
Improving live debugging of
concurrent threads

Master Thesis

Max Leske

University of Bern

11th August 2016

Prof. Dr. Oscar Nierstrasz
MSc. Andrei Chiş

Software Composition Group, Institute of Computer Science
University of Bern, Switzerland

Abstract

Concurrency issues are inherently harder to identify and fix than issues in sequential
programs. Debuggers for concurrent programs therefore need to supply not only
information pertaining to concurrency specific issues but also all of the information
that sequential debuggers offer. Specialised debuggers for concurrent programs can
provide this information but they usually operate on traces and are not live. Live
debuggers enable a more immediate way of analysing problems and are used by
many programming environments for many different languages, such that most of the
developers today are accustomed to using them.

Contemporary live debuggers for concurrent programs usually are simply sequen-
tial debuggers with the ability to display different threads in isolation. To these
debuggers every thread is a sequential program. Unfortunately, thread call stacks
always begin with a designated start routine and the calls that led to the creation
of the thread are not visible, as they are part of a different thread. Single threaded,
sequential programs have a call stack that reaches back to the start of the application,
threads do not. Thus, despite threads being treated as sequential programs, live
debuggers do not display the same amount of information for threads as for single
threaded, sequential programs.

In this work we propose to augment the call stacks of threads in the debugger,
such that live debuggers can display the complete call stacks. The information shown
for threads will then be the same as for single threaded, sequential programs. We
give an overview of the concurrency related features in current live debuggers, provide
examplary implementations of our idea for different use cases and finally describe the
downsides of our approach and evaluate possible solutions for them.

1

Acknowledgements

I want to thank my supervisor Andrei Chiş for always having time for me, even
when he didn’t — Prof. Oscar Nierstrasz for his patience and for assembling so many
great people in one place — Eliane Rupp for her love and friendship — my parents for
supporting everything I do — Tjade Höhre for our outdoor adventures — Philippe
Wechsler and Thomas Siegrist for putting up with my technical gibberish — Tudor
Gîrba, Clément Bera, Eliot Miranda and Denis Kudriashov for their inspiration and
technical feedback — Claudio Corrodi for his eye for misplaced commas — Christoph
Wysseier for being such a great boss — and all of the people in my life simply for
being there.

2

Contents

1 Introduction 5
1.1 Disrupted call stacks . 5
1.2 Augmented call stacks . 7

2 State of the art 8
2.1 Terminology . 8

2.1.1 Notation . 8
2.1.2 The call stack . 9
2.1.3 Processes and threads . 9
2.1.4 Promises . 9
2.1.5 Messages and events . 10
2.1.6 Debuggers for concurrent programs . 10
2.1.7 Remote debuggers . 11

2.2 Current state of live debuggers . 11
2.2.1 Popular languages . 11
2.2.2 Research languages . 11
2.2.3 Other languages . 12
2.2.4 Selected debuggers . 12
2.2.5 Debugger features . 12
2.2.6 Notes on debugger features . 13
2.2.7 Notes on debuggers . 15

2.3 Summary . 16

3 Augmenting thread call stacks 18
3.1 Constructing a virtual call stack . 18

3.1.1 Virtual call stack of multiple threads . 20
3.2 Thread states . 20
3.3 Interaction with the virtual stack . 20
3.4 Summary . 21

4 Implementation 22
4.1 Augmented threads . 22
4.2 The debugger model . 23
4.3 A live debugger for threads . 24

4.3.1 Implementation details . 24
4.3.2 User interface . 26

4.4 Application to special cases . 27
4.4.1 Promises . 29
4.4.2 Remote communication . 29
4.4.3 Remote promises . 29

3

CONTENTS 4

4.5 Summary . 31

5 Memory and performance considerations 33
5.1 Context reification . 33
5.2 Bound memory . 34
5.3 Computational overhead . 34
5.4 Virtual machine support . 35
5.5 Summary . 36

6 Conclusion and future work 37
6.1 Conclusion . 37
6.2 Future work . 37

6.2.1 Memory consumption . 38
6.2.2 Logging . 38
6.2.3 Implementation for processes . 38
6.2.4 Hiding stack frames . 38
6.2.5 Debugger user interface . 38
6.2.6 Promises in Pharo . 39

6.3 Summary . 39

Appendices 43

A Installation instructions 43

B Benchmark code 44

1
Introduction

According to Pennington [26], developers build a mental model of a program in terms of con-
trol flow and data flow. Live debuggers support developers in building that mental model by
providing access to concrete values of variables and real-time views of the effects of expressions
and statements. For control and sequence bugs [2] in particular, such as erroneous conditional
expressions or invalid state transitions, the ability to navigate the call stack helps to identify and
fix issues.

A developer who is intimately familiar with a program may possess an understanding of the
program sufficient to find and fix a bug without needing the complete call stack. The larger a
project, however, the less likely it is for a developer to possess that knowledge. Even developers
with a good mental model of the program may need the call stack when they find that their
model is wrong or incomplete.

1.1 Disrupted call stacks
A single thread is in itself a sequential program that can create new threads, which are executed
concurrently. We call the original thread master and any thread created by the master slave.
Slaves can themselves be masters of other threads, thus forming a hierarchy rooted in the first
thread of the operating system’s launch process, which has no master. We use the term history
to describe the complete call stack of a thread including the stack frames from all its master
threads.

The POSIX standard [16] defines that a thread is created in such a way that the first activation
record executes a start routine1, which the caller must specify, and that the thread is terminated
immediately after returning from the start routine (a thread may also terminate earlier explicitly).
Logically, the stack frames of the master thread preceding the start routine are part of the slave’s
call stack as well. However, as they are older than the start routine they can never be reached by
the slave thread. Hence, thread implementations do not make these older stack frames available
to the slave thread in an attempt to reduce the amount of memory consumed by stack frames.

1http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_create.html

5

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_create.html

CHAPTER 1. INTRODUCTION 6

The consequence is that a live debugger operating on such an implementation can only show the
frames of a slave thread up to the point of the thread’s start routine. One might argue that a
developer could simply switch to the master to look at the older stack frames but that is only
true when:

• the master has not yet exited and

• the master is waiting for the completion of the slave in the same frame in which the slave
was created.

The second point is important because, while some of the stack frames that are part of the
slave’s history may still be present in the master, stack frames from which the master has returned
are no longer accessible. For illustration, consider the following pseudo code example:
1 createThread
2 thread := Thread new.
3 thread
4 start: #runThread
5 in: self

Listing 1-1: The method #createThread creates and starts a new thread.

6 run
7 self createThread.
8 thread join.
9 ↑ self readThreadResult

Listing 1-2: The method #run asks for a new thread to be created, waits for it to exit and
returns the result from the computation performed in the thread.

The method #run sends #createThread, waits for the slave thread to exit and returns the result
that the thread has written to a shared variable. The slave thread is initiated in the #start:in:
method and executes the #runThread method. The frame for the method #createThread will no
longer be on the stack at the point where the master waits for the slave to exit (line 8), since the
master will have returned from the method, as shown in Figure 1.1.

Figure 1.1: Stacks of master and slave threads at the moment where the master is waiting for
the slave to exit (line 8) and the slave is executing the method #runThread.

The call stack of a thread’s master is in general not available to a live debugger. Considering
that a thread is also a sequential program we must conclude that live debuggers display less
information for concurrent than for sequential programs. Live debuggers should display at least
the same amount of information for concurrent programs, especially considering that concurrent
programs are inherently harder to debug than sequential ones.

CHAPTER 1. INTRODUCTION 7

1.2 Augmented call stacks
The history missing from a slave thread can be retained by creating a copy of the master’s call
stack at the point where the slave is being created. A live debugger can later use that copy to
augment the call stack of a slave thread with the call stack of its master. Figure 1.2 shows how
the stack would look like in a debugger in case of the example from Section 1.1. The augmented
call stack would contain not only the frames that are still active in the master and the slave, but
also those from which the master has already exited, such as the frame of #createThread.

Figure 1.2: The call stack on the right shows the call stack of the slave as it would appear in a
live debugger if the slave and its master were executed as a single sequential program. Note that
the frame of #createThread is accessible in neither the master nor the slave.

The idea of augmenting stack frames can also be applied in other contexts where the call
stack is disrupted. Examples include remote execution, promises, asynchronous events and
asynchronous messages (e.g., messages sent between actors in the actor model [14]). In a remote
execution scenario, master and slave threads exist in separate environments and do not physically
share a common call stack. Logically, however, the call stack of the master is part of the history
of the remote slave thread. Promises and both asynchronous events and messages share the
problem that from the point where they are usually shown in the debugger it is impossible to
navigate to the point of their origin. In other terms, the debugger does not display the complete
history.

To improve the state of the art in debugging concurrent programs, in this thesis we:

• present a comparison of live debuggers based on how they support the debugging of con-
current programs;

• provide exemplary implementations for creating augmented call stacks for threads, promises
and remote execution;

• describe the downsides of our approach, their implications and possible solutions for over-
coming them.

2
State of the art

In this chapter we explain essential terms used throughout the thesis and examine the current
state of debuggers for different languages. Our analysis focuses on the shortcomings of current
live debuggers in enabling debugging of concurrent programs.

2.1 Terminology
2.1.1 Notation
We will use Smalltalk conventions to talk about code. For example, #copyFrom:to: designates
the name and signature of a method accepting two arguments; colons specify the positions of
the method arguments. In case the receiver of a message is not obvious from the context we use
SequenceableCollection>>#copyFrom:to: to say that the method #copyFrom:to: is implemented
in the class SequenceableCollection. The following is an example of the message #copyFrom:to:
being sent to an OrderedCollection, which is a subclass of SequenceableCollection:

10 fruits := OrderedCollection new
11 add: 'banana';
12 add: 'lemon';
13 add: 'orange';
14 yourself.
15 citrusFruits := fruits
16 copyFrom: 2
17 to: fruits size

Listing 2-1: All of the messages in this example are being sent to an instance of
OrderedCollection. #yourself and #size are parameterless messages while #add: and
#copyFrom:to: accept one and two arguments, respectively.

8

CHAPTER 2. STATE OF THE ART 9

2.1.2 The call stack
An activation record represents the execution of a function or method. It includes all the
information necessary to execute the function body and return to the caller. The necessary
information is usually comprised of the function arguments, the stack pointer and the frame
pointer. The exact layout of an activation record varies across languages and implementations.
For example, some implementations push function arguments in right-to-left order onto the stack,
others in left-to-right order. Activation records are linked together, forming a list (usually singly
linked) called call stack. We use the term stack frame in reference to the call stack to mean the
physical representation of an activation record.

In Smalltalk-80 the representation of activation records are instances of the MethodContext
class [13]. Contexts store the program counter (next instruction of the method to be executed),
the stack pointer (every context has its own isolated stack), the frame pointer (a reference to
the previous context) and the method arguments. The original virtual machines for Smalltalk-80
instantiated an instance of MethodContext for every activation record. Newer virtual machines
for Smalltalk derivatives use a more efficient scheme and only create context instances when
necessary (e.g., when the user wants to inspect a context) [10]. Unless we are talking about
instances of MethodContext we will use the terms activation record and stack frame to refer to
contexts in Smalltalk. In Pharo [5], which is the target language of our implemenations presented
in Chapter 4, MethodContext has been renamed to Context.

2.1.3 Processes and threads
The call stack represents the currently active methods or functions within a thread, defined by
POSIX as “A single flow of control within a process”1. POSIX further defines process as “An
address space with one or more threads executing within that address space, and the required system
resources for those threads”2. Green threads are virtual threads that are located and scheduled
in user space by a virtual machine [29]. They may be executed within a single POSIX thread or
mapped to multiple POSIX threads, depending on the capabilities of the virtual machine.

The class Process in Smalltalk-80 represents green threads, not processes as its name suggests.
We will refer to instances of Process as threads to avoid confusion with the POSIX definition of
process.

Process and thread relationships A new process is created by an existing thread and
contains a single thread itself, which is created implicitly. A new thread is also created by an
existing thread but will be executed within the same process as its creator. We use the terms slave
to refer to a newly created thread and master to refer to the thread that created it. Slave threads
can themselves be masters of other threads, thus forming a thread hierarchy. The processes of
these threads consequently also form a hierarchy of which the operating system’s launch process
is the root. The launch process is the only process not created by another thread.

2.1.4 Promises
The concept of promises was introduced by Friedman et al. [12] for the Lisp programming
language. Since then promises have been extended and implemented in a variety of ways so
that today the definition depends on the language and the specific use case. Liskov and Shrira,
for example, extend promises to have a static type and support for exceptions [20]. The terms

1http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_398
2http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_291

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_398
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_291

CHAPTER 2. STATE OF THE ART 10

future (e.g., in Java) and task (e.g., in the .NET Framework) are sometimes used as synonyms
of promise, other times both future and task are understood to describe different variants of the
same concept. The fundamental idea, however, remains the same and it is that idea we use as the
definition in this thesis: a promise is an eventual value, the computation of which may execute in
a slave thread. A remote promise is a promise that is executed in a process that is not directly
accessible by the master, e.g., because it is executed on a different host.

2.1.5 Messages and events
Messages, such as defined by the actor model [14] and events, user interface events in the Document
Object Model (DOM)3 for example, are usually implemented to be delivered asynchronously (we
will use the term event to describe both events and messages). Asynchrony can be achieved in a
single threaded implementation, such as JavaScript, by using queues to store events. The event
queues effectively decouple triggering and delivery.

Debugging of events most often occurs at the location where an event is received because it
is easy for developers to anticipate that a given event will have a specific effect, regardless of the
time at which the event will be received. Because of their asynchronous nature, however, the
origin of events cannot be determined from that context, i.e., the stack frame in which an event
was triggered is not part of the current call stack. Events have this property in common with
promises and although we will not discuss events specifically any further, the implementation of
our idea for promises is easily transferrable to events. This will become clear when we look at
the Scala asynchronous debugger and the Chrome development tools later in this work.

2.1.6 Debuggers for concurrent programs
The need for debuggers that show the relationships between processes has been recognised as
early as 1986 [7, 31]. One possibility of giving developers access to the inter-process relationships
are traces, which have been used for sequential debugging since 1969 [1]. Traces provide serialised
records of the events that occurred during the execution of a program. They may be recorded
as human readable text so that they can be browsed and processed by command line tools.
Because of the high density of information in traces, specialised tools are often used. Trace
debuggers simplify search and filtering of traces. Visual trace debuggers use the information
from traces to present visualisations to the user that attempt to highlight specific properties of a
trace. Specialised (visual) trace debuggers can also display dependencies between processes and
threads (Utter and Pancake [31] give an excellent, albeit outdated, overview of parallel visual
debuggers). Trace debugging is a powerful way of analysing issues in a program, especially related
to concurrency. However, traces are usually costly to process, due to the large amount of data,
and are therefore better suited for postmortem debugging.

Live debuggers offer a faster turnaround and more direct interaction with the program than
trace debuggers. Some live debuggers even support manipulation of the program on the fly (also
known as “fix-and-continue debugging”) so that the program does not need to be restarted or
recompiled, such as in Lisp [19], and Smalltalk [13], where this functionality is built into the
language enviroment. Other language environments have also begun adopting fix-and-continue
debugging, such as Java as of JDK 1.44. Live debuggers usually have some capabilities for dealing
with concurrency (see Section 2.2).

3http://www.w3.org/TR/uievents/#sync-async
4https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

http://www.w3.org/TR/uievents/#sync-async
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

CHAPTER 2. STATE OF THE ART 11

2.1.7 Remote debuggers
Remote debuggers exist for many languages and platforms. They enable debugging of a system
which itself has no or only limited debugging facilities. Embedded systems for example have
neither the power nor the output facilities, like display drivers, to make local debugging possible.
Generally, two approaches exist to implementing remote debuggers. Query based remote debug-
gers issue queries and commands to their target to manipulate state and retrieve information.
The target in this case is often a counterpart of the debugger installed on the remote system.
One example of a query based remote debugger is the GNU debugger (GDB), which can be
configured to communicate with remote targets via serial or network interface [28]. The other
approach to implementing remote debuggers is to use some form of remote proxies that connect
remote objects with local ones transparently. Remote debuggers in Smalltalk and its derivatives
follow this idea [3, 9, 17, 24].

Remote debuggers can be used to debug remote execution, i.e., execution of a task in a
different environment (often a different machine). The call stack of the master thread is part of
the history of the remotely executing slave thread, just as for threads that are executed in the
same environment. The problem of accessing the complete history of a slave thread also applies
to remote slave threads, especially in the case of asynchronous remote execution, of which remote
promises are an example.

2.2 Current state of live debuggers
The space of programming languages today is too large5 to produce a survey of all the debuggers
of these languages in the context of this thesis. Hence, we had to generate a representative sample
of the space of all debuggers. Since debuggers are tied to a single language or only few different
ones, we looked at different programming languages to obtain different debuggers.

2.2.1 Popular languages
We started by examining debuggers of the most popular programming languages, as these are
likely to be supported by financially strong companies that invest in tool innovation. The TIOBE
Index6 provides a continuously updated list of the most popular programming languages based on
search engine results. The top ten of the index have been composed of the same languages since
2011 (with the exception of Visual Basic .NET), which indicates that these languages are not
only popular but important to the industry. In June 2016 the top ten languages, in descending
order, were: Java, C, C++, Python, C# , PHP, JavaScript, Perl, Visual Basic .NET and Ruby.
To round out the picture we add Objective-C and Swift for Apple’s iOS platform since mobile
platforms belong to the most important and fastest evolving platforms (the languages used for
Google’s Android and Microsoft’s Windows Phone platforms are already included in the top ten).

2.2.2 Research languages
Innovation in programming languages and tools for those languages is also driven by research at
universities. The languages used in software research are often not popular enough to appear in
the top 10 of the TIOBE index. To account for languages used in research, we added Haskell

5Wikipedia (https://en.wikipedia.org/wiki/List_of_programming_languages) for example listed 694 pro-
gramming languages on July 8th 2016

6http://www.tiobe.com/tiobe_index

https://en.wikipedia.org/wiki/List_of_programming_languages)
http://www.tiobe.com/tiobe_index

CHAPTER 2. STATE OF THE ART 12

(University of Glasgow [15]), Scheme (MIT [30]), Scala (EPFL7), Self (Stanford University8),
OCaml (INRIA9), Prolog (Universitiy of Edinburgh, Université d’Aix Marseilles [18]) and Pharo
(University of Bern10, INRIA11) to the sample.

2.2.3 Other languages
Many other languages have their own debuggers. We argue, however, that the debuggers for
the languages in our sample represent the majority of innovations. It is therefore unlikely that
debuggers of other languages include features that are not already present in our sample but are
of interest in the context of this work.

2.2.4 Selected debuggers
From the selected languages we derived a list of debuggers by including the standard debugger for
each language (if one exists) and possibly others that are used by a significant number of developers
(e.g., debuggers used by popular development environments). The debuggers covered by our
survey are: Java Debugger Interface12 (Java), Visual Studio debugger13 (C# , C++, Visual Basic
.NET, JavaScript), PyDev14 (Python), pdb15 (Python), perldebug16 (Perl), GDB17 (C), Chrome
development tools18 (JavaScript), XDebug19 (PHP), Zend Debugger20 (PHP), debug.rb21 (Ruby),
LLDB22 (Objective-C, Swift), GHCi debugger (Haskell)23, Concurrent Haskell debugger [6]
(Haskell), SISC debugger24 (Scheme), Scala asynchronous debugger25 (Scala), Self debugger26

(Self), ocamldebug27 (OCaml), XPCE debugger28 (Prolog), Pharo debugger29.

2.2.5 Debugger features
We identified the features each of the debuggers provides with respect to threads, events, messages
(actor model) and promises. For every feature we derived a question that we could ask for a given
debugger to find out whether it supports that feature. The following list shows the questions we
asked, the answers to them are depicted in Table 2.1:

7http://www.artima.com/weblogs/viewpost.jsp?thread=163733
8http://www.selflanguage.org
9http://ocaml.org/learn/history.html

10http://scg.unibe.ch/research
11http://rmod.inria.fr/web/research
12http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
13https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
14https://github.com/fabioz/PyDev.Debugger
15https://docs.python.org/2/library/pdb.html
16http://perldoc.perl.org/perldebug.html
17https://www.gnu.org/software/gdb/
18https://developer.chrome.com/devtools
19https://xdebug.org
20http://files.zend.com/help/Zend-Studio/content/remotely_debugging_a_php_script.htm
21http://ruby-doc.org/stdlib-2.0.0/libdoc/debug/rdoc/DEBUGGER__.html
22http://lldb.llvm.org
23https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html#the-ghci-debugger
24http://www.sisc-scheme.org/manual/html/ch04.html
25http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
26http://handbook.selflanguage.org
27http://caml.inria.fr/pub/docs/manual-ocaml/debugger.html
28http://www.swi-prolog.org/pldoc/man?section=guitracer
29http://pharo.org/documentation

http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.selflanguage.org
http://ocaml.org/learn/history.html
http://scg.unibe.ch/research
http://rmod.inria.fr/web/research
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://github.com/fabioz/PyDev.Debugger
https://docs.python.org/2/library/pdb.html
http://perldoc.perl.org/perldebug.html
https://www.gnu.org/software/gdb/
https://developer.chrome.com/devtools
https://xdebug.org
http://files.zend.com/help/Zend-Studio/content/remotely_debugging_a_php_script.htm
http://ruby-doc.org/stdlib-2.0.0/libdoc/debug/rdoc/DEBUGGER__.html
http://lldb.llvm.org
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghci.html#the-ghci-debugger
http://www.sisc-scheme.org/manual/html/ch04.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://handbook.selflanguage.org
http://caml.inria.fr/pub/docs/manual-ocaml/debugger.html
http://www.swi-prolog.org/pldoc/man?section=guitracer
http://pharo.org/documentation

CHAPTER 2. STATE OF THE ART 13

• thread hierarchy information: does the debugger provide some kind of information
(visual or textual) about the master-slave relationship of threads?

• thread switching: does the debugger allow developers to change the thread currently in
focus?

• thread isolated breakpoints: can breakpoints be isolated to specific threads, e.g.,
through conditional breakpoints?

• event history: can the debugger show stack frames from the point of creation of events
or messages?

• promise history: can the debugger show the history of promises across different threads?

• thread history: can the debugger display the original call stack of the master thread for
a given slave?

2.2.6 Notes on debugger features
Thread hierarchy information The only debugger that provides any kind of information
about the hierarchichal relationship between master and slave threads is the Visual Studio
debugger (for so called “managed code”). Even though presenting information about the thread
hierarchy intuitively seems like a good idea, it does not appear to be something that developers
demand or that many companies think can be sold as a feature of their development environment.
The fact that only the Visual Studio debugger provides this feature becomes less surprising when
taking into account that Visual Studio until recently targeted the Microsoft Windows operating
system exclusively and that Windows “relies more heavily on threads than processes”30. Thus, the
incentive to build a thread hierarchy view may have been greater for the Visual Studio debugger
than for debuggers that target other platforms (or are not exclusive to Windows).

Thread switching In this case it is interesting to note that Perl and Python implement
threading but do not provide adequate debugger support. It is even more interesting that PyDev
allows developers to switch threads even though it is not the standard debugger for Python. It
would be interesting to find out why debugger support for such a fundamental feature is not
being provided by the standard tools.

The debuggers for Haskell, Scheme and OCaml provide only implicit thread switching because
they are functional languages in which threads are also implemented with functions. In these
implementations only the active thread can be displayed in the debugger and switching to a
different thread requires a context switch. Scala, which is also partly functional, by contrast
uses the thread implementation of the HotSpot virtual machine and therefore its debugger can
provide explicit thread switching. Of the debuggers that we looked at for Haskell, Scheme and
OCaml, only the GHCi debugger for Haskell actually supports breaking on different threads in
the same session.

Thread isolated breakpoints In all of the languages we looked at, threads are exposed as
first class objects and allow access to their internal identification (“thread-ID”). Many of the
debuggers satisfy the property of isolated thread breakpoints simply because they offer conditional
breakpoints where the condition can include a comparison with the current thread’s thread-ID.

30https://technet.microsoft.com/en-us/library/bb496993.aspx

https://technet.microsoft.com/en-us/library/bb496993.aspx

CHAPTER 2. STATE OF THE ART 14

thread
hierarchy
informa-

tion

thread
switching

thread
isolated
break-
points

event
history

promise
history

thread
history

Java Debugger
Interface (JNI) · X X · · ·

Visual Studio
debugger X X X · · ·

PyDev · X X · · ·

pdb · · X · · ·

perldebug · · X · · ·

GDB · X X · · ·

Chrome
development tools n/a n/a n/a X X n/a

XDebug · X X · · ·

Zend Debugger · X X · · ·

debug.rb · X X · · ·

LLDB · X X · · ·

Concurrent Haskell
debugger · · X · · ·

GHCi debugger · X X · · ·

SISC debugger · · X · · ·

Scala asynchronous
debugger · X X X X ·

ocamldebug · · X · · ·

Self debugger · · X · · ·

XPCE debugger · X X · · ·

Pharo debugger · X X · · ·

Pharo thread
debugger · X X · X X

Table 2.1: Thread related features of live debuggers

CHAPTER 2. STATE OF THE ART 15

Not all debuggers provide conditional breakpoints out of the box however. The SISC debugger for
Scheme for example does not include a facility for conditional breakpoints but can be extended
with a custom function that provides it.

Promise history Only the Scala asynchronous debugger and the Chrome development tools
can show stacks for promises across multiple threads. What this shows is that the concept is an
important idiom in the respective languages, more important at least than in other languages.

Event history The same two debuggers that can show the promise history across different
threads, namely the Scala asynchronous debugger and the Chrome development tools, can also
show an augmented stack for events. This suggests that the implementation of promises and
events could be similar, so that the implementation for either promises or events led to the
implementation for the other structure naturally. For JavaScript this conclusion is in fact rather
obvious since it is single threaded.

Thread history None of the debuggers we looked at implements our idea of augmenting the
call stack of a thread with the call stack of its master.

2.2.7 Notes on debuggers
Most of these debuggers use the same approach to debugging concurrent processes and threads:

1. when a breakpoint is hit, suspend all running processes / threads;

2. present the user with lists of all current processes / threads;

3. let the the user choose the process / thread she is interested in;

4. present details of the selected process / thread to the user, isolated from other processes /
threads.

perldebug perldebug includes an experimental thread debugging option that identifies the
current thread and can list all running threads. It is not possible to switch between different
threads in perldebug.

Visual Studio debugger The Microsoft Visual Studio debugger (C# , C++, Visual Basic
.NET) can visualise thread hierarchies (i.e., the relationship between master and slave threads
within a single process) and show stack frames shared among different active threads (e.g., two
threads created at the same point will share at least some frames). An additional “task view”
provides the same information for tasks, a concept related to promises31.

Chrome development tools JavaScript is single threaded but the event mechanism uses
threads or a mechanism amounting to the same. For that reason only “promise history” is an
applicable question for JavaScript debuggers.

The “Async” option in the Chrome development tools makes the call stack list display a
contiguous stack for events, promises and asynchronous network requests (XMLHttpRequest)32.
Traditionally, these constructs are displayed only with the stack of their current context i.e., the

31https://msdn.microsoft.com/en-us/library/hh873175(v=vs.110).aspx
32http://www.html5rocks.com/en/tutorials/developertools/async-call-stack/

https://msdn.microsoft.com/en-us/library/hh873175(v=vs.110).aspx
http://www.html5rocks.com/en/tutorials/developertools/async-call-stack/

CHAPTER 2. STATE OF THE ART 16

place where an event, promise or XMLHttpRequest was created cannot be determined from the
visible stack. The idea is very similar to the one used in the Scala asynchronous debugger.

Concurrent Haskell Debugger An experimental debugger for Haskell that employs the same
scheme as other debuggers but also visualises relationships between threads through lines between
threads and shared resources.

Debugging of futures in Java Zhang et al., for their Directive-based lazy futures implementa-
tion in Java, proposed a serialised view of the events of both the slave thread and its master [32].
In contrast to our approach, the serialised view is not created on demand but is a side-effect
of their stack-splitting strategy: the virtual machine (a customised Jikes VM) creates a future
by copying the current thread and marking the current activation record as the bottom of the
stack. The slave process thus contains all the activation records from before its creation (the
mark is reversible). Their implementation of futures is based on the idea that the virtual machine
can decide to create threads for long running computations, hence a future is implicit and not
guaranteed to run in a separate thread at all. It also means that their implementation does not
support remote futures because the location of execution cannot be configured.

Scala asynchronous debugger The Scala asynchronous debugger is an extension to the Scala
debugger that adds support for debugging of actors and futures. To that end the debugger creates
a continuation at the point where a future is being created or a message is being sent to an actor.
The continuation is later used in the debugger to present the context of the future or message to
the developer as a call stack, separate from the thread’s call stacks.

Pharo debugger With regard to threads, events, messages and promises the Pharo debugger
does not distinguish itself from other debuggers as it only supports thread switching (although
only implicitly) and isolated thread breakpoints (via named threads and conditional breakpoints).
We mention this explicitly because we use the Pharo debugger as the basis for the implementations
introduced in Chapter 4.

2.3 Summary
Live Debuggers across different languages are remarkably similar with respect to the features
we looked at. This suggests that there is little innovation in this particular area or that at least
very few innovations of this kind are being built into debuggers. The Chrome development tools,
the Scala asynchronous debugger and the Visual Studio debugger are clearly the most innovative
debuggers when it comes to debugging of asynchronous programs but none of them solves the
general problem of lost thread history.

The thread hierarchy view in the Visual Studio debugger is a great idea that we would like
to see in other debuggers. Unfortunately, the view can only show the hierarchy between threads
that are live i.e., the relationship between a slave and its exited master is not visible. By applying
our idea of augmenting thread call stacks to the thread hierarchy view, a thread would always
be visible with its complete hierarchy, regardless of the state of the master and thread execution
order (the state of the master may differ depending on the order of execution). Users of the view
could then also easily navigate to the point where a thread was created.

Events and promises have been hard to debug in the past partly because both have implicit
relationships to different parts of the call stack, e.g., point of creation and point of activation,
that could only be inferred from other information. There was no way to tell the debugger to

CHAPTER 2. STATE OF THE ART 17

navigate to any such point directly. Both the Scala asynchronous debugger and the Chrome
developer tools have solved this problem, for Scala and JavaScript respectively, by using the
same idea we are proposing. The key difference however, is that we propose to apply the idea to
threads in general, which solves the problem for promises and events as special cases.

3
Augmenting thread call stacks

Threads, as defined by POSIX and implemented in the languages listed in Chapter 2, do not hold
on to the stack frames that are part of their masters. This is largely due to threads not being
created as copies of the current thread, in contrast to POSIX processes, but with an explicit
start routine. Since a thread is meant to exit at the latest when it reaches the end of its start
routine, no frame of the master that is conceptually part of the history of the slave would ever
be executed. From the point of view of implementation and resource management it would be
a waste to copy the frames of the master. Even the use of a copy-on-write [23] scheme would
entail wasted space because the memory in which those stack frames lie from which the thread
has returned cannot be reclaimed until the slave exits.

Despite these disadvantages the master thread needs to be copied in order to provide the
information that allows us to build better debuggers for concurrent programs.

3.1 Constructing a virtual call stack
We propose to save the histories of threads so that they can be supplied to the debugger. For a
given thread the debugger can then display the call stack as if the slave and its master were a
single sequential program.

Figures 3.1 and 3.2 show the call stacks of a master thread and its slave. “A” marks the frame
in the master in which the slave has been created. Figure 3.1 depicts the situation in which both
master and slave have performed some method calls concurrently. While creating the slave, the
master also created a copy of itself, which contains copies of all the stack frames that are part of
the history of the slave, i.e., all frames up to and including “A”.

When the slave thread is interrupted, e.g., due to a breakpoint or unhandled exception, we
can construct a virtual stack from the slave and the copy of its master as shown in Figure 3.2.
The bottom part of the virtual stack references the stack frame copies from the master thread,
while the top part is comprised of the references to the stack frames from the slave. The bottom
stack frame of the slave thread immediately follows the frame “A”, in which the slave was created.
A debugger operating on such a virtual stack now enables users to navigate the stack frames
from two threads sequentially.

18

CHAPTER 3. AUGMENTING THREAD CALL STACKS 19

Figure 3.1: Stacks of two concurrent threads with a master-slave relationship.

Figure 3.2: The virtual stack references a copy of a frame instead of the original if the master
has already returned from it.

CHAPTER 3. AUGMENTING THREAD CALL STACKS 20

The virtual stack is a list of stack frames that does not depend on the links between frames, an
array for example. This of course depends on the debugger being able to operate on a collection of
stack frames instead of accessing the stack directly through the stack frame links. For debuggers
that cannot operate on a virtual stack the concept remains the same but has to be achieved by
manipulating links between stack frames, i.e., by linking the bottom frame of the slave to the
top frame of the master’s copy.

3.1.1 Virtual call stack of multiple threads
Master and slave threads form a hierarchy in which every thread is a slave thread (with the
exception of the launch process thread) and can itself be the master of other threads. If we
indeed want to preserve the complete history of a thread we must therefore construct the virtual
stack recursively such that the call stacks of all masters are represented in the virtual stack. For
debuggers working with augmented threads this means they have to support dynamic thread
switching and activation record selection, opposed to hard coding a master and a slave thread.

3.2 Thread states
When the debugger displays the virtual stack, the state of the master is undetermined. The
following states are possible:

• running,

• suspended,

• exited,

• blocked (waiting on another thread, or for an interrupt),

• blocked while waiting on the slave that is currently being debugged.

For simplicity, we assume in our model that the copy of the master’s frames can be inspected
but cannot be acted upon. If we knew, however, that the master was blocked and waiting for the
slave that is open in the debugger, we could use the active frames of the master in the virtual
stack and the debugger would be able to operate on those stacks. In all other cases, letting the
debugger perform actions on active frames of the master (or copies) could be harmful and in
general lead to undefined behavior.

3.3 Interaction with the virtual stack
For debuggers, the interaction with a virtual stack is more complex than the interaction with
a single thread. The actions developers can perform on stack frames or threads must all be
implemented to take into account that more than one thread is part of the call stack.

Set breakpoint Breakpoints can be set in any stack frame. However, for frames that will
never be reached by the execution, i.e., frames that are not part of the slave and are no longer
live, it may be better to ignore the action and inform the user that the breakpoint would have
no effect.

CHAPTER 3. AUGMENTING THREAD CALL STACKS 21

Step to next instruction Stepping to the next instruction is always possible, except when
crossing thread boundaries. It may be necessary in this case to perform additional actions
to properly terminate the slave thread. This also applies to the related action “step to next
instruction in current method”.

Resume Resumption is only possible when the top context of the virtual stack is part of the
slave thread.

Restart For debuggers that support a restart action the action may be associated with a frame
other than the top frame. For the frame that is associated with the action the debugger must
check if the frame is part of the slave process before performing the action.

Return value Some debuggers support explicitly returning from a method with a value, which
is only possible when the frame selected for this action is part of the slave process. Additional
care may be necessary when crossing thread boundaries.

3.4 Summary
We have presented a simple model for live debuggers to display the history of a thread as a single,
sequential virtual call stack. The key point of the model is that the master thread is copied at
the point where a slave thread is being created, thus ensuring that no stack frames of the slave
thread’s history are lost. Although it should be straightforward for most debuggers to display
the virtual call stack, special care must be taken when a user requests to perform actions on
the stack frame in focus because these actions depend on the state of the thread they are being
performed on.

4
Implementation

We created prototype implementations of our approach in the Pharo Smalltalk environment. The
main reason for choosing Pharo is that green threads have a first-class representation and it is
thus possible to manipulate threads and their chains of activation records without support from
the virtual machine. In addition, the debugger model in Pharo provides the means for extending
existing debuggers and adding new ones with little effort.

See Appendix A for obtaining the reference implementations discussed in this chapter.

4.1 Augmented threads
The UML diagram in Figure 4.1 shows a simplified schematic of how the class Process in Pharo,
whose instances represent green threads, is connected to its activation records. Activation records
are represented by instances of class Context, which is the equivalent of the class MethodContext in
Smalltalk-80, and are linked to each other through the sender field of Context. Every activation
record is bound to the method whose activation it represents (CompiledMethod). Contexts also
map their method to a receiver, which is the object bound to the self pseudo-variable in the
activated method [13].

Also shown in Figure 4.1 are the new classes used for augmenting a thread with the history
from its master. We introduce a subclass of Process called UserProcess that stores a copy of the
active thread’s call stack in an instance of ProcessHolder. This could have been implemented
on Process but we wanted to guarantee a clean separation from the existing environment and
prevent the creation of call stack copies for system threads, hence the name. ProcessHolder and
ContextHolder are data structures that reduce the complexity of thread management, e.g., by
providing explicit mappings between an activation record, its copy and the executing thread.

The chain formed by the self reference on ProcessHolder is the manifestation of the thread
hierarchy mentioned in Chapter 3. Through this chain it is possible to construct a virtual stack
containing the complete history of a thread, i.e., the virtual stack includes the activation records
from all the master processes of the slave thread. The exception to this rule are instances
of Process for which we do not want to create call stack copies, meaning that the chain of
ProcessHolder instances terminates when the master is an instance of Process.

22

CHAPTER 4. IMPLEMENTATION 23

Figure 4.1: UML diagram of Process and its Context chain in Pharo.

4.2 The debugger model

Figure 4.2: UML diagram showing the relevant classes of the moldable debugger infrastructure
in Pharo.

Our thread call stack augmenting debugger uses the moldable debugger infrastructure [8]
in Pharo, which allows us to implement a specialised debugger without the need to modify
the default debugger of the system. Figure 4.2 provides an overview of the important classes
provided by the moldable debugger infrastructure. The abstract class GTMoldableDebugger defines
the visual model of a debugger while DebugSession represents the context of a debugger instance
and handles interaction with the thread, an instance of Process, that is being debugged. Instances
of DebugAction represent actions that can be performed by the debugger, such as stepping or
evaluation of selected code. GTGenericStackDebugger is the the default Pharo debugger, which we
use as the basis for our debugger implementation.

CHAPTER 4. IMPLEMENTATION 24

4.3 A live debugger for threads
In this section we introduce important details of the debugger implementation before looking at
an example in which we use the thread debugger to analyse a bug.

4.3.1 Implementation details

Figure 4.3: Our thread call stack augmenting debugger is implemented in the two classes
ThreadDebugger and ThreadDebugSession.

For the implementation of our thread call stack augmenting debugger we introduced two
new classes as shown in Figure 4.3. ThreadDebugger is a subclass of GTGenericStackDebugger that
uses ThreadDebugSession, a subclass of DebugSession. Our custom debug session needs to control
every operation on the stack to guarantee that activation records are correctly being mapped
to the thread they belong to. GTGenericStackDebugger and DebugSession both assume that the
debugger is operating on a single thread to which all of the activation records belong. In our
case, however, we will be operating on two or more threads, and since a thread is responsible for
executing instructions of a given activation record it is important to select the correct thread for
execution. The classes ProcessHolder and ContextHolder make it simpler to check conditions and
select the correct activation records and threads.

In the example shown in Listings 4-1 through 4-3, we create a new instance of UserProcess.
We have configured our debugger to be the default debugger so that any unhandled exception,
e.g., a division by zero, will be opened in a ThreadDebugger instance.

18 process := [
19 self
20 divide: aNumerator
21 by: aDivisor] newUserProcess.
22 process
23 priority: 30;
24 resume

Listing 4-1: Example code showing how a new instance of UserProcess is being created by
sending #newUserProcess to a closure (delimited by brackets). The new thread, an instance of
UserProcess, is started by sending the message #resume.

CHAPTER 4. IMPLEMENTATION 25

25 newUserProcess
26 ↑ UserProcess
27 forContext:
28 [self value.
29 Processor terminateActive] asContext
30 priority: Processor activePriority

Listing 4-2: The method BlockClosure>>#newUserProcess creates instances of UserProcess.

31 initialize
32 super initialize.

34 masterProcessHolder := ProcessHolder for: Processor activeProcess

Listing 4-3: UserProcess>>#initialize is executed during creation of UserProcess instances
and stores a reference to the active thread, which will become the master of the new thread.

The method BlockClosure>>#newUserProcess (Listing 4-2) creates a new unscheduled user
process. The method UserProcess>>#initialize (which is sent upon creation of the instance)
stores the copy of the current thread’s call stack. The call stack copy is being created in
ProcessHolder>>#initializeWithProcess: by the method Context>>#copyStack on line 38 (List-
ing 4-4). The pseudo variable thisContext refers to the activation record of the current method,
which is also the topmost stack frame of the current process (the method #stack simply creates a
collection from the linked list of activation records). In addition, #initializeWithProcess: stores
a reference to the process and creates an instance of ContextHolder for every activation record
(lines 39 to 48).

35 initializeWithProcess: aProcess
36 | stackCopy previousHolder |
37 process := aProcess.
38 stackCopy := thisContext copyStack stack.
39 contextHolders := thisContext stack withIndexCollect: [:context :index |
40 ContextHolder
41 forProcess: aProcess
42 context: context
43 andCopy: (stackCopy at: index)
44 withIndex: index].
45 previousHolder := nil.
46 contextHolders reverse do: [:contextHolder |
47 contextHolder next: previousHolder.
48 previousHolder := contextHolder]

Listing 4-4: ProcessHolder>>#initializeWithProcess: is executed during instance creation of
ProcessHolder and creates a copy of the call stack of the thread passed as argument.

In the debugger we can make use of the stored call stack copy by appending it to the stack
of the current process (lines 50 to 52, Listing 4-5). Note that #filteredMasterStack collects the
activation records recursively for all master threads. The thread that is being debugged has been
suspended. Its master, however, will in general continue to run. As mentioned in Chapter 3, we
use a simple model and prevent all interactions with activation records from other threads so
that it is unnecessary to implement logic for detecting thread state, corresponding actions and
safety checks. The virtual stack we constructed is comprised of, from youngest to oldest, the live
contexts of the slave thread followed by the copied activation records from its master threads,
recursively. The debugger has to decide whether commands are allowed to be executed (live or
copied context) and which thread to dispatch them to, depending on the selected stack frame
and the action to be performed.

CHAPTER 4. IMPLEMENTATION 26

49 filteredCombinedStack
50 ↑ self filteredSlaveStack
51 addAll: self filteredMasterStack;
52 yourself

Listing 4-5: The method ThreadDebugSession>>#filteredCombinedStack creates the virtual call
stack for the debugger.

4.3.2 User interface
We demonstrate the use of the debugger user interface with an example, in which an attempt
is made to perform static analysis of some code. Listings 4-6 through 4-8 show the example
code for launching a static analysis task using a concurrent thread. The method #runAnalysisOn:
must receive as parameter a relative or absolute path to an existing directory, such as either
“sourcecode” or “/private_repositories/sourcecode”. The program performs the following steps:

1. Create an absolute path based on the inputPath parameter (line 55). When the input path
is already absolute, absolutePath will have the same value as inputPath.

2. Initialize the analysis as a concurrently executed thread with the absolute path to the
directory as input (line 59). The new thread will attempt to access the directory at the
given path.

3. Inform the user that the analysis is executing (line 57).

4. The main thread returns from the method to wait for the next call.

53 runAnalysisOn: inputPath
54 | absolutePath |
55 absolutePath := self absolutePathFrom: inputPath.
56 self runAnalysisConcurrentlyOn: absolutePath.
57 self informUserToWait.

Listing 4-6: The method StaticAnalysisService>>#runAnalysisOn: is the entry point to the
static analysis service.

58 runAnalysisConcurrentlyOn: absolutePath
59 [self privateRunAnalysisOn: absolutePath] newUserProcess resume

Listing 4-7: StaticAnalysisService>>#runAnalysisConcurrentlyOn: delegates the actual com-
putation to a concurrent thread.

60 self runAnalysisOn: '/sourcecode'.
61 self runAnalysisOn: 'sourcecode'.

Listing 4-8: Possible ways to invoke StaticAnalysisService>>#runAnalysisOn:

When the concurrent thread attempts to access a directory that does not exist it will fail.
The question that a developer debugging this problem must answer is, why did the directory
not exist? Assuming that a directory exists at “/private_repositories/sourcecode” there are two
locations for possible failure in the example:

1. The original input was erroneous, as in line 60. #absolutePathFrom: will not modify
inputPath since '/sourcecode' is already an absolute path. The value of absolutePath,
which is being passed to the slave thread, is '/sourcecode'.

CHAPTER 4. IMPLEMENTATION 27

2. The original input was correct (line 61), however, the invocation of #absolutePathFrom:
returned an erroneous path, i.e., '/repositories/sourcecode' instead of
'/private_repositories/sourcecode'. The value of absolutePath, which is being
passed to the slave thread, is '/repositories/sourcecode'.

Without access to the master thread a developer cannot determine whether the user supplied
an invalid input, or whether #absolutePathFrom: performed an erroneous modification, since the
original input is not available in the debugger.

Figures 4.4, 4.5 and 4.6 show the thread debugger after an exception has been signalled in the
slave thread. The point where the slave thread has been joined to its master in the virtual call
stack is highlighted by a dashed line (slave thread above, master below the line). In Figure 4.4
the activation record in which the exception was signalled is shown. The stack frame selected in
Figure 4.5 is the last activation record of the slave thread. The variable inputPath is not part of
this activation record and cannot be compared with the method argument absolutePath.

Figure 4.6 shows the activation record that receives the method argument inputPath that the
user supplied. This activation record is part of the master thread and has access to both the
inputPath and absolutePath variables.

Figure 4.4: The top stack frame is part of the slave thread and shows where the error was
signalled.

4.4 Application to special cases
Promises and events, like threads, have a history that is usually discarded. Debuggers should
in both cases be able to show the place of activation but as shown in Chapter 2 only the Scala
asynchronous debugger and the Chrome development tools support that. With a mechanism in
place to copy the call stack of a thread, however, this problem becomes a special version of the
problem of augmenting slave thread call stacks. The same is true for remote execution where we
simply need a mechanism to link a local and a remote thread to each other.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.5: The selected stack frame shows the method #runAnalysisConcurrentlyOn:, the acti-
vation record is part of the slave thread. The variable inputPath is not visible.

Figure 4.6: Only in the activation record of #runAnalysisOn:, which is part of the master thread,
is the variable inputPath visible and can be compared to the value of absolutePath.

CHAPTER 4. IMPLEMENTATION 29

4.4.1 Promises
Implementing promises with threads is a natural choice when threads are an option, as the result
of the promise can be written to a shared variable and the threads can be synchronised through
a semaphore. As long as the promise is created with a UserProcess, the debugger will not need
to know whether it is debugging a promise or a regular thread.

62 promise := [self runAnalysisConcurrentlyOn: absolutePath] promise.
63 promise run.
64 self doOtherWorkConcurrently.
65 promise hasException ifTrue: [promise debug]

Listing 4-9: Example of executing the static analysis concurrently as a promise.

The sequence diagram in Figure 4.7 shows the important aspects of the promise execution. An
object obtains a promise by sending #promise to a closure describing the statements to execute,
as shown in Listing 4-9 on line 62. The message #run (line 63) starts the execution of the promise
and returns immediately, such that the promise and the invoking thread are now being executed
concurrently.

The promise creates a new UserProcess, which will create a copy of its master’s call stack.
The new UserProcess will execute the promise after receiving the message #resume. In our imple-
mentation we leave the choice of debugging a promise in case of an exception to the user, which
means we have to store the failed UserProcess in the promise (by sending #exceptionProcess:)
so that the user can send #debug at a later time (line 65). We must also suspend the thread since
we don’t want it to execute further and because threads being debugged must not be runnable
by the scheduler (the thread in the debugger would be in an undefined state).

The message #value can be sent to a promise to obtain its result. In case of an exception in
the promise thread, #value will answer a configurable value, wich is nil by default. To debug an
exception, the user can send #debug to the promise or configure it to open a debugger immediately
when an exception occurs, by sending #openDebuggerOnError: with the argument true. The only
change for immediate debugging in the sequence of events depicted in Figure 4.7 is that the
promise sends #debug to itself automatically after the thread has been suspended. Exceptions in
the master are handled by the master thread itself, independently of the promise and the copy
stored therein.

4.4.2 Remote communication
The following two subsections are concerned with threads and promises in remote environments.
We use Seamless [25] in our implementation for the communication facilities, which is a framework
for distributed computing that provides high adaptability by separating the different aspects of
distributed communication, such as connection and authentication strategies, into modules. To
provide transparent communication with remote threads, Seamless can use proxies, which is what
our implementation relies upon.

Proxies allow us to interact with objects uniformly, whether they are local or remote objects.
Thus, our debugger becomes a debugger for remote threads automatically and even supports
virtual stacks with both local and remote Context instances.

4.4.3 Remote promises
Our implementation of promises can easily be extended to execute promises remotely by using a
Seamless connection, as shown in Listing 4-10. The functionality for interacting with Seamless is
implemented in the class RemotePromise. The challenge in the case of a remote execution is to

CHAPTER 4. IMPLEMENTATION 30

Figure 4.7: Sequence diagram of the execution of a promise.

bind the local master to the remote slave thread; Figure 4.8 depicts the sequence of operations
that are performed in the remote environment to obtain a reference to the remote thread. The
information we need to open a debugger must be present within the promise, so we pass a
reference to the promise, an instance of RemotePromise, to the remote environment. We then
execute the promised computations in a separate UserProcess thread, which allows us to intercept
exceptions. When an exception occurs we store the promise computation thread in the promise
that we passed by reference and finally suspend the promise computation thread, as we would
for a regular promise. The garbage collector does not know about references between different
environments. Fortunately, suspended threads are not considered garbage, so we do not need to
create a strong reference to the thread.

In the local environment we need to perform one additional step so that our remote promise is
equivalent to a local promise (not shown in Figure 4.8): we need to set the thread that activated
the promise as the master of the suspended remote thread. The remote promise can now be
opened in the debugger like a local promise and information about the promise thread will be
fetched from the remote image through proxy objects.

As the remote thread is suspended and will not be garbage collected we must ensure that it
will terminate eventually. Fortunately, the same is true for local threads in the debugger, which
means the default debugger implementation already takes care of resuming or terminating the
thread that is being debugged.

Since promises are a special case of threads in our implementation, the example for remote

CHAPTER 4. IMPLEMENTATION 31

threads also demonstrates the feasibility of augmenting the call stack of remote threads in general.
Hence, we will not address remote threads specifically.

Figure 4.8: Sequence diagram of the execution of a remote promise.

66 connection := TCPAddress ip: #[127 0 0 1] port: 1111.
67 remotePromise := [self runAnalysisConcurrentlyOn: absolutePath] remotePromiseOn: connection.
68 remotePromise run.
69 self doOtherWorkConcurrently.
70 remotePromise hasException ifTrue: [remotePromise debug]

Listing 4-10: Example of executing the static analysis concurrently as a remote promise. The
only difference to a regular promise is that the promise creation message takes a connection to
the remote enviroment as argument.

4.5 Summary
We have shown how the model described in Chapter 3 can be implemented to retain the complete
thread history and construct a virtual call stack comprised of multiple threads. Our implemen-
tation of a live thread debugger displays the activation records from the virtual call stack and
ensures that actions performed on a given activation record are valid. The implementations given

CHAPTER 4. IMPLEMENTATION 32

for promises and remote promises prove that the model of call stack augmentation can also be
applied in other contexts to improve debugging.

5
Memory and performance considerations

Creating a copy of a call stack means creating a copy of each of its activation records. We
consider the impact of this operation with respect to performance and memory, exemplified by
our implementation in Pharo. Our analysis focuses on the 32-bit version of the virtual machine;
a 64-bit virtual machine is currently in development.

5.1 Context reification
Activation records in Pharo are represented by instances of Context, equivalent to the
MethodContext in Smalltalk-80. The virtual machine for Pharo, however, only creates contexts on
demand [10], except for cases where a Context instance is needed anyway (Miranda [21] provides
a list of such situations). Hence, creating a copy of an activation record in general entails the
creation of two Context instances. To calculate how much memory is needed per instance we
need to know how many bytes are needed to represent the object structure of contexts and what
information is being stored.

Every regular object requires a header of 8 bytes, which is also true for contexts [4, 22].
Context defines the fields stackp, method, closureOrNil and receiver, and inherits sender and pc,
each field being four bytes long. Context is also a so called “variable class”, meaning it has a fixed
number of unnamed, indexed slots. In contexts, these slots represent a stack with fixed capacity
that is used to implement a stack machine for the activated method. Elements consumed by the
bytcode instructions are pushed onto the stack, values produced by the instructions are popped
from it. The number of slots, i.e., the stack capacity, depends on the “large context flag” bit [13]
of the CompiledMethod object header that is being activated, the value of which depends on the
number of method arguments, literals, local variables and temporary values of the method. The
flag is set to “large” by the compiler when the stack needs to hold more than a certain amount
of elements at a time.

In the current virtual machine for Pharo the two states of the “large context flag” represent
contexts of 16 (small context) or 56 (large context) variable slots. In a fresh Pharo 6 image
(build 60143) the number of CompiledMethod instances is 94824, 344 (0.36 %) of which have the

33

CHAPTER 5. MEMORY AND PERFORMANCE CONSIDERATIONS 34

large context flag set. Using a single bit flag instead of the exact number of frames, which would
require multiple bits, reduces the memory consumed by instances of CompiledMethod.

We can now determine the size of small Context instances:

8 bytes for object header
+ 6×4 bytes for instance variables
+ 16×4 bytes for variable slots
= 96 bytes

Large Context instances have 56 instead of 16 indexed slots:

96 bytes
+ (56−16)×4 bytes for variable slots
= 256 bytes

The contents of contexts do not require additional space when copied, as references are already
accounted for in the field and variable slot sizes, and immediate values, such as integers, do not
require additional memory allocation. In general, creating a copy of a context therefore requires
2×96 bytes = 192 bytes of additional storage in the best case, 2×256 bytes = 512 bytes in the
worst one. Knowing that typical call stacks have sizes of tens or hundreds of frames [11, 27], we
can estimate an upper bound of 1000× 512 bytes = 512 kB of additional memory required for
large call stacks with large methods. Even 512 kB are not much in comparison with the memory
bound by the associated object graph.

5.2 Bound memory
Memory bound by call stack copies may be a bigger problem than the additional memory required
for new contexts as the amount of memory occupied by the object graph rooted in a given context
is potentially many times larger than the memory needed for the context itself. Contexts usually
have a short life and objects referenced only from a context, such as those referenced by temporary
variables, will be collected by the garbage collector after a short time. This is not the case when
we create copies of contexts. The memory occupied by objects that would normally no longer
be needed can only be reclaimed when the slave thread terminates. This is a problem for Pharo
in particular because the 32-bit virtual machine can only allocate a certain amount of memory
(around 2 GB, depending on the operating system)1. The memory bound by context copies is a
problem even when the debugger is not being used, as we cannot know in advance whether or not
a thread will be opened in a debugger and we therefore must create call stack copies proactively.

5.3 Computational overhead
The creation of a UserProcess instance incurs a performance penalty due to the copy operation
on the active thread. This overhead is negligible however, as the Object>>#copy is implemented
as a virtual machine primitive. With a stack of 100 000 frames the average and median times
needed to copy the complete stack are less than 100 milliseconds as shown in Table 5.1. These
numbers were obtained using the benchmark shown in Listings B-1 through B-3 in the appendix.

1Note that this limitation is inherent to 32-bit memory management

CHAPTER 5. MEMORY AND PERFORMANCE CONSIDERATIONS 35

small context large context

garbage collection time average median max average median max

included 130.211 130 167 130.148 130 152

excluded 57.127 57 71 57.112 57 66

Table 5.1: Benchmark for copying a call stack of 100 000 frames, small (16 variable slots) and
large (56 variable slots). The times are given in milliseconds and shown for bare computation
time and computation including time needed for intermittent garbage collection.

Given that stacks typically contain less than 1000 frames [11, 27], performance clearly is not
a problem. Furthermore, thread creation is an operation rarely performed (in relative terms), so
that the overhead does not add up either. It is interesting to see that the size of the context does
not seem to have any effect on the execution time even though it is clear that a larger context
will require more operations to create a copy. It is possible that other operations mask the
actual time it takes to create the copies, which would also explain the uniformity of the obtained
results. Miranda [21] for example, describes how context reification in the VisualWorks virtual
machine, which is related to the Pharo virtual machine, can cause large portions of memory to
be rearranged.

5.4 Virtual machine support
Operations executed directly by a virtual machine take less time than interpreted instructions.
Context>>#copy, the most expensive, because most frequent, operation in our implementation, is
already a primitive. However, contexts are copied individually and the repeated sends of #copy
occur in the interpreted space. Moving the complete stack copy procedure into the virtual machine
would certainly improve performance. The following ideas could be used by an implementation
in the virtual machine:

• the call stack could be duplicated lazily (only copy stack frames that are being returned
from);

• operations could be split into chunks to ensure responsiveness;

• context reification could be optimised, for example by delaying reification or reifying only
the copies.

As shown in Section 5.3, however, the computational overhead is already neglectable for most
applications and as such we do not deem virtual machine support necessary with respect to
performance.

A possibility to mitigate the problem of memory bound by the call stack copy may be to
compress the memory of objects that are only being referenced from copied call stacks. Since
these objects will only be accessed from the debugger, the additional time to decompress the
memory should not be of concern. The additional time required for compression on the other
hand may have a negative impact on performance, so that moving the stack copy procedure into
the virtual machine may indeed become necessary. Another option might be to reclaim memory
from copied call stacks when necessary, starting with the oldest copies.

CHAPTER 5. MEMORY AND PERFORMANCE CONSIDERATIONS 36

5.5 Summary
Neither the amount of memory required by instances of Context nor the time required for copying
call stacks pose problems for usual applications. The memory bound by the call stack copies,
however, may be a problem, especially for Pharo with the current 32-bit virtual machine with
its low memory allocation limit. To compensate for this it may be beneficial to add a flag to
UserProcess that, when set, will prevent call stacks from being copied.

6
Conclusion and future work

We have shown in this work that it is feasible to augment thread call stacks in the debugger in order
to provide access to the complete thread history. We have provided reference implementations for
threads, promises and remote promises that make use of call stack augmentation in a customised
debugger.

6.1 Conclusion
The goal of this work was to improve debugging of asynchronous threads in live debuggers. We
realised that threads do not have access to their complete history and that therefore a debugger
displays less information for concurrent programs than for sequential programs. To solve this
problem of incomplete thread history we proposed to create a copy of the master thread at the
point where a slave thread is being created and to make that copy available to the debugger. The
debugger can then construct a virtual call stack, comprised of stack frames from multiple threads,
to present the complete call stack history of a given thread. The implementations presented in
Chapter 4 demonstrate that our proposal is technically feasible and that debugging of promises,
remote execution and asynchronous events and messages can also be improved by using the same
approach.

The discussion of downsides to our implementation showed that the creation of stack frame
copies has only little impact on performance and that the memory consumed by the additional
stack frames is generally negligible. Despite these observations, the issue of memory consumption
requires further investigation, as the amount of memory bound by the object graph that is
referenced solely by the copied stack frames may strongly increase the total memory consumption.

6.2 Future work
In this section we present possibilities for future research and improvements on the implementa-
tions discussed in Chapter 4.

37

CHAPTER 6. CONCLUSION AND FUTURE WORK 38

6.2.1 Memory consumption
We did not perform any measurements of the memory that cannot be reclaimed because it is
bound by call stack copies. Such measurements could answer the question whether the amount of
memory bound by copied call stacks exclusively is large enough to warrant support by the virtual
machine, e.g., through memory compression or reclaiming such memory on demand. It was out
of the scope of this work to perform these measurements as it would have meant to modify the
garbage collector, which requires a good working knowledge of the virtual machine.

There is likely a limit to how many master call stacks it is useful to show in a debugger. This
observation could be used to release memory when creating a new thread by ensuring that the
number of master threads that hold a call stack copy is limited to a fixed number.

6.2.2 Logging
Our discussion of augmented call stacks has focused on live debuggers but in many cases live
debuggers are not available in production environments. In environments where only logging of
exceptions is available, being able to include the master thread’s call stack in a stack trace could
be very helpful to developers. With our proposed solution implementing a logger with the ability
to access the master thread’s call stack is trivial.

6.2.3 Implementation for processes
We have proposed an implementation for augmenting the call stack of threads but not of processes.
Processes created using a function of the fork1 family are almost exact duplicates of their masters
and as such the thread history will stay intact2. Hence, for this type of process augmentation of
the stack is unnecessary. Processes created by calls to functions of the posix_spawn3 family, or
by fork followed by a call to a function of the exec4 family, on the other hand, are completely
disjoint from their masters. Usually, such processes are also logically disjoint, i.e., they perform
a self contained task. There may be benefits in augmenting the stack of such a process’ first
thread, however, POSIX processes are executed within different address spaces and may have dif-
fering permissions. It may therefore be more complex to implement stack augmentation between
processes, albeit possible.

6.2.4 Hiding stack frames
The call stacks in Pharo include activation records that are not of particular interest to users
because they are part of some setup procedure. The methods #newProcess and #newUserProcess,
for example, are part of the thread setup in Pharo. We chose to not hide any activation records
for simplicity but it would be possible to do so by not including them in the virtual stack. Hiding
activation records must be done with care because, even though such activation records may not
be interesting to users, they are still integral parts of the threads they belong to.

6.2.5 Debugger user interface
The simple user interface presented in Chapter 4 lacks visual cues to distinguish different threads.
In particular, users need to be able to identify where the slave thread ends. Other visual aids

1http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
2fork only copies the active thread to the new process.
3http://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_spawn.html
4http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_spawn.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html

CHAPTER 6. CONCLUSION AND FUTURE WORK 39

could designate stack frames that are still live, or cannot be acted upon.
The thread hierarchy view as found in the Visual Studio debugger could also be a valuable

addition to the debugger. This view could be implemented as an alternative presentation of the
the virtual stack and users could switch between presentations, depending on their needs and
preferences.

6.2.6 Promises in Pharo
Pharo currently does not provide an implementation of promises as part of the core distribution
while it has become a standard construct in languages such as Java, Scala, Ruby, Python, C# and
JavaScript. Our prototype could be used as basis for such an implementation.

6.3 Summary
We have successfully shown how debugging of concurrent threads in live debuggers can be
improved. Though the performance of our implementation is good, the increased memory
requirements may present a problem in certain situations. Further research is needed to quantify
the amount of memory bound by the call stack copies.

An extension of our idea to processes may be an interesting research topic, such that a
debugger could show relationships between threads across different processes.

Finally, there is much work to be done on our debugger implementation before it is ready to
be used productively, especially with respect to user experience.

Bibliography

[1] R. M. Balzer. “EXDAMS: Extendable Debugging and Monitoring System”. In: Proceedings
of the May 14-16, 1969, Spring Joint Computer Conference. AFIPS ’69 (Spring). Boston,
Massachusetts: ACM, 1969, pp. 567–580. doi: 10.1145/1476793.1476881. url: http:
//doi.acm.org/10.1145/1476793.1476881.

[2] Boris Beizer. Software testing techniques (2nd ed.) New York, NY, USA: Van Nostrand
Reinhold Co., 1990. isbn: 0-442-20672-0.

[3] John K Bennett. The design and implementation of distributed Smalltalk. Vol. 22. ACM,
1987.

[4] Clément Béra and Eliot Miranda. “A bytecode set for adaptive optimizations”. In: Proceed-
ings of the International Workshop on Smalltalk Technologies (IWST’14). 2014.

[5] Andrew Black et al. Pharo by Example. Square Bracket Associates, 2009. isbn: 978-
3-9523341-4-0. url: http://pharobyexample.org.

[6] Thomas Böttcher and Frank Huch. “A debugger for concurrent Haskell”. In: Draft Proc.
14th Intl. Workshop on Implementation of Functional Languages (IFL’2002). 2002, pp. 129–
141.

[7] T.A. Cargill. “Pi: A Case Study in Object-Oriented Programming”. In: Proceedings OOPSLA
’86, ACM SIGPLAN Notices. Vol. 21. Nov. 1986, pp. 350–360.

[8] Andrei Chiş et al. “Practical domain-specific debuggers using the Moldable Debugger frame-
work”. In: Computer Languages, Systems & Structures 44, Part A (2015). Special issue on
the 6th and 7th International Conference on Software Language Engineering (SLE 2013 and
SLE 2014), pp. 89–113. issn: 1477-8424. doi: 10.1016/j.cl.2015.08.005. url: http:
//scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf.

[9] Kim Clohessy, Brian Barry, and Peter Tanner. “New Complexities in the Embedded World
- the OTI Approach”. In: Object-Oriented Technologys. Springer, 1997, pp. 472–478.

[10] L. Peter Deutsch and Allan M. Schiffman. “Efficient Implementation of the Smalltalk-80
system”. In: Proceedings POPL ’84. Salt Lake City, Utah, Jan. 1984. doi: 10.1145/800017.
800542. url: http://webpages.charter.net/allanms/popl84.pdf.

[11] David R. Ditzel and H. R. McLellan. “Register Allocation for Free: The C Machine Stack
Cache”. In: SIGPLAN Not. 17.4 (Mar. 1982), pp. 48–56. issn: 0362-1340. doi: 10.1145/
960120.801825. url: http://doi.acm.org/10.1145/960120.801825.

[12] Daniel P. Friedman and David S. Wise. “Aspects of Applicative Programming for File
Systems (Preliminary Version)”. In: SIGSOFT Softw. Eng. Notes 2.2 (Mar. 1977), pp. 41–
55. issn: 0163-5948. doi: 10.1145/390019.808310. url: http://doi.acm.org/10.
1145/390019.808310.

[13] Adele Goldberg and David Robson. Smalltalk 80: the Language and its Implementation.
Reading, Mass.: Addison Wesley, May 1983. isbn: 0-201-13688-0. url: http://stephane.
ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf.

40

http://dx.doi.org/10.1145/1476793.1476881
http://doi.acm.org/10.1145/1476793.1476881
http://doi.acm.org/10.1145/1476793.1476881
http://pharobyexample.org
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf
http://scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/800017.800542
http://webpages.charter.net/allanms/popl84.pdf
http://dx.doi.org/10.1145/960120.801825
http://dx.doi.org/10.1145/960120.801825
http://doi.acm.org/10.1145/960120.801825
http://dx.doi.org/10.1145/390019.808310
http://doi.acm.org/10.1145/390019.808310
http://doi.acm.org/10.1145/390019.808310
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

BIBLIOGRAPHY 41

[14] Carl Hewitt, Peter Bishop, and Richard Steiger. “A Universal Modular ACTOR Formalism
for Artificial Intelligence”. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. IJCAI’73. Stanford, USA: Morgan Kaufmann Publishers Inc., 1973,
pp. 235–245. url: http://dl.acm.org/citation.cfm?id=1624775.1624804.

[15] Paul Hudak et al. “A history of Haskell: being lazy with class”. In: Proceedings of the third
ACM SIGPLAN conference on History of programming languages. ACM. 2007, pp. 12–1.

[16] The Open Group. “International Standard - Information technology Portable Operating
System Interface (POSIX)Base Specifications, Issue 7”. In: ISO/IEC/IEEE 9945:2009(E)
(Sept. 2009), pp. 1–3880. doi: 10.1109/IEEESTD.2009.5393893.

[17] Eileen Keremitsis and Ian J Fuller. “HP Distributed Smalltalk: A Tool for Developing
Distributed Applications”. In: HEWLETT PACKARD JOURNAL 46 (1995), pp. 85–85.

[18] Robert A Kowalski. “The early years of logic programming”. In: Communications of the
ACM 31.1 (1988), pp. 38–43.

[19] D. Kevin Layer and Chris Richardson. “Lisp Systems in the 1990s”. In: Commun. ACM
34.9 (Sept. 1991), pp. 48–57. issn: 0001-0782. doi: 10.1145/114669.114674. url:
http://doi.acm.org/10.1145/114669.114674.

[20] B. Liskov and L. Shrira. “Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems”. In: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation. PLDI ’88. Atlanta, Georgia, USA:
ACM, 1988, pp. 260–267. isbn: 0-89791-269-1. doi: 10.1145/53990.54016. url: http:
//doi.acm.org/10.1145/53990.54016.

[21] Eliot Miranda. Context Management in VisualWorks 5i. Tech. rep. ParcPlace Division,
CINCOM, Inc., 1999.

[22] Eliot Miranda and Clément Béra. “A Partial Read Barrier for Efficient Support of Live
Object-oriented Programming”. In: Proceedings of the 2015 International Symposium on
Memory Management. ISMM ’15. Portland, OR, USA: ACM, 2015, pp. 93–104. isbn:
978-1-4503-3589-8. doi: 10.1145/2754169.2754186. url: http://doi.acm.org/10.
1145/2754169.2754186.

[23] Daniel L. Murphy. “Storage Organization and Management in TENEX”. In: Proceedings of
the December 5-7, 1972, Fall Joint Computer Conference, Part I. AFIPS ’72 (Fall, part
I). Anaheim, California: ACM, 1972, pp. 23–32. doi: 10.1145/1479992.1479996. url:
http://doi.acm.org/10.1145/1479992.1479996.

[24] Nick Papoulias et al. “Mercury: Properties and Design of a Remote Debugging Solution
using Reflection”. In: Journal of Object Technology (2015), p. 36.

[25] Nikolaos Papoulias. “Remote Debugging and Reflection in Resource Constrained Devices”.
PhD thesis. Université des Sciences et Technologie de Lille-Lille I, 2013.

[26] Nancy Pennington. “Stimulus structures and mental representations in expert compre-
hension of computer programs”. In: Cognitive Psychology 19 (1987), pp. 295–341. issn:
0010-0285. doi: 10.1016/0010-0285(87)90007-7. url: http://www.sciencedirect.
com/science/article/pii/0010028587900077.

[27] Kavitha Srinivas and Harini Srinivasan. “Summarizing Application Performance from a
Components Perspective”. In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005), pp. 136–145.
issn: 0163-5948. doi: 10.1145/1095430.1081730. url: http://doi.acm.org/10.
1145/1095430.1081730.

http://dl.acm.org/citation.cfm?id=1624775.1624804
http://dx.doi.org/10.1109/IEEESTD.2009.5393893
http://dx.doi.org/10.1145/114669.114674
http://doi.acm.org/10.1145/114669.114674
http://dx.doi.org/10.1145/53990.54016
http://doi.acm.org/10.1145/53990.54016
http://doi.acm.org/10.1145/53990.54016
http://dx.doi.org/10.1145/2754169.2754186
http://doi.acm.org/10.1145/2754169.2754186
http://doi.acm.org/10.1145/2754169.2754186
http://dx.doi.org/10.1145/1479992.1479996
http://doi.acm.org/10.1145/1479992.1479996
http://dx.doi.org/10.1016/0010-0285(87)90007-7
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://www.sciencedirect.com/science/article/pii/0010028587900077
http://dx.doi.org/10.1145/1095430.1081730
http://doi.acm.org/10.1145/1095430.1081730
http://doi.acm.org/10.1145/1095430.1081730

BIBLIOGRAPHY 42

[28] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”. In: Free
Software Foundation 51 (2002), pp. 02110–1301.

[29] Minyoung Sung et al. “Comparative performance evaluation of Java threads for embedded
applications: Linux Thread vs. Green Thread”. In: Information Processing Letters 84.4
(2002), pp. 221–225. issn: 0020-0190. doi: 10.1016/S0020-0190(02)00286-7. url:
http://www.sciencedirect.com/science/article/pii/S0020019002002867.

[30] Gerald Jay Sussman and Guy L Steele. “The first report on Scheme revisited”. In: Higher-
Order and Symbolic Computation 11.4 (1998), pp. 399–404.

[31] Paula Sue Utter and Cherri M Pancake. Advances in Parallel Debuggers: New Approaches
to Visualization. Vol. 18. Cornell Theory Center, Cornell University, 1989.

[32] Lingli Zhang, Chandra Krintz, and Priya Nagpurkar. “Supporting Exception Handling for
Futures in Java”. In: Proceedings of the 5th International Symposium on Principles and
Practice of Programming in Java. PPPJ ’07. Lisboa, Portugal: ACM, 2007, pp. 175–184.
isbn: 978-1-59593-672-1. doi: 10.1145/1294325.1294349. url: http://doi.acm.org/
10.1145/1294325.1294349.

http://dx.doi.org/10.1016/S0020-0190(02)00286-7
http://www.sciencedirect.com/science/article/pii/S0020019002002867
http://dx.doi.org/10.1145/1294325.1294349
http://doi.acm.org/10.1145/1294325.1294349
http://doi.acm.org/10.1145/1294325.1294349

A
Installation instructions

1. Download a copy of Pharo version 6 (image and changes) from https://pharo.org/
download.

2. Download the stable virtual machine for your platform from https://pharo.org/
download.

3. Download the sources file from http://files.pharo.org/get-files/50/sources.zip,
unpack it and place it next to the virtual machine.

4. Open the Pharo image with the virtual machine.

5. Download and install the code by pasting the following code into a playground and evalu-
ating it. This will also install Seamless for the remote execution examples.

71 Metacello new
72 baseline: MLThesis;
73 repository: 'github://theseion/master--thesis:master/mc';
74 load

The package “ML-Threads” contains the extension of the thread model, as well as the generic
thread debugger implementation, the static analysis example from Chapter 4 and the code for
benchmarking the stack copy operation (see Appendix B). The package “ML-Promise” extends
the code from “ML-Threads” to implement simple versions of promises and remote promises.

ThreadDebugger, Promise and RemotePromise include executable examples on the class side
demonstrating their functionality. Futher documentation is provided by the class comments and
the unit tests.

43

https://pharo.org/download
https://pharo.org/download
https://pharo.org/download
https://pharo.org/download
http://files.pharo.org/get-files/50/sources.zip

B
Benchmark code

The benchmark from Chapter 5 can be reproduced in Pharo with the code from Listings
B-1 and B-2 installed on the class side of a class named StackCopyBenchmark by evaluating
StackCopyBenchmark run. The benchmark can also be found in source code package (see Ap-
pendix A). The results reproduced in Chapter 5 were obtained with the following combination
of hardware and software:

• machine model: Apple MacBook Pro, late 2011;

• memory: 8 GB, 1333 MHz DDR3;

• CPU: 2.2 GHz Intel Core i7;

• operating system: OS X 10.11.5;

• PharoVM (Spur, 32-bit) build 589;

• Pharo 6 build 60086

75 run
76 | timesSmall counter timesLarge withGCSmall withoutGCSmall withGCLarge withoutGCLarge |
77 timesSmall := OrderedCollection new.
78 timesLarge := OrderedCollection new.

80 self assert: (self class >> #runLargeWith:collectingTimesInto:) frameSize = 56.
81 self assert: (self class >> #runSmallWith:collectingTimesInto:) frameSize = 16.

83 1000 timesRepeat: [
84 Smalltalk garbageCollect.
85 counter := 0.
86 self
87 runSmallWith: counter
88 collectingTimesInto: timesSmall.

90 Smalltalk garbageCollect.
91 counter := 0.

44

APPENDIX B. BENCHMARK CODE 45

92 self
93 runLargeWith: counter
94 collectingTimesInto: timesLarge].

96 withGCSmall := timesSmall collect: #key.
97 withoutGCSmall := timesSmall collect: #value.
98 withGCLarge := timesLarge collect: #key.
99 withoutGCLarge := timesLarge collect: #value.

101 Transcript
102 clear;
103 open;
104 show: 'small + GC max: ';
105 show: withGCSmall max; cr;
106 show: 'small + GC average: ';
107 show: withGCSmall average asFloat; cr;
108 show: 'small + GC median: ';
109 show: withGCSmall median; cr; cr;
110 show: 'small -- GC max: ';
111 show: withoutGCSmall max; cr;
112 show: 'small -- GC average: ';
113 show: withoutGCSmall average asFloat; cr;
114 show: 'small -- GC median: ';
115 show: withoutGCSmall median; cr; cr; cr;

117 show: 'large + GC max: ';
118 show: withGCLarge max; cr;
119 show: 'large + GC average: ';
120 show: withGCLarge average asFloat; cr;
121 show: 'large + GC median: ';
122 show: withGCLarge median; cr; cr;
123 show: 'large -- GC max: ';
124 show: withoutGCLarge max; cr;
125 show: 'large -- GC average: ';
126 show: withoutGCLarge average asFloat; cr;
127 show: 'large -- GC median: ';
128 show: withoutGCLarge median; cr

Listing B-1: StackCopyBenchmark>>#runBenchmark runs the benchmark for both small and large
contexts.

129 runSmallWith: counter collectingTimesInto: aCollection
130 | before time after |
131 counter < 100000
132 ifTrue: [
133 self
134 runSmallWith: counter + 1
135 collectingTimesInto: aCollection]
136 ifFalse: [
137 before := Smalltalk vm totalGCTime.
138 time := [thisContext copyStack] timeToRun asMilliSeconds.
139 after := Smalltalk vm totalGCTime.
140 aCollection add: time --> (before + time -- after)]

Listing B-2: StackCopyBenchmark>>#runSmallWith:collectingTimesInto: is the method used
for benchmarking small contexts.

141 runLargeWith: counter collectingTimesInto: aCollection
142 | temp1 temp2 temp3 temp4 temp5 temp6 temp7 temp8 before time after |
143 temp1 := 'temp1'. temp2 := 'temp2'. temp3 := 'temp3'. temp4 := 'temp4'.

APPENDIX B. BENCHMARK CODE 46

144 temp5 := 'temp5'. temp6 := 'temp6'. temp7 := 'temp7'. temp8 := 'temp8'.

146 counter < 100000
147 ifTrue: [
148 self
149 runLargeWith: counter + 1
150 collectingTimesInto: aCollection]
151 ifFalse: [
152 before := Smalltalk vm totalGCTime.
153 time := [thisContext copyStack] timeToRun asMilliSeconds.
154 after := Smalltalk vm totalGCTime.
155 aCollection add: time --> (before + time -- after)]

Listing B-3: StackCopyBenchmark>>#runLargeWith:collectingTimesInto: is the method used
for benchmarking large contexts. The excessive number of temporary variables causes the large
context flag to be set in the CompiledMethod object header.

	1 Introduction
	1.1 Disrupted call stacks
	1.2 Augmented call stacks

	2 State of the art
	2.1 Terminology
	2.1.1 Notation
	2.1.2 The call stack
	2.1.3 Processes and threads
	2.1.4 Promises
	2.1.5 Messages and events
	2.1.6 Debuggers for concurrent programs
	2.1.7 Remote debuggers

	2.2 Current state of live debuggers
	2.2.1 Popular languages
	2.2.2 Research languages
	2.2.3 Other languages
	2.2.4 Selected debuggers
	2.2.5 Debugger features
	2.2.6 Notes on debugger features
	2.2.7 Notes on debuggers

	2.3 Summary

	3 Augmenting thread call stacks
	3.1 Constructing a virtual call stack
	3.1.1 Virtual call stack of multiple threads

	3.2 Thread states
	3.3 Interaction with the virtual stack
	3.4 Summary

	4 Implementation
	4.1 Augmented threads
	4.2 The debugger model
	4.3 A live debugger for threads
	4.3.1 Implementation details
	4.3.2 User interface

	4.4 Application to special cases
	4.4.1 Promises
	4.4.2 Remote communication
	4.4.3 Remote promises

	4.5 Summary

	5 Memory and performance considerations
	5.1 Context reification
	5.2 Bound memory
	5.3 Computational overhead
	5.4 Virtual machine support
	5.5 Summary

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work
	6.2.1 Memory consumption
	6.2.2 Logging
	6.2.3 Implementation for processes
	6.2.4 Hiding stack frames
	6.2.5 Debugger user interface
	6.2.6 Promises in Pharo

	6.3 Summary

	Appendices
	A Installation instructions
	B Benchmark code

