values without breaking the existent
system.

� Default values: In the scripting language Python [vR97] (as with Lisp [Ste90]) it is possible
to create functions that take their arguments by keyword - instead of by position, as with
tuple based environments - and can have default values that are used when no value is given.
The Python dictionaries used for this are very close to our notion of forms.

� Easy to wrap up code: As shown in the markup language HTML used for documents
published over the web, it is easy to wrap up active behavior like small Java programs -
called applets - into the forms used for the formatting of the documents. This works by
introducing new tags for the code fragments that are meant to be processed by the HTML
browser.

Pattern Matching

Pattern matching is the basic mechanism used in Linda based shared data space systems. It is
used to compare the items in a data space with a pattern item to find one that is similar enough to
be considered as a matching item. Thein(p) andread(p) primitives use a pattern matching
mechanism to inspect the data space and - in case ofin(p) - to remove a matching item after its
values has been read in.

Tuple matching. A tuple is a series of typed values, e.g.("a string", 17) . A pattern
tuple is a series of typed fields, some are values, others are typed place-holders, indicated usually
through a prefixed question mark, e.g.(?s, ?i) , wheres andi are variables declared of type
string and integer respectively.

A tuple t and a pattern tuplep match if:

46 CHAPTER 3. APPROACH

� botht andp have the same arity (same amount of fields),

� values in corresponding fields are identical, and

� a typed place-holder inp and a corresponding value int have the same type.

As a result of a successful matching operation, the place-holders in the pattern tuplep obtain
the values contained in the corresponding fields of tuplet.

Form matching. A pattern form is a normal (possibly empty) form containing only labels and
values, but no place-holders. We chose the following definition for our matching operation for
forms:

Definition 1 A formf and a pattern formp match if and only if:

� the labels ofp are a subset of the labels off,

� the values of corresponding labels are identical.

z = 3
x = 10
y = 4
w = "a string"

x = 10
y = 4

y = 4y = 4
x = 10

Pattern p

Form f Form g Form h

match
match

no match

Figure 3.15: The pattern form p matches forms f and g, but not form h.

Figure 3.15 shows an example of a pattern form and what forms this pattern form can match.
The chosen matching operator has the following properties:

� The order of the labels is irrelevant.

� Additional labels in the forms are ignored.

� The empty form as pattern form matches every form.

� There is no notion of place-holders and thus no assignment of values to place-holders as a
result of a successful matching operation.

3.8. PRECISIONS AND JUSTIFICATIONS OF DESIGN CHOICES 47

Pattern matching with forms is based on the pattern matching with tuples as introduced in
the preceding paragraph. Tuples can be transformed into forms without losing information by
creating bindings of form labels and values using form labels according to the position of the field
in the tuple that the value is taken from. Place-holders in pattern tuples are just skipped and the
respective position form label is not used in the transformed form. Tuples can be seen as restricted
forms, therefore a matching operator for forms should be compatible to the one for tuples, in the
sense that two matching tuples extended to forms should still be matching.

pos1 = 5
pos2 = 12
pos3 = "hello"
pos4 = 17

FormsTuples

(5, 12, "hello", 17)

matchmatch

pos1 = 5
pos4 = 17(5, ?i, ?s, 17)

Figure 3.16: Transformation of tuples into forms

In figure 3.16 we show a possible transformation of tuples into forms and the compatibility of
the used form matching operation with the tuple matching operation with an example.

Extensibility. Tuple matching is based on the check of the arity of the tuples in the first place.
Only if the arity is equal the other similarities are taken into consideration. It is exactly this behav-
ior that prevents tuple based systems from being easily extensible. We understand extensibility as
the possibility to add new functionality to an existing piece of code without affecting the previous
behavior.

We can see that extensibility is fully supported by the matching operation we used for forms.
The pattern form is not specifying the “arity” of the target form or the type of a specific field of
it. Only identical values of identical labels are considered as matching. New functionality can
be added by simply introducing new labels into the forms that are passed around. A form with
additional labels is still matched by a pattern form that would match the same form without the
additional labels. This way, existing behavior will not be affected by introducing new functionality.

Limits. The matching operation for forms we introduced is by intention easy to understand and
easy to implement. As usual, this simplicity generates some limits. With the presented form
matching operation it is not possible to directly express matching of labels without their corre-
sponding values, e.g. if we want to match a form that has a particular label, but are not interested
in the corresponding value, we cannot provide an appropriate pattern form to match it with the
presented matching operation. The matching operation could be extended to allow this, but we

48 CHAPTER 3. APPROACH

could not find an application where we really needed this feature. We know that it would help to
clarify the interface descriptions of the agents as used in the examples chapter, because it would
allow to clearly state the expected keys of a particular form that will be matched, independent of
the values that are associated with this keys. For the sake of simplicity of the matching operation,
we sacrificed the extended clarity of the interface descriptions.

3.8.7 Form Example

This small example shows the kind of extensibility we gain in using forms as basic information
containers.

Problem Description

In a client/server setting there is often the situation that a newly introduced client generation wants
to have new requests serviced by the server that the old generation did not know about. Suppose
that it is not possible to update all the old clients to the new version, so there will be still old
versions of the client running and expecting the server to respond to their service requests.

Solution

With forms the approach to solve this very common situation is very easy and straight-forward.
The server is still listening to the same interface definition, namely a form, and the clients are
using the same interface as well. The new client generation may introduce new keys and values in
the form as it likes to without disturbing the old clients in their operation. The server is responding
to requests from the old clients the same way as from new clients. If there is no corresponding
label for a new service in the request form, the server simply replies with a default value. New
clients understand these new labels and values while older ones just ignore them, because they are
unknown to them.

Figure 3.17 shows a situation with a server agent and two client agents of different generations
using forms. The new client requests an extension to the original service while the older client
only needs the original service. Using forms there are no changes needed to the older client; it
simply ignores the new labels in the answer from the server. In the situation shown in figure 3.17
the answer from the server is directed to the new client (with ClientID 15), but the same answer is
also accepted by the older client if it is directed to its ClientID.

Using standard tuples, either the server needs to be extended with a thread that is listening to
the tuples from the old service (because the arity of the tuples are not the same any more) or the
older client needs to be changed (to the new arity of the tuples), and this is not possible in our
example, because the source code is not available.

Discussion

The usual approach to solve the problem is to declare a new interface for the server for the new
client generation while retaining the old interface for the old clients, as had to be done for the tuple
based solution. This way the server has to maintain different interfaces and react differently on
requests matching one of those interfaces.

3.9. PROPERTIES 49

Shared
Data Space

Client
Old

Client
New

Agent
Server

Type = "Request"

ServiceID = 5

ClientID = 15
ServiceID = 5

Type = "Answer"

Result = "result"

Parameters = "params"
NewFeature = "params"

NewResult = "exciting"

Type = "Request"
ClientID = 3
ServiceID = 5
Parameters = "params"

Type = "Answer"
ClientID = 3
ServiceID = 5
Parameters = "params"

ClientID = 15
ServiceID = 5
Parameters = "params"
NewFeature = "params"

Type = "Answer"

Type = "Request"
ClientID = 15
ServiceID = 5
Parameters = "params"
NewFeature = "params"

Request Form

Pattern Form

Reply Form

Pattern Form

Pattern Form

Request Form

Figure 3.17: An example using forms: server with different generations of clients

Using forms the maintenance of different generations of clients is very easy and straight-
forward, because older clients simply ignore the parts of the reply that they do not understand.
They are always able to get the reply from the server, because it is still a form, no matter how
much labels are in it. It is also easier to maintain the server, because there is only one interface to
take care of.

3.9 Properties

To summarize, the coordination medium APROCO has the following properties:

Flexibility. The concentration and encapsulation of the coordination activities into the coordi-
nation agents inside the coordination medium yields the possibility to adapt it to changed require-
ments or environments without affecting the rest of the system. It is easier to change or exchange a
single component encapsulating the behavior than to change all the participants to realize another
cycle in the evolution of requirements.

Ease of Reuse. The explicit representation of coordination services - abstracted away from the
concrete situation and participants - allows one to reuse such independent entities in new settings
easily.

50 CHAPTER 3. APPROACH

Decoupling. The use of generative communication as the basic means for all agents to commu-
nicate and coordinate allows a high degree of decoupling of producers and consumers of data.
This decoupling is a prerequisite for the clean encapsulation of the coordination abstractions and
thus for the flexibility and reusability of them.

Independence Of Data. The use of shared data spaces allows data to live independently from
the agent that produced it.

Access Rights On Data Spaces.To enable security, it is vital to have the possibility to declare
different access rights on shared data spaces. Because APROCO supports multiple data spaces, it
is sufficient to be able to define access rights per data space and, because of its agent architecture,
per agent.

Private Data Spaces. Private data spaces allows one to create designs with guarantees for secu-
rity, liveness, and maximal independence of the participating client agents very easily.

Extensibility. The use of forms as the carriers of information enables easy extensibility of the
applications built with APROCO. It is possible to add new functionalitywithout necessarily chang-
ing the existent agents interfaces.

3.10 Evaluation of The Approach

In this chapter we presented the coordination medium APROCO for software agents based on
multiple shared data spaces and generative communication.

3.10.1 APROCO Fulfills its Requirements

APROCO is a programmable coordination medium for software agents with an open and dynam-
ically changeable architecture. Because of the dynamic re-composability and decoupling of the
agents it is particularly suited for open systems. APROCO allows the user to factor out the coordi-
nation behavior of an application into explicit entities, namely coordination agents. These entities
for the coordination abstractions are adaptable to changed requirements and reusable in different
settings.

Separation of Concerns. APROCO supports the clean separation of concerns. The client agents
are mainly concerned with the computational aspect of the application - besides the communi-
cation with other client agents necessary to reach the overall goal of the application - and the
coordination agents are solely concerned with the coordination aspects of the application.

Coordination Agents as Explicit Coordination Abstractions. APROCO factors out the coor-
dination solutions into explicit, dynamically changeable entities, the coordination agents. This
increases or even enables reusability and flexibility of the used coordination abstractions. The co-
ordination agents can be combined to deliver high-level coordination services to the client agents.

3.10. EVALUATION OF THE APPROACH 51

Reusability of Coordination Agents. Coordination agents are explicit representations of co-
ordination services, abstracted away from the concrete situation and participants. The level of
abstraction achieved this way allows one to easily reuse these coordination agents in different
settings. We will demonstrate this by reusing some coordination agents in different examples.

Flexibility of Coordination Agents. Explicit self-contained representations are easy to exchange
with new ones to keep up with changing requirements. Flexibility in APROCO is not limited to this
kind of exchangeability of coordination agents, the coordination agents can be realized to be flex-
ible themselves. We show an example (the administrator / worker example in section 5.4) where
the actual policy for an action performed by a coordination agent can be dynamically changed by
simply replacing a form in the global configuration data space. This way we achieve run-time
flexibility of our coordination solutions.

Decoupling of Agents. The use of generative communication as the basic means for all com-
munication among the agents delivers a high degree of decoupling of producers and potential
consumers of data. This decoupling is an important feature in the domain of open systems as de-
scribed in section 3.4.1. The decoupling of the agents inside the coordination medium is important
for the design of explicit coordination abstractions.

Dynamic Re-composition. The loose coupling of the agents enable them to dynamically join
or leave a configuration without leaving others with broken communication channels. Together
with the possibility for the agents to create new data spaces and attach to existing data spaces
this yields the means for dynamic composition and re-composition of applications as described in
section 3.8.2. Open systems cannot always be stopped and recompiled to incorporate modifica-
tions. This implies that it must be possible to modify the system dynamically. To be able to tackle
the changing requirements in open systems, dynamic re-composition must be supported by any
serious candidate architecture in the domain of open systems.

3.10.2 Limitations

APROCO is based on the inspection of the data flow between the client agents to fulfill its coordi-
nation purposes. This causes some limitations that are inherent to the data-oriented coordination
model and cannot be changed without leaving the generative communication model. The coordi-
nation agents inside APROCO have no possibility to directly query or modify internal state of the
client agents. They only have the information that is passed between the client agents. This limits
the capabilities of the actions that a coordination agent can perform to those generally available
in data-oriented coordination models [PA98]. We decided not to introduce special capabilites that
would leave the model, because all agents can use the same communication mechanism, and thus
the decoupling of the agents is higher, promising a higher degree of reusability.

Besides this inherent limitation APROCO has also some limitations due to some design deci-
sions we made. We list this limitations here.

52 CHAPTER 3. APPROACH

Conflicting Coordination Services. There is no support in APROCO to find and resolve prob-
lems arising from conflicting coordination services. If one coordination agent e.g. removes an
item that another coordination agent has introduced to perform its service, this service has to fail.
To resolve such kind of problems there one would have to find a way to reason about the behavior
of coordination agents and to check for violations.

Chapter 4

Implementation

We implemented APROCO and some examples to experiment with the concepts and find possible
limits. All the material presented in this thesis is freely available at the author’s web page (URL:
http://www.iam.unibe.ch/ ˜ dkuehni/aproco.html). In the following sections we
discuss some implementation issues.

4.1 Implementation Overview

For the implementation of the coordination medium APROCO we used the object-oriented pro-
gramming language Java [Fla97] together with an implementation of the Linda primitives in Java,
called Jada (“Java Linda”) [CR96]. Jada offers a set of Java classes for creating multiple shared
data spaces and operating the Linda primitivesin , read , andout on them. The agents used in
APROCO are implemented using Javathreadsthat can use those primitives to generate or consume
data space items, or inspect data spaces associatively for data space items. In our implementation
all Java threads run within a single Java virtual machine, this means that there is no physical distri-
bution in our implementation yet. For convenience we made use of a freely available class library
for Java, called JGL [Obj97]. This library offers a bunch of highly customizable object containers
and algorithms for Java. We used it to implement the forms in APROCO, thus all actions related
with forms need JGL to be imported. We describe our form implementation in detail in appendix
A.
We introduce the different parts of our implementation in the following subsections.

4.1.1 Java

All agents in APROCO are built with their own Java thread running in the same Java virtual
machine. We used Java in this thesis for several reasons. First of all, the programming language
chosen to build a coordination medium for open systems must be suitable for open systems, i.e.
it must be running on different platforms and support distribution. Java is running on a variety of
hardware and software platforms and its wide adoption guarantees for even quite exotic platforms
to be available soon. Java supports distribution by offering standard class libraries for sockets
and remote method invocation (RMI). The upcoming Java 1.2 will add CORBA functionality to

53

54 CHAPTER 4. IMPLEMENTATION

this basic level of distributed computing and thus will increase inter-operability. Secondly, Java
is the first choice as the programming language to investigate software agents especially if they
are meant to be mobile, mainly because of its ability to dynamically load program code into a
running application and its platform independence. By the time of writing this thesis there were a
lot of Java agent frameworks available to investigate the power of this concept, IBM’s Aglets SDK
[IBM98b] and ObjectSpace’s Voyager [Obj98] are possibly the most prominent representatives
today.

Problems and Limitations. During the implementation of APROCO using concurrent Java
threads that need to be synchronized, we encountered a disadvantage of Java. If several threads are
running with the same priority in a Java virtual machine, fairness cannot be automatically guaran-
teed. Running Java threads are only preempted by threads that have a higher priority (see next sec-
tion for more details). This implies that in the situation described in section 3.4.1 where two pro-
cesses are protected from concurrently executing a critical section of their code by using a shared
resource in Java it is possible that one thread indefinitely overtakes the other thread. To prevent
this situation we had to explicitly yield the processor to other threads usingThread.yield()
at appropriate locations in the code.

Although this problem is known and documented (see e.g. [Lea97]) and thus a “feature”
instead of a bug, it is nevertheless a very annoying feature.

4.1.2 Jada

Jada is a Java class library designed for the use in distributed applications for the World-Wide-
Web (WWW). Jada can create multiple shared data spaces (so calledObject Spaces) that can be
accessed remotely. An Object Space holds Java objects as data space items. In order to allow
objects of user-implemented Java classes to be part of data space items, they have to implement a
special Java interface calledJadaItem. This interface defines methods for dumping objects to byte
streams and constructing objects out of byte streams for the remote access of Object Spaces over
IP connections, and a matching predicate.

Jada is freely available for research projects and can be downloaded from its creators home
page (URL:http://www.cs.unibo.it/ ˜ rossi/jada/index.html). Jada is written
using Java 1.0.2, but we encountered no problems running it with Java 1.1.

We present a detailed description and discussion of Jada and some of the implementation
details in appendix A.

Problems and Limitations.

Access Rights on Data Spaces.Jada offers no means for restricting access to a data space or the
items in a data space. As we discussed in section 3.8.5 access rights on data spaces are essential
for a coordination medium to be able to offer security for the client agents.

Fairness. Jada is multi-threaded and offers blocking of threads or remote applications over its
Object Spaces on the level of single threads. However, Jada uses the thread management capabili-
ties of standard Java, and they are quite poor. Because Java is designed to be platform independent,

4.2. INTERFACE NOTATION AND IMPLEMENTATION 55

the requirements for the Java virtual machine have to be defined in a way that they can be met on
every platform. For the scheduling of threads this means that fairness even in the weakest sense
cannot be guaranteed [Lea97]. Running threads are only preempted by threads running with a
higher priority. In our experiments we found out that one has to explicitly yield the processor to
another thread to give it a chance to grab a shared resource in a Jada Object Space. This can be
done by explicitly callingThread.yield() after the shared resource has been released and
before another try to get hold on it is started.

4.2 Interface Notation and Implementation

Since all agents in APROCO exclusively use generative communication to interact with their envi-
ronment, an external interface only has to list the kind of forms that are put into a specific shared
data space and the templates for the pattern form used to read out or consume forms from that
specific shared data space. For every data space the agent is connected to we list a separate table.
Each table consists of three parts:

1. thecreatessection lists all forms that this agent writes in the given data space using anout
operation. For each different type of forms that the agent can create we list the used keys
and some example values.

2. thereads section lists all forms that this agent can read from the given data space using
a read operation. Because this operation needs a pattern form as parameter, which is a
normal form that consists only of those key/value pairs that at least have to be present in a
form to be matched and thus read out from the data space, we only list the keys and values
from this pattern form. The concrete form that is read out from with the corresponding
read operation typically has much more keys and values as listed in this section. We list
each different pattern form that this agent uses to match forms in the given data space.

3. theconsumessection lists all forms that this agent consumes from the given data space
using anin operation. Like in the reads section, we only list the pattern forms that are used
by this agent to match forms in the given data space. This means that the matched forms can
have much more keys and values as we list here, because as mentioned above, the pattern
form only consists of the minimal set of keys and values that have to be present in a form to
be matched and thus consumed from the given data space.

If an agent does not use a particular operation (out , read , or in), the corresponding part of
the table is omitted.

Figure 4.1 shows an example of a typical interface of a client agent in APROCO. The reads
part of the table is omitted because this client does not use aread operation in its code.

Note that we use example values rather than types in all interface descriptions, because the
matching operation we use for forms (defined in section 3.8.6 and implemented as shown in section
A.5) only checks for exact match of values and does not allow to match all items of a specific type.
Although this could be achieved by an appropriate matching operations there was no need for it in
the examples that we show in chapter 5.

56 CHAPTER 4. IMPLEMENTATION

Name of the agent: Name of the data space

Keys Example Values Comments
creates

Type "Request" Type of the form.
ClientID 5 The client’s ID.
ServiceID 17 The ID of the service.
Parameters "params" The parameters for the service.

consumes
Type "Answer" Type of the form.
ClientID 5 The client’s ID.
ServiceID 17 The ID of the service.

Figure 4.1: Example of a typical interface of a client agent in APROCO

The Implementation

We present the Java code for the interface of the typical client agent as shown in figure 4.1.

ObjectSpace os = new ObjectSpace();

Form f = new Form();
f.put("Type", "Request");
f.put("ClientID", new Integer(5));
f.put("ServiceID", new Integer(17));
f.put("Parameters", "params");

os.out(new Tuple(f));

Type "Request"
ClientID 5
ServiceID 17
Parameters "params"

Figure 4.2: The creates part of the interface and its implementation

Figure 4.2 shows the implementation of the creates section of the interface of the typical client
agent and figure 4.3 shows its consumes section.

In figure 4.3 the Form object calledf in the code describes a pattern form used to match a form
in the data space that contains at least the given keys and values, but of course also some results
that we are interested in. The desired information can then be read out of the resulting form using
theget method of theHashMap class of the JGL library that we used for the implementation of
our Form class (see section A.5 for a description and the code). We present the standard idiom
used in APROCO to retrieve such information.

To access a Form object in a shared data space one has to follow a special idiom shown in
figure 4.4. First a pattern Tuple object (theTuple class is part of the Jada package, we describe
it in section A.2.1) is created containing the desired pattern Form object (calledpatternForm
here) usingnew Tuple(patternForm) (1). This Tuple object is provided to thein operation
as pattern to match an appropriate object in the desired data space (calledos here). The actual
matching is performed in two steps:

4.3. RECIPE FOR BUILDING ANAPROCOAGENT 57

ObjectSpace os = new ObjectSpace();

Form f = new Form();
f.put("Type", "Answer");
f.put("ClientID", new Integer(5));
f.put("ServiceID", new Integer(17));

Tuple t = (Tuple)os.in(new Tuple(f));
Form result = (Form)t.getItem(0);

Type "Answer"
ClientID 5
ServiceID 17

Figure 4.3: The consumes part of the interface and its implementation

(1) Tuple tuple = (Tuple)os. in (new Tuple(patternForm));
(2) Form form = (Form)tuple. getItem (0);
(3) String result = (String)form. get ("Result");

Figure 4.4: Standard idiom to access information from a data space

1. the standard Tuple matching defined in the Jada Tuple class is used to find Tuple objects
that hold exactly one Form object, and

2. the matching predicatematchesItem of this Form object is called to find out, whether a
matching Form object exists. If this Form object contains other objects that support their
own matching predicates, they are called recursively.

The resulting object of thein operation is a Jada Tuple object. To retrieve the Form object
wrapped in this Tuple object, we have to call a special methodgetItem(FieldPostion:
int): Object on the Tuple object with the position of the desired tuple field as parameter.
Since the Form object is the only object that the Tuple object contains, it is the first tuple field (2).
The resulting object is now the Form object that we are interested in. To retrieve the values of
some keys inside this Form object, we call theget(Key: Object): Object method on
the Form object with the desired key as parameter and get the value, if present;null otherwise.

4.3 Recipe for Building an APROCO Agent

As described in section 3.3 a typical client agent in APROCO performs the following tasks:

� createnew private data spaces,

� exposeits own created data spaces for other clients to attach to them,

� attach itself to existing data spaces, and

� produce (with out), read (with read), andconsume(with in) forms from the data spaces
it has got references for - either statically through the programming language or dynamically
acquired by attaching to them.

58 CHAPTER 4. IMPLEMENTATION

A typical coordination agent (see section 3.4.3 for details) can perform the same tasks, but typ-
ically does not create private data spaces and thus does not need to expose them to other agents.
The distinction between client and coordination agents is not important in terms of implementa-
tion, it has only been introduced for conceptual reasons.

In chapter B we show the complete code of some coordination agents and one complete ex-
ample.

Creating Data Spaces

An agent can create as many data spaces as it wants to by creating instances of theObjectSpace
class defined in the Jada package (see chapter A for a detailed description of Jada). Figure 4.5
shows the Java code needed for this task. Please note that the location of the Jada package must
be present in theCLASSPATHenvironment variable to be able to use it. Future versions of Java
may solve this differently.

import jada.*;

ObjectSpace dataspace = new ObjectSpace();

Figure 4.5: Creation of data spaces

Exposing Data Spaces

To be accessible for other agents (client as well as coordination agents) a newly created data space
needs to be exposed to them to let them attach to it. This is done by wrapping a reference to
this data space into a form and putting this form with anout operation into a well-known data
space representing a global environment, the global configuration data space (see section 3.4.1 for
details). Every agent gets a reference to the global configuration data space by default at compile-
time. Figure 4.6 shows the Java code needed for this task.

import jada.*;
import aproco.lib.Form;

void registerAsNewClient () f
Form f = new Form();
f.put("Type", "RegisterClient");
f.put("Handle", dataspace); // The reference to the created data space
globalspace.out(new Tuple(f));

g

Figure 4.6: Exposing data spaces for the use by other agents

4.4. POLLING VERSUS INTERNAL THREADS 59

In this example the client agent registers with the medium using the shown idiom and makes
use of the presence of aregistration agent(see section 3.5 for a description) that collects the
references of the client agents for the use by the coordination agents of the medium. However,
client agents are free to expose their data spaces (as long as they should not be private) using
non-standard forms with user-defined arguments.

Attaching to Data Spaces

If an agent needs to get access to a data space in order to put an item into it or inspect the data
space for a specific item it needs to get a reference for this data space. If the agent did not get a
reference statically at compile-time, it can try to get one dynamically. This is done with anin or
read operation on the global configuration data space (see section 3.4.1 for details)to get a form
with the reference for the desired data space. If the data space was created by another client, it has
first to be exposed before the agent can attach to it. In figure 4.7 we show the Java code to perform
this task. It makes use of the standard idiom to access information from a form stored in a data
space as described in the preceding section and shown in figure 4.4.

import jada.*;
import aproco.lib.Form;

registerClient = new Form();
registerClient.put("Type", "RegisterClient");

Tuple t = (Tuple)globalspace.in(new Tuple(registerClient));
Form f = (Form)t.getItem(0);
ObjectSpace handle = (ObjectSpace)f.get("Handle");

Figure 4.7: Attaching to a data space

Figure 4.7 uses the same naming conventions for the form containing the data space reference
as used in figure 4.6.

Once an agent has got a reference for a data space it can perform the usual primitive operations
on it.

This is a code excerpt of the registration agent mentioned above. This agent collects the data
space references of the client agents to be used by the other coordination agents of the medium.
The full code of the registration agent can be found in section B.1.3.

4.4 Polling Versus Internal Threads

A coordination agent that needs to inspect several data spaces or the same data space for different
types of forms (using different pattern forms) needs to do this in an efficient way. If it would just
use one blockingread or in operation at a time, this would result in the agent being prevented
from grabbing other forms in possibly different data spaces.

60 CHAPTER 4. IMPLEMENTATION

while (true) f
for (Enumeration e = clientInfo.elements(); e.hasMoreElements();) f

ObjectSpace handle = (ObjectSpace)e.nextElement(); // Data space reference.
t = (Tuple)handle.in_nb(new Tuple(patternForm)); // Check this data space
if (t != null) f // If a form is matched

Form f = (Form)t.getItem(0);
agentspace.out(new Tuple(f)); // it will be transported.

g
g
try f Thread.sleep(200); g // Waits for 200 milliseconds.
catch (InterruptedException e) f g;

g

Figure 4.8: Polling style using non-blocking operations

One solution is to use only non-blocking operations to inspect the data spaces and loop until
the required forms are available as shown in figure 4.8. This of course is not the best solution
in terms of system resources, but sometimes the only one that is really applicable. In a situation
where a coordination agent has to check a potentially big number of data spaces for forms it is
much easier to go through a list of data space references and check using non-blocking operations.
In the example shown in figure 4.8 the agent uses a Java Vector with data space references (called
clientInfo) and checks each data space stored in this Vector for forms to transport into a spe-
cial data space calledagentspace . Since Java Vector objects are growable, we cannot predict
how many data space references it will eventually contain, thus the polling style is applicable here.

The other solution is to use internal threads that use themselves blocking operations for the
inspection of data spaces as shown in figure 4.9. For each pattern form that a data space has to
be checked for and for each data space an own thread is started with a blockingin or read
operation. This is elegant and saves system resources, because there is no need for constantly
polling any more. The example in figure 4.9 shows a part of a coordination agent that defines an
member class to wait for a matching form to be present in a particular data space and to consume it
using anin operation. For each form that the coordination agent has to wait for in this data space
it starts up such a thread with the data space reference and the pattern form as parameters. The
internal thread is blocked until an appropriate form is available and gets woken up and proceeds,
in this example with calling a method that processes the found form.

Note that if a coordination agent has to grab all kinds of forms in a specific data space, there
is a much easier solution than the one just presented. As mentioned earlier the empty form as a
pattern form is matching all forms in a shared data space. Thus it is sufficient to use a single thread
using a blockingin operation with an empty form as the parameter for this purpose.

4.4. POLLING VERSUS INTERNAL THREADS 61

private class WaitingThread implements Runnable f
// Member class for the threads.

Form form; // The pattern form to wait for.
ObjectSpace ospace; // The data space to look for it.

private WaitingThread (ObjectSpace os, Form f) f
ospace = os;
form = f;

g

public void run () f
while (true) f

Tuple t = (Tuple)ospace.in(new Tuple(form));
Form g = (Form)t.getItem(0);
doSomethingWithIt(g); // Call some method with the matched form.

g
g

g

/* In the main method of the coordination agent */
// check for forms to multicast, start a thread for each form
for (int i = 0 ; i < numForms; i++) f

new Thread(new WaitingThread(agentspace, toListen[i])).start();
g // toListen is an array of Form objects.

Figure 4.9: New thread for each inspection using blocking operations

Chapter 5

Sample Applications

In the preceding chapters we outlined the coordination medium APROCO. In this chapter we
present some coordination examples to demonstrate the the different coordination abstractions as
coordination agents that we listed in chapter 3 embedded in an environment. We show how multi-
ple simple coordination agents can be combined to realize higher level coordination abstractions.
Some coordination agents are used in different settings to show their reusability. The examples
are mainly taken from the coordination literature and are small. In coordination literature there is
a consensus about the main topics that a coordination model has to deal with [GC92]: communi-
cation, synchronization, and creation of processes. In distributed systems the main themes related
to coordination are [CDK94]: mutual exclusion and elections. The set of examples we present in
this thesis deals with the main topics of coordination in open systems:

� Communication is a central issue in all the chosen examples. The multicast example shows
a fundamental communication mechanism used in a variety of situations.

� Synchronization is a built-in property of the generative communication style used in APROCO

and thus inherent in all the examples.

� Creation of processes is used in most of the examples to illustrate the standard situation in
open systems where agents can join or leave a configuration at any time.

� Mutual exclusion is shown in an example using generative communication in section 3.4.1.

� Elections are used in distributed systems to assign a special role to one process among a
group of processes. We present a more general application domain of this scheme in the
electronic vote example.

We do not present a full-scale real wold application, but we think that the five1 simple appli-
cations demonstrate the main properties of APROCO and can help to convince the reader of the
usefulness of APROCO as a coordination medium in open systems.

Because the agents we use in the examples have a very limited functionality, we do not present
their full Java code here. Instead we show their interface in terms of the primitive Linda operations

1There are four sample applications in this chapter and one in the preceding chapter (see section 3.7).

62

5.1. FAULT TOLERANCE SERVICE 63

they use and explain their main functionality and the way the interact with the other agents of the
application to realize the overall application behavior.

The following sections describe the chosen examples in detail:

1. Thefault tolerance serviceexample shows how easily a coordination service can be intro-
duced into an application that is transparent for the client agents.

2. Theobserver example is a standard design pattern in object-oriented programming. We
reused a coordination agent introduced in the multicast example from section 3.7.

3. Theelectronic voteexample was introduced by Minsky to show his approach of coordina-
tion policies. We use it to demonstrate how a set of coordination agents together with some
design decisions can be used to guarantee security.

4. Theadministrator / worker example is an architectural pattern from parallel programming
and is used here to show the dynamic exchange of the used coordination policy.

5.1 Fault Tolerance Service

5.1.1 Description

This is a client/server example where the client agents ask for a service to be done and wait for
the answer to be present in the shared data space. The server agent, that maintains this particular
service is unstable and can fail to deliver an answer. In this case the coordination medium has
to guarantee that the client gets a service answer eventually. There could be a replicated server
agent waiting on the same shared data space, and because of the anonymity of communication
in the generative communication style, acting in parallel with the original server agent in normal
operation. In case of failure of one server agent, this replicated server agent would do the job
that both server agents did before, only slower. Unfortunately this mechanism does not provide
a full fault-tolerance coordination service. If one server agent goes down after it has grabbed the
client agent’s service request and before it could deliver the answer back no other server agent can
process this request any more. A real fault-tolerance service has to take care of this situation as
well.

In any case, the client agent must be able to accept an error message as a valid answer to a
service request, because there is still the possibility that there is no running server agent left to
process it within useful time. In this case, the client gets an error message and it is up to the client
to repeat the request at a later time to see whether a server agent for the requested service is up
and running again.

5.1.2 Coordination Problems

The main problem in this example is to establish a fault tolerance coordination service for the
clients that must not interfere with their normal operation. This service should be as transparent
as possible for all the client agents (clients and servers are clients of the coordination medium).

64 CHAPTER 5. SAMPLE APPLICATIONS

5.1.3 Solution

The solution (see figure 5.1) consists of two separate shared data spaces, one for the clients and one
for the servers, and a coordination agent (called fault tolerance agent), that moves valid requests
and answers from one data space to the other while providing the fault-tolerance coordination
service to the client agents. The clients and the servers are made as if they would operate on a
single shared data space in between them. Because the coordination agent has no special means
to intercept the client agent’s communication (as explained in section 3.4.3) the single shared data
space is split up into two shared data spaces that are connected through the coordination agent
transporting the forms to and fro.

Agent
Fault Tolerance

Client
Data Space

Agent
Client

Agent
Client

Server
Data Space

Agent
Server

Agent
Server

Figure 5.1: Solution for the fault tolerance service example

Client. Each client agent has a unique client ID which it adds to all its requests to enable the
system (the coordination medium or the servers) to direct the answers back to the right client.
The clients have to be able to accept error messages as results for service requests. They are free
to maintain their own timeouts for a repetition of unanswered requests. Repeated requests due
to this timeouts should be filtered out by the coordination medium not to use system resources
unnecessarily.

The agents operating as clients need to have the following interface (the IDs for the client and
the service are examples and may vary):

Client: Client Data Space
creates

Type "Request" Type of the form.
ClientID 5 The client’s ID.
ServiceID 17 The ID of the service.
Parameters "params" The parameters for the service as a string.

consumes
Type "Answer" Type of the form.
ClientID 5 The client’s ID.
ServiceID 17 The ID of the service.

As explained in section 4.2 the form in the consumes section of the table is a pattern form. This
means that it does not contain all the keys and values that an expected form really contains, but the

5.1. FAULT TOLERANCE SERVICE 65

minimal set of keys and values that it needs to be matched by the matching operation presented in
section 3.8.6. In this concrete example the client of course needs the results that are contained in
the form that it consumes, but since it cannot know what results to expect, these keys are simply
omitted in the pattern form.

Server. Every server agent is listening for service requests directed to the service it is providing
(denoted by a service ID). The servers have to include the ID of the client agent whose request they
processed in the response. Otherwise it is not possible to direct the answer back to the right client
agent using the design shown in figure 5.1. In this design we are using an explicit addressing style
to allow the agents to get the right service requests for the server agents, and the right answers for
the client agents respectively. If we would use private data spaces for the clients - as we will show
in other examples - this requirement for the server agents would not be necessary.

The agents operating as servers need to have the following interface (the IDs for the service is
an example):

Server: Server Data Space
creates

Type "Answer" Type of the form.
ServiceID 17 The ID of this service.
ClientID 5 The requesting client’s ID.
Parameters "params" The parameters for the service.
Result "result string" The result of the service as a string.

consumes
Type "Request" Type of the form.
ServiceID 17 The ID of the service.

The type for the parameters and the result for this service are examples here. Since forms can
contain arbitrary Java objects (as explained in section 3.4.2), we can take whatever is needed for
this particular service as its parameters. In the shown example we wrapped the parameters and the
result in a String object.

Note that the parameters cannot be part of the consumes section of the table, since this repre-
sents a pattern form and, again, there are only those keys and values in a pattern form that needs
to be present in a form to be matched. The server agent expects the parameters to be part of the
consumed forms, though, but because we have defined the matching operation for forms only to
match exact values (see section 3.8.6) we cannot directly express this in the interface description.

Coordination Agents

Fault Tolerance Agent. The fault tolerance agent’s job is to maintain a timeout for every service
request that was sent by a client agent and to supply the client with an error message if the time-
out ran out before the corresponding server agent’s answer arrived. The fault tolerance agent is
responsible for the transport of request forms and answer forms to the corresponding data spaces
and checking for timeouts at the same time. If there is more than one server for the same service
around, the special agent can repeat the request after the timeout ran out to enable another server

66 CHAPTER 5. SAMPLE APPLICATIONS

to respond to it. In this case the coordination agent has to pay attention to repeated requests of
the client itself, due to its own timeout, and just ignore such repeated requests not to use up sys-
tem resources unnecessarily. In our solution here the coordination agent does not know how many
server agents are present in the system and what services they provide since this is not necessary to
provide the coordination service. If a timeout for a client request runs out, the fault tolerance agent
repeats the request once to enable another server (that operates the same service) to respond. After
this timeout runs out again, the control agent creates an error answer for the client. In the case of a
late answer to a request that already got repeated, one answer must not be transported back to the
client to prevent the client from an invalid answer for a subsequent request for the same service.
The timeout for this particular service should then be adjusted to prevent unnecessary repeating of
requests.

The fault tolerance agent has the following interface for the two shared data spaces that it is
connected to. The information in the created forms is example information and is not fixed to the
shown values.

Fault Tolerance Agent: Client Data Space
creates

Type "Answer" Type of the form.
ServiceID 17 The ID of this service.
ClientID 5 The requesting client’s ID.
Parameters "something" The parameters for the service.
Result "something new" The result of the service.

consumes
Type "Request" Type of the form.

Fault Tolerance Agent: Server Data Space
creates

Type "Request" Type of the form.
ClientID 5 The client’s ID.
ServiceID 17 The ID of the service.
Parameters "something" The parameters for the service.

consumes
Type "Answer" Type of the form.

The forms that are consumed on one shared data space are created and put into the other
and vice versa, because the fault tolerance agent is mainly transporting the forms back and forth.
However, sometimes a form needs to be created out of the agents memory and put into the server
data space, when the timeout ran out without a corresponding answer to a particular request.

The full Java code of the fault tolerance agent can be found in section B.1.2.

5.1.4 Evaluation / Discussion

In this example we showed how a fault tolerance service can be provided by decoupling the clients
and servers and introducing a coordination agent with the desired functionality in between that

5.2. OBSERVER 67

transports the requests and answers from one shared data space into the other. The design we
used for the solution with all the servers sharing a single shared data space allows the coordination
agent to repeat an unanswered service request to see whether another server agent is operating
the same service and will eventually answer the repeated request. We could say that generative
communication already has built-in fault tolerance, because this mechanism would work even in
the case the coordination agent would only transport the forms back and forth without repeating
unanswered requests. In this case, a request will be taken from the shared data space by the next
server agent operating this service that is available. We would like to use this behavior, because
it gives usagenda parallelism[CG90] without any additional effort by the coordination medium,
but we cannot say that this built-in mechanism is a real fault tolerance service. Consider the
situation, where one server agent just grabbed the request form and then before it could deliver the
answer back into the shared data space, goes down, there is no fault tolerance in this situation any
more with the built-in mechanism. In this situation our coordination agent can still provide fault
tolerance correctly.

If the server agents are made to return the forms they got as requests and just add the answers
they generated to them, a lot of additional functionality can easily be included, e.g.each request
could be given a unique ID and a time stamp to be able to identify each request and answer pair
correctly. This demonstrated the easy extensibilityusing forms instead of tuples. The server agents
can use the special operationsmerge orupdate defined in our form implementation (see section
A.6 for details).

5.2 Observer

5.2.1 Description

This is a small example derived from the observer pattern [GHJV95], a frequently used design
pattern in object oriented programming. There are two types of objects involved in the observer
pattern: the subject and one or more observers (often also called views). The subject can change
its state and has to notify this to all the interested (registered) observer objects through some sort
of multicasting protocol. After being notified about the subject’s state change the observers can
then request the part of the subject’s state that they are interested in. The subject has to provide
a method for this purpose. In the original pattern, the subject object has to provide methods for
the observers to register and de-register with it to get the notifications or to stop getting them
respectively. If this pattern is applied to a situation in an open system, observer agents can join
and leave a configuration at any time registering only with the coordination medium, and thus the
information about the actual set of interested observers is not available to the subject agent. This
information is only available to the coordination agents within the coordination medium. This
implies that in an open system the subject agent cannot be responsible for the multicasting of
its state changes, this is the job of the coordination medium APROCO. This example reuses a
coordination agent that we introduced in the multicast example in section 3.7.

68 CHAPTER 5. SAMPLE APPLICATIONS

5.2.2 Coordination Problems

The main problem in this example is to coordinate the state of several agents with the state change
of another agent that has no knowledge of the whole configuration.

5.2.3 Solution

The solution (see figure 5.2) consistsof a set of observer agents each with its private data space, one
subject agent with a data space to publish the notifications about the state changes, and a different
data space to accept and respond to state requests from the observer agents, and a multicast agent
that reads the notifications and distributes them to all the registered observers. The observer agents
have to register with the coordination medium through the global configuration data space (as
described in section 3.4.1) to provide the coordination medium with a reference to their private
data spaces in order to be serviced by the coordination agents. This registration information is
maintained by the registration agent. Observers can dynamically join the configuration at any time
and will be serviced as soon as they register with the system.

In this solution we used private data spaces in conjunction with a shared data space for all
client agents. This allows us to use the advantages of both designs without having to deal with
their disadvantages as discussed in section 3.8.4.

Observer

Observer
Private

Data Space

Private
Data Space

Agent
Registration

Data Space
Global Config

Subject

Observer
Private

Data SpaceAgent
Multicast

Data Space
Notfication

Data Space
State

register

register

register

Figure 5.2: Solution for the observer example

Subject. The subject agent can change its state and has to inform some other agents about these
changes. The first step is to notify those agents that something has changed. After that the subject
agent waits for the notified agents to ask for parts of its actual state. The subject agent must
offer some methods for this purpose. As mentioned above the subject agent in APROCO has no
information about the set of agents that are interested in being notified about the state changes. For

5.2. OBSERVER 69

this reason it is only generating one notification form and puts it into the multicast data space to be
multicasted to the observer agents. The state requests and its answers are consumed and generated
into a different data space that is shared among all client agents.

The subject agent has the following interface to the shared data spaces that it is connected to:

Subject: State Data Space
creates

Type "Answer" Answer to state requests.
ObserverID 5 The recipient observer’s ID.
NewState StateObject Represents the new state.

consumes
Type "Request" Request for actual state.
StateRequest "MethodID" Method to be executed.
Parameters "params" Parameters for the method call.

TheStateRequest is a string that identifies a method that the subject agent supports for
queries of its actual state. The parameters of this method call are wrapped into a string (as an
example, they could as well be wrapped into an array of objects) separated in another key/value
pair of the form. The resulting object generated by this method can be wrapped as object reference
into the answer form, because we are only using threads running on the same virtual machine.

Subject: Notification Data Space
creates

Type "Notification" State change notification.

Observer. The observer agent is interested in getting notifications about the state changes of the
subject agent. When an observer agent joins the configuration it has to register with the coordi-
nation medium by providing a reference to its private data space. After this registration it will get
the notifications delivered into this private data space. To get parts of the actual state of the subject
agent it puts state requests into a shared data space and consumes answers addressed to it from the
same data space.

An observer agent has the following interface to the data spaces it is connected to:

Observer: Global Configuration Data Space
creates

Type "RegisterClient" Registration form.
Handle ObjectSpace Data space reference for private data space.

Observer: Private Data Space
consumes

Type "Notification" State change notification.

70 CHAPTER 5. SAMPLE APPLICATIONS

Observer: State Data Space
creates

Type "Request" Request for actual state.
ObserverID 5 This observer’s ID (example).
StateRequest "MethodID" Method to be executed.
Parameters "params" Parameters for the method call.

consumes
Type "Answer" Answer to state requests.
ObserverID 5 This observer’s ID (example).

See the remarks in the paragraph about the subject client for an explanation of theState-
Request and the resultingStateObject that the observer is interested in getting.

Coordination Agents

Multicast Agent. The multicast agent has been presented in section 3.7 and is reused here to
solve a part of the coordination problem of this example. The multicast agent distributes forms
originating from the subject client agent from the multicast data space into the private data spaces
of the observer agents. The multicast agent is parameterized to allow one to specify the forms that
have to be transported by it, in this case the state notifications. Because the state notifications are
the only type of forms that are present in the multicast data space, the multicast agent can be told
to transport all types of forms. This can be achieved by using an empty form as the pattern form.

As mentioned with the multicast example in section 3.7 the multicast agent has to update
its list of interested receivers (the observer agents in this case) to be able to get the references
of the private data spaces of the newly registered agents to service them properly. This update
is performed each time the multicast agent gets a notification from the subject agent (or more
generally the sender agent in the multicast example), and before this notification is transmitted to
all the interested client agents.

The multicast agent has the following interface to the data spaces it is connected to. We only
list the interface for one private data space, but the interface to all other private data spaces are
identical. The symbol “*” is used to indicate that all keys and values are accepted, it can be seen
as a sort of “wildcard.”

Multicast Agent: Global Configuration Data Space
reads

Type "ListOfClients" The list of actually registered clients.

Multicast Agent: Notification Data Space
consumes

* * All forms are consumed (notifications in this case).

Multicast Agent: Private Data Spaces
creates

Type "Notification" State change notification.

5.2. OBSERVER 71

Registration Agent. The registration agent listens for new client agents registering their pres-
ence with the system and transforms this information into special forms for the coordination agents
that need it. These interested coordination agents have to register with the registration agent, if
they need to get a notification addressed to them when a new observer registered to the system.
The registration agent is maintaining a form containing a list of the actually registered observer
agents in the global configuration data space. If a coordination agent is only interested in getting
this information (mainly the private data space reference of the observer agent), but does not need
an addressed notification, there is no need to register with the registration agent, because this list
is updated and available anyway. For this reason, the multicasting agent does not have to register
with the registration agent to be able to get the information.

Although not used in this particular example, the registration agent must be able to handle the
de-registration of client agents as well. If a client agent de-registers with the coordination medium,
the registration agent has to update its list of registered client agents and has to notify the interested
coordination agents about the change as well.
The registration agent has the following interface to the global configuration data space:

Registration Agent: Global Configuration Data Space
creates

Type "ListOfClients" The list of actually registered clients.
List ListOfClients Vector of registered client agents.
Type "RegisterNotification" Notification of a new client registration.
Name "CoordinationAgent" Address of the coordination agent.
List ListOfClients Vector of registered client agents.

consumes
Type "RegisterClient" Registration form for clients.
Type "DeregisterClient" De-registration of a client.
Type "RegisterCoordAgent" Registration form for coordination agents.

5.2.4 Evaluation / Discussion

Private data spaces. We used a solution with a combination of a shared data space for all client
agents and a private data space for each observer agent (as shown in figure 5.2). Although this
makes the example more complicated, we used private data spaces for two reasons (compare with
section 3.8.4). Firstly, private data spaces enhance security by allowing the client agents to do
with the forms in their private spaces whatever they like without affecting the rest of the system.
We cannot be sure, that every client agent only nondestructively reads a specific form in a global
shared data space and we cannot enforce it to do so, but using private data spaces we can be sure,
that the system is still working properly even if one client does not follow the rules. Secondly, it
allows the clients to work more efficient. In the single data space version the client agents have
to poll for new notifications (at least in standard Linda implementations) and to decide whether it
has changed or not since the last check they have to save the last notification internally. This kind
of a procedure is not at all what we have in mind when we think of a notification. With private
data spaces the client agent can be programmed to have a thread blocked, waiting for the desired

72 CHAPTER 5. SAMPLE APPLICATIONS

notification form to appear in its private data space.
Additional to the private data spaces we used a shared data space for the communication of

state requests from the observers and the actual state of the subject. This shared data space offers
simplicity, because the client agents can communicate “directly” with each other without the need
for a coordination agent to transport the forms back and forth. This design of course has some
disadvantages in terms of security as mentioned above, but in this example security is not an issue.
By combining the two designs in one example, we showed that the decision for private data spaces
or shared data spaces is not exclusive.

De-registration. When an observer agent leaves the configuration, it does not have to explicitly
de-register with the coordination medium. This results from our design choice not to allow the
explicit deletion of data spaces, because this is not reasonable in open systems (see section 3.8.2
for details). Without explicit de-registration the coordination agents can still put some forms into
the observer agents private data spaces even if the agents have left the configuration. Although
not necessary in this example, the de-registration of leaving observers (or client agents in general)
is desirable in APROCO anyway, because of the automatic garbage collection built-in in the pro-
gramming language Java. If a client agent that intends to leave a configuration “surrenders” its
reference for its private data space by setting all variables that refers to that data space tonull
and de-registers with the coordination medium, the coordination agents inside the medium can
themselves surrender all their references to this data space as well and it will eventually be auto-
matically garbage collected. Explicit de-registration of client agents allows us to save unneeded
system resources in terms of memory as well as computation, because the coordination agents are
not servicing these private data spaces any more. We introduce examples where de-registration of
leaving client agents is necessary, because some coordination agents need to know which client
agents are actually present.

5.3 Electronic Vote

5.3.1 Problem Description

The example is derived from the one presented in [MU97], which describes a system that enables
an open group of agents to hold secret and fair votes on different issues. The rules are as follows:

1. Every member can vote at most once and within a given time period

2. Counting of the votes is done correctly

3. The vote is secret

4. The members are notified about the outcome

Every member can initiate a vote on an issue and there can be several votes going on concur-
rently, as long as they are on different issues. The concurrent running of votes is an extension to
the original setting of the example in [MU97]. Note that the rule (2) is all but trivial to guarantee
and thus poses some hard problems to a potential solution. If the counting is done by one of the

5.3. ELECTRONIC VOTE 73

participants in the vote, it must be prevented from cheating and manipulating the outcome of the
vote.

5.3.2 Coordination Problems

Every client agent (voter) must be enabled to start a new vote. This vote announcement must be
multicasted to all the participants. The votes that the participants give must be collected and the
rules for the vote must be checked and enforced. The coordination medium is responsible for
preventing cheating.

5.3.3 Solution

The solution shown in figure 5.3 consists of a set of voting agents, each with its private data space
to put the votes and requests for new votes into, an authentication agent that fetches the votes from
the voter agents’ private data spaces and assigns an identification to them, a vote controller agent
that checks the rules for the vote and runs the timeout for every voting round, the already known
multicast and registration agents reused from other examples, and a special global configuration
data space with write-only access for the client agents. All the coordination agents share one data
space that they use to pass forms containing votes and results around.

Multicast
Agent

Voter

Voter

Voter

Private
Data Space

Agent
Data Space

Private
Data Space

Authentication
Agent

Vote
Controller

Registration
Agent

Global Config
Data Space

register

register

register

Private
Data Space

Figure 5.3: Solution for the electronic vote example

74 CHAPTER 5. SAMPLE APPLICATIONS

Voter. Each voter agent first has to register its presence with the coordination medium through
the global configuration data space. This registration includes a reference to the voters private
data space to enable the authentication agent to get the forms posted by the voter. If a voter leaves
the group it de-registers with the coordination medium. This allows the vote controller to decide
whether the issue was accepted or not according to the actual voting policy such as majority or
consensus. Every voter agent can initiate a new vote on a specific issue providing the issue and
the deadline associated with this vote. The voters have their independent opinion about a issue
and vote accordingly. The vote can be either “yes”, “no”, or “I don’t have an opinion about this.”
The voters are not obliged to give their votes immediately after the announcement of a new voting
round, but it should be given within the alloted time slot. Comparing with situations in the real
world, it is also imaginable that voters can try to cheat by voting more than once for a specific
issue or try to disturb other participants in fulfilling their political duties. It is the the coordination
medium’s responsibility to prevent them from leaving the path of virtue.
A voter agent has the following interface to the data spaces it is connected to:

Voter Agent: Global Configuration Data Space
creates

Type "RegisterClient" Registration form.
Handle ObjectSpace Data space reference for private data space.

Voter Agent: Private Data Space
creates

Type "Request" Request for the coordination medium.
Subtype "NewVote" Initiates a new vote on an issue.
Issue "the issue" The issue of the new vote.
Deadline 1234 The deadline for the vote round.

consumes
Type "Answer" Answer from the coordination medium.
Subtype "VoteOn" Give a vote on an issue.
Type "Answer" Answer from the coordination medium.
Subtype "Result" The result of a vote round.

According to an observation by Manuel G¨unter in his master’s thesis [G¨un98] an ordinary
Swiss voter has the tendency to reject issues that go beyond a specific size (indicated in his so-
lution with an individual value called “intelligence”), this means that those issues are too hard to
understand, thus they must be rejected. In our implementation of the example, the voters have an
individual but fixed tendency to accept an issue that is influenced by chance. This behavior - al-
though not as realistic - offers more excitement because the outcome of a vote is not as predictable.

Coordination Agents

It is hard to ensure correct counting of the votes if we allow a voting participant that can be
personally involved in the outcome of the vote to count them. Furthermore it is much easier to
ensure secrecy of the individual votes if there is a “neutral” instance controlling the votes. We split

5.3. ELECTRONIC VOTE 75

the coordinationproblem into smaller parts that can be solved by simpler coordination agents. This
allows us to reuse some coordination agents that we already introduced in earlier examples in new
settings.

Registration Agent. The registration agent has been presented in section 5.2 and is reused here
in exactly the same function.

Authentication Agent. The authentication agent is checking the participating agent’s private
data spaces for votes and initiations of new votes. To be able to do this, the authentication agent
has to check in the global configuration data space whether a new participant has registered and
get a reference for its private data space. Unlike e.g. the multicast agent introduced before, the
authentication agent does not have a sort of “trigger” form that it could use to update its internal
list of registered voters to check their private data spaces. For this purpose it registers its interest in
getting a notificationeach time a new voter has registered with the coordination medium with the
registration agent (introduced in section 5.2). This allows the authentication agent to update its list
of registered voters exactly when needed. The authentication agent assigns a unique identification
to every voter agent and adds this identification to every form it collects from those voters’ private
data space. This marks the origin of a particular form and enables other coordination agents to
check the voting rules such as duplication of votes. The vote forms and requests for new votes are
then transported into the shared data space for the coordination agents for further processing.

The authentication agent has the following interface to the data spaces it is connected to. We
only list the interface for one private data space, but the interface to all other private data spaces
are identical.

Authentication Agent: Global Configuration Data Space
creates

Type "RegisterCoordAgent" Registration form.
Name "Authentication" Address of this agent.

consumes
Type "RegisterNotification" Notification of a new client registration.
Name "Authentication" Address of the agent.
List ListOfClients Vector of registered client agents.

Authentication Agent: Agent Data Space
creates

Type "Request" Request for the coordination medium.
Subtype "NewVote" Initiates a new vote on an issue.
Issue "the issue" The issue of the new vote.
Deadline 1234 The deadline for the vote round.

Authentication Agent: Private Data Spaces
consumes

Type "Request" Request for the coordination medium.

76 CHAPTER 5. SAMPLE APPLICATIONS

Vote Controller. The vote controller processes the votes and the requests for new vote rounds. If
a new vote round is requested by a voter agent the vote controller checks if there is already a vote
going on for the same issue and if so postpones the new round until the actual round is finished. A
new round is started by announcing it to the participants via the multicast agent and initiating the
timeout associated with the particular issue. The announcement of a new vote round includes a
unique identification of the round to be able to distinguish votes on the same issue but of different
rounds. Incoming votes are checked for the rules given above. First they are tested to be for an
issue that is currently voted on (if the timeout has expired, the vote is removed from the list of
actual vote rounds), this is checked with the identification of the voting round or, if missing, the
issue itself. Then it is tested whether this voter agent has already given a vote for this issue in this
round, this is checked with the identification for the voter that the authentication agent assigned to
every vote. The actual counting of the votes for this issue will then be adjusted according the vote
given.

When the timeout has run out the result of the vote round is announced to all the participants
through the multicasting agent and the issue is removed from the list of actual vote rounds. To be
able to correctly determine whether the issue was accepted or rejected, the vote controller needs to
know the amount of voters currently registered with the medium. This information is maintained
by the registration agent and can be read out from the global configuration data space. After the
announcement of the result the vote controller checks for pending vote rounds for the same issue
and starts the first one, if present.
The vote controller has the following interface to the data spaces it is connected to:

Vote Controller: Global Configuration Data Space
reads

Type "ListOfClients" The list of actually registered clients.

Vote Controller: Agent Data Space
creates

Type "Answer" Answer from the coordination medium.
Subtype "VoteOn" Give a vote on this issue.
Issue "the issue" The issue of this vote.
VoteTag 5 An identification for this vote round.
Type "Answer" Answer from the coordination medium.
Subtype "Result" The result of a vote round.
ProVotes 3 Number of votes for this issue.
ContraVotes 2 Number of votes against this issue.
UndecidedVotes 5 Number of votes undecided or too late.

consumes
Type "Request" Request for the coordination medium.
Subtype "NewVote" Initiates a new vote on an issue.

Multicast Agent. The registration agent has been presented in section 3.7 and is reused here in
the same function. It multicasts the announcement of a new vote round on a specific issue and the

5.3. ELECTRONIC VOTE 77

results of such a round to all the registered participants. In this example the multicast agent listens
to forms with the key/value pairType "Answer" and transports them into the voters’ private
data spaces.

5.3.4 Evaluation / Discussion

This example shows the enforcement of rules performed by an explicit entity - a coordination
agent. The example involves time measurement and requires pro-active behavior of the partic-
ipants to initiate a new vote. It also shows the advantage of decoupling of agents to prevent
cheating.

Cheating. The decoupling of the agents using data spaces is important to prevent cheating in this
example, because there are no agent has a reference for another one, thus there is no possibility of
an agent to directly disturb another agent. The only remaining possibility to cheat for an agent is
to get access to other private data spaces or data spaces that are meant to be exclusively used by the
coordination agents. The coordination agents are statically connected to their shared data space in
this example, this means that there is no reference to it available outside the coordination agents
themselves, thus no client agent is able to get access to this data space. The situation for the private
data spaces of the client agents is different. Because there is an open set of participants, new client
agents must be allowed to enter the set of participants by joining the actual configuration. For
this purpose a client agent creates its own private data space and registers with the coordination
medium providing a reference for it. This registration must be done in a shared data space that
is well-known in the application, because there must be a starting point for a joining agent to
get access to at least one data space to participate in the application. Usually the standard global
configuration data space is used for registration purposes, but in this special case where we need
to prevent client agents from cheating, the global configuration data space must be secured by
restricting the client agents access to it to write-only access. As mentioned in section 3.8.5 only
a few implementations of Linda dialects support access restrictions on data spaces. We could
not implement real access restrictions, because the Linda implementation we used (called Jada
[CR96], see chapter A for details) does not support access restrictions either.

The problem of preventing cheating could only be solved in the combination of the coordi-
nation agents, the private data spaces, and the write-only access of the global configuration data
space for the client agents.

Centralized Control. The solution we present here uses a centralized instance (the vote con-
troller) to check the rules of the vote. It would be preferable to have a decentralized solution for
fault-tolerance reasons. The most preferable solution would be to use one of the voter agents itself
(e.g. the one that initiated the new vote) to do the controlling, this is especially useful, if we use
this voting for an election of a group leader as used in distributed systems (e.g. to elect a new spe-
cialized group member after the former one had gone down). In this case it is extremely difficult
to ensure that the controlling voter cannot cheat.

Policies. In this example different policies for the voting are possible. We can use a majority
policy as we are used to here in Switzerland or for special issues we could adopt a consensus

78 CHAPTER 5. SAMPLE APPLICATIONS

policy where all the participants must agree on the issue to have a positive outcome. In both cases
the vote controller needs to know the number of participating voter agents2. This information
can be read out of the global configuration data space where the list of actually registered voters is
maintained by the registration agent. To actually change the policy we need to change the example
and use another coordination agent that we introduce in the next example, the policy agent.

5.4 Administrator / Worker

5.4.1 Problem Description

This example is derived from a standard architectural pattern for the distributionof tasks in parallel
programs. It was first mentioned by Gentleman [Gen81] and cited frequently in other publications,
e.g. [Pap95]. A special administrator process distributes requests coming from an arbitrary num-
ber of clients to worker processes and collects and returns the results back to the clients. The
administrator can employ different policies for the distribution of the client requests. If the worker
processes are all identical, the administrator can leave the distribution to the shared data space
architecture that our prototype is built upon. In this case, the workers are just looking for new
jobs in the shared data space and grab the next one to process it, this corresponds to theagenda
parallelismmodel [CG90] of parallel processing and automatically guarantees for optimal load
balancing. If in turn the worker processes are different from each other, the administrator must
distribute the tasks according to the workers capabilities to satisfy the clients, this corresponds to
thespecialist parallelismmodel [CG90]. It is even possible that the administrator breaks a single
request into smaller subrequests, that can be serviced by several workers in parallel to achieve low
response times for the clients and possibly optimal workload balancing for the worker processes.

The policy used for the distribution of requests can be influenced by a variety of factors,
like request priorities, size of the requests, minimal response time for requests, optimal workload
balancing, etc. As shown in [Tic97] some policies need application dependent information to work
properly. For this purpose we use the global configuration data space for the coordination agents
to access and possibly change this information.

5.4.2 Coordination Problems

The main coordination problem in this example is to distribute the client requests to the workers
transparently following a specific distribution policy.

5.4.3 Solution

The solution shown in figure 5.4 consists of a set of client agents connected to one shared data
space, a set of worker agents connected to one shared data space, a workload manager that assigns
a target worker agent to each client request and transports it into a shared data space where the
fault tolerance agent introduce from section 5.1 can provide its service by starting a timeout and

2In case of the consensus voting policy, it is arguable if the number of participants needs to be known. One could
have the opinion that a politician that votes too late or is absent should not play a role in such important issues, but the
political reality looks somewhat different.

5.4. ADMINISTRATOR / WORKER 79

checking for the right answers. There are two coordination agents connected only to the global
configuration data space, the worker information agent that collects information about the regis-
tered worker agents, and the policy agent that enables the dynamic change of the actually used
policy for the distribution of client requests.

Agent
Worker Info

Agent
Fault Tolerance

Data Space
Global Config

Agent
Policy

Worker

Worker

Worker

Data Space
Worker

Data Space
Agent

Data Space
Client

Client

Client

Workload
Manager

register

Figure 5.4: Solution for the administrator / worker example

Client. The client agents generate requests for some work to be done and wait for the answers
to this requests. Each client agent has a unique client ID that it adds to every request it is posting
to the shared data space. The clients listen for answers that are explicitly addressed to them in the
shared data space. It is possible that the order of subsequent requests gets changed during their
travel through the coordination medium, thus, if the order of the answers is relevant for a specific
client agent, it has to take care of this itself, e.g. by simply adding a request number to every
request form that will be increased by one every time a new request is generated and posted. The
system is designed to return all the information included in the request form, therefore this number
will be returned and can be used to restore correct order.

The agents operating as clients need to have the following interface (the ID for the client is an
example):

80 CHAPTER 5. SAMPLE APPLICATIONS

Client: Client Data Space
creates

Type "Request" Type of the form.
ClientID 5 The client’s ID.
ComputeTask "Task" The task to be computed by a worker.

consumes
Type "Answer" Type of the form.
ClientID 5 The client’s ID.

Note that the client agents do not have to register and de-register with the coordination me-
dium, because of the design choice to use only one shared data space for all the client agents
instead of private data spaces for each client agent.

Worker. A worker agent is able to compute a result for a client request according to its capa-
bilities. It is possible that workers with different capabilities are present in the same application.
Therefore they have to register their presence and their capabilities to the coordination medium
to enable it to direct the right type of requests to them. To allow the coordination medium to use
different distribution policies each worker agent listens to forms either explicitly addressed to it
or to all worker agents by addressing them to “anonymous”. As discussed later this mechanism
is used for an easy exploitation of the built-in capabilities of parallelism in shared data spaces.
Each worker returns all the information it got in the request together with the processed result.
This serves in the first place to allow the client to grab the answer that belongs to a request orig-
inated from this client simply by adding its client ID to the request and getting it returned with
the answer. As discussed later, this mechanism prevents the coordination medium from using pri-
vate data spaces for this purpose. This mechanism also allows new services that introduce new
information in the requests and answers to be easily added to the coordination medium. As an
example, the fault-tolerance service needs to know which answer belongs to which request, and
this can easily be achieved if the worker returns all the information that was included in the request
such as a request identification. We will explain this mechanism in the discussion section.

The agents operating as workers need to have the following interface:

Worker: Global Configuration Data Space
creates

Type "RegisterWorker" Registration form.
WorkerID 17 The worker’s ID.
Capabilities CapabilityObject Description of the workers capabilities.

Note that the worker agents must register and de-register with the coordination medium, al-
though they share one data space in the same way as the client agents. The registration and
de-registration of the worker agents is needed for the workload manager to work properly.

5.4. ADMINISTRATOR / WORKER 81

Worker: Worker Data Space
creates

Type "Answer" Type of the form.
ClientID 5 The client’s ID.
WorkerID 17 The worker’s ID.
ComputeTask "Task" The task to be computed by a worker.
Result "Result" The result for the task.

consumes
Type "Request" Type of the form.
WorkerID 17 The worker’s ID.
Type "Request" Type of the form.
WorkerID "Anonymous" No special ID required.

Each worker agent has to listen for two “addresses” of the requests: either their own ID (in the
example 17), or “anonymous”. This is used to exploit the built-in parallelism in case of identical
worker agents.

Coordination Agents

Worker Information Agent. The worker information agent is a variant of the registration agent
introduced in section 5.2. The worker information agent is also looking for new client agents (in
this case the worker agents) that are registering with the coordination medium and maintains a
list of some of their properties. The worker information agent is only maintaining a form in the
global configuration data space containing the identifications of the workers and their processing
capabilities. There is no registration of other coordination agents or notification of coordination
agents as with the registration agent.
The worker information agent has the following interface to the global configuration data space:

Worker Information Agent: Global Configuration Data Space
creates

Type "ListOfWorkers" The list of actually registered workers.
List WorkersAndCaps Vector of workers and their capabilities.

consumes
Type "RegisterWorker" Registration form.
Type "DeregisterWorker" De-registration of a worker.

Fault Tolerance Agent. The fault tolerance agent has been presented in section 5.1 and is reused
here in exactly the same function.

Policy Agent. The policy agent enables dynamic change of the actually used policy for an ac-
tion, in this case the distribution of requests among an open group of worker agents. The actually
used policy is encapsulated into apolicy objectthat the policy agent puts into the global configu-
ration data space. We used object-oriented design practice that is available for our implementation

82 CHAPTER 5. SAMPLE APPLICATIONS

language Java to realize this policy object. We employed the Strategy pattern [GHJV95] to be able
to dynamically exchange the actually used policy.

run()

PolicyAgent

globalspace: ObjectSpace

initPolicy(name: String): Policy

changePolicy(name: String): Policy

Policy
<<interface>>

initialize(o: ObjectSpace)

directRequest(f: Form): String

AgendaPolicy FastestResponsePolicy SpecialistPolicy

Strategy
[GHJV95]

<<uses>>

StrategyContext

ConcreteStrategy

ConcreteStrategy

ConcreteStrategy

Strategy

Figure 5.5: Design of the policy interface

Figure 5.5 shows the design that we used to realize our policy object. We defined aPolicy
interfacethat each concrete policy object has to implement with two methods:initialize to
allow the policy to read in configuration information gathered in the global information data space
anddirectRequest to assign a target worker agent to this specific request. Theinitialize
method is used for application dependent information that is needed when the policy has changed
and has to be set up to be operational. Application dependent information in this example is e.g.
the individual capabilities of a registered worker agent that has to be read in during run- time.

initialize(o: ObjectSpace)

directRequest(f: Form): String

ConcretePolicy 1

2

Global Config
Data Space

Agent
Policy

initialize(o: ObjectSpace)

directRequest(f: Form): String

ConcretePolicy 2

Workload
Manager

1
3

4

get additional information

read
retrieve

replace

Figure 5.6: Dynamic change of used policy

The dynamic change of the actually used policy is shown in figure 5.6. Every time a new
request arrives the workload manager reads in the actual policy object (1) and any additional
application dependent information also stored in the global configuration data space (2). When
the policy agent wants to change the actual policy it simply replaces the actual policy object (3)
in the global configuration data space by a new one implementing the same interfaces (4). This

5.4. ADMINISTRATOR / WORKER 83

causes the workload manager to use the new policy object when it assigns a worker ID to the next
client request.

The policy agent has the following interface to the global configuration data space:

Policy Agent: Global Configuration Data Space
creates

Type "Policy" A policy for the workload manager.
PolicyObject PolicyObject An object encapsulating the policy.

consumes
Type "Policy" A policy for the workload manager.

Workload Manager. The workload manager looks for requests in the shared data space of the
client agents and assigns a worker identification as address to each request according to the actual
policy. This policy is encapsulated into a policy object that the workload manager reads out
from the global configuration data space every time a worker ID has to be assigned to a request.
This identifications of the workers are collected by the worker information agent and can be read
out from the global configuration data space. The used policies can be dependent on additional
information about the workers such as their capabilities. This information can also be read out
from the global configuration data space. Because of the openness of the group of workers the IDs
as well as additional information must be read out each time a target worker ID gets assigned to a
request.

The workload manager has the following interface to the data spaces it is connected to:

Workload Manager: Global Configuration Data Space
reads

Type "ListOfWorkers" The list of actually registered workers.
Type "Policy" A policy for the workload manager.

Workload Manager: Client Data Space
creates

Type "Answer" Type of the form.
ClientID 5 The client’s ID.
WorkerID 17 The worker’s ID.
ComputeTask "Task" The task to be computed by a worker.
Result "Result" The result for the task.

consumes
Type "Request" Type of the form.

84 CHAPTER 5. SAMPLE APPLICATIONS

Workload Manager: Agent Data Space
creates

Type "Request" Type of the form.
ClientID 5 The client’s ID.
ComputeTask "Task" The task to be computed by a worker.

consumes
Type "Answer" Type of the form.

5.4.4 Evaluation / Discussion

Dynamic Change of Policy. In this example we showed an extension to the idea ofpluggable
policiesas presented in [Tic97]. We showed a solution for dynamic policy change using shared
data spaces. To achieve this, we had to exploit object-oriented design practice and encapsulate
the policy behavior into a policy object that is consulted each time a new request arrived. The
dynamic change of the policy is performed by simply exchanging this policy object in the global
configuration data space. This causes the workload manager to use the new policy the next time it
consults the policy object from the global configuration data space.

Exploit Built-In Parallelism. Instead of using a private data space for each worker agent where
it is hard to realize load-balancing, we make use of the built-in capabilities for parallelism in
shared data spaces. When several identical agents are connected to one shared data space we
automatically have agenda parallelism. Every agent takes a new request as soon as it is ready to
do so, there is a guarantee for optimal load- balancing among the agents. To be able to exploit
this feature but still be able to use explicit addressing for the situation that we have worker agents
with different capabilities (for a specialist parallelism policy), we let the worker agents listen for
explicitly addressed requests and for those that are meant to be taken by the first one that is free.
This requests are simply addressed “anonymous” and are used to simulate the described situation
of non-addressed requests.

5.4.5 Possible Improvements

If repeated requests are not answered the fault tolerance agent could signal the suspected break-
down of a worker agent to the other coordination agents (via the global configuration data space).
The worker information agent could then remove this worker agent from its list of registered work-
ers to prevent the workload manager to assign new client requests to it. The breakdown of a worker
agent could lead to problems especially in specialist parallelism situations where there is possibly
no other worker with the same working capabilities. In this situation a request has to be refused if
there is no worker agent able to process it.

5.5 Discussion of the Examples

We realized this coordination examples with APROCO to show its ability to express flexible and
reusable coordination abstractions in a straight- forward way.

5.5. DISCUSSION OF THE EXAMPLES 85

Table 5.1 shows where the different coordination agents that we introduced in chapter 3 are
used in the sample applications. The symbol

p
means that the indicated coordination agent was

used in the sample application.

Coordination Agent Sample Applications Reference

M
u

lti
ca

st

F
au

lt
To

le
ra

n
ce

O
b

se
rv

er

E
le

ct
ro

n
ic

Vo
te

A
d

m
in

is
tr

at
o

r/
W

o
rk

er

Registration
p p

Section 5.2
Client Information

p
Section 5.4

Policy
p

Section 5.4
Order Section 3.8.2
Transport Section 3.8.2
Fault Tolerance

p p
Section 5.1

Vote Controller
p

Section 5.3
Multicast

p p p
Section 3.7

Collector Section 3.5
Authentication

p
Section 5.3

Workload Manager
p

Section 5.4

Table 5.1: Overview of the used coordination agents in the sample applications

The transport agent and the order agent were not used in this set of sample applications. We
introduced both coordination agents in chapter 3 where we explained the dynamic re-composition
of coordination agents. The collector agent is a simplified version of the authentication agent. It
collects forms from private data spaces, but without assigning an ID to them. We did not use it in
any of the sample applications, but considered it nevertheless useful for designs using private data
spaces.

Reusability. We can see from the table 5.1 that there are several coordination agents that have
been used in different examples. This shows the easy reusability of this kind of coordination
abstractions.

Flexibility. The dynamic exchange of policies shown in the Administrator / worker example in
section 5.4 is an example of the run-time flexibility of the used coordination abstractions.

86 CHAPTER 5. SAMPLE APPLICATIONS

5.5.1 Classification of the Used Coordination Agents

The coordination agents that we presented in section 3.5 and used in the examples can be classified
as follows:

� Communication / Synchronization

– Transport agent

– Multicast agent

– Collector agent

� Management of the coordination medium

– Policy agent

– Registration agent

– Client information agent

– Order agent

� Enforcement of constraints

– Vote controller

� Special services

– Fault tolerance agent

– Authentication agent

– Workload manager

Due to the use of generative communication and shared data spaces the communication pur-
poses of a coordination agent cannot be separated from its synchronization purposes.

Chapter 6

Conclusions

With APROCO we introduced a programmable coordination medium for agent-based open sys-
tems in this thesis. APROCO supports the clean separation of concerns by allowing to separate the
coordination aspects of an application into explicit entities, the coordination agents. These explicit
entities use Linda-like primitive operations on shared data spaces to achieve the coordination of
the client agents’ interactions. Standard Linda offers a high degree of decoupling of agents which
is a necessary property in open systems, but it does not offer the clean separation of coordination
aspects from the rest of the application in terms of reusable entities. Furthermore, Linda only
offers a small set of “add on” primitives that are easy to understand and embed into a host pro-
gramming language, but only offers very limited functionality in terms of realistic coordination
abstractions.

We first present a summary of the problems that lead to the proposition of a coordination
medium, then we describe the main parts of our coordination medium APROCO and list the results
we found during the investigation. We conclude the chapter with the outlook for further work in
this domain.

6.1 A Programmable Coordination Medium

Problem Description

To keep up with rapidly changing requirements applications are increasingly built out of software
components. This allows one to adapt or replace only the affected component instead of the
whole application when the requirements change. A new trend is now to give those software
components control over their own actions, to turn them into concurrently running software agents.
These software agents have to be relatively independent to keep them exchangeable. Although
quite independent, they still need to interact in order to achieve the application’s overall goal.
This results in the need to coordinate their interactions. When requirements change, the used
coordination solution may need to be changed as well. This results in the need to express the
coordination solution in a flexible way.

A number of coordination models were created to express common coordination solutions.
Linda is one of the most prominent representatives of such coordination models. Linda is widely

87

88 CHAPTER 6. CONCLUSIONS

used because it offers means to separate coordination code from computational code within an
agent and a high degree of decoupling of agents to increase their independence. However, Linda
does not strictly separate coordination aspects from computational aspects in a whole application.
Furthermore, Linda only offers a set of primitive operations and leaves the user with the task to
construct realistic coordination abstractions out of them.

Coordinationabstractions are often hard-coded into the participant agents’ protocols and there-
fore neither flexible nor reusable. They are spread all over the application and it is almost impossi-
ble to identify them (section 2.2.2).. It would ease application as well as reuse of the coordination
solution, if we could identify and encapsulate those abstractions explicitly. It is not easy to en-
capsulate coordination abstractions because coordination typically affects multiple agents, and in
open systems other requirements, such as flexibility and security, must also be dealt with.

This results in the need for a coordination environment in which coordination solutions can be
expressed as explicit entities to make them both flexible and reusable.

APROCO

We propose that to be able to reuse a coordination solution it is necessary to abstract it from the
coordinated agents and to encapsulate it into an explicit entity, acoordination agent. We want
to use agents to encapsulate the coordination abstractions, because agents allow us to describe
coordination services that are not merely reactive, they can behave pro-active (section 3.4.3).

We propose that by combining coordination agents into acoordination mediumthat delivers
all the desired coordination services to its client agents, it is possible to take the coordination
aspects out of the client agents’ protocols and make them cleaner and easier to understand and
reuse as well. A coordination medium is the means to enable communication between the agents
and serves to aggregate agents into an ensemble (see section 2.2.1). Our coordination medium
APROCO that we describe in this thesis is more than a coordination medium as just defined, it
offers coordination services to its client agents that can be exchanged and modified and is thus a
programmable coordination mediumas coined by Denti et al. [DNO97] (see section 2.3.3)..

In this thesis we present the architecture of our coordination medium APROCO. APROCO

is based on generative communication and uses the standard Linda operations to allow the client
agents to communicate with each other while being as independent from each other as possible
(section 3.4.1). The information exchanged between the client agents is wrapped into forms (sec-
tion 3.8.6) and stored in shared data spaces. We used Linda operations as the basic coordination
level because of their simplicity and easy implementation in usual programming languages. To
overcome the limitations of Linda we encapsulated the coordination solutions into explicit en-
tities, the coordination agents (section 3.4.3). They are coordinating the activities of the client
agents connected to the coordination medium using the same basic Linda operations on shared
data spaces to inspect and possibly transform the flow of information between the client agents.

Important Results of APROCO

List of Useful Coordination Abstractions. We present a list of useful coordination abstractions
encapsulated into coordination agents that can be used within APROCO. We took an experimen-
tal approach to find these coordination abstractions by investigating small but typical real-world

6.1. A PROGRAMMABLE COORDINATION MEDIUM 89

applications. The presented list of coordination agents is not complete and can be extended as
needed. It can be found in section 3.5.

Uniform Communication Model for all Agents. A coordination agent in APROCO does not
have any special means to get involved with the communication between client agents than through
inspection of the data spaces that it has access to. This implies that - without leaving the generative
communication style - it is not possible to give the coordination agent a higher priority to read or
consume a particular form in a data space than a client agent competing for the same form. In some
cases the client agent would be able to consume the form before the coordination agent could read
it or perform some transformations on it. It is thus necessary to use more than one single shared
data space - as with traditional Linda - for all the agents of an application to allow the coordination
agents to fulfill their coordination purpose.

Need for Multiple Data Spaces. The uniform communication model described in the preceding
paragraph is a direct cause for the need for multiple data spaces (section 3.8.3). But even if we
would introduce special means for the coordination agents to get priority over the client agents
in getting the forms in the shared data spaces, the need to be able to split an applications into
subconfigurations for the easier construction of large systems results in the need for multiple data
spaces, because it is not possible to create subconfigurations in a useful way using only one single
shared data space (section 3.8.3).

Need for Private Data Spaces. We introduced the notion of a private data space for a data space
that is only accessible for one client agent (typically the client agent that created this data space)
and the coordination medium, but not for other client agents. We found that designs using private
data spaces have a lot of advantages over designs using shared data spaces for several client agents.
Private data spaces are important for security reasons, liveness considerations, and if a client agent
needs exclusive access to some data (section 3.8.4).

Access Rights On Data Spaces.To enable security, it is vital to have the possibility to define
different access rights on shared data spaces. Because APROCO supports multiple data spaces, it
is sufficient to be able to define access rights per data space and, because of its agent architecture,
per agent (section 3.8.5).

Important Properties of AP ROCO

Separation of Concerns. APROCO supports the clean separation of concerns. The client agents
are mainly concerned with the computational aspect of the application - besides the communi-
cation with other client agents necessary to reach the overall goal of the application - and the
coordination agents are solely concerned with the coordination aspects of the application.

Coordination Abstractions as Explicit Entities. APROCO factors out the coordination solu-
tions into explicit, dynamically changeable entities, the coordination agents. This increases or

90 CHAPTER 6. CONCLUSIONS

even enables reusability and flexibility of the used coordination abstractions. The coordination
agents can be combined to deliver high-level coordination services to the client agents.

Flexibility and Reusability Through the explicit representation of coordination abstractions as
coordination agents we gain flexibility and reusability of this abstractions.

Open Set of Coordination Agents. The list of coordination agents that we presented in sec-
tion 3.5 is only meant to give an idea of how coordination abstractions can be implemented in
APROCO. The set of coordinationagents is open and can be extended as new coordination abstrac-
tions are found. Existing coordination agents can be used as skeleton to build similar coordination
abstractions.

Decoupling of Agents. The use of generative communication as the basic means for all com-
munication among the agents delivers a high degree of decoupling of producers and potential
consumers of data.

Dynamic Re-composition. The loose coupling of the agents enable them to dynamically join or
leave a configuration without leaving others with broken communication channels. Together with
the possibility for the agents to create new data spaces and attach to existing data spaces this yields
the means for dynamic composition and re-composition of applications as described in section
3.8.2. To be able to tackle the changing requirements in open systems, dynamic re-composition
must be supported by any serious candidate architecture in this domain.

Extensibility. The functionality of the client agents can easily be extended through the intro-
duction of new labels in the forms that are used to wrap the information. These new tags do not
interfere with the functionality of other agents, they are simply ignored by those agents that do not
know them.

6.2 Dynamic Exchange of Policies

We incorporated an extension to the idea ofpluggable policiesas presented in [Tic97] into our
coordination medium APROCO. If an action can be performed according to different policies, it
is a desirable property to be able to exchange the used policy to be able to adapt the application
to changed requirements without changing other parts of the application as well. In [Tic97] the
chosen policy could be “plugged” into the application at system startup using a parameter for the
application. In APROCO we incorporated the possibility to dynamically exchange the actually
used policy (see the administrator / worker example in section 5.4 for an application).

The actually used policy is encapsulated into apolicy objectthat a coordination agent puts
into the global configuration data space. We used object-oriented design practice that is available
for our implementation language Java to realize this policy object. We employed the Strategy
pattern [GHJV95] to be able to define objects that can be dynamically exchanged without breaking
the behavior of the application. We defined aPolicy interfacethat each concrete policy object

6.3. FUTURE WORK 91

has to implement with two methods:initialize to allow the policy to read in configuration
information gathered in the global information data space anddirectRequest to assign a
target worker agent to this specific request. This method is application dependent and may be
defined different according to the application domain. Theinitialize method is used to get
application dependent information that is needed when the policy has changed and has to be set up
to be operational. Such application dependent information can be special capabilities of the client
agents that need to be payed attention to in the policy.

To illustrate this mechanism, we repeat a figure that was used in the administrator / worker
example in section 5.4.

initialize(o: ObjectSpace)

directRequest(f: Form): String

ConcretePolicy 1

2

Global Config
Data Space

Agent
Policy

initialize(o: ObjectSpace)

directRequest(f: Form): String

ConcretePolicy 2

Workload
Manager

1
3

4

get additional information

read
retrieve

replace

Figure 6.1: Dynamic exchange of actually used policy

Every time a coordination agent is about to perform an action according to a specific policy it
reads out the corresponding policy object from a policy form stored in the global configuration data
space (1). This policy object is then used to actually perform the action. If additional information
is needed the policy object can fetch this information from the global configuration data space as
well (2).

The dynamic exchange of the actually used policy is shown in figure 6.1. A special coordina-
tion agent, calledpolicy agent, simply removes the policy form containing the former policy object
from the global configuration data space (3) and replaces it with a policy form containing the new
policy object (4). The next time the coordination agent - in figure 6.1 called workload manager - is
about to perform the policy guided action, it reads out the policy form in the global configuration
data space containing the changed policy and thus the action will be performed according to the
new policy.

6.3 Future Work

This project has been, as far as we know, the first attempt to combine the decoupling of shared
data spaces with the capabilities of agents to encapsulate the coordination abstractions. As a
consequence, the results presented in this thesis are first results and further research work needs to
be done to generalize the model.

92 CHAPTER 6. CONCLUSIONS

Distributed Environment. We implemented APROCO in a non-distributed environment using
Java threads as implementation of the agents that run within the same Java virtual machine. This
way there was no need to pay attention to the problems of real distribution such as network failure,
network latency, etc. Furthermore, we did not have to bother with distributed object references that
would have been a problem with dynamic creation of data spaces. We believe that the best way to
tackle these problems is to use a distributed systems infrastructure that already offers shared data
spaces such as Sun’s JavaSpaces [Sun98] and implement APROCO on top of this infrastructure. It
has to be investigated whether the decoupling of shared data spaces are sufficient to overcome the
additional problems posed by real distribution of an application.

Non-centralized Coordination Solutions. The coordination solutions we present in this thesis
use centralized coordination solutions. We often use one single coordination agent to perform an
important coordination service. This is not desirable in distributed environments because of fault
tolerance considerations. We need to investigate whether our concepts can be used to construct
real distributed coordination solutions.

Scopes. The notion of forms and the corresponding matching operation we present in this thesis
does not support scopes. If a value of a key is overwritten, there is no way to retrieve it later on.
The notion of forms could be extended to support scopes, in the sense that new key/value bindings
would just be added to the existent ones and be consulted according the actually valid scope.

Transactions, Events and Databases.Sun and IBM are working on distributed Java-based
shared data space implementations to support users with ubiquitous networking, persistent data,
transactions, queues, and shared computer performance. Sun is working on its JavaSpaces [Sun98]
architecture for distributed computing and IBM on its T Spaces [IBM98a] research project to bring
together most recent database technology with the concept of shared data spaces. None of the two
systems directly supports explicit abstractions for coordination, but with these systems as under-
lying architecture, it would be very promising to study coordination problems using APROCO’s
coordination agents.

Meet the Formal Approach. The research group is working on a formal approach to agents
communicating with forms [LAN98] based on process calculi such as the�-calculus. Their ap-
proach comes bottom-up while the approach described in this thesis is a top-down approach start-
ing with application requirements from real world applications. In a further effort these two ap-
proaches need to be combined to give one the necessary groundwork and the other one the desired
connection to real world application requirements. The goal of this connection is to be able to
proof some properties of the agents independently from their context.

Appendix A

Jada

Jada (“Java Linda”) [CR96] is a combination of Java with the coordination model Linda presented
in section 2.2.3. Jada is a Java class library designed for the use in distributed applications for the
World-Wide-Web (WWW). Jada provides:

� multiple shared data spaces: shared data spaces can be created as usual Java objects and
provide methods for the usual basic Linda operations to be executed on them. Like in
standard Linda there are blocking and non-blocking operations available.

� multi-threading support: different Java threads canaccess the same shared data space;
blocking requests are managed at thread-level.

� dynamic creation of data space items: being a normal Java object, a data space item can be
created usingnew. The standard data space item in Jada is an instance of the classTuple .
This object can act as a container for other Java objects for the fields of the data space item.

� distributed coordination support: shared data spaces can be set up as a data space server for
the access over a TCP/IP connection using Java sockets internally. Possible network errors
are handled through special Java exceptions that can be caught and handled by the client
application or applet.

� mobile object coordination: Jada is not a syntax extension for Java, just a set of Java classes.
The Java byte code compiled out of source code using Jada classes can be run on any Java
virtual machine. Javas capabilities of dynamically loading and instantiating classes at run-
time can be used to implement mobile agents using Jada for the coordination.

Jada is freely available for research projects and can be downloaded from its creators home
page (URL:http://www.cs.unibo.it/ ˜ rossi/jada/index.html).

In the following sections we give an overview of the functionality and the methods that Jada
offers, as well as some details about its object model and the pattern matching operation it uses.
We conclude this chapter with some remarks about our implementation of forms using Jada.

93

94 APPENDIX A. JADA

A.1 Object Spaces

The shared data spaces in Jada are calledObject Spaces, because the data space items they contain
are Java objects instead of the tuples in standard Linda. Only Java objects that implement a Java
interface calledJadaItemcan be stored into and retrieved from a Jada Object Space. This interface
defines methods for dumping the object into a data stream, restoring the object from a data stream,
and a matching operator to compare objects. Jadas Object Spaces provide the following Linda-
derived operations on them:

� out(Object) : puts a Java object that implements theJadaIteminterface into the Object
Space. The calling thread continues immediately.

� in(Object):Object : compares the objects in the Object Space with the supplied tem-
plate object and returns a “matching” object. The comparison is done by type and using the
matching operator defined for the specific object (see next section for details). If a matching
object is available in the Object Space, it is removed from the Object Space and delivered
back as result of the operation. If no matching object is available in the Object Space, the
calling thread is blocked until there is one available. If more than one matching object is
available, one is chosen arbitrarily.

� read(Object):Object : has the same behavior asin , except that a matched object
remains in the Object Space.

� in nb(Object):Object : has the same behavior asin , except that the calling thread
continues immediately. If no matching object is available in the Object Space, the operation
returns “null” as result.

� read nb(Object):Object : has the same behavior asin nb, except that a matched
object remains in the Object Space.

There is noeval operation available in Jada. In Linda this operation is used to create a so
called live tuple that has fields that needs to be processed before this tuple finally ends up as normal
passive tuple in the tuple space. Using Jada, this behavior can be simulated by explicitly starting
new Java threads that compute a result and put this result in the Object Space.

A.2 Object Matching in Jada

As thein andrd operations of standard Linda are based on tuple matching (described in section
3.8.6), the correspondingin and read operations of Jada are based onobject matching. Ev-
ery object that can be stored in an Object Space in Jada has to define a method inherited from
the JadaItem interface with an appropriate matching operator for this type of object. Object
matching is done in a object-oriented way, i.e. an instance of a subclass of a specific object’s class
can match this particular object using the same matching operator. With composite objects the
matching is done recursively.

A.3. REMOTE ACCESS TO OBJECT SPACES 95

A.2.1 The Tuple Class

The standard object container in Jada is the classTuple. Tuple represents the behavior of tuples
in Linda, but enhanced with the possibility to store Java objects in the tuple fields. A Jada tuple
is a ordered set of items. Each item of a Jada tuple can be either an Integer, a String, a class
that implements the interfaceJadaItem or a Class object. A Class object represents a kind of
“joker” that matches all objects of this class or a subclass of it. Tuples are used for the Object
Space operations in an associative way using a matching operation. Two Jada tuples are matching
if they have the same number of items and thei

th field of the first tuple matches theith field of the
second one for eachi. Two tuple items are matching if:

� they are Integers and they represent the same value.

� they are String and they have the same contents.

� they implement theJadaItem interface and thematchItem method returns true.

� they are both Class objects representing a class and a subclass of this class.

� one is a Class object and the other is an instance of that class or of a subclass of this class.

Tuple ta = new Tuple(new Integer(3), "three")
Tuple tb = new Tuple(new Integer(3), String.class)

Figure A.1: Tuple matching in Jada: tuple tb provided as template matches tuple ta.

Figure A.1 shows an example of the matching defined with the Tuple class in Jada. The con-
structString.class is Java 1.1 syntax and returns a class object for thejava.lang.String
class. In Java 1.0 the correct syntax for this wasnew String().getClass() .

The Tuple class offers different constructors according to the number of items the new tuple
should have. This means that the arity of a tuple is fixed in Jada. Tuple implements theJadaItem
interface itself, thus a tuple can contain another tuple as a valid item. Using this mechanism we
can construct tuples of arbitrary arity by tuple nesting.

A.3 Remote Access to Object Spaces

Jada offers some classes that enables the construction of Object Space servers that can be remotely
accessed by Object Space clients using an IP network. An Object Space server is created using
thejada.net.ObjectServer class. This class can also run as a stand-alone Java application
and is then listening on the given port for requests for the Object Space that it handles. An Object
Space server is multi-threaded and runs an own thread for every client request. Those threads are
synchronized like other threads that are using a local Object Space for coordination.

Figure A.2 shows a situation with two Object Space servers and a number of Object Space
clients that are coordinating using these remote Object Spaces. Object Space clients can be stand-
alone Java applications or Java applets.

96 APPENDIX A. JADA

Server
Thread

Server
Thread

Server
Thread

Object Space

Object Server

Server
Thread

Server
Thread

Object Space

Object Space
Client

Object
Client

Object Space
Client

Object
Client

Object Space
Client

Object
Client

Object
Client

Object Space
Client

Object
Client

Object Server

Figure A.2: Coordination of remote applications using the Jada ObjectServer class

A.3.1 Example: Remote Ping-Pong

The following listings in figure A.3 and A.4 show a simple example of the remote coordination
provided by Jada. It is an example of two different Object Space clients - one stand-alone Java
application and one Java applet. The Object Space server needed for the example application does
not need any additional code to the one supplied by Jada itself. One only needs to start an Object
Space server on a host withjava jada.net.ObjectServer . This sets up an Object Space
server listening to socket connections on a predefined standard port address. One can also choose
an own port address and start the server with this parameter.

Because of the Java “sandbox” security mechanism in Java 1.1 an applet as shown in figure
A.3 can only build up a connection to the host it was downloaded from. This means, that the
Object Space server must be running on the same host as the Web server to allow this applet to
work properly. In Java 1.2 this security mechanism will be changed to allow more flexible security
policies.

A.4 Limitations

No access rights on data spaces.Jada offers no means for restricting access to a data space
or the items in a data space. As we discussed in section 3.8.5 access rights on data spaces are
essential for a coordination medium to be able to offer security for the client agents.

Fairness. Jada is multi-threaded and offers blocking of threads or remote applications over its
Object Spaces on the level of single threads. However, Jada uses the thread management capabili-

A.4. LIMITATIONS 97

import jada.*;
import jada.net.*; // Classes for remote Jada data spaces.
import java.applet.Applet;
import java.awt.*;

public class PingApplet extends Applet implements Runnable f
ObjectSpace object_space = null;
List list = null;

public void init () f
object_space = new ObjectClient(getCodeBase().getHost());

// Connect to remote data space running on the web server machine.
setLayout(new BorderLayout());
list = new List(10, false);
add("Center", list);

g

public void start () f
new Thread(this).start();

g

public void run () f
while (true) f

Tuple in = (Tuple)object_space.in(new Tuple("ping",
Integer.class));

int cnt = ((Integer)in.getItem(1)).intValue();
object_space.out(new Tuple("pong", new Integer(cnt+1)));
list.addItem(in.toString());
list.makeVisible(list.countItems()-1);

g
g

g

Figure A.3: The Ping Applet: an Object Space client using Jada

98 APPENDIX A. JADA

import jada.*;
import jada.net.*; // Classes for remote Jada data spaces.

public class Pong implements Runnable f

ObjectSpace object_space = null;

public Pong(ObjectSpace ts) f
object_space = ts;

g

public void run () f
while (true) f

Tuple in = (Tuple)object_space.in(new Tuple("pong",
Integer.class));

int cnt = ((Integer)in.getItem(1)).intValue();
object_space.out(new Tuple("ping", new Integer(cnt+1)));
System.out.println(in);

g
g

public static void main (String args[]) f
ObjectClient object_space=null;
if (args.length==1) f // Host with remote data space as argument.

object_space= new ObjectClient(args[0]); // Remote data space on given host.
g else f

object_space= new ObjectClient(); // ‘‘Remote’’ data space on this host.
g
object_space.out(new Tuple("ping", new Integer(0)));
new Pong(object_space).run();

g
g

Figure A.4: The Pong Application: an Object Space client using Jada

A.5. FORM IMPLEMENTATION IN JADA 99

ties of standard Java, and they are quite poor. Because Java is designed to be platform independent,
the requirements for the Java virtual machine have to be in a way that they can be met on every
platform. For the scheduling of threads this means, that fairness even in the weakest sense cannot
be guaranteed [Lea97]. Running threads are only preempted by threads running with a higher
priority. In our experiments we found out that one has to explicitly yield the processor to another
thread to give it a chance to grab a shared resource in a Jada Object Space. This can be done
by explicitly callingThread.yield() after the shared resource has been released and before
another try to get hold on it is started.

A.5 Form Implementation in Jada

In Jada new data space items can be defined with their own pattern-matching behavior by imple-
menting theJadaItem interface. We defined an implementation of our forms as presented in
section 3.8.6 this way. The resultingForm class is shown in figure A.6. For compatibility reasons
we used our Form objects wrapped into the standard Tuple objects used by Jada. A form is then
represented by a Form object as the only item in a Jada Tuple object.

(1) Tuple t = (Tuple)os.in(new Tuple(form));
(2) Form f = (Form)t.getItem(0);

Figure A.5: Access of a Form object wrapped into a Tuple object

To access a Form object in a shared data space one has to follow a special idiom shown in
figure A.5. First a Tuple object is searched in the shared data space by providing a pattern Form
object wrapped into a Tuple object usingnew Tuple(form) (1). The resulting object is a
Tuple object. The first item of this Tuple object is the wrapped Form object. It can be accessed
with thegetItem(Position: int) method of the Tuple object (2).

For the implementation of the forms we used the Java class library JGL [Obj97] from Ob-
jectSpace Inc. in the version 3.1. This library offers a bunch of highly customizable object con-
tainers and algorithms for Java and is freely available with some restrictions for commercial use at
ObjectSpace’s home page (URL:http://www.objectspace.com/jgl/). Our Form class
is based on JGL’sHashMap class and uses its methods to add, access, or remove key/value pairs.

A.6 Special Operations on Forms

For convenience we added two special operations on our form implementation, namelymergeand
update. Both operations compare two forms and complete one with the missing key/value pairs
from the other form.

Figure A.7 shows the principle of the two operations. They are almost specular:A.merge(B)
andB.update(A) yield the same resulting form, butupdate additionally updates the form that
it is called on to the resulting form as a side-effect. Both operations are used in situations where
one needs to return the unchanged part of a form in a result form to prevent any other interested

100 APPENDIX A. JADA

package aproco.lib;

import jada.*;
import com.objectspace.jgl.*; // The JGL class library.
import com.objectspace.jgl.predicates.*;

public class Form extends HashMap implements JadaItem f

/** Constructs an empty form. */
public Form() fsuper (); g

/** Constructs an empty form with a JGL binary predicate used
* for comparison of two keys. */

public Form(BinaryPredicate comparison) f super (comparison); g

/** Constructs a form as a copy of another form. */
public Form(Form form) f super (form); g

/** Tests if two forms match.
* This method will be invoked on every item in the object
* space to check if it matches with the template item
* (passed as parameter), so the object space item is ’this’
* and the template form is called ’form’ here.
*
* The test form (form) matches a object space form, if
* a) the form’s keys are a subset of the tuple space tuple and
* b) the values of this keys are equal */

public boolean matchesItem (JadaItem item) f
boolean match = true;
Form form = (Form)item;
Object thisvalue;
if (form.size() <= this .size()) f

for (HashMapIterator i = form.begin();
!i.equals(form.end()); i.advance()) f

thisvalue = (Object) this .get(i.key());
if (thisvalue == null) f match = false; break ; g
else if (!thisvalue.equals(i.value())) f

match = false; break ;
g

g
g
else match = false;
return match;

g
g

Figure A.6: The Form class: implementation of forms using Jada and JGL

A.6. SPECIAL OPERATIONS ON FORMS 101

x = 5
y = 7

Form A Form B

x = 17
w = 6

A.merge(B)

A.update(B)

Figure A.7: Special operations on forms:update andmerge

agents from the need to save these parts locally. We use these operations in APROCO to offer easy
means for extensibility as described in section 3.8.6.

A.6.1 Update

The update operation (see code in figure A.8) takes a Form object as parameter and delivers
a Form object as result. The Form object given as the parameter of the operation serves as the
pattern: every key/value pair from the parameter Form object is copied to the actual Form object.
Existing keys and values are overwritten in the actual Form object. The resulting Form object
has the same keys/values as the parameter Form object plus the keys/values from the actual Form
object that were not overwritten.

/** Updates this form with the contents of another one.
* The existing contents are overwritten by those of the
* form given as parameter.
* The actual form changes its value! */

public Form update (Form form) f
// iterate through the parameter form and replace (put) all
// the items in the actual form (this).
for (HashMapIterator i = form.begin(); !i.equals(form.end());

i.advance()) f
Object o = (Object) this .put(i.key(), i.value());

g
return this ;

g

Figure A.8: Theupdate operation on forms

Note, that as a side-effect of this implementation the Form object that theupdate operation
is called on changes its value to the resulting Form object. Thus,form1.merge(form2) and
form2.update(form1) are not the same, although the resulting Form object has the same
keys and values.

102 APPENDIX A. JADA

A.6.2 Merge

The merge operation (see code in figure A.9) takes a Form object as parameter and delivers a
Form object as result. It is almost specular to theupdate operation described before. Thus
theupdate operation is used within themerge operation to prevent duplicated code. The only
difference is thatmerge does not change the original Form objects. The resulting Form object
has the same keys/values as the actual Form object plus the keys/values from the parameter Form
objects that were not overwritten.

/** Merges this form with the contents of another one.
* The existing contents are not overwritten. */

public Form merge (Form form) f
Form result = new Form(form); // This copy prevents the parameter form
return result.update(this); // from actually being changed.

g

Figure A.9: Themerge operation on forms

Appendix B

Code Samples

In this chapter we present some code excerpts from the examples we implemented with APROCO.
All the code presented in this thesis is freely available at the author’s web page:
URL: http://www.iam.unibe.ch/ ˜ dkuehni/aproco.html .

B.1 Coordination Agents

B.1.1 Multicast Agent

The multicast agent is introduced in section 3.7 and used in three examples: the multicast example
(section 3.7), the observer example (section 5.2), and the electronic vote example (section 5.3).

package aproco.examples.multicast;

import jada.*;
import aproco.lib.Form;
import java.util.*;

/** Multicast Agent<p>
*
* This agent multicasts some forms into the receivers private
* dataspaces. The forms it will multicast are parameters for
* the multicast agent. It is simply an array of forms that
* it should listen to. <p>
*
* The multicast agent needs the forms that it has to check
* for as array in the parameters.
*/

public class MulticastAgent implements Runnable f

ObjectSpace globalspace, agentspace;
Form[] toListen; // The array of forms it has to multicast.
Form listOfClients;
Vector clientInfo;
int numForms; // The amount of forms in the array toListen.

103

104 APPENDIX B. CODE SAMPLES

public MulticastAgent (ObjectSpace globalDataSpace,
ObjectSpace agentDataSpace,
Form formsToListen[],
int numberOfForms) f

globalspace = globalDataSpace;
agentspace = agentDataSpace;
toListen = formsToListen;
numForms = numberOfForms;
clientInfo = new Vector();
listOfClients = new Form();
listOfClients.put("Type", "ListOfClients");

g

/** Member class for the threads to listen for a particular
* form in a data space.
*/

private class WaitingThread implements Runnable f

Form form; // The form to listen to.
ObjectSpace ospace; // The data space that is has to listen in.

private WaitingThread (ObjectSpace os, Form f) f
ospace = os;
form = f;

g

public void run () f
while (true) f

Tuple t = (Tuple)ospace.in(new Tuple(form));
System.out.println("Multicast agent got something");
Form g = (Form)t.getItem(0);
multicastForm(g);

g
g

g

/** Multicasts the given form to the registered observers.
* The registered observers are checked each time before the
* actual multicasting is performed.
*/

public void multicastForm (Form f) f
Tuple t = (Tuple)globalspace.read(new Tuple(listOfClients));
Form g = (Form)t.getItem(0);
clientInfo = (Vector)g.get("List"); // Update the list of receivers.
for (Enumeration e = clientInfo.elements(); e.hasMoreElements();)

// Performs the multicast.
((ObjectSpace)e.nextElement()).out(new Tuple(f));

g

/** Checks the agent data space for forms and multicasts them to
the receivver’s private data spaces.

*/
public void run () f

B.1. COORDINATION AGENTS 105

System.out.println("Multicasting agent is working");
System.out.print("Multicasting agent listens to forms: ");
for (int i = 0 ; i < numForms; i++) f

System.out.print(toListen[i].toString());
g
System.out.println();
// check for forms to multicast, start a thread for each form
for (int i = 0 ; i < numForms; i++) f

new Thread(new WaitingThread(agentspace, toListen[i])).start();
g

g
g

B.1.2 Fault Tolerance Agent

The fault tolerance agent is introduced in section 5.1 and used in two examples: the fault tolerance
service (section 5.1) and the administrator / worker example (section 5.4).

package aproco.examples.faulttolerance;

import jada.*;
import aproco.lib.Form;
import com.objectspace.jgl.*; // The JGL class library for HashMap.

/** Fault Tolerance Agent<p>
*
* The fault tolerance agent checks requests and answers that are
* transported from one data space into another. It uses a default
* timeout that it associates with every request. This timeout is
* checked. If it ran out, the request is repeated exactly once again
* with a timeout. If it ran out again, an error message for the client
* is created. <p>
* If the server agent was only too slow and an answer for the original
* and the repeated request is sent, only one is transported by the
* fault tolerance agent.<p>
*
* The agent maintains a list of open requests and their timeouts.<p>
*
* Improvements: the agent could adjust the timeouts to limit unnecessarily
* repeated requests.
*/

public class FaultTolerance implements Runnable f

public static long delay = 500; // Delay for sleep in millis.
public static long def_timeout = 5000; // Default timeout in millis.

ObjectSpace clientos, serveros;
HashMap requests; // For open requests and their timeouts.
int cid, sid; // The client ID and the ID of this service.
String type;
Tuple clientt, servert;

106 APPENDIX B. CODE SAMPLES

Form f, request, answer, clientf, serverf;

public FaultTolerance (ObjectSpace clientSpace,
ObjectSpace serverSpace) f

clientos = clientSpace;
serveros = serverSpace;
requests = new HashMap();
request = new Form();
request.put("Type", "Request");
answer = new Form();
answer.put("Type", "Answer");

g

/** This member class holds the abstraction for the timeout
* value plus the information, if it was a repeated request.
*/

class Timeout f
long timeout;
boolean repeat; // Indicates whether this request was repeated.

Timeout (long to, boolean rp) f
timeout = to;
repeat = rp;

g
g

/** Inserts the captured request along with the actual time into
* the local tuple space. <p>
* Only adds new requests, that are not already in the local
* timeout list.
*/

void insertRequest (Form f, boolean repeat) f
long timeout = def_timeout + System.currentTimeMillis();
Timeout t = (Timeout)requests.add(f, new Timeout(timeout, repeat));

// Returns null, if this is a new key!
g

/** Checks if there is a request stored in the HashMap
* that corresponds to the just captured answer. <p>
* Deletes the open request when there is one otherwise prints out
* an error message. <p>
*
* @return If the corresponding request was successfully removed
* it returns the form that was given as parameter. If the
* request was not found, it returns null.
*/

Form answerCheck (Form f) f
Form r = new Form(request);
r.put("ClientID", (Integer)f.get("ClientID"));
r.put("ServiceID",(Integer)f.get("ServiceID"));
r.put("Parameters",(String)f.get("Parameters"));
Timeout t = (Timeout)requests.remove(r);
if (t == null) f

System.out.println("No corresponding request found!");

B.1. COORDINATION AGENTS 107

return null ;
g
else return f;

g

/** Checks if there is an entry in the requests that has an
* expired timeout. If such an entry exists, it will be
* removed. */

void timeoutCheck () f
long time = System.currentTimeMillis();
long timeout;
Form f;
for (HashMapIterator i = requests.begin(); !i.equals(requests.end());

i.advance()) f
timeout = ((Timeout)i.value()).timeout;
if (time > timeout) f

f = (Form)i.key();
Timeout t = (Timeout)requests.remove(f);
if (t.repeat) f // Repeated request, create error answer.

System.out.println("Timeout exceeded, request removed!");
createErrorAnswer(f);
System.out.println("Timeout exceeded, error answer created");

g
else f // Repeat answer to enable another server to answer.

clientos.out(new Tuple(f));
insertRequest(f, true);
System.out.println("Timeout exceeded, request repeated");

g
g

g
g

/** Creates an error answer for the client. */
void createErrorAnswer (Form f) f

Form r = new Form(answer);
r.put("ClientID", (Integer)f.get("ClientID"));
r.put("ServiceID",(Integer)f.get("ServiceID"));
r.put("Result", "Error happened");
clientos.out(new Tuple(r)); // Put Error answer into client space.

g

/** Continuously checks the client and the server data spaces for
* new reqests respectively answers and checks for timeouts. */

public void run () f
System.out.println("Fault Tolerance is working");
while (true) f

do f
try f Thread.sleep(delay); g
catch (InterruptedException e) f g;
timeoutCheck();
clientt = (Tuple)clientos.in_nb(new Tuple(request));
servert = (Tuple)serveros.in_nb(new Tuple(answer));

g while (clientt == null && servert == null);
if (clientt != null) f

108 APPENDIX B. CODE SAMPLES

clientf = (Form)clientt.getItem(0);
insertRequest(clientf, false);
serveros.out(new Tuple(clientf)); // Put into server space.

g
if (servert != null) f

serverf = (Form)servert.getItem(0);
f = answerCheck(serverf);
if (f != null) clientos.out(new Tuple(serverf));
// Only gets delivered if a corresponding request could be found!

g
g

g
g

B.1.3 Registration Agent

The registration agent is introduced in section 5.2 and used in two examples: the observer example
(section 5.2) and the electronic vote example (section 5.3).

package aproco.examples.observer

import java.util.*;
import jada.*;
import aproco.lib.Form;

/**
* Registration Agent
*
* The registration agent listens to new client agents registering with
* the medium over the global configuration data space. It maintains a
* list of the currently registered client agents as form in the global
* configuration data space.
*/

public class RegistrationAgent implements Runnable f

ObjectSpace globalspace;
Form registerClient, deregisterClient, registerCoord, registerNotification,

listOfClients;
Vector clientInfo, coordAgents;

public RegistrationAgent (ObjectSpace global) f
globalspace = global;
registerClient = new Form();
registerClient.put("Type", "RegisterClient");
deregisterClient = new Form();
deregisterClient.put("Type", "DeregisterClient");
registerCoord = new Form();
registerCoord.put("Type", "RegisterCoordAgent");
registerNotification = new Form();
registerNotification.put("Type", "RegisterNotification");
listOfClients = new Form();

B.1. COORDINATION AGENTS 109

listOfClients.put("Type", "ListOfClients");
coordAgents = new Vector();

g

/** Updates the list of clients stored in the global information
* space.
*/

void updateClientList (Form clientf) f
Tuple t = (Tuple)globalspace.in_nb(new Tuple(listOfClients));
if (t != null) f

Form g = (Form)t.getItem(0);
clientInfo = (Vector)g.get("List");

g
ObjectSpace handle = (ObjectSpace)clientf.get("Handle");
if (!clientInfo.contains(handle)) f // Duplicate entries are not allowed.

clientInfo.addElement(handle);
g
Form f = new Form(listOfClients);
f.put("List", clientInfo);
globalspace.out(new Tuple(f));

g

/** Removes the clients private data space reference from the list
* of registered clients.
*/

void removeThisClient (Form clientf) f
Tuple t = (Tuple)globalspace.in_nb(new Tuple(listOfClients));
if (t != null) f

Form g = (Form)t.getItem(0);
clientInfo = (Vector)g.get("List");
ObjectSpace handle = (ObjectSpace)clientf.get("Handle");
boolean dontcare = clientInfo.removeElement(handle);
g.put("List", clientInfo); // Overwrites the old value.
globalspace.out(new Tuple(g));

g
g

/** Updates the list of interested coordination agents. This list is
* stored internally.
*/

void updateCoordList (Form coordf) f
String name = (String)coordf.get("Name");
if (!coordAgents.contains(name)) f // Duplicate entries are not allowed.

coordAgents.addElement(name);
g

g

/** Puts notations for the registered coordination agents into the
* global configuration data space on every newly created client
* agent. This information includes the data space references of
* the client agent’s private data spaces.
*/

void notifyCoordAgents () f

110 APPENDIX B. CODE SAMPLES

Tuple t = (Tuple)globalspace.read(new Tuple(listOfClients));
Form g = (Form)t.getItem(0);
Form notification = new Form(registerNotification);
notification.put("List", (Vector)g.get("List"));
for (Enumeration e = coordAgents.elements(); e.hasMoreElements();) f

Form n = new Form(notification);
n.put("Name", (String)e.nextElement());
globalspace.out(new Tuple(n));

g
g

/** Waits for new client agents or coordination agent to register or
* deregister with APROCO.
*/

public void run () f
System.out.println("Registration Agent is working");
Form finit = new Form(listOfClients);
finit.put("List", new Vector());
globalspace.out(new Tuple(finit));
new Thread(new Runnable() f

// Thread waiting for new clients to register.
public void run() f

while (true) f
Tuple t = (Tuple)globalspace.in(new Tuple(registerClient));
System.out.println("Client has registered");
Form g = (Form)t.getItem(0);
updateClientList(g);
notifyCoordAgents();

g
g

g).start();
new Thread(new Runnable() f

// Thread waiting for coordination agents to register.
public void run() f

while (true) f
Tuple t = (Tuple)globalspace.in(new Tuple(registerCoord));
Form g = (Form)t.getItem(0);
updateCoordList(g);

g
g

g).start();
new Thread(new Runnable() f

// Thread waiting for clients to deregister.
public void run() f

while (true) f
Tuple t = (Tuple)globalspace.in(new Tuple(deregisterClient));
Form g = (Form)t.getItem(0);
removeThisClient(g);

g
g

g).start();
g

g

B.1. COORDINATION AGENTS 111

B.1.4 Authentication Agent

The authentication agent is introduced in section 5.3 and used in the electronic vote example
(section 5.3).

package aproco.examples.vote;

import jada.*;
import aproco.lib.Form;
import java.util.*;

/** Authentication Agent<p>
*
* This agent checks the registered voter’s private data spaces for forms
* and passes them to the agent data space. The authentication agent adds
* and ID to each form originating from the same private data space to
* allow the other coordination agents to identify its origin.
*/

public class AuthenticationAgent implements Runnable f

ObjectSpace subjectspace, globalspace;
Form registerCoord, registerNotification, listOfClients, request, answer;
Hashtable voterSpaces; // Private data spaces and IDs.
Vector clientInfo; // The voter’s private data spaces.
int idCount; // Base of the ID

public AuthenticationAgent (ObjectSpace globalDataSpace,
ObjectSpace agentDataSpace) f

subjectspace = agentDataSpace;
globalspace = globalDataSpace;
voterSpaces = new Hashtable();
clientInfo = new Vector();
idCount = 1;
registerCoord = new Form();
registerCoord.put("Type", "RegisterCoordAgent");
registerCoord.put("Name", "Authentication");
registerNotification = new Form();
registerNotification.put("Type", "RegisterNotification");
registerNotification.put("Name", "Collector");
listOfClients = new Form();
listOfClients.put("Type", "ListOfClients");
request = new Form();
request.put("Type", "Request");

g

/** Checks if the registered voters are in the internal list and assigns
* and ID to them.
*/

synchronized void updateListOfVoters () f
for (Enumeration e = clientInfo.elements(); e.hasMoreElements();) f

ObjectSpace handle = (ObjectSpace)e.nextElement();
if (!voterSpaces.containsKey(handle))

voterSpaces.put(handle, new Integer(idCount++));

112 APPENDIX B. CODE SAMPLES

g
for (Enumeration e = voterSpaces.keys(); e.hasMoreElements();) f

ObjectSpace handle = (ObjectSpace)e.nextElement();
if (!clientInfo.contains(handle))

voterSpaces.remove(handle);
g

g

/** Continously checks all the private voter spaces for their votes
* and newly initiated votes.

*/
public void run () f

System.out.println("Authentication agent is working");
// Register with the medium to get notification about new clients.
globalspace.out(new Tuple(registerCoord));
new Thread(new Runnable() f

// Thread waiting for register notification,updates this information.
public void run() f

while (true) f
Tuple t = (Tuple)globalspace.in(new Tuple(registerNotification));
Form g = (Form)t.getItem(0);
clientInfo = (Vector)g.get("List");
updateListOfVoters();

g
g

g).start();
new Thread(new Runnable() f

// Thread checking the private data space of the observers for requests.
public void run() f

Tuple t;
Integer id;
do f // Initialize the list; wait for a list toappear.

t = (Tuple)globalspace.read_nb(new Tuple(listOfClients));
if (t != null) f

Form g = (Form)t.getItem(0);
clientInfo = (Vector)g.get("List");
updateListOfVoters();

g
try f Thread.sleep((long)(Math.random()*200)); g
catch (InterruptedException e) f g;

g while (t == null);
// The main loop
while (true) f

for (Enumeration e = voterSpaces.keys(); e.hasMoreElements();) f
ObjectSpace handle = (ObjectSpace)e.nextElement();
t = (Tuple)handle.in_nb(new Tuple(request));
if (t != null) f

Form f = (Form)t.getItem(0);
// Add this voter’s ID to the request.
id = (Integer)voterSpaces.get(handle);
f.put("VoterID", id);
// Put the request into the subject’s space.
subjectspace.out(new Tuple(f));

g

B.2. A COMPLETE EXAMPLE 113

g
try f Thread.sleep(200); g
catch (InterruptedException e) f g;

g
g

g).start();
g

g

B.2 A Complete Example

We present the Java code of the fault tolerance service example presented in section 5.1. Although
this is admittedly not the most exciting example, it shows the main properties of APROCO as well
as its simplicity to set up client agents and coordination agents. We present all parts except the
fault tolerance agent, because its code can be found in the previous section.

B.2.1 Fault Tolerance Service

This is the main routine of the fault tolerance service example. It first initializes the required
data spaces and starts all the agents that constitutes the whole application. The data spaces are
parameters for these agents. The agents typically have more parameters, in this example for their
identification numbers.

package aproco.examples.faulttolerance;

import jada.*;

/**
* <i>Fault Tolerance Service</i><p>
*
* The example consists of a client that wants a certain serivce done
* from a unknown server. This server or a multitude of them may fail
* to deliver the desired service. <p>
* The client has to be aware of the possibility of failure (some form
* of error handling).<p>
*
* Start: java aproco.examples.faulttolerance.FaultToleranceService <p>
*
* 21.9.98, Daniel Kuehni <p>
*
* @see Server
* @see TestClient
* @see FaultTolerance
*/

public class FaultToleranceService f

public static void main (String args[]) f
// Create new (local) object spaces.

114 APPENDIX B. CODE SAMPLES

ObjectSpace clientspace = new ObjectSpace();
ObjectSpace serverspace = new ObjectSpace();
// Create a server.
new Thread(new Server(17, serverspace)).start();
// Create another server with the same ID.
new Thread(new Server(17, serverspace)).start();
// Create some clients.
new Thread(new TestClient(1, clientspace)).start();
new Thread(new TestClient(2, clientspace)).start();
new Thread(new TestClient(3, clientspace)).start();
// Create the fault tolerance agent.
new Thread(new FaultTolerance(clientspace, serverspace)).start();

g
g

B.2.2 Server Agent

The server agent listens for service requests addressed to its service identification. It is unstable
and can fail to deliver the desired answer. To simulate failure the server agent starts an internal
thread that is terminating the main thread after a randomly chosen time.

package aproco.examples.faulttolerance;

import jada.*;
import aproco.lib.Form;

/** Server thread for fault tolerance service example. <p>
* The server is unstable and can fail at any time without automatic
* recovery and eventual loss of the client’s request.
*/

public class Server implements Runnable f

ObjectSpace os;
int cid, sid; // The service ID that this server operates.
boolean running;
String params, result;

public Server (int serviceID, ObjectSpace serverSpace) f
sid = serviceID;
os = serverSpace;
running = true;

g

public String performService (String params) f
// Simulates the calculattion of a result with the supplied parameters.
return "amazing result"; // Not really...

g

/** Internal routine to shut down the server randomly. */
private void initKillServer () f

B.2. A COMPLETE EXAMPLE 115

(new Thread() f
public void run () f

try f Thread.sleep((long)(Math.random()*100000)); g// Max 100 secs.
catch (InterruptedException e) f g;
System.out.println("Server with ID "+sid+" is going down");
running = false; // Tell the server to stop.

g
g).start();

g

/** The server continuously looks for requests for his service ID
* and delivers answers back with the same client ID as in the
* request.
*/

public void run () f
Tuple t;
System.out.println("Server with ID "+sid+" is waiting for requests");
initKillServer();
while (running) f

// Block waiting for a request that matches service ID.
Form form = new Form();
form.put("Type", "Request");
form.put("ServiceID", new Integer(sid));
t = (Tuple)os.in(new Tuple(form));
Form f = (Form)t.getItem(0);
if (running) f

params = (String)f.get("Parameters");
result = performService(params); // Perform the service.
// Create the result tuple and put it into the tuple space.
Form res = new Form(f);
res.put("Type", "Answer");
res.put("Result", new String(result));
os.out(new Tuple(res));

g
g

g
g

B.2.3 Client Agent

The client agent puts requests for a particular service into a data space and waits for corresponding
answers addressed to it. It has to be able to handle error messages instead of valid results.

package aproco.examples.faulttolerance;

import jada.*;
import aproco.lib.Form;

/** Client thread for fault tolerance service example.<p>
* This version is sending a new request every 10 seconds and block
* waits for the result. Parameters and results are strings.

116 APPENDIX B. CODE SAMPLES

*/
public class TestClient implements Runnable f

ObjectSpace os;
int cid; // The client’s ID.
Form share, request, answer;

public TestClient (ObjectSpace ospace) f
this(0, ospace);

g

public TestClient (int id, ObjectSpace ospace) f
cid = id;
os = ospace;
share = new Form();
share.put("ClientID", new Integer(cid));
request = new Form(share);
request.put("Type", "Request");
answer = new Form(share);
answer.put("Type", "Answer");

g

/** The client puts a service request into the tuple space. */
public void requestService (int sid, String params) f

Form form = new Form(request);
form.put("ServiceID", new Integer(sid));
form.put("Parameters", new String(params));
os.out(new Tuple(form));

g

/** Block waits for an answer that matches the same service ID and
* the client’s ID. */

public String getAnswer (int sid) f
Form form = new Form(answer);
form.put("ServiceID", new Integer(sid));
Tuple t = (Tuple)os.in(new Tuple(form));
Form f = (Form)t.getItem(0);
return (String)f.get("Result");

g

public void run () f
while (true) f

try f Thread.sleep((long)(Math.random()*1000)); g
catch (InterruptedException e) f g;
System.out.println("Client " + cid + " makes service request");
requestService(17, "no relevant params");
String result = getAnswer(17);
System.out.println("Client " + cid + " got answer: " + result);

g
g

g

Bibliography

[AB92] Mehmet Aksit and Lodewijk Bergmans. Obstacles in Object-Oriented Software De-
velopment. InOOPSLA ’92, pages 341–358, Vancover, Canada, 1992.

[AF+94] Gul Agha, Svend Frølund, et al.Research Directions in Concurrent Object-Oriented
Programming, chapter Abstraction and Modularity Mechanisms for Concurrent Com-
puting, pages 3–21. MIT Press, 1994.

[BCG97] Robert Bjornson, Nicholas Carriero, and David Gelernter. From Weaving Threads to
Untangling the Web: A View of Coordination from Linda’s Perspective. In D. Garlan
and D. Le Metayer, editors,Coordination Languages and Models (COORDINATION
’97), LNCS 1282, pages 1–17. Springer-Verlag, 1997.

[BLM93] J. P. Banâtre and D. Le M´etayer. Programming by Multiset Transformation.Commu-
nications of the ACM, 36(1):98–111, 1993.

[Blo79] Toby Bloom. Evaluating Synchronization Mechanisms. InSeventh ACM Symposium
on Operating Systems Principles, 1979.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stad. Pattern-Oriented Software Architecture – A System of Patterns. John Wiley,
1996.

[CA94] Christian J. Callsen and Gul Agha. Open Heterogeneous Computing in ActorSpace.
Journal of Parallel and Distributed Computing, 21:289–300, 1994.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed Systems: Con-
cepts and Design. Addison-Wesley, second edition, 1994.

[CG90] Nicholas Carriero and David Gelernter.How to Write Parallel Programs: A First
Course. The MIT Press, 1990. Second Printing 1991.

[Cia96] Paolo Ciancarini. Coordination Models and Languages as Software Integrators.ACM
Computing Surveys, 28(2):300–302, 1996.

[Cia97] Paolo Ciancarini. Coordination Models, Languages, Architectures, and Applications.
http://www.cs.unibo.it/̃cianca/wwwpages/coordToC.html, October 1997. Slides
from lectures at University of Leuven, Belgium, Feb. 97.

117

118 BIBLIOGRAPHY

[CR96] Paolo Ciancarini and Davide Rossi. Jada: Coordination and Communication for
Java Agents. InSec. Intl. Workshop on Mobile Object Systems: Towards the Pro-
grammable Internet (MOS’96), LNCS 1222, pages 213–228. Springer-Verlag, July
1996.

[DNO97] Enrico Denti, Antonio Natali, and Andrea Omicini. Programmable Coordinarion
Media. In D. Garlan and D. Le Metayer, editors,CoordinationLanguages and Models
(COORDINATION ’97), LNCS 1282, pages 274–288. Springer-Verlag, 1997.

[FA93] Svend Frølund and Gul Agha. A Language Framework for Multi-Object Coordi-
nation. InEuropean Conf. on O.O. Programming (ECOOP’93), LNCS 707, pages
346–360. Springer-Verlag, 1993.

[FG96] Stan Franklin and Art Graesser. Is it an Agent, or just a Program? A Taxonomy for
Autonomous Agents. InThird Intl. Workshop on Agent Theories, Architectures, and
Languages, pages 21–35. Springer-Verlag, 1996.

[Fla97] David Flanagan.Java in a Nutshell, Second Edition. O’Reilly, 1997.

[GC92] David Gelernter and Nicholas Carriero. Coordination Languages and their Signifi-
cance.Comm. of the ACM, 35(2):96–107, February 1992.

[Gel85] David Gelernter. Generative Communication in Linda.ACM Trans. Programming
Languages and Systems, 7(1):80–112, 1985.

[Gen81] Morven Gentleman. Message passing between sequential processes: the reply primi-
tive and the administrator concept.Software - Practice and Experience, 11:435–466,
1981.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: elements of
reusable object-oriented software. Addison-Wesley, 1995.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture. Technical
Report CMU-CS-94-166, School of Computer Science, Carnegie Mellon University,
1994. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/able/ftp/intro-softarch.ps.

[Gün98] Manuel G¨unter. Explicit Connectors for Coordination of Active Objects. Master’s
thesis, Inst. of Computer Science and Applied Mathematics, University of Berne,
March 1998.

[Ham97] Graham Hamilton.Java Beans 1.01. Sun Microsystems, Mountain View, USA, ver-
sion 1.01 edition, July 1997. http://splash.javasoft.com/beans/spec.html.

[Hol97] Tom Holvoet. An Approach for Open Concurrent Software Development. PhD the-
sis, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, December
1997.

[IBM98a] IBM Almaden Research Center, San Jose, CA, USA.IBM T Spaces User’s Guide,
1998. http://www.almaden.ibm.com/cs/TSpaces/.

BIBLIOGRAPHY 119

[IBM98b] IBM Research, Tokyo, Japan. Aglets Software Development Kit, 1998.
http://www.trl.ibm.co.jp/aglets/.

[Kie97] Thilo Kielmann.Objective Linda: A Coordination Model for Object-Oriented Paral-
lel Programming. PhD thesis, Dept. of Electrical Engineering and Computer Science,
University of Siegen, Germany, 1997. Shaker Verlag, Aachen.

[KLM +97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors,Proceedings ECOOP’97, LNCS 1241, pages
220–242., Jyvaskyla, Finland, June 1997. Springer-Verlag.

[LAN98] Markus Lumpe, Franz Acherman, and Oscar Nierstrasz. An extensible language for
Compostion. Paper, Software Composition Group, University of Berne, Switzerland,
September 1998. Submitted for publication.

[Lea97] Doug Lea.Concureent Programming in Java: Design Principles and Patterns. The
Java Series. Addison-Wesley, 1997.

[Mal88] Thomas W. Malone. What is Coordination Theory. Working paper no. 2051-88, MIT
Sloan School of Management, Cambridge, Mass., 1988.

[MC94] Thomas W. Malone and Kevin Crowston. The Interdisciplinary Study of Coordina-
tion. ACM Computing Surveys, 26(1):87–119, March 1994.

[Mor81] W. Morris. The American Heritage Dictionary of the English Language. Houghton
Mifflin Company, 1981.

[MU97] Naftaly H. Minsky and Victoria Ungureanu. Regulated Coordination in Open Dis-
tributed Systems. In D. Garlan and D. Le Metayer, editors,Coordination Languages
and Models (COORDINATION ’97), LNCS 1282, pages 81–97. Springer-Verlag,
1997.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technology.
In O. Nierstrasz and D. Tsichritzis, editors,Object-Oriented Software Composition,
pages 3–28. Prentice Hall, 1995.

[Obj97] ObjectSpace Inc., Dallas, TX, USA.The Generic Collection Library for Java(tm),
Version 3.1, 1997. http://www.objectspace.com/jgl/.

[Obj98] ObjectSpace Inc., Dallas, TX, USA. ObjectSpace Voyager(tm), 1998.
http://www.objectspace.com/voyager/.

[PA98] George A. Papadopoulos and Farhad Arbab.The Engineering of Large Systems, vol-
ume 46 ofAdvances in Computers, chapter Coordination Models and Languages.
Academic Press, August 1998.

120 BIBLIOGRAPHY

[Pap95] Michael Papathomas. Concurrency in Object-Oriented Programming Languages.
In O. Nierstrasz and D. Tsichritzis, editors,Object-Oriented Software Composition,
pages 31–68. Prentice Hall, 1995.

[Rog97] Dale Rogerson.Inside COM. Microsoft Press, 1997.

[RW96] Antony Rowstron and Alan Wood. Solving the Linda Multiple rd Problem. In P. Cian-
carini and C. Hankin, editors,Coordination Languages and Models (COORDINA-
TION ’96), LNCS 1061, pages 357–367. Springer-Verlag, 1996.

[Sci94] Scientific Computing Accociates, New Haven, CT.Paradise: User’s Guide and Ref-
erence Manual. 1994.

[Sin92] B. Singh. Interconnected Roles (IR): A Coordinated Model. Technical Report CT-
84-92, Microelectronics and Computer Technology Corp., Austin, TX, 1992.

[SO+96] Marc Snir, Steve Otto, et al.MPI: The Complete Reference. MIT Press, 1996.

[Ste90] Guy L. Steele.Common Lisp The Language, Second Edition. Digital Press, 1990.

[Sun98] Sun Microsystems Inc., Mountain View, CA, USA.JavaSpaces(tm) Specification, 1.0
beta edition, July 1998. http://java.sun.com/products/javaspaces/.

[Tic97] Sander Tichelaar. A Coordination Component Framework for Open Distributed Sys-
tems. Master’s thesis, Dept. of Computer Science, University of Groningen, May
1997.

[Tsi89] Dennis Tsichritzis. Object-Oriented Development for Open Systems. InInformation
Processing 89 (Proceedings IFIP’89), pages 1033–1040, 1989.

[vR97] Guido van Rossum.Python Reference Manual. Corporation for National Research
Initiatives (CNRI), rel. 1.5 edition, December 1997.

