
Software Cartography
A Prototype for Thematic Software Maps

diploma thesis
for the philosophic-natural science faculty

university of Bern

presented by

Peter Loretan
April 2011

Leader of the work

Prof. Dr. Oscar Nierstrasz

Adrian Kuhn

Institute of Computer Science and Applied Mathematics

Further information about this work and the tools used as well as an online version of
this document can be found under the following addresses:

Peter Loretan
pelo@imu.unibe.ch
http://scg.unibe.ch/research/softwarecartography

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

http://scg.unibe.ch/research/softwarecartography
http://scg.unibe.ch/

Acknowledgments

First of all, I would like to thank Adrian Kuhn for his endurance. Meeting him was
always as inspirational as helpful. The software cartography project would never have
gone such a long way without his basic work on Latent Semantic Indexing and contin-
ual support.

I would also like to thank Prof. Oscar Nierstraz for giving me the opportunity to work
in his group and for his inspiring lectures on software analysis.

I thank also the members of the Software Composition Group for their valuable com-
ments and suggestions, especially Tudor Girba for helping to include an early version
of SOFTWARECARTOGRAPHER in Muse. Also David Erni made a crucial contribution
during the course of his own master thesis by upgrading a SOFTWARECARTOGRA-
PHER prototype to a eclipse plug-in and testing it on real programmer. The excellent
results of his field studies helped me to focus on conceptual issues.

And last but not least, the people around me in my private life for not giving up to
remind me of the remaining work during the last few months of my studies - my family,
my house mates and my friends.

Peter Loretan
December 2010

3

4

Abstract

Software visualizations can provide a concise overview of a complex software system.
Unfortunately, since software has no physical shape, there is no “natural” mapping of
software to a two-dimensional space. As a consequence most visualizations tend to
use a layout in which position and distance have no meaning, and consequently lay-
out typical diverges from one visualization to another. We propose a consistent layout
for software maps in which the position of a software artifact reflects its vocabulary,
and distance corresponds to similarity of vocabulary. We use Latent Semantic Index-
ing (LSI) to map software artifacts to a vector space, and then use Multidimensional
Scaling (MDS) to map this vector space down to two dimensions. The resulting consis-
tent layout allows us to develop a variety of thematic software maps that express very
different aspects of software while making it easy to compare them. The approach is
especially suitable for comparing views of evolving software, since the vocabulary of
software artifacts tends to be stable over time.

5

6

Contents

1 Introduction 9
1.1 Software Cartography . 9
1.2 Structure of this thesis . 11

2 State of the Art 13
2.1 Topic Maps . 13

2.1.1 ThemeScape and SPIRE . 13
2.1.2 Atlas der Politischen Landschaften 14

2.2 Software Maps . 15
2.2.1 UML diagrams. 16
2.2.2 Graph drawing. 16
2.2.3 Treemap layout . 16

2.3 Cartography metaphors for software 17

3 Software Cartography 19
3.1 Lexical similarity . 19
3.2 Multidimensional scaling . 21

3.2.1 Iterative scaling . 22
3.2.2 Quality indicators . 22
3.2.3 HiT-MDS . 22

3.3 Hill-shading and Contour Lines . 23
3.4 Evolution of a Software Systems . 24
3.5 Labeling . 24

4 Case Studies 27
4.1 classic MDS Examples . 27

4.1.1 Color Example . 27
4.1.2 Computer Example . 28

4.2 Version Overview . 29
4.2.1 Ludo . 29
4.2.2 Kasai . 30

4.3 Open-source examples . 32
4.4 Thematic cartography examples . 32

5 Discussion 37
5.1 Obstacles in the way of Software Cartography 37

5.1.1 Lexical pollution . 37
5.1.2 Heuristic HiT-MDS . 37

7

8 CONTENTS

5.1.3 Orientation in MDS . 38
5.2 Future Work . 38
5.3 IDE integrated CodeMap . 39

6 Conclusion 41

A Open-source Examples 43
A.1 Tomcat . 44
A.2 Columba . 45
A.3 Google Taglib . 46
A.4 JFtp . 47
A.5 JoSQL . 48
A.6 JCGrid . 49
A.7 Compire . 50

B User Guide 51
B.1 Installation . 51
B.2 Click-Through Example . 51

B.2.1 Opening The Thesis Examples 52
B.2.2 Opening A Java File System 52
B.2.3 Setting Up A Version Example 52
B.2.4 Changing Parameter . 53

Chapter 1

Introduction

1.1 Software Cartography

Software visualization offers an attractive means to abstract from the complexity of
large software systems [9, 16, 25, 29].

A single graphic can convey a great deal of information about various aspects of a
complex software system, such as its structure, the degree of coupling and cohesion,
growth patterns, defect rates, and so on.

Unfortunately, the great wealth of different visualizations that have been developed to
abstract away from the complexity of software has led to yet another source of com-
plexity: it is hard to compare different visualizations of the same software system and
correlate the information they present.

We can contrast this situation with that of conventional thematic maps found in an atlas.
Different phenomena, ranging from population density to industry sectors, birth rate,
or even flow of trade, are all displayed and expressed using the same consistent layout.
It is easy to correlate different kinds of information concerning the same geographical
entities because they are generally presented using the same kind of layout. This is
possible because (i) there is a “natural” mapping of position and distance information
to a two-dimensional layout (the earth being, luckily, more-or-less flat, at least on a
local scale), and (ii) by convention, North is normally considered to be “up”.1

Software artifacts, on the other hand, have no natural layout since they have no phys-
ical location. Distance and orientation also have no obvious meaning for software.It
is presumably for this reason that there are so many different and incomparable ways
of visualizing software. A cursory survey of recent SOFTVIS and VISSOFT publica-
tions shows that the majority of the presented visualizations feature arbitrary layout,
the most common being based on alphabetical ordering and hash-key ordering.(Hash-
key ordering is what we get in most programming languages when iterating over the
elements of a Set or Dictionary collection.)

1On traditional Muslim world maps, for example, South used to be on the top. Hence, if Europe would
have fallen to the Ottomans at the Battle of Vienna in 1683, all our maps might be drawn upside down [13].

9

10 CHAPTER 1. INTRODUCTION

Consistent layout for software would make it easier to compare visualizations of dif-
ferent kinds of information, but what should be the basis for laying out and positioning
representations of software artifacts within a “software map”? What we need is a se-
mantically meaningful notion of position and distance for software artifacts which can
then be mapped to consistent layout for 2-D software maps.

We propose to use vocabulary as the most natural analogue of physical position for
software artifacts, and to map these positions to a two-dimensional space as a way to
achieve consistent layout for software maps. Distance between software artifacts then
corresponds to distance in their vocabulary. Drawing from previous work [17, 10] we
apply Latent Semantic Indexing to the vocabulary of a system to obtain n-dimensional
locations, and we use Multidimensional Scaling to obtain a consistent layout. Finally
we employ digital elevation, hill-shading and contour lines to generate a landscape
representing the frequency of topics.

Why should vocabulary be more natural than other properties of source code? First of
all, vocabulary can effectively abstract away from the technical details of source code
by identifying the key domain concepts reflected by the code [17]. Software artifacts
that have similar vocabulary are therefore close in terms of the domain concepts that
they deal with. Furthermore, it is known that: over time software tends to grow rather
than to change [33], and the vocabulary tends to be more stable than the structure of
software [2]. Although re-factorings may cause functionality to be renamed or moved,
the overall vocabulary tends not to change, except as a side-effect of growth. This
suggests that vocabulary will be relatively stable in the face of change, except where
significant growth occurs. As a consequence, vocabulary not only offers an intuitive
notion of position that can be used to provide a consistent layout for different kinds
of thematic maps, but it also provides a robust and consistent layout for mapping an
evolving system. System growth can be clearly positioned with respect to old and more
stable parts of the same system.

We call our approach Software Cartography, and call a series of visualizations Software
Maps, when they all use the same consistent layout created by our approach.

The contributions of this thesis are as follows:

• Identification and Motivation of the need for consistent layouts in software visu-
alization

• A set of techniques to create a consistent layout of a software system: lexical
information, LSI, and MDS

• Presentation of SOFTWARECARTOGRAPHER, a proof-of-concept implementa-
tion of software cartography and discuss the algorithms used

• Examples of thematic software maps that exploit consistent layout to display
different information for the same system

• Considerations on how consistent layout can be used to illustrate the evolution
of a system over time

1.2. STRUCTURE OF THIS THESIS 11

1.2 Structure of this thesis

The next chapters of this thesis are structured as follows: Chapter 2 discusses related
work by giving a short overview on similar projects. Chapter 3 presents the tech-
nique used in SOFTWARECARTOGRAPHER for mapping software to consistent layouts.
Chapter 4 contains several case studies that illustrate consistent layouts for various the-
matic software maps. Chapter 5 open questions related to certain technical tasks and
gives a short overview of David Erni’s work on IDE integrated Code Maps. Finally,
Chapter 6 concludes with some remarks about future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

2.1 Topic Maps

Using Muli-Dimensional Scaling (MDS) to create a map of information is by no means
a novel idea. Topic maps, as they are called, have a long standing tradition in informa-
tion visualization. [34]. In the following two subsections we will deliver a short insight
into two mature projects, which use topic maps in order to gain information based on
large sets of documents.

2.1.1 ThemeScape and SPIRE

ThemeScape is the best-known example of a text visualization tool that organizes top-
ics found in documents into topic maps where physical distance correlates to topical
distance and surface height corresponds to topical frequency [36].ThemeScape is part
of a larger tool set that uses a variety of algorithms to cluster terms in documents.

In short, they represented each document in a set as a binary vector with the length
equal to the number of used words from the dictionary. Their test set included from a
few hundred up to 6 K documents and resulted in vectors with between 200 and 200
K units. The development team first used Multidimensional Scaling to project their
high-dimensional document vectors to a 2D Layer. The first visualization of such an
projection was computed in 1994 on a Sparc 3 workstation and took over 12h to scale
dimension and position for a few hundred documents - a relatively critical cost in time
for a project that aimed to analyze over 30’000 documents per day. Since the MDS
algorithm calculates the distance between each pair of vectors, the computation time
increases exponentially with the document sets size. To work around this computation
bottleneck they invented their own scaling algorithm, called “Anchored Least Stress”,
suitable for sets larger then 5 K documents. This approach needs an initial cluster set.
These where extracted from the documents using well-known techniques such as K-
Means and complete linkage hierarchical clustering. In contrast to the MDS Algorithm
the ALS Algorithm regards only the distance between this clusters and the document,
starting with only a few elements of each vector and iteratively adding following ele-
ments. The landscape is then constructed by successively applying gaussian bodies to

13

14 CHAPTER 2. STATE OF THE ART

Figure 2.1: ThemeScape: A tool shows concentrations of documents in a spatial for-
mat, based on the mathematics of the relationships. This is done using a number of
real-time data feeds

the vector parts and layering the contributions of the contributing topical terms, similar
to our approach [36].

2.1.2 Atlas der Politischen Landschaften

Another project that inspired the work on code maps without direct application to soft-
ware is the book “Atlas der Politischen Landschaften: Ein weltanschauliches Portraet
der Schweiz”[12]. The authors of this book recomputed the location of each Swiss
city and village only depending on their election results of the past fifty years. The
technique to convert this rater huge amount of data is very similar to the one used in
ThemeMaps and later adopted by SOFTWARECARTOGRAPHER. The election results
are used to represent each village as a multidimensional vector. By multidimensional
scaling this vector becomes a significant political location. The evaluation of each vil-
lage represents its population, gaps between villages indicate political disagreement
ore political setting with no representative in the electing population. By doing so, the
point of compass of their maps gains a political context. E.g. Villages with similar
election results are clustered together and their coordinates on the overall map of the
Swiss political landscape clearly reflect their political perspective and weight. The map
also not only clusters political perspectives, it gives the authors also a tool to determi-
nate the meaning of orientation of the whole map. This enables inferences on single
parts of the map, like: This city is located west in the landscape, it seems that people
there elect more liberal. Or because there is a huge mountain in the east, the eastern

2.2. SOFTWARE MAPS 15

Figure 2.2: Political landscape: A layout of swiss vilages depending on their election
results over the last 50 years.

area seems to be more flat, so the Swiss people tends to elect more conservative. These
political maps where greatly honored by political science for their objective but also
intuitive view on Swiss politics, adapting this idea to software would perhaps generate
similar new refreshing views on code.

2.2 Software Maps

Topic maps in general and ThemeScape-style maps are rarely used in the software
visualization community. We are unaware of their application in software visualization
to produce consistent layouts for thematic maps, or to visualize the evolution of a
software system. Therefore the next step is now to have a look on today’s software
visualization tools and compare their approach with ours.

Since Software consists always of multiple elements it is the first target for a soft-
ware visualization to have a meaningful layout of these components. To identify these

16 CHAPTER 2. STATE OF THE ART

elements in an object oriented language might be a easy task. To arrange them with
meaning has no such clear projection from code to an image. There are several attempts
to generate significant layouts. Most software visualization layouts are based on one
or multiple of the three following approaches: 1) UML diagrams, 2) force-based graph
drawing, and 3) treemap layouts.

2.2.1 UML diagrams.

UML diagrams generally employ arbitrary layout. Gudenberg et al. have proposed
an evolutionary approach to layout UML diagrams in which a fitness function is used
to optimize various metrics (such as number of edge crossings) [32]. Although the
resulting layout does not reflect a distance metric, in principle the technique could be
adapted to do so. Achieving a consistent layout is not a goal in this work.

Andriyevksa et al. have conducted user studies to assess the effect that different UML
layout schemes have on software comprehension [1]. They report that the layout
scheme that groups architecturally related classes together yields best results. They
conclude that it is more important that a layout scheme convey a meaningful grouping
of entities, rather than being esthetically appealing.

Byelas and Telea highlight related elements in a UML diagram using a custom “area
of interest” algorithm that connects all related elements with a blob of the same color,
taking special care to minimize the number of crossings [7]. The impact of an arbitrary
layout on their approach is not discussed.

2.2.2 Graph drawing.

Graph drawing refers to a number of techniques to layout two- and three-dimensional
graphs for the purpose of information visualization [34, 15]. Noack et al. offer a good
starting point for applying graph drawing to software visualization [24].

Unlike MDS, graph drawing does not attempt to map an n-dimensional space to two
dimensions, but rather optimizes a fitness function related to the spatial property of the
output, i.e. of the visualization. Force-based layout for example, tries to minimize the
number of edge crossings and to place all nodes as equally apart from each other as
possible.

Jucknath-John et al. present a technique to achieve stable graph layouts over the evo-
lution of the displayed software system [14], thus achieving consistent layout, while
sidestepping the issue of reflecting meaningful position or distance metrics.

2.2.3 Treemap layout

Treemaps represent tree-structured information using nested rectangles [34]. Though
treemaps can achieve a consistent layout, position and distance are not meaningful.
First of all, they are often applied with arbitrary order of elements within packages,
i.e. alphabetical order. Second, the layout algorithm does not guarantee any spatial
constraints between the leaf packages contained in packages that touch at a higher level.
Treemaps may contain very narrow and distorted rectangles. Balzer et al. proposed

2.3. CARTOGRAPHY METAPHORS FOR SOFTWARE 17

a modification of the classical treemap layout using Voronoi tessellation [3]. Their
approach creates esthetically more appealing treemaps, reducing the number of narrow
tessels.

2.3 Cartography metaphors for software

In the software visualization literature however, topic maps are rarely used. Except for
the use of graph splatting in RE Toolkit by Telea et al. [15], we are unaware of their
prior application in software visualization. A number of software visualization tools
have adopted metaphors from cartography. Typically these tools are part of reverse-
engineering approach based on extracted models that abstract away from source code.
Thus, these tools cannot be used to read source code or develop software.

A number of tools have adopted metaphors from cartography in recent years to visu-
alize software. Usually these approaches are integrated in a tool within an interactive,
explorative interface and often feature three-dimensional visualizations.

MetricView is an exploratory environment featuring UML diagram visualizations [31].
The third dimension is used to extend UML with polymetric views [20]. The diagrams
use arbitrary layout, so do not reflect meaningful distance or position.

White Coats is an explorative environment also based on the notion of polymetric views
[23]. The visualizations are three-dimensional with position and visual-distance of
entities given by selected metrics. However they do not incorporate the notion of a
consistent layout.

CGA Call Graph Analyser is an explorative environment that visualizes a combina-
tion of function call graph and nested modules structure [5]. The tool employs a 21

2 -
dimensional approach. To our best knowledge, their visualizations use an arbitrary
layout.

CodeCity is an explorative environment building on the city metaphor [35]. CodeCity
employs the nesting level of packages for their city’s elevation model and uses a modi-
fied tree layout to position the entities, i.e. packages and classes. Within a package, el-
ements are ordered by size of the element’s visual representation. Hence, when chang-
ing the metrics mapped on width and height, the overall layout of the city changes, and
thus, the consistent layout breaks.

VERSO is an explorative environment that is also based on the city metaphor [19].
Similar to CodeCity, VERSO employs a treemap layout to position their elements.
Within a package elements are either ordered by their color or by first appearance
in the system’s history. As the leaf elements have all the same base size, changing
this setting does not change the overall layout. Hence, they provide consistent layout,
however within the spatial limitations of the classical treemap layout.

Data Mountain is a 3D document management system that allows the user to place
documents at arbitrary positions on an inclined plane [26]. They use 2D interaction
techniques and common pointing devices for all the interactions. Data Mountain is
designed to specifically address the human spatial memory to assist with document
management. They provide a user study that shows that spatial memory plays an im-
portant role in retrieving and localizing documents on the document storage plane. This

18 CHAPTER 2. STATE OF THE ART

tool is only loosely related to SOFTWARECARTOGRAPHER but it is interesting to see
that the spatial metaphor works in other areas.

Code Canvas is a research prototype that focuses on the spatial representation of code,
oriented on developer’s drawings on whiteboards [27]. It represents code on a two-
dimensional infinite canvas. When zoomed out one can see an UML overview of the
project, when zoomed in all the UML entities become source-code editors. The tool
uses the same canvas to visualize the directional relationships and the architectural
boundaries where it also allows editing of source code. To our knowledge, it relies on
the developer to manually layout the source entities.

Chapter 3

Software Cartography

In this section we present the techniques used to achieve consistent layout for soft-
ware maps. The number crunching is done by Latent Semantic Indexing and Mul-
tidimensional Scaling, whereas the rendering algorithms are mostly from geographic
visualization [28]. The SOFTWARECARTOGRAPHER tool1 provides a proof-of-concept
implementation of our technique.

3.1 Lexical similarity

In order to define a consistent layout for software visualization, we need the position of
software artifacts and the distance between them to reflect a natural notion of position
and distance in reality.

Instead of looking for distance metrics in the graph structure of programs, we propose
to focus on the vocabulary of source code artifacts as the space within which to define
their position and distance. Lexical similarity denotes how close software artifacts
are in terms of their source code’s vocabulary. The vocabulary of the source code
corresponds to the implemented technical or domain concepts. Artifacts with similar
vocabulary are thus conceptually and topically close [17].

Latent Semantic Indexing (LSI) is an information retrieval technique originally de-
veloped for use in search engines, with applications to software analysis [22]. Since
source code consists essentially of text, we can apply LSI to source code to retrieve the
lexical distance between software artifacts.

The examples in this thesis use the HAPAX tool2 to compute the lexical similarity be-
tween software artifacts. Given a software system S which is a set of software entities
s1 . . . sn using terms t1 . . . tm, then HAPAX uses LSI to generate an m-dimensional
vector space V representing the lexical data of the software system.

In this vector space V, each software entity is represented by a vector of its term fre-
quencies. Thus, in information retrieval, V is often referred to as “term-document

1http://scg.unibe.ch/research/softwarecartography/
2http://scg.unibe.ch/staff/adriankuhn/hapax/

19

http://scg.unibe.ch/research/softwarecartography/
http://scg.unibe.ch/staff/adriankuhn/hapax/

20 CHAPTER 3. SOFTWARE CARTOGRAPHY

Figure 3.1: Construction steps of a software map. From top to bottom: 1) dots in
the visualization space, positioned with MDS, 2) circles around each entity’s location,
based on class size in KLOC, 3) digital elevation model with hill-shading and contour
lines. Total computation time for the images above about 120 seconds on a 2.16 GHz
Intel Core Duo MacBook Pro.

3.2. MULTIDIMENSIONAL SCALING 21

matrix”.

The terms t1 . . . tm are the identifiers found in the source code: class names, methods
names, parameter names, local variables names, names of invoked methods, et cetera.
Thus, two documents (i.e. source files or classes) are not only similar if they are struc-
turally related, but also if they use the same identifiers only. This has proven useful to
detect high-level clones[21] and cross-cutting concerns[17].

3.2 Multidimensional scaling

The elements shown on the software map are the software entities s1 . . . sn labeled with
their file or class name. The visualization pane is two-dimensional, whereas Latent
Semantic Indexing locates all software entities in an m-dimensional space. Therefor
we must map positions in V down to two dimensions. There are three main techniques
to do this, each of which is suitable for very different purposes:

1. Principal Component Analysis (PCA) is perhaps the most widely used of all
three techniques. PCA yields the best low-level approximation with regard to
variance and classification. It tries to preserve as much of the space’s variance
in the remaining dimensions. Hence, PCA is the best choice for classification
problems.

2. Singular-Value Decomposition (SVD) treats the m-dimensional space as matrix
An×m, which is the mathematical equivalent of an m-dimensional vector space
with n vectors. SVD yields the best low-rank approximation A′ under a least-
squares criterion. It tries to preserve as much of the space’s eigenvalue. Follow-
ing from this SVD is the best choice for lossy compression and signal reduction
problems.

3. Multidimensional Scaling (MDS) tries to minimize a stress function while iter-
atively placing elements into a low-level space. MDS yields the best approxima-
tion of a vector space’s orientation, i.e. preserves the relation between elements
as best as possible. For this reason MDS is the best choice for data exploration
problems.

For the purpose of software cartography, preserving the relative lexical similarity of
software entities is most important. Thus, MDS is the best choice for mapping the LSI
vector space to our target visualization space.

MDS attempts to arrange objects in a low-dimensional space, so that the distance be-
tween them in the target space reflects their similarity. The input for the algorithm is
an n×n similarity square matrix, where n is equal to the number of objects to display.
Each cell (x, y) of the matrix contains the similarity between object x and object y.
The dimension of the solution space can range from 2 to n−1. As the number of target
dimensions decreases, clearly the quality of the approximation deteriorates.

In our case we feed MDS with the lexical similarity of software artifact and map
them on a 2-dimensional visualization space. When computing the similarity of lex-
ical data, it is important to use a cosine or Pearson distance metric, as the standard
Euclidian distance has no meaningful interpretation when applied to documents and
term-frequencies!

22 CHAPTER 3. SOFTWARE CARTOGRAPHY

3.2.1 Iterative scaling

MDS is an iterative algorithm. Given the similarity between objects as an input, it
works as follows:

1. Assign all objects an arbitrary location in the solution space.

2. Determinate the goodness of fit, i.e. compare the distance between the objects in
the solution space with their similarities given in the input.

3. If the stress value, i.e. the goodness of fit, is within a given threshold, the algo-
rithm terminates.

4. Search for a monotonic transformation of the data. That is, far apart but similar
objects are moved towards each other and close but not similar objects are moved
away from each other. Proceed with step 3.

During the second step it is important to have a good measure for the goodness of the
approximation. For this reason the stress value was introduced, which shows the natural
goodness of a configuration as a single number. A STRESS value of 0 stands for an
optimal solution where the distances between the objects in the configuration perfectly
fits their dissimilarity. A higher stress value indicates an increased approximation level
between distances and dissimilarities.

3.2.2 Quality indicators

The raw stress function for a given set of n objects (xi ∈ Xn,d) in the d-dimensional
target space compares the mutual distances d̂ij = d(x̂i, x̂j) to the original distances
dij = d(xi, xj) from the similarity square matrix.

s =

n∑
i 6=j

(dij − d̂ij)
2 = min

with distances

dij(xi, xj) =

d∑
k=1

(xik − xjk)
2

Additionally to the STRESS value Multidimensional Scaling uses a second variable,
R, to express the quality of the projection of the height-dimensional vectors to the final,
normally two dimensional vector space. R is the quadratic correlation of the distance
to the disparities. R represents the level of linear adaptation of the disparities to the
distances. In practice values around 0.9 are considered as good.

3.2.3 HiT-MDS

In the SOFTWARECARTOGRAPHER tool, we apply High-Throughput MDS (HiT-MDS),
which is an optimized implementation of MDS particularly suited for dealing with large
data sets [30]. The algorithm was originally designed for clustering multi-parallel gene

3.3. HILL-SHADING AND CONTOUR LINES 23

Figure 3.2: Digital elevation model: each element is represented by a normal distri-
bution according to its KLOC size, the distribution of all elements is summed up.

expression probes. These data sets contain thousands of gene probes and the corre-
sponding similarity matrix dimension reflects this huge data amount. The price paid
for a fast computation is less accurate approximation and a simplified distance metric.

As a consequence of these optimizations, the generated output may vary when run
several times on the same input, i.e. HiT-MDS uses non-deterministic heuristics. In
practice, this appears to be good enough for our experiments with SOFTWARECAR-
TOGRAPHER and software analysis.

3.3 Hill-shading and Contour Lines

In Figure 3.1 we see an overview of the steps taken to render a software map. To make
the map more esthetical, we add a touch of three-dimensionality.

The hill-shading algorithm is well-known in geographic visualization. It adds hill
shades to a map [28]. The algorithm works on a distinct height model (digital ele-
vation model) rather than on trigonometric data vector date: each pixel has an assigned
z-value, its height.

The digital elevation model of SOFTWARECARTOGRAPHER is is a simple matrix with
discrete height information for all pixels of the visualization plane. As illustrated on
Figure 3.2, each element (i.e. source file of class) is represented by a hill whose height
corresponds to the element’s KLOC size. The shape of the hill is determined using a
normal distribution function. To avoid that closely located elements hide each other,
the elevation of all individual elements is summed up.

The hill-shading algorithm renders a three-dimensional looking surface by determining
an illumination value for each cell in that matrix. It does this by assuming a hypothet-
ical light source and calculating the illumination value for each cell in relation to its
neighboring cells.

24 CHAPTER 3. SOFTWARE CARTOGRAPHY

Eventually, we add contour lines. Drawing contour lines on maps is a very common
technique in cartography. Contour lines make elevation more evident than hill-shading
alone. Since almost all real world maps make use of contour lines, maps with contour
lines are very familiar to the user.

3.4 Evolution of a Software Systems

In order to visualize a series of a software systems over several released versions we
had to find a way to resolve the orientation and heuristics problems. It was not possible
to compare complete independent computed software maps because their orientation
changed between each repeated computation of the analyzed versions. To fix this prob-
lem, we computed a map containing all files of all versions of a system. To display then
a single version in such an total map we removed all files with different versions and
only showed the desired set of files. Doing so the orientation over the series became
stable.

The great drawback of this technique is, that it is not possible to enhance such a series
with additional versions. Although such a enlarged series would have a nearly identical
layout the loss of orientation would affect the user’s understanding of the map and
his sense for the file locations on the map. To expand an existing series we have to
recompute the whole corpus containing all old versions and also the new part.

If we would manage to overcome the orientation problem with a form of anchor point
or something similar we would not have to fear this drawback any more and could
enhance existing Software Maps with very small effort.

3.5 Labeling

A map without labels is of little use. On a software map, all entities are labeled with
their name (class or file name).

Labeling is a non-trivial problem, so we must make sure that no two labels overlap.
Also labels should not overlap important landmarks. Most labeling approaches are
semi-automatic and need manual adjustment. An optimal labeling algorithm does not
exist [28]. For locations that are near to each other it is difficult to place the labels so
that they do not overlap and hide each other. For software maps it is even harder due to
often long class names and clusters of closely related classes.

The examples given in this paper show only the most important class names. SOFT-
WARECARTOGRAPHER uses a fully-automatic, greedy brute-force approach. Labels
are placed either to the top left, top right, bottom left, or bottom right of their element.
Smaller labels are omitted if covered by a larger label. Eventually, among all layouts,
the one where most labels are shown is chosen.

The algorithm still leaves ugly overlapping labels in the map or hides important infor-
mation randomly. The last cut still has to be done by manually placing and adjusting
the labels. To show all the desired information on the map appears to be not possible.

3.5. LABELING 25

Figure 3.3: SOFTWARECARTOGRAPHER with 100 labels displayed

To circumscribe this problem, we introduced a system browser in the SOFTWARECAR-
TOGRAPHER. The browser shows all file names in a list. The user interacts with the
map, by clicking near a mountain’s peak on the map to mark the corresponding file in
the browser view. It is also possible to select a file name in the browser to mark the
corresponding peak in the map view. This solution provides more space for further
visualizations on the map and allows the user to find information of each file name in
the map and vice versa a quick way to find files in the map.

26 CHAPTER 3. SOFTWARE CARTOGRAPHY

Chapter 4

Case Studies

This section presents examples of software maps. In the first example the SOFTWARE-
CARTOGRAPHER is fed with some well known Multidimensional Scaling test cases.
The test data for these experiments are simple text documents and represent some real
world scenarios. The second example visualizes the evolution of two software sys-
tems to illustrate the consistent layout of software maps. The third section shows an
overview of six open-source systems to illustrate their distinct spatial layouts. The last
section presents two examples for thematic cartography.

4.1 classic MDS Examples

4.1.1 Color Example

The idea of these examples is to feed the SOFTWARECARTOGRAPHER rather theoreti-
cal data with known solutions.

One of the best known examples to test Multidimensional Scaling layouts is the color
cycle. Each color consists of at least three different parts and lies therefore in a three or
multidimensional space. The goal of my first example is to do such an projection with
SOFTWARECARTOGRAPHER and compare the results with known solutions.

Although SOFTWARECARTOGRAPHER is a fast reader, it is also color-blind. So we
wrote text files to represent the colors. I.E. the color green is a text file containing the
word ’blue’ 64 times and the word ’yellow’ 64 times. This way all colors of the RGB
color system have a suitable text file representation. SOFTWARECARTOGRAPHER will
now use Latent Semantic Indexing to compute the similarity matrix between this text
representations as distance between the corresponding colors. Figure 4.1 shows the
landscape generated from this matrix.

The output of this first experiment is very satisfactory. The SOFTWARECARTOGRA-
PHER solution shows the well known Color Cicle with white in the middle and the three
base colors with largest distance between them.

27

28 CHAPTER 4. CASE STUDIES

Figure 4.1: Color Cycle Example: The 2 Dimensional interpretation of SOFTWARE-
CARTOGRAPHER for the threedimensional rgb color model

4.1.2 Computer Example

In the next example we will stay with real world use cases, but increase the number of
dimensions and the degree of abstraction between objects and their representing text
files. The classical example would be to cluster different car models, feeding text files
with representations of the cars motors, maximal speed, economics and so on. Since
I really don’t like cars’ and also would maybe miss the difference between a pickup
and a sport car, I choose a similar scenario with computers instead of cars. To reflect
the computers attributes in text style, I went to some price/performance evaluation sites
and extracted their ratings on the ‘computers’ parts. e.g. quad core processors above 3
GHz reached a evaluation of 10. To represent the attributes of each computer system
I simply wrote text files with the amount of words according to their evaluation. As
example, the text file for a system with a 3 GHz quad core, 8 GB DDR2 RAM, etc.
contains the word ‘processor’ 10 times as the 3 GHz quad core is evaluated with best
score. The keyword ‘ram’ on the other hand will occur only 5 times, since DDR2 RAM
reaches deeper ranks compared to DDR3.

Again, the SOFTWARECARTOGRAPHER found a meaningful visualization of the dif-
ferent computer systems (see Figure 4.2). The produced cluster lie along the virtual
performance axis which is also naturally reflected by the systems’ prices. The gener-
ated ‘landscape’ also shows several different islands, one for server type systems, one
for laptops and netbooks and a third for personal computers. The height of the islands’
top indicates the systems’ overall performance. Huge mountains mean in this case
higher evaluated attributes. The Server Hill contains the highest peak, while netbooks’

4.2. VERSION OVERVIEW 29

Layout and Cluster System types brands

Figure 4.2: Computer Cluster Example: while the first picture shows significant clus-
ter of computersystems, figure 2 helps to identify different system types in the clusters.
Figures 3 shows the distribution of some brands

evolution level lies close to sea level. Painting meaningful additional information on the
top level of this landscape further improves the understanding of the entire ‘computer-
space’. By coloring the different types of systems, it shows that some pc setups tend
more to the performance of servers than to the other representatives of their type.

4.2 Version Overview

The following two examples will represent benefits of a consistent layout over several
versions. These examples will demonstrate the intuitive understanding of unknown
software by watching a series of maps, each representing a single program’s revision.
Such a series of views on a growing map will allow us to inspect the projects evolution
from a simple to a more complex system.

4.2.1 Ludo

Figure 4.3 shows the complete history of the Ludo system, consisting of four iterations.
Ludo is used in a first year programming course to teach iterative development. The
4th iteration is the largest with 30 classes and a total size of 3-4 KLOC. I selected Ludo
because in each iteration, a crucial part of the final system is added.

• The first map (figure 4.3, leftmost) shows the initial prototype. This iteration
implements the board as a linked list of squares. Most classes are located in
the south-western quadrant. The remaining space is occupied by ocean, since
nothing else has been implemented so far.

• In the second iteration (figure 4.3, second from the left) the board class is ex-
tended with a factory class. In order to support players and stones, a few new
classes and tests for future game rules are added. On the new map the test classes
are positioned in the north-eastern quadrant, opposite to the other classes. This
indicates that the newly added test classes implement a novel feature (i.e. testing
of the game’s “business rules”) and are thus not related to the factory’s domain
of board initialization.

30 CHAPTER 4. CASE STUDIES

Figure 4.3: From left to right: each map shows an consecutive iteration of the same
software system. As all four views use the same layout, a user can build up a mental
model of the system’s spatial structure. For example, Board/LudoFactory is on
all four views located in the south-western quadrant. See also figure 4.6 and 4.7 for
more views of this system.

• During the third iteration (figure 4.3, second to the right) the actual game rules
are implemented. Most rules are implemented in the Square and Ludo class,
thus their mountain rises. In the south-west, we can notice that, although the
BoardFactory class has been renamed to LudoFactory, its position on
the map has not changed considerably.

• The fourth map (figure 4.3, rightmost) shows the last iteration. A user interface
and a printer class have been added. Since both of them depend on most previous
parts of the application they are located in the middle of the map. As the UI
uses the vocabulary of all different parts of the system, the islands start to grow
together.

The layout of the most important elements remains stable over all four iterations. For
example, the Board/LudoFactory class is on all four views located in the south-
western quadrant. This is due to LSI’s robustness in the face of synonym and polysemy;
as a consequence most renaming does not significantly change the vocabulary of a
software artifact [17].

4.2.2 Kasai

Kasai is a 100% Java based authentication and authorization framework. It allows the
developer to integrate into his application a granular, complete and manageable per-
mission scheme. The goal of the framework is to provide a simple-to-use-yet-powerful
security environment for multi-user applications. Unlike other frameworks, Kasai pro-
vides high security abstractions. It’s targeted at the specific security requirements that
arise in real-life applications such as Intranets, ERPs, CRMs, document managers, ac-
counting systems, etc. In version 0.0.0 Kasi contains 69 Java and JSP files, version
2.0.0 contains over 120 Java and JSP files.

4.3. OPEN-SOURCE EXAMPLES 31

version 1 version 1.1 version 2

Figure 4.4: Kasai Map: The first version shows a huge mountain, obviously this is
the most important class to know - during the evolution towards version 2, the central
mountain kept his relatively large volume while the newer and smaller files are placed
arround the main massif

Apache Tomcat Columba Google Taglib

JFtp JoSQL JCGrid

Figure 4.5: Overview of the software maps of six open source systems. Each map
reveals a distinct spatial structure. When consequently applied to every visualization,
the consistent layout may soon turn into the system’s iconic fingerprint. An engineer
might e.g. point to the top left map and say: “Look, this huge Digester peninsula in
the north, that must be Tomcat. I know it from last year’s code review.”.

32 CHAPTER 4. CASE STUDIES

4.3 Open-source examples

We applied the software cartography approach to all systems listed in the field study
by Cabral and Marques [8]. They list 32 systems, including four of each type of appli-
cation (Standalone, Server, Server Applications, Libraries) and selected programming
languages (Java, .NET).

Figure 4.5 shows the software map for six of these systems: Apache Tomcat, Columba,
Google Taglib, JFtp, JCGrid and JoSQL. Each system reveals a distinct spatial struc-
ture. Some fall apart into many islands, like JFtp, whereas others cluster into one (or
possibly two) large contents, like Columba and Apache Tomcat. The 36 case-studies
raised interesting questions for future work regarding the correlation between a sys-
tem’s layout and code quality. For example, do large continents indicate bad modular-
ization? Or, do archipelagos indicate low coupling?

Each system’s size in TLC and total project size in Bytes is listed in Table 4.1. For a
closer look at the figures please find the listed examples in the appendix.

System # Top-level total files total filesize
java classes (Byte)

Apache Tomcat 162 182 1’576’187
Columba 1’549 1’744 6’423’229
Google Taglib 20 59 160’268
JFtp 78 81 356’885
JCGrid 94 94 371’953
JoSQL 83 85 683’699

Table 4.1: Statistics of the six systems in Figure 4.5.

4.4 Thematic cartography examples

Software maps can be used as canvas for more specialized visualizations of the same
system. In the following, I provide two thematic visualization of the Ludo system that
might benefit from consistent layout. (The maps in this subsection are mockups, not
yet fully supported by SOFTWARECARTOGRAPHER.)

• Boccuzzo and Gall present a set of metaphors for the visual shape of entities
[4]. They use simple and well-known graphical elements from daily life, such as
houses and tables. However they use conventional albeit arbitrary layouts, where
the distribution of glyphs often does not bear a meaningful interpretation. The
first map in Figure 4.6 employs their technique on top of a software map, using
test tubes to indicate the distribution of test cases.

• Greevy et al. present a three-dimensional variation of System Complexity View
to visualize a System’s dynamic runtime state [11]. They connect classes with
edges representing method invocation, and stack boxes on top of each other to
represent a class’s instances. Since System Complexity Views do not capture
any notion of position, the lengths of their invocation edges do not express any
real sense of distance.

4.4. THEMATIC CARTOGRAPHY EXAMPLES 33

Figure 4.6: Glyphs are drawn on top of the map, to display additional information.
Each test tube glyph indicates the location of unit test case.

Figure 4.7 employs their approach on top of a software map, drawing invocation edges
in a two-dimensional plane. Here the distances have an interpretation in terms of lexical
distance, so the lengths of invocation edges are meaningful. A short edge indicates that
closely related artifacts are invoking each other, whereas long edges indicate a ‘long-
distance call’ to a lexically unrelated class.

In figure 4.8 we see an industrial J2EE application in which artifacts are colored ac-
cording to which kinds of files they are. Java source files are crosses and are all in
the north west region. JSP files are squares and mostly placed in the south east corner
of the island. XML files are triangles and property files are circles. Both of these are
mostly in the central region.

Since Java files have to do with the underlying implementation, and JSP files are closer
to domain concepts, it is not too surprising that these files are mostly in separate parts
of the island. Strangely, however, we do find a number of JSP files in the north west,
which could mean that they are more closely linked to the implementation. One of these
(abstract.jsp), is interesting because it contains a large portion of Java code and
only a small amount of HTML/JSP. This explains why its vocabulary places it squarely
in the Java part of the island. The abstract.jsp is interesting because it contains a large

34 CHAPTER 4. CASE STUDIES

Figure 4.7: Invocation edges are drawn on top of the map, showing the trace of exe-
cuting the RuleThreeTest test case.

portion of Java code and only a few part of HTML/JSP. So, this is probably why it is in
between the rest of the Java code. In particular it uses methods from JspUtils.

Also unusual is a single, isolated XML file on a mountain peak in the south west.
Again, the name (component-definitions.xml) suggest that it acts as a bridge
between the two regions of the island. In fact, it references many of the JSP files, but
is also quite large, and it contains many XML tags and attributes which occur nowhere
else, which explains why it stands alone on top of a large hill. If you take a look at the
component-definitions.xml you will see, that it is a configuration file that references
quite a few JSP files, but it is standalone probably because it is huge, and the XML tags
and attributes that are used a lot cannot be found in other places.

4.4. THEMATIC CARTOGRAPHY EXAMPLES 35

Figure 4.8: The KMUAdmin JSP application. Java files are displayed as crosses, JSP
files as squares, XML files as triangles, and property files as circles.

36 CHAPTER 4. CASE STUDIES

Chapter 5

Discussion

5.1 Obstacles in the way of Software Cartography

During the work on the SOFTWARECARTOGRAPHER several problems and drawbacks
of software cartography appeared. This chapter will address these points and give some
ideas for solutions.

5.1.1 Lexical pollution

One of the difficulties in lexical analysis is to exclude text parts with no dependence
to the task of the text. e.g. each java file in the google tag library contains identical
licence text. For short classes this initial and with all other pieces identical text pollutes
the significance of it’s representing multidimensional lexical vector dramatically. To
overcome this problem, the SOFTWARECARTOGRAPHER should have a possibility to
detect and erase such contamination. While SOFTWARECARTOGRAPHER makes no
different between different languages and regards them only as words and texts further
versions should take more care of language dependent elements.

5.1.2 Heuristic HiT-MDS

Another drawback in using the Multidimensional Scaling algorithm is it’s terrible scal-
ability. Because the algorithm has to compute the distance between each part in the
system while the starting dimension increases with each additional file, the computa-
tion time for the distance matrix increases exponentially. The High Throughput Mul-
tidimensional Scaling Algorithm overcomes this problem by a heuristic approach in
the computation of the distance matrix. This trick removes the exponential computa-
tion time by accepting some imprecision. The results are minor changes between each
repetition.

37

38 CHAPTER 5. DISCUSSION

5.1.3 Orientation in MDS

The initial idea of drawing maps for software claimed to generate an intuitive orienta-
tion for developers working on large projects. The Multidimensional Scaling algorithm
lets orientation vary. Computing the same map twice will deliver two nearly identical
landscapes. Their orientation on the other hand will differ. A solution for this problem
would be to give the cartographer some anchor points, files with known meaning and
fixed position. e.g. a text file that contains all GUI typical expressions and rotating the
landscape till this file lies north of the map’s center [6]. An other approach could be
to give the landscapes some additional metric. In Figure 4.2 this might be the perfor-
mance price axis. By defining that the cheapest system has to lie in the south and the
most expensive in the north the landscape’s orientation would be fixed. Hermann and
Leuthold used this variant to give their political landscapes the appropriate orientation
[12].

5.2 Future Work

As future work, we can identify the following promising directions:

• Software maps at present are largely static. Larger software projects tend to pro-
duce flat desert similar landscapes bearing not enough information to distinguish
between files. Clearly this phenomena can be overcome by a greater level of de-
tail. We envision therefore a more interactive environment in which the user can
‘zoom and pan’ through the landscape to see features in closer detail, or navigate
to other views of the software.

• Selectively displaying features would make the environment more attractive for
navigation. SOFTWARECARTOGRAPHER yet includes a native file browser to
select and mark single files or folders. It would be nice to support users addi-
tionally with notes on the map, where they can add comments and way marks as
they perform their tasks.

• Orientation and layout are presently consistent for a single project only. We
would like to investigate the usefulness of conventions for establishing consistent
layout and orientation (i.e. ‘testing’ is North-East) that will work across multiple
projects, possibly within a reasonably well-defined domain.

• The heuristic in the used Multidimensional Scaling algorithm effects the layout
of the maps locally. Additionally to the loss of the global map orientation, the
heuristic corrupts orientation in minor artifacts of the software maps, i.e. three
or more files might have a complete independent vocabulary form the remaining
project files. The representing islands of these files will be probably arranged in a
cycle with no definite direction. Stepping back to an classical Multidimensional
Scaling algorithm and adding something like an anchor file containing the whole
projects lexicon might lead to a more consistent layout.

• In current work the SOFTWARECARTOGRAPHER does not distinguish between
code and for development senseless text like Licenses or similar. In order to
solve this lexical pollution problem a closer inspection of the written files would
be useful. To filter such pollution without a clue about the text sense can be a

5.3. IDE INTEGRATED CODEMAP 39

hard task for machines. In future work the user should be able to exclude such
pollution manually without being forced to delete it in the analyzed source code.

5.3 IDE integrated CodeMap

The work on Software Maps has been extended by David Erni. He improved the SOFT-
WARECARTOGRAPHER prototype with Isomap techniques for consistent orientation
and integrated these maps in an IDE [18]. The idea of his work is to support developers
with a map reflecting the whole system at each time. The map should help developers
to gain a stable mental model of their work. Doing so the miniature map function in the
IDE should also allow the user to navigate through the whole system or display further
metrics or information on the landscape top. Eventually he released a Eclipse plug-in
called CodeMap and performed a user study to validate his assumption about the usage
of the tool. This study revealed that programmers tended to misinterpret the layout as
a measure of structural dependencies. Based on this observation Erni suggests an im-
plementation of anchored multidimensional scaling such that developers can initialize
the map to their more personal mental model.

40 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

We have presented an approach to visualizing software based on a cartography meta-
phor, in which Latent Semantic Indexing is used to position the vocabulary of soft-
ware entities in an m-dimension space, and Multidimensional Scaling is then used to
map these positions to a two-dimensional display. Digital elevation, hill-shading and
contour lines are applied to produce a software map. Finally, software maps can be
generated to depict evolution over time of a software system, or they may be decorated
to present various kinds of additional thematic information, such as package structure
or call relationships.

In spite of the esthetic appeal of hill shading and contour lines, the main contribution
of this thesis is not that the visualizations look like a cartographic map, but rather that
(i) cartographic position and distance reflect topical position and distance for software
entities, and (ii) consistent layout allows different software maps to be easily com-
pared. In this way, software maps reflect world maps in an atlas that exploit the same
consistent layout to depict various kinds of thematic information about geographical
sites.

We have presented several examples to illustrate the usefulness of software maps to
depict the evolution of software systems. The test series over several versions of such
systems confirmed our initial contributions to consistent layout. The produced maps
turned out to deliver enough characteristics of a project to help developers to build a
mental model and to navigate with rather intuitive knowledge through a project as they
would with ordinary alphabetical or hash key layout. Software Maps therefore proved
to be helpful as background for further thematic visualizations.

The examples have been produced using SOFTWARECARTOGRAPHER, a proof-of-
concept tool that implements our technique. Although a proper labeling of such maps
with full file names led to unsolved problems, we found a way to navigate through such
software maps by adding a file browser function to SOFTWARECARTOGRAPHER. We
also added a word cloud representation for files to the maps in order to support the
user with a mental image of the inspected location on the map and support a canvas for
future metrics like UML similar class representation.

41

42 CHAPTER 6. CONCLUSION

Appendix A

Open-source Examples

43

44 APPENDIX A. OPEN-SOURCE EXAMPLES

A.1 Tomcat

45

A.2 Columba

46 APPENDIX A. OPEN-SOURCE EXAMPLES

A.3 Google Taglib

47

A.4 JFtp

48 APPENDIX A. OPEN-SOURCE EXAMPLES

A.5 JoSQL

49

A.6 JCGrid

50 APPENDIX A. OPEN-SOURCE EXAMPLES

A.7 Compire

Appendix B

User Guide

B.1 Installation

The above presented SOFTWARECARTOGRAPHER is distributed under MIT License.
The software is available for download at the Smalltalk SCG store, but remains under
development.

There is also a packaged version downloadable at the SOFTWARECARTOGRAPHER
project page 1. Please find further installation steps in the read-me file.

Both versions works with VisualWorks 7.5. Later VisualWorks releases are not sup-
ported. The HiT MDS Algorithm is coded in C and is accessed via make targets. For
Windows users Cygwin www.cygwin.com or a similar command line is required.
To enable Cygwin for SOFTWARECARTOGRAPHER the Windows path variable should
be enhanced with the Cygwin binary location. A system with 512MB RAM should
suffice for processing data sets up to 5,000 files.

B.2 Click-Through Example

In the following chapter we will give some Click-Through examples. The presented
scenarios will give the user a short overview of the SOFTWARECARTOGRAPHER’s
features. The examples subsection includes the Color Cycle and Computer Cluster
examples from page 27 and explains some of the views. The second subsection shows
a way to import documents in order to generate a single Software Map or a series of
software maps containing several versions of a software system and contains a list of
the selectable parameter of SOFTWARECARTOGRAPHER.

Use either the in Cincom VisualWorks integrated button located on the left side of
the ‘System Browser’ button or the executable from the packaged version to start the
SOFTWARECARTOGRAPHER.

1http://scg.unibe.ch/download/codemap/software-cartographer-loretan2010.
zip

51

www.cygwin.com
http://scg.unibe.ch/download/codemap/software-cartographer-loretan2010.zip
http://scg.unibe.ch/download/codemap/software-cartographer-loretan2010.zip

52 APPENDIX B. USER GUIDE

B.2.1 Opening The Thesis Examples

1. Open the MDS computer cluster example discussed in the 27 by selecting ’Exam-
ples’ SOFTWARECARTOGRAPHER menu and ‘MDS Computer Cluster’ in the respond-
ing drop down menu.

2. Klick on the picture near a mountain pike. The selected location is now marked
with a red cross. The file name of the marked location is shown at the bottom of the
SOFTWARECARTOGRAPHER window. The File is also selected in the file tree and file
browser view on the left side of the SOFTWARECARTOGRAPHER window.

3. Open the ‘Version JUnit’ examples discussed on page 27 by selecting ‘Examples’
SOFTWARECARTOGRAPHER menu and ‘Version JUnit’ in the responding drop down
menu.

4. To have more space for the word cloud and the two file views select ‘View’ in the
SOFTWARECARTOGRAPHER menu and select ‘Tabbed View’.

5. To browse between the different versions use the ‘next’ or ‘prev’ buttons in upper
corners of the map. To select a specific version use the dropdown selection box between
the buttons.

B.2.2 Opening A Java File System

1. To open a Java project click ‘File’ in the window menu and select ‘Open Java
Project’.

2. In the file browser dialog select a folder containing java, xml, jsp, php or txt file
types.

B.2.3 Setting Up A Version Example

1. To compute series of software maps containing multiple versions of a software
project the original folder structure has to be as following: a top folder with the projects
name containing a separate folder for each version.

2. First open the top folder by selecting ’File’ in the window menu and select ’Open
Java Project’. The SOFTWARECARTOGRAPHER then computes a Software Map for
the whole system containing all versions in one Map.

3. After this overview is computed, select ’Set top folder as version’ in the ’Tools’
menu. Doing so SOFTWARECARTOGRAPHER will switch to version mode and will
additionally display a version control interface between the window menu and the land-
scape image.

4. To select a particular version use the ’next’ and ’prev’ button to page through the
different versions or use the drop down menu between these two buttons to select a
version.

B.2. CLICK-THROUGH EXAMPLE 53

B.2.4 Changing Parameter

To set different parameters for the map, select ’Tools’ and ’Properties’ in the windows
menu.

1. ’Metrics and Symbols’ properties let you choose, whether the map, the location
symbols or neither should be colored. If ’Use color Model’ is selected, two different
dependency methods are available. In ’Next Neighbor’ option, each pixel on the map
is colored according to the next location. In ’dominant location’ model each point on
the map is colored by the location which has the most influences to the points height -
that means very small files might disappear because they are covered by larger classes.

2. The ’Map’ section let you choose how many labels will be showed in the map and
in which size they are displayed. ’Colored’ decides if the map base is colored or in
black and white. There are also options to disable contour lines, water and hill shade
display. There is also an option that controls height, by lowering this value the island
surrounding medium water height display will shrink.

3. The ’File Types’ option let you decide which file types are integrated in the visual-
ization.

4. ’Model’ parameter controls the map resolution and contour line step width. Please
use this option with attention. The underlying model takes this value as base side length
and will affect computation time dramatically.

54 APPENDIX B. USER GUIDE

Bibliography

[1] Olena Andriyevska, Natalia Dragan, Bonita Simoes, and Jonathan I. Maletic.
Evaluating UML class diagram layout based on architectural importance. VIS-
SOFT 2005. 3rd IEEE International Workshop on Visualizing Software for Un-
derstanding and Analysis, 0:9, 2005.

[2] Giuliano Antoniol, Yann-Gael Gueheneuc, Ettore Merlo, and Paolo Tonella. Min-
ing the lexicon used by programmers during sofware evolution. In ICSM 2007:
IEEE International Conference on Software Maintenance, pages 14–23, October
2007.

[3] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for
the visualization of software metrics. In SoftVis ’05: Proceedings of the 2005
ACM symposium on Software visualization, pages 165–172, New York, NY, USA,
2005. ACM.

[4] Sandro Boccuzzo and Harald Gall. CocoViz: Towards cognitive software vi-
sualizations. VISSOFT 2007. 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 0:72–79, 2007.

[5] Johannes Bohnet and Jurgen Dollner. CGA call graph analyzer — locating and
understanding functionality within the Gnu compiler collection’s million lines of
code. VISSOFT 2007. 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, 0:161–162, 2007.

[6] Andreas Buja, Deborah F. Swayne, Michael L. Littman, Nathaniel Dean, Heike
Hofmann, and Lisha Chen. Data visualization with multidimensional scaling.
Journal of Computational and Graphical Statistics, 17(2):444–472, June 2008.

[7] Heorhiy Byelas and Alexandru C. Telea. Visualization of areas of interest in soft-
ware architecture diagrams. In SoftVis ’06: Proceedings of the 2006 ACM sym-
posium on Software visualization, pages 105–114, New York, NY, USA, 2006.
ACM.

[8] Bruno Cabral and Paulo Marques. Exception handling: A field study in Java and
.NET. In Proceedings of European Conference on Object-Oriented Programming
(ECOOP’07), volume 4609 of LNCS, pages 151–175. Springer Verlag, 2007.

[9] Stephan Diehl. Software Visualization. Springer-Verlag, Berlin Heidelberg, 2007.

[10] Stéphane Ducasse, Tudor Gı̂rba, and Adrian Kuhn. Distribution map. In Proceed-
ings of 22nd IEEE International Conference on Software Maintenance (ICSM
’06), pages 203–212, Los Alamitos CA, 2006. IEEE Computer Society.

55

56 BIBLIOGRAPHY

[11] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing feature interac-
tion in 3-D. In Proceedings of VISSOFT 2005 (3th IEEE International Workshop
on Visualizing Software for Understanding), pages 114–119, September 2005.

[12] Michael Hermann and Heiri Leuthold. Atlas der politischen Landschaften. vdf
Hochschlverlag AG, ETH Zürich, 2003.

[13] Kenneth Hite, Craig Neumeier, and Michael S. Schiffer. GURPS Alternate
Earths, volume 2. Steve Jackson Games, Austin, Texas, 1999.

[14] Susanne Jucknath-John and Dennis Graf. Icon graphs: visualizing the evolution
of large class models. In SoftVis ’06: Proceedings of the 2006 ACM symposium
on Software visualization, pages 167–168, New York, NY, USA, 2006. ACM.

[15] Michael Kaufmann and Dorothea Wagner. Drawing Graphs. Springer-Verlag,
Berlin Heidelberg, 2001.

[16] Holger M. Kienle and Hausi A. Muller. Requirements of software visualization
tools: A literature survey. VISSOFT 2007. 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pages 2–9, 2007.

[17] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba. Semantic clustering: Identify-
ing topics in source code. Information and Software Technology, 49(3):230–243,
March 2007.

[18] Adrian Kuhn, David Erni, and Oscar Nierstrasz. Towards improving the men-
tal model of software developers through cartographic visualization. CoRR,
abs/1001.2386, 2010.

[19] Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin. Visualization-based
analysis of quality for large-scale software systems. In ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated software engineer-
ing, pages 214–223, New York, NY, USA, 2005. ACM.

[20] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual
approach to reverse engineering. Transactions on Software Engineering (TSE),
29(9):782–795, September 2003.

[21] Andrian Marcus and Jonathan I. Maletic. Identification of high-level concept
clones in source code. In Proceedings of the 16th International Conference on
Automated Software Engineering (ASE 2001), pages 107–114, November 2001.

[22] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual
cohesion of classes for fault prediction in object-oriented systems. IEEE Trans-
actions on Software Engineering, 34(2):287–300, 2008.

[23] Cédric Mesnage and Michele Lanza. White Coats: Web-visualization of evolving
software in 3D. VISSOFT 2005. 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 0:40–45, 2005.

[24] Andreas Noack and Claus Lewerentz. A space of layout styles for hierarchi-
cal graph models of software systems. In SoftVis ’05: Proceedings of the 2005
ACM symposium on Software visualization, pages 155–164, New York, NY, USA,
2005. ACM.

BIBLIOGRAPHY 57

[25] Steven P. Reiss. The paradox of software visualization. VISSOFT 2005. 3rd IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
page 19, 2005.

[26] George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Robbins, David
Thiel, and Maarten van Dantzich. Data mountain: using spatial memory for doc-
ument management. In Symposium on User interface software and technology
(UIST ’98), pages 153–162, 1998.

[27] Kael Rowan. Code canvas, March 2009. http://blogs.msdn.
com/kaelr/archive/2009/03/26/code-canvas.aspx, archived at
http://www.webcitation.org/5mceC6NVX.

[28] Terry A. Slocum, Robert B. McMaster, Fritz C. Kessler, and Hugh H. Howard.
Thematic Carthography and Geographic Visualization. Pearson Prentice Hall,
Upper Saddle River, New Jersey, 2005.

[29] Margaret-Anne D. Storey, Davor Čubranić, and Daniel M. German. On the use of
visualization to support awareness of human activities in software development: a
survey and a framework. In SoftVis’05: Proceedings of the 2005 ACM symposium
on software visualization, pages 193–202. ACM Press, 2005.

[30] Marc Strickert, Stefan Teichmann, Nese Sreenivasulu, and Udo Seiffert. High-
throughput multi-dimensional scaling (HiT-MDS) for cDNA-Array expression
data. In Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja, and Slawomir Zadrozny,
editors, ICANN, volume 3696 of Lecture Notes in Computer Science, pages 625–
633. Springer, 2005.

[31] Maurice Termeer, Christian F.J. Lange, Alexandru Telea, and Michel R.V. Chau-
dron. Visual exploration of combined architectural and metric information. VIS-
SOFT 2005. 3rd IEEE International Workshop on Volume, 0:11, 2005.

[32] Jürgen Wolff v. Gudenberg, A. Niederle, M. Ebner, and Holger Eichelberger. Evo-
lutionary layout of uml class diagrams. In SoftVis ’06: Proceedings of the 2006
ACM symposium on Software visualization, pages 163–164, New York, NY, USA,
2006. ACM.

[33] Rajesh Vasa, Jean-Guy Schneider, and Oscar Nierstrasz. The inevitable stability
of software change. In Proceedings of 23rd IEEE International Conference on
Software Maintenance (ICSM ’07), pages 4–13, Los Alamitos CA, 2007. IEEE
Computer Society.

[34] Colin Ware. Information Visualisation. Elsevier, Sansome Street, San Fransico,
2004.

[35] Richard Wettel and Michele Lanza. Visualizing software systems as cities. In
Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visualizing
Software For Understanding and Analysis), pages 92–99, 2007.

[36] James A. Wise. The ecological approach to text visualization. J. Am. Soc. Inf.
Sci., 50(13):1224–1233, 1999.

http://blogs.msdn.com/kaelr/archive/2009/03/26/code-canvas.aspx
http://blogs.msdn.com/kaelr/archive/2009/03/26/code-canvas.aspx
http://www.webcitation.org/5mceC6NVX

	Introduction
	Software Cartography
	Structure of this thesis

	State of the Art
	Topic Maps
	ThemeScape and SPIRE
	Atlas der Politischen Landschaften

	Software Maps
	UML diagrams.
	Graph drawing.
	Treemap layout

	Cartography metaphors for software

	Software Cartography
	Lexical similarity
	Multidimensional scaling
	Iterative scaling
	Quality indicators
	HiT-MDS

	Hill-shading and Contour Lines
	Evolution of a Software Systems
	Labeling

	Case Studies
	classic MDS Examples
	Color Example
	Computer Example

	Version Overview
	Ludo
	Kasai

	Open-source examples
	Thematic cartography examples

	Discussion
	Obstacles in the way of Software Cartography
	Lexical pollution
	Heuristic HiT-MDS
	Orientation in MDS

	Future Work
	IDE integrated CodeMap

	Conclusion
	Open-source Examples
	Tomcat
	Columba
	Google Taglib
	JFtp
	JoSQL
	JCGrid
	Compire

	User Guide
	Installation
	Click-Through Example
	Opening The Thesis Examples
	Opening A Java File System
	Setting Up A Version Example
	Changing Parameter

