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Abstract

Knowing the run-time state of objects is essential for analyzing and resolving errors in a
program. Inserting print statements into code for troubleshooting is considered bad practice
and the resulting output is completely static. While debuggers give dynamic insight to
particular run-time states, they suffer from certain shortcomings. Furthermore, attaching
debuggers to live production systems is often not possible, and errors need to be locally
reproduced in order to debug them. DoodleDebug has previously been shown to provide
advantages over debuggers and print statements by combining the best of both worlds. This
work documents how it has been morphed from an Eclipse plugin to an independent framework,
to be utilized both, in development and production systems. In particular, its built-in support
for HBase and decentralized data management makes it a reasonable logging solution for
clustered applications with performance requirements.
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1
Introduction

To understand and debug a program, developers rely on tools to track its run time states during execution.
Two common strategies are inserting System.out.println statements in source code and using a
debugger. Both have exclusive advantages and drawbacks compared to each other, which is the reason
why we introduced DoodleDebug, trying to get the best of both worlds.

1.1 What is DoodleDebug?
One method for understanding a program’s state is to insert print statements, like System.out.-
println in Java, that output relevant state information. This method is quick and allows programmers
to compare different states in time of a specific object. However, this output is static and comes with a
couple of conceptual restrictions. On the one hand, the level of detail is hardcoded through the textual
representations of objects. If a developer decides to use a simple and clear way of representation, they will
need to rewrite their code for any further inspection and re-run the program after every change, which is
particularly a problem for long-running programs. If they initially choose a detailed and verbose object
representation, the output will grow and become tedious to read. As McConnell explains in the book,
Code Complete [14, p. 539], “put[ting] print statements in the program to find the defect [...] is not
adequate”, and lists “scatter[ing] print statements randomly throughout a program” in “The Devil’s Guide
to Debugging”.

Another drawback of textual representation is caused by the simplicity of plain text. Its one-dimensional
nature prevents the user from encapsulating multidimensional object representations. In other words,
objects using line breaks in their toString representation cannot be nested consistently, since switching
to a new line is always a final operation.

A different widely adapted approach to understanding program states are debuggers [10]. When
utilizing a debugger, a program can be stopped at some specific point of its execution, allowing developers
to inspect any detail of state. A clear advantage over textual output is the ability to inspect objects on
demand. Any information in the current state can be gathered without having to manipulate the program’s
code or re-running it. McConnell states that “[m]ost of the defects [...] will be minor oversights and typos,
easily found by [...] stepping through the code in a debugger” [14, p. 535].
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CHAPTER 1. INTRODUCTION 6

The drawbacks of classical debuggers arise from the fact that their inspector is always bound to a
specific point in time and therefore makes it impossible to directly compare different states of the same
object. There have been approaches to this problem by enhancing debuggers to memorize different object
states over time, so that users could move back and forth among execution steps. However, those solutions
suffer from performance issues and only run reasonably fast when cut down, resulting in loss of relevant
information [12].

DoodleDebug attempts to combine the power of the above mentioned tools while avoiding their
downsides. Its output is generated through an API taking its cue from System.out.println. A
developer simply needs to call Doo.dle(object), henceforth referred to as doodling1, to graphically
visualize an object of any type. Hence, DoodleDebug’s usage, as well as that of System.out.println,
is orthogonal to the control flow of debuggers; they can be used in combination. A debugger can step over
one Doo.dle statement at a time and a graphical representation, called doodle, of the object provided as
argument instantly appears. On the other hand, when a program is held still by a debugger, the user can
make it evaluate any custom expression, including Doo.dle statements.

For simple customization of object representations, a class can override its default rendering by
implementing the Doodleable interface, which contains 2 methods, doodleOn and summarizeOn.
In contrast to Java’s toString, there are two methods, allowing developers to define representations on
two levels of detail. This distinction allows inspection of objects directly in the output window.

As output format, DoodleDebug uses the web standards HTML and CSS to enhance formatting
possibilities over simple text.

The functionality DoodleDebug offers consists of the following main points:

1. A log of all states of an object when it was doodled in the past

2. Zooming into one particular state in the log for more detail

3. A lean API for doodling objects

Figure 1.1 shows the doodle of a Map<String, Color> object containing three entries, using the
default rendering for maps. Each key and value object is clickable to inspect it for more detail.

Figure 1.1: Doodle of a map from strings to colors with built-in renderings only.

1Buffy: “What is this?” Willow: “A doodle. I do doodle. You too. You do doodle too.” – from Buffy the Vampire Slayer
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1.2 Extending DoodleDebug to a Clustered Environment
The initial goal of the DoodleDebug project was to create a new tool for simple, quick, but powerful
debugging during development. The first iteration focused on local usage inside an IDE, making the tool
obsolete in production mode. However, some applications, like web servers, still require ways to visualize
their state during run time. Developers usually rely on text-based logging libraries that work similar to
System.out.println, but write to a file instead of directly to a console. Since DoodleDebug utilizes
a similar workflow to System.out.println, but introduces more features, it suggests itself to also
be used for run-time state visualization. Considering that there are applications running many instances
simultaneously, e.g. clustered web servers, we aimed on a setup that would scale well in this case.

In order to realize those goals, an extensive refactoring of DoodleDebug’s architectural structure was
required. On the one hand, all dependencies to Eclipse needed to be eradicated and, where necessary,
features re-implemented in a more environment-agnostic way, so that DoodleDebug could be used in
virtually any application, during development and production. We achieved this by integrating a standalone
web server for serving the output and utilizing websocket communication between web front end and said
server for dynamic user interaction.

On the other hand, the new setup should be able to handle a great amount of doodling traffic, possibly
from multiple applications logging to the same database. We considered various architectural options,
discussed their individual assets and drawbacks, and finally decided for fat client setup. Each application
contains the full DoodleDebug rendering stack and sends processed data to a database, which by default is
an HBase and possibly shared with other applications.

We carried out performance benchmarks, comparing various possible DoodleDebug setups with related
other technologies. Furthermore, we integrated DoodleDebug into an open source application to evaluate
the difficulty of such a process.

For more clarity, we’ll henceforth refer to the first release as DoodleDebug 1, and analogously Doodle-
Debug 2 for the new one introduced here.



2
Related Work

As DoodleDebug affects debugging during development as well as in production mode, and works for
single applications as well as clustered systems, there are several areas of related work to consider. We’ll
omit the part of local, development debugging tools like System.out.println or classical debuggers
since they’ve already been discussed in previous work related to DoodleDebug [16].

2.1 Precompiling and Run Time
This section covers related work that operates before and during the logging process, i.e. influences the
content to be logged.

2.1.1 Apache log4j
For classical logging in Java, log4j is one of the most widely used libraries available. It provides
basic differentiation into 7 levels of importance for logging calls, which can then be filtered for output
generation [9]. The output can be written to any target using appenders [9]; which makes it possible to let
several instances of a clustered application to write into one log, e.g. a clustered HBase.

However, log4j is completely text-based without any further formatting options or features for graphical
representations. Furthermore, output is static, meaning that abstraction is limited to predefined importance
levels and requires many carefully organized logging statements in user code.

2.1.2 LogEnhancer
Since the only information about an application’s inner state in production mode is usually a simple log
file, diagnosis in case of an error is generally difficult. LogEnhancer [22] aims to improve post-failure
debugging of such systems by detecting log calls at compile time and extending them with more related
variables to be printed into a separate log file. That way, the original log works on as before, but if required,
developers may fall back to the extended log file for more detailed information.

8
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2.2 Post Mortem
This section lists work about static analysis on applications or code sequences after finishing their execution,
utilizing log output and source code.

2.2.1 Log Filtering and Interpretation for Root Cause Analysis
Zawawy, Kontogiannis, and Mylopoulos [23] state that one problem of error diagnosis in large applications
is the vast amount of logged data. They propose a framework which normalizes log data and reduces it
based on user-defined goal models.

2.2.2 Problem Detection by Mining Log Text
Xu, Huang, Fox, Patterson, and Jordan [19] have introduced an approach for finding large-scale system
problems based on source code and console logs. First, textual patterns to be expected in the output are
derived from source code and converted into regular expressions. Then, vast amounts of log text are parsed
for said expressions and possible operational problems detected using a machine learning algorithm.

This method conceptually differs from DoodleDebug in the sense that it assumes large amounts of
information to be logged by default, and mines relevant information from that. User interaction is only
needed at the very end to sort out false positives. DoodleDebug, on the other hand, encourages users to log
few high-level object, which can be expected later. That way, the log remains concise while implicitly
holding more information.

2.2.3 SherLog
Based on source code and log output, SherLog [20] infers control flow and data information to help
programmers debug errors that cannot be reproduced locally. First, it reconstructs the execution path a
program has taken before a certain error (path inference). Based on the execution path, it further tracks
down the value-flow of a certain variable (value inference).

2.2.4 Automated Detection of Failure Causes in System Logs
Another log parser has been presented by Mariani and Pastore [13]. It identifies dependencies between
events and values for legal behavior and generates models from them. In case of a failure, those models
are compared to the actual log and differences used to track down the root cause.



3
DoodleDebug in a Nutshell

A more detailed description of DoodleDebug can be found in previous work [16].
DoodleDebug’s visual design rationale is that layouts must be class-specific and scannable. Being

scannable means that a printed item is never much bigger than a few lines of text, so that many objects
simultaneously fit on screen, and outliers can easily be spotted. All provided visualizations attempt to use
screen-estate wisely.

DoodleDebug features a simple API that offers programmers the ability to display the state of objects at
various points during execution of a program. The API offers the simplicity of System.out.println,
with the graphical sophistication and interaction of an object inspector. In this section, we show how
DoodleDebug works from the point of view of the developer who is using it. We see how DoodleDebug
can be used to display and interact with an Address Book application and a simple role-playing game.

3.1 Canvas API
Developers can choose how objects of a class are to be doodled on a virtual canvas by implementing the
Doodleable interface. It requires the method doodleOn(Canvas). The canvas lets the developer
choose the rough layout of the doodle. It is designed to be low-friction and useful for debugging.

The Canvas API features a paradigm for simple object alignment inspired by the flow of text on a sheet
of paper. A virtual cursor is spawned in the upper left corner and ends up at the right side of each newly
printed object. Repeatedly printing objects therefore outputs them in a sequence, just like words on the
same line. Users may use two formatting methods, newLine and newColumn, where lines are nested
into columns as seen in Figure 3.1.

3.2 Inspection of Doodled Objects
To avoid the trade-off between detail level and compactness, we implemented the principle of semantic
zoom along with DoodleDebug: Every object features two levels of detail for its rendering. Objects that
are nested into others are not graphically scaled down, nor removed, but rendered in their summarized,
less detailed version.

10
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Figure 3.1: Example of a Contact class’ doodleOn() method. Dotted lines visualize the effect of the
structuring methods newLine() (orange) and newColumn() (purple). The green I-beam indicates the
final position of the canvas’ imaginary cursor.

Object doodles are divided into levels, based on their nesting depth. An object provided in the Doo.-
dle call has level 0. Every object directly referenced inside this one renders at level 1, those referenced
from level 1 render at level 2 and so on.

In DoodleDebug, objects rendered at nesting levels 0 and 1 are rendered with full detail; objects at
nesting level 2 show their summarized version. Clicking on a level 1 object opens a popup window only
showing this very object, but with more detail since it’s at the new nesting level 0 now. Level 1 objects in
this window can again be clicked in order to inspect those. This can be repeated until any end node of the
doodling graph is reached, i.e., one that has no references. Figure 3.2a shows a doodled address book (at
level 0) containing several contacts (at level 1). Clicking on one of them creates a pop-up window, moving
the respective contact object to new level 0 (Figure 3.2b).

Navigation between nesting layers inside a pop-up is aided with bread crumbs [11, p. 76-78], which
traces the currently inspected branch of the object graph, as seen in the top area of Figure 3.3. Any parent
doodle in this trace can be clicked to jump to it directly. When zooming out of the graph this way, the just
visited branch is still visible in the breadcrumbs area until the user turns into a new path.

3.2.1 Tracking an Object Over Time
Thanks to DoodleDebug’s inspection feature, the summarized representation of an object can be kept
rather terse. As an example, the state of a game can be doodled on every update cycle like in Figure 3.5.
A developer observing this output may be interested in more detail of one particular state, which can be
obtained by clicking on areas within the doodle. For instance, clicking a player list generates a popup with
the state of this object at the time of doodling (Figure 3.6).

In this example, the GameRoom and Player (Figure 3.4) classes define a custom rendering. Other
types, like the player list or booleans representing the alive/dead state are rendered by DoodleDebug’s
defaults.

3.3 Plugins
There are cases where implementing the Doodleable canvas is not a satisfying option for developers.
If they don’t have access to the source code, there is no (clean) way to add an interface. Also, the
Doodleable API only provides primitive formatting options.

The second layer hooks in on a lower level by allowing users to provide RenderingPlugins, which
are also used internally for DoodleDebug’s built-in renderings. At the plugin level, the user can directly
control the generation of HTML, CSS, and JavaScript.
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(a) An address book only showing the summaries
of its addresses. Clicking reveals the details in
Figure 3.2b.

(b) A popup showing the details of an address.

Figure 3.2: Exposure of a contact object at two different levels of detail.

Implementing Plugins For advanced arrangement or additional features like coloring, DoodleDebug
includes the option to provide plugins. They must implement RenderingPlugin, which is most easily
done by extending the built-in AbstractPlugin. Each plugin holds information about the object types
it is able to render. Instead of drawing to a virtual canvas, a plugin receives an HTML Tag object and
renders its own HTML code into this tag. The principle of semantic zoom is retained through two different
methods for different detail levels. In addition to HTML code generation, plugins have the option to
cleanly provide CSS rules and individually adjust class attributes assigned to object doodles.

For instance, someone may be particularly interested in quotation segments inside text strings. They can
override DoodleDebug’s default rendering for String type objects by creating a RenderingPlugin
as in Figure 3.7. In our example, quotations are defined as text snippets starting and ending with quotation
marks, thus, we simply replace wrap such occurrences with an HTML q tag by using regular expressions1.
After styling q elements in an eye-catching way with simple CSS rules and doodling a test string, quotation
snippets can be easier found in running text (Figure 3.7).

3.4 Built-in Renderings
Not all classes implement the Doodleable interface. For those that don’t, DoodleDebug defaults to built-
in renderings. Currently, there are built-in renderings for arrays, primitives, booleans (Figure 3.9), classes
(Figure 3.11), collections (Figure 3.5 and Figure 3.10), colors (Figure 1.1), images (various types), Maps
(Figure 1.1), null values (Figure 3.9), objects (Figure 3.12), strings, tables (rectangular two-dimensional
arrays and collections, Figure 3.13) as well as Throwables (Figure 3.14). For every supported type, two
default renderings are needed; one for the detailed view and one for the summarized view.

We know from previous work that 77 % of custom toString()methods print out the class name [17].
We therefore tried to find renderings that always show the class name, but do so in a space-efficient way.

1http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
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Figure 3.3: The labels at the top are bread crumbs. The developer is currently looking at a Level object,
which is the member of an ArrayList, which is the member of a GameWorld. The object that was doodled
was the GameWorld object. The developer was previously zoomed in to player but zoomed out again to
Level.

public class Player implements Doodleable {
public void doodleOn(DoodleCanvas c) {

c.draw(name);
c.newLine();
c.draw("Alive?");
c.draw(isAlive);
c.newColumn();
c.draw("Life points:");
c.draw(lifePoints);

}

public void summarizeOn(DoodleCanvas c) {
c.draw(name);
c.draw(isAlive);

}
}

Figure 3.4: Program code defining a Player’s rendering. The Doodleable interface enforces two
methods referring to different levels of detail.

Furthermore, all plugins attempt to use screen estate wisely and not blatantly waste space in comparison to
System.out.println.

3.5 Features
In this section, we list some of the conceptual characteristics of DoodleDebug, both the ones that were
there in 1.0 and new ones introduced in this iteration.

3.5.1 Lean API
The DoodleDebug API is lean. It features three ways for developers to interact with it, though most will
only ever use the first two.

• The Doo.dle(Object) method as a drop-in replacement for System.out.println
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Figure 3.5: A DoodleDebug console showing the doodles of GameRooms. The boxes beside each are
summarized booleans and indicate if the player is alive.

• The Doodleable interface and the associated interface DoodleCanvas, in which objects can
define simple custom representations

• The RenderingPlugin interface, which allows developers to provide powerful custom render-
ings for any type, based on HTML and CSS; source code access is not required here.

Altogether, DoodleDebug features no more than 10 public methods.

3.5.2 Configuration-Free
A key question in the design of a user interface is the level of configurability exposed to users. Highly
customizable solutions may be better for power users who are very familiar with the software in question.
Other users may always remain on default settings, independent of their suitability. We followed the advice
of Norman [15, p. 199-200] and Buxton [3, p. 102], which says not to treat everyone as a designer, but
rather take away design decisions from users by creating sophisticated defaults. As a consequence, there is
no settings dialogue or file for DoodleDebug.

3.5.2.1 Smart Scrolling

In general, an output console can either move its view port to the bottom when new content is appended or
stay where it was before. DoodleDebug implements the scrolling behavior of MUSHClient2 and mIRC3:

2http://www.gammon.com.au/mushclient/
3http://www.mirc.com

http://www.gammon.com.au/mushclient/
http://www.mirc.com
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Figure 3.6: Details of a GameRoom from Figure 3.5.

Figure 3.7: A simple string with its default representation (top) and a custom one created through a simple
RenderingPlugin (Figure 3.8).

The viewport will only be moved to the bottom if it already was there before new content was added. If
the user doesn’t scroll away from the bottom, they will benefit from notifications about new doodles. On
the other hand, users can scroll up to an old doodle without being bounced away when new objects are
doodled.

3.5.2.2 Notifications

When new objects are doodled, DoodleDebug autonomously decides whether to set focus to the Doodle-
Debug output view for user notification or not. The crucial factor for this decision is the elapsed time since
the last doodling. Focus is gained if more than 4 seconds have passed and always for the first doodle of a
program run.

When debugging a program with many output events per second, like a game, there is no sense in
always notifying the user. Either they keep their attention on the output as they see it’s rapidly changing,
or they work somewhere else in the UI and don’t want to be pulled back every time [16].

For a program expected to be silent in general, there’s no need for suppressing eventual output
notifications. One use case could be an unplanned exception that’s caught, but doodled in order to inform
the programmer about a possible problem.
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public class StringPlugin extends AbstractPlugin {

@Override
public Set<Class<?>> getDrawableClasses() {

Set<Class<?>> hs = new HashSet<>();
hs.add(String.class);
return hs;

}

@Override
public void render(Object object, Tag tag) throws DoodleRenderException {

String string = (String) object;
string = string.replaceAll("\"([a-zA-Z1-9.,;!? ]*)\"", "<q>$1</q>");
renderSimplified(string, tag);

}

@Override
public void renderSimplified(Object object, Tag tag)

throws DoodleRenderException {
tag.add(object);

}

@Override
public String getCSS() {

return "." + this.getClassAttribute() + " q {"
+ "font-size: 120%; color: #0af;}";

}
}

Figure 3.8: A simple plugin for custom string representation, resulting in Figure 3.7. AbstractPlugin
partially implements RenderingPlugin for convenience. The two methods render and
renderSimplified originate from DoodleDebug’s semantic zoom feature and should both represent
the same object in HTML, once in a detailed version and once reduced to most essential information to
spare space.

3.5.3 Output Grouping
In favor of overview and clarity while reading, DoodleDebug virtually separates logs of different applica-
tions using a key, called application name, for each log. By default, this is the canonical name of the main
method’s class, e.g. ch.unibe.scg.example.MyApplicationMain. In order to merge logs of
multiple applications, or to split one up in to multiple others, developers may override the currently used
log by calling DoodleDebug.setApplicationName(String).
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Figure 3.9: Summarized and detailed ren-
derings of booleans.

Figure 3.10: A doodled array of maps from strings to collec-
tions. The collections are rendered as summarized.

Figure 3.11: Rendering of a class object.

Figure 3.12: The standard rendering of an object,
visualizing all of its fields.

Figure 3.13: DoodleDebug’s rendering of an array
containing numbers, featuring decimal point align-
ment
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Figure 3.14: Rendering of an exception.



4
Leveraged Problem Solving

There are two major problems with current production software environments we’re trying to tackle with
DoodleDebug. Debugging is difficult and time-consuming [1], and monitoring a system in production
mode is inconvenient, since in case of a failure, log messages are usually the only run-time information
available to developers [21].

4.1 Debugging
Debugging in production environments can be tough. Attaching a remote debugger requires adequate
security measures, like SSL tunneling, to prevent third parties from reading sensitive data. As an alternative,
static text-based output may not always be verbose enough to close in on a certain bug [21].

One possible approach is to locally duplicate or imitate the production environment and try to reproduce
the error. However, this is often not a realistic option due to privacy concerns or high costs for exact
in-house replication of the live system [21]. Systematic problem solving through classical debugging
becomes impractical, and alternatives need to be found for inspecting the dynamic state of the live program
when the error occurs.

Since DoodleDebug captures the full run-time state of an object when it’s doodled, developers can still
acquire further information afterward without having to re-run the program.

In addition, this eases the resolving of so-called heisenbugs, which seem to change their behavior when
being examined [8]. For instance, a bug caused by a race condition might disappear when a debugger
pauses one thread at a critical point. On the other hand, DoodleDebug doesn’t delay program execution.
The order of doodles in the output can be used to derive execution order of tasks and detecting racing
conditions.

4.1.1 Example: NullPointerException
Let’s sketch an imaginary, but likely to occur situation illustrating the problems above. Assume we have a
Java web application rendering content, e.g. from a database, to HTML. One particular page should list all
entries of an address book from said database. However, when opening it in a browser, all we see is an
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internal server error message (code 500). Our first problem handling step is to open the application log in
order to check it for errors and warnings, where we find the lines in Figure 4.1.

Going to render AddressBook: contact.AddressBook@5b7b9223
Exception in thread "main" java.lang.NullPointerException

at website.WebsiteRenderer.renderAddressBook(WebsiteRenderer.java:12)
at website.AddressbookRenderExample.main(AddressbookRenderExample.java:17)

Figure 4.1: Sample console output after logging an AddressBook object and a thrown
NullPointerException.

As we see, our application attempts to render an instance of AddressBook before a NullPointer-
Exception is thrown. Though we can see on which line of code the exception originates, we still have
little semantic information about what is wrong, i.e. which object reference is null, whether it’s related to
missing data and if so, which data is missing. As a next step, we could open the WebsiteRenderer
class on line 12 and try to guess which variable is null. However, we still wouldn’t know the context at the
moment before that exception is raised, and thus, we’d probably attach a debugger, set a breakpoint and
start exploring the program’s state right then. Notice that if our application is running on a production
server, enabling remote debugging on the JVM may be unacceptable due to security concerns, so we’d
need to run it locally with a local copy of the online database as well.

Now let’s look at the same situation, but with logging statements replaced with Doo.dle ones and
exceptions being doodled as well instead of just printed to the log. Instead of checking the textual log, we
now open DoodleDebug’s output page and see the doodles in Figure 4.2.

Figure 4.2: The same AddressBook object and NullPointerException as in Figure 4.1 visualized
using DoodleDebug. The circled third entry is a indicates a missing object, i.e. a null reference.

We see there’s something wrong with the third entry (circled in red) in our AddressBook object, since
it shows no image. To inspect it further, we click on the address book, which opens the lightbox popup in
Figure 4.3, revealing more details.

Thanks to semantic zooming, we’ve gained some verbosity and now see that the third contact in our
address book is null, being likely to have caused above NullPointerException. We’ve found the semantic
root cause of an erroneous web page with just a few clicks and neither had to open a log file nor read any
code or do any debugging.



CHAPTER 4. LEVERAGED PROBLEM SOLVING 21

Figure 4.3: Detailed AddressBook rendering seen after clicking it in Figure 4.2.

4.2 Checking System Health
Maintainers of a production environment are interested in keeping it healthy and detect problems as quickly
as possible. Such problems usually cause warnings or errors on the used logging system, so periodically
checking log files can aid detecting bugs early in order to fix them.

Long-running applications like web servers usually store textual output into a simple text file for
persistence. To check this file’s content, one needs access to the server’s file system where it’s stored. This
involves launching a suitable command line or visual tool, logging in, locating said file and displaying it.
Once opened, the amount of aggregated content can make it hard to distinguish critical warnings and errors
from less important output, since there is no differentiation in format as seen in Figure 4.4a. Furthermore,
stack traces of deeply nested exceptions may either claim plenty of lines or be cut off at some point.

In contrast, DoodleDebug exposes its output on a web page, letting the user skip some steps to view it.
Moreover, Throwables have a built-in special visualization, letting them clearly stand out from most other
doodles as seen in Figure 4.4b. Based on DoodleDebug’s semantic zooming feature, nested exceptions
aren’t fully printed to the main output screen. In fact, just the two outermost levels are initially visible, and
clicking them reveals more deeply nested exceptions.
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...
No printLogoImg property found under Node de
No printLogoImg property found under Node fr
No printLogoImg property found under Node en
Connecting to SMTP server...
Email sent to ananymousform@example.com
User logged in: Alan Turing
User changed password: Alan Turing
User logged out: Alan Turing
User logged in: Haskell Curry
User ordered a pizza: Haskell Curry

with pepperoni
with extra cheese
with onions
with olives

No printLogoImg property found under Node de
No printLogoImg property found under Node fr
No printLogoImg property found under Node en
java.lang.RuntimeException: java.lang.

↪→ NumberFormatException: For input
↪→ string: "2,3"

at webform.FormParser.main(FormParser.
↪→ java:36)

Caused by: java.lang.NumberFormatException:
↪→ For input string: "2,3"

at sun.misc.FloatingDecimal.
↪→ readJavaFormatString(Unknown Source)

at java.lang.Double.parseDouble(Unknown
↪→ Source)

at webform.FormParser.main(FormParser.
↪→ java:34)

Connecting to SMTP server...
Email sent to pizza@example.com
User logged out: Haskell Curry
...

(a) Sample plain text output of a web server applica-
tion. An exception can be hard to spot in between less
important output if there is no strong visual differenti-
ation. (b) With DoodleDebug, exceptions are rendered in a way

that visually highlights them, using flashy colors and a
monospace typeface.

Figure 4.4: Comparison of an exception between other printed objects in plain text and DoodleDebug



5
DoodleDebug Internals

DoodleDebug includes a number of improvements over plain-text monitoring systems. While some of
those advantages originate in the basic idea behind DoodleDebug and were there since DoodleDebug 1,
others have been introduced in this iteration with the clustered, more modular setup.

DoodleDebug library

Rendering

Pu
bl

ic
 A

PI
 fo

r P
ro

du
ce

rs

Doodle database 
API

User application
User application

DoodleDebug 
Webapp

Doo.dle(object) DoodleDebugWebapp.startServer()

Database
(e.g. HBase) User application

DoodleDebug.setDatabaseMap(...)

Figure 5.1: The DoodleDebug library with its public APIs and how it interacts with databases, the
DoodleDebug webapp and user applications

As seen in Figure 5.1, the main DoodleDebug library provides two major public APIs: One for user
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applications producing output and one for those reading it. The public API for producers has barely
changed since DoodleDebug 1, it contains methods to write objects to the log and customize visualizations
by providing plugins. However, a new API was introduced to manage the connection and handle accesses
to used databases. Also, a standalone web application was created to eradicate dependencies to Eclipse
and make DoodleDebug more widely applicable.

This section first describes general steps for doodling an object, a mechanism that hasn’t changed in
concept since the beginning. After that, newly introduced features and patterns in DoodleDebug 2 are
described from a technical point of view.

5.1 Rendering
After a request for doodling an object has been received, DoodleDebug analyzes its type and searches for a
fitting rendering in the different customization layers. If none is available, a default rendering is used.

5.1.1 Traversing Object Types
Renderings are iteratively searched for all types and supertypes of an object, starting at the innermost type,
defined through the object’s class name. As long as no rendering has been found, the algorithm traverses
the inheritance tree in a layer-wise manner, always preferring the class type over interface types inside a
layer. In other words, this algorithm starts searching on the object’s direct class and interface types, then
goes on for the class’ and interface’s direct ancestors and repeats until a match is found or all leaves are
reached. The only type excluded from this search is the Object type, since it might be reached before
some interface types.

5.1.2 Output
As output format, DoodleDebug uses HTML. This assures great compatibility among various platforms
and facilitates integration into third-party applications. Previously, Eclipse’s built-in browser component
would be used to present the resulting page to users and handle communication needed for interactivity. As
described before, all dependencies to Eclipse were removed as of DoodleDebug 2, among other things by
embedding Jetty for a stand-alone HTTP server and switching client-server communication to WebSockets.
Users now view DoodleDebug’s output directly in a standalone web browser.

5.2 Doodle Database API
The newly introduced database API manages how and where doodles, plugins and other meta data are
stored. It’s used internally by DoodleDebug itself, but is also partially exposed to the public: User
applications can perform actions like reading doodles or configuring custom database connections.

5.2.1 Reading Doodles Programmatically
The doodle database API exposes public methods for loading stored doodles. To do so, a third-party
application may simply create an instance of DoodleDatabase, which will automatically connect to
the currently configured underlying database. Relevant methods for reading are hasNewDoodles(),
checking whether doodles exist that haven’t been read yet, and loadNewDoodles(), loading new
doodles and returning a List<Pair<String, String>>. Each doodle is represented by two strings,
containing HTML and CSS information, respectively.
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However, those strings do not consist of plain HTML/CSS, but are wrapped into a JavaScript snippet
that will insert them in the right place inside the output page once executed. For more modularity, it would
be desirable to store and return HTML/CSS snippets unwrapped and let client applications manage their
insertion into output. This issue is also listed in the future work section (7.2.1.4).

5.2.2 Custom Database Connection
When not specified explicitly, DoodleDebug defaults to a local HBase as database. To connect it to
any other storage system, DoodleDebug provides the abstract class DoodleDatabaseMap, which
is a partial implementation of the Map<String, T> interface. At run time, users may reconfig-
ure the database connection by calling DoodleDebug.setDatabaseMap(Class<? extends
DoodleDatabaseMap>) with a custom implementation class.

5.2.3 Clustered Data and Computation
One requirement was that DoodleDebug 2 should scale well for many instances of the same or different
applications running parallel and logging to the same database. Availability and response time of the
system should remain stable with any amount of doodling traffic, possibly requiring more hardware if
necessary.

We decided to use HBase as default database for persistence of Doodles and other meta data. That way,
we outsource part of the problem, since HBase includes a clustered mode and is widely used in industry.

When many application instances generate doodles at the same time, a lot of computation load needs
to be handled for rendering objects to HTML. One option would have been to let client applications simply
submit raw objects to be doodled to a central service, which would do all computation work. In case of high
traffic of doodles being submitted by clients, a single server node running a single-threaded application
would at some point fail to handle all requests in time. Computation would need to be distributed among a
clustered network of processors or computers, which in turn required implementation of a sophisticated
paradigm like MapReduce [5].

Instead, we decided on fat clients. The library used by client applications (Figure 5.1) includes the
whole rendering mechanism. It generates HTML code from objects and submits it along with necessary
meta data to a central database, which is by default an HBase, but can be configured otherwise. Since all
rendering work is done on the client side, there is no central application carrying out heavy computation
that might require clustering. The only resource shared among clients and possible bottleneck is the central
database, which by default is an HBase and thus ready for big data and scaling.

The same library in Figure 5.1 provides another API to read doodles as explained in 5.2.1. It’s necessary
to have the whole rendering mechanism available when reading doodles. When doodles are inspected
by a user, inner parts are dynamically generated as the user navigates. In summary, there is just one
DoodleDebug library providing two APIs, one for writing and one for reading.

5.3 The Webapp
Though DoodleDebug’s output was always based on HTML, it only worked as an eclipse plugin in Dood-
leDebug 1. As of DoodleDebug 2, we decided to eliminate all dependencies to Eclipse to achieve greater
flexibility. We built a webapp that utilizes our doodle database API for reading doodles and displaying
them on a web page.
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5.3.1 Live Updates via WebSockets
DoodleDebug’s dynamic nature with instant appearance of new doodles and users able to inspect them
requires bidirectional communication between the front and the back end of the application. Previously,
output was displayed in a browser component embedded into eclipse which could be controlled program-
matically. As the front-end consisted of the embedded browser’s page context, and the back-end was
eclipse plugin code, communication was quite simple and straightforward. HTML could be directly passed
to it and displayed, JavaScript snippets directly executed and listeners attached to events like location
changes.

With the browser no longer being controlled from the outside, a new way of font-back-end communi-
cation was required. Now, a WebSocket1 connection is maintained between the webapp and each client
page, emulating communication in both directions.

The WebSocket protocol is one of the major innovations coming with HTML5, allowing applications
to have a steady connection between two nodes, e.g. client and server of a web site. In contrast to
communication via HTTP, no more repetitive client-side polling is needed and overhead is reduced since
the HTTP header is omitted. As of 2014, WebSockets are widely supported by web browsers and thus
reasonable to use as part of a developer tool.

5.3.1.1 Server to Client

In DoodleDebug 1, the server-side application controlled the browser and thus could simply execute a
JavaScript snippet inside. Recurrent operations, like appending doodles to the output, were triggered
that way. For instance, adding a doodle’s HTML code worked by executing a snippet of the form
addCode(’<p>test</p>’), where <p>test</p> is that doodle’s HTML representation. Such
functions as addCode were all pre-implemented on the client side, i.e. in the page context.

Websockets are message-based, i.e. one node sends a message to the other, consisting of a key and a
value. We simply replaced JS function calls on the server side by socket messages with a function name as
key and argument as value. On the client side, a listener works as a proxy and invokes those functions
with received arguments. Using our above example, a Websocket message with key addCode and value
<p>test</p> would be sent to the client, which executes the corresponding function.

5.3.1.2 Client to Server

Communicating from client-side code to the server application had been tricky inside an embedded
browser, since a website is basically running inside a sandbox. As a workaround, we had introduced
pseudo-protocols in DoodleDebug 1: Client-side JavaScript code triggers a location change, as if the user
would navigate to a new page. But instead of a hyperlink like http://example.com/, the target
location looks like key:value, where key is one of several pre-defined pseudo-protocol ids and value
the content of a message. For instance, a user might click on a doodle to inspect it, e.g. the one with id 23.
The client-side JavaScript code would now trigger a location change to doodledebug:23, virtually
representing a request for inspecting doodle number 23. The server would listen to the embedded browser’s
location change events, decode the message and take appropriate actions. In our example, this would mean
to render the clicked doodle’s next level of semantic zoom and insert it to the output.

Replacing this mechanism with websockets was straightforward: We replaced the location change
calls by messages to the remote socket, using key as message key and value as message content.

1Specification: https://tools.ietf.org/html/rfc6455

https://tools.ietf.org/html/rfc6455
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5.4 User Classes
When inspecting a doodle (see 3.2), new doodles popping up in a lightbox are generated on the fly. For
instance, when an addressbook’s doodle is visible in the output and the user clicks on a certain contact
inside, DoodleDebug will foreground that contact by rendering it exclusively with more detail. As this
rendering is done dynamically, objects like this contact need to be somehow stored and revived when
needed. To deserialize an object from database, its own class file and dependencies need to be loaded
into the current JVM. Furthermore, a custom rendering plugin for the object’s type may exist, so this one
needs to be loaded as well to always get the same rendering results. Since doodle inspection can happen
anywhere and at any time, all classes required for an object’s deserialization and rendering need to be
stored in a database.

5.4.1 Deriving Dependencies
To resolve dependencies of objects to be doodled, DoodleDebug uses ASM2, a Java bytecode analysis
and manipulation framework focusing on performance. For manipulating and reading static program data,
ASM uses the visitor design pattern [6]. Dependencies are mined by using a custom Remapper that
doesn’t change anything, but keeps track of all relevant types, like fields, while passing them.

Third-party types are detected by their package name: By convention3 [7], we assume that all types
inside a package matching ch.unibe.scg.doodle.* are related to DoodleDebug and all others
come from a third party.

5.4.2 Storage and Instantiation
In the used database, a separate table is created solely for third-party classes. Their file’s content is stored
in base64 encoding, indexed by canonical name. As a consequence, one class file will never be stored
multiple times. There is no versioning mechanism yet; if a class file has changed since the last save, the
old one will simply be overridden, which might lead to unexpected results in the output. However, fixing
this problem is not trivial and part of our future work list (7.2.1.2).

When required for rendering an object, classes are read from the database, stored into the OS’ temporary
directory and instantiated through a URLClassLoader.

2http://asm.ow2.org/index.html
3https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

http://asm.ow2.org/index.html
https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html


6
Validation

As DoodleDebug was already validated in terms of usability in previous work [16], we’ll focus more on
technical aspects in this section, especially related to changes coming with DoodleDebug 2.

6.1 Performance
The fact that DoodleDebug features more sophisticated renderings than classical logging solutions suggests
that its computation cost for visualizing a certain objects will be notably higher. This raises the question,
how much of a performance penalty is to be expected, and where the bottlenecks in the doodling pipeline
are. This section documents performance measurements we conducted and draws conclusions from
acquired data.

6.1.1 Setup
We wrote a small application for repetitive logging of an object using one logging mechanism at a time. A
total of 8 different logging setups were combined with two different objects to be logged. For a test run,
the object in question would be logged 10n times, with 0 ≤ n ≤ 6. After each test run, the application was
stopped in order to make sure potential initialization processes by logging systems needed to be executed
every time for equal preconditions.

All HBase-related tests were executed on the system the HBase was running on. In the case of a
clustered HBase, the running machine held the role of the HBase master node. Furthermore, log4j’s
logging file was configured to a location on the same drive as standalone HBase’s persistence directory.

Execution time was measured by reading System.nanoTime() right before the first and right after
the last logging call. To prevent random outliers, each test was run three times and the median result taken
into account. Test runs that had not terminated after one hour of execution were aborted and left blank in
the results.

Tests were carried out on a machine running Linux Mint 17.1 with an AMD FX-6100 (6 cores,
3.30GHz) CPU, 8 GB DDR3-1333 RAM as main storage and a Samsung SSD 840 Basic for mass storage.
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6.1.1.1 Logged Objects

The first set of performance tests logged an object of type NullPointerException, directly instanti-
ated by using the constructor new NullPointerException(). The resulting doodle can be seen in
Figure 6.1.

Figure 6.1: Doodle of the NullPointerException used for logging performance tests. Since it was
instantiated directly and never thrown, the stack trace consists of one single item only.

The second object used was a String containing 121 characters. It can be seen in Figure 6.2 in its
doodle representation.

Figure 6.2: Doodle of the String used for logging performance tests.

6.1.1.2 Logging Configurations

As output channels, we used the following configurations:

• DoodleDebug with clustered HBase: Doodles and other meta data are persisted to a clustered
HBase containing three nodes. The system running our test acts as master node.

• DoodleDebug with standalone HBase: Data is persisted to a local, standalone HBase. This means
that no HDFS1 is used, but data is persisted against the local file system.

• DoodleDebug without HBase: Instead of connecting to an HBase, data is persisted to RAM, which
prevents expensive I/O operations. This is achieved by providing a custom DoodleDatabaseMap
which maintains a static Map keeping all (serialized) data.

• DoodleDebug without any database: The same as before, except that the step of serializing objects
for databases is skipped too and objects are directly stored to the Java map.

• Log4j with stout and file: Objects are logged using a log4j setup which stores output into a log file
and prints it to stout (the console).

• Log4j with stout: Log4j only uses stout as appender (output channel).

1https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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• Log4j bare: Log4j is configured with no appenders at all. This should reveal the cost of log4j’s
core, similar to DoodleDebug without any database.

• System.out.println: Objects are directly printed to stout (the console).

Additional measurement set-ups (DoodleDebug with Jackrabbit) are discussed in 6.2.1.

6.1.2 Results and Conclusions

Figure 6.3: Performance while logging a simple exception object. Both axes use a logarithmic scaling.
Raw data to this diagram can be found in the appendix (Table 8.1).

As expected, DoodleDebug cannot keep up with text-based logging system in terms of performance
while attached to a local, standalone HBase. However, two noteworthy observations can be made.

6.1.2.1 The Bottleneck

When not attached to HBase, performance increases dramatically, even while serialization is still active. As
seen in Figure 6.3 and Figure 6.4, serialization does not substantially elevate computation time. Therefore,
the bottleneck is obviously communication with HBase.

Theoretically, this bottleneck could be reduced by switching to a database with a higher throughput,
considering measurements without a database as a lower bound of computation time. However, this would
require a database with significantly better write performance than HBase, which most popular ones cannot
provide [4][18]. Another approach to reducing database-induced delays would be to execute operations
asynchronously, as discussed in future work (7.2.2.6).

The slightly higher computation times using a clustered HBase implies that HDFS either doesn’t
provide a performance advantage over standalone file system storage, or that those advantages are drowned
out by other additional computation costs due to the clustered setup. However, this difference appears
rather small and bearable, considering that we have a distributed, randomly accessible database in the
latter case.
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Figure 6.4: Performance while logging a string object. Both axes use a logarithmic scaling. Raw data to
this diagram can be found in the appendix (Table 8.2).

6.1.2.2 DoodleDebug Scales Well

Both, Figure 6.3 and Figure 6.4, show that DoodleDebug’s computation cost is far from linear. The reason
is a relatively high cost for initialization, happening with the very first doodle being produced. For instance,
when doodling a String object, DoodleDebug checks what renderings are available for this type (locally
and in the database), then memorizes the most prioritized one henceforth uses that for all string renderings.

In Figure 6.3, we can observe that DoodleDebug without HBase required slightly less time to render
100’000 objects than log4j, even when including serialization. However, this might be misleading, as it
doesn’t actually indicate that DoodleDebug performs better than log4j. While log4j was configured to
save its output to log files and thus did expensive IO operations, DoodleDebug’s HBase connection was
replaced by simply saving data to RAM.

6.2 Integration into Existing Software - Magnolia CMS
Since DoodleDebug 1 was an Eclipse plugin, it would only work while the application to debug was in
development stage and running inside an Eclipse instance. As we moved away from that dependency and
DoodleDebug is available as an independent library, embedding it into any application became possible.

Magnolia2 is a complex, mostly enterprise oriented open source Java CMS, aiming on modularity
and performance. The cost of these properties is a vast amount of classes present in the JVM, making it
demand a large amount of memory, even when idling. Magnolia comes in the form of Tomcat webapps and
is divided into modules, each providing a jar for that webapp. We created a Magnolia module to integrate
the mechanism of logging with DoodleDebug, such that developers could use this one instead of log4j,
which is integrated by default.

Besides allowing users to access the DoodleDebug API, we implemented a handful of Magnolia-
specific features that plug into DoodleDebug as third-party elements and exhibit its modular nature.

2http://magnolia-cms.com/

http://magnolia-cms.com/
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6.2.1 JCR as Custom Database
Magnolia utilizes the Java Content Repository specification3 as a database abstraction layer. All data is
stored and managed based on that, including graphical interfaces for end-users to view and interact with
them. As default implementing database, Magnolia ships with Apache Jackrabbit4.

JCR uses trees of nodes as data structure. Starting with one root node, each node may have multiple
child nodes, recursively. For storing data, nodes may contain properties, which consist of a key and a value,
like a string, number or binary content.

To avoid being dependent on an HBase, we wrote a class to make DoodleDebug connect to JCR
instead. This class simply extends DoodleDatabaseMap<T>, which means it needs to implement
some methods of the Map<String, T> interface in a way that map contents persist, i.e. outlive the
object itself.

6.2.1.1 Implementation and Performance

The most obvious reduction of map data to JCR is straightforward: Each map corresponds to a JCR node,
and each key/value pair is represented as a property of said node. This leads to a tree with a limited number
of nodes, which receive more properties with new objects being doodled, as shown in Figure 6.5a. This
structure was used for the first implementation and performance measurements carried out. The results,
shown in Figure 6.3 and Figure 6.4, suggest that Jackrabbit performs well for few doodles, but suffers
from an exponential slowdown. Apparently, creating new properties on nodes becomes slower with more
properties already being present.

In order to keep property numbers per node low, we implemented a second version which adds an
additional separate child node for each property, as described in Figure 6.5b. Figure 6.3 and Figure 6.4
show a notable increase in performance, though there is still an exponential growth in computation time to
be observed. The Jackrabbit wiki5 explains that big sets of child nodes per node negatively affect write
performance. As a solution, deeper hierarchical nesting should be considered. In the specific case of
DoodleDebug maps, each digit of a key could be represented as a jcr node, automatically leading to a deep
tree. For instance, a tuple with key 4321 from a map named clickables would be stored in the node
/doodledebug/clickables/4/3/2/1.

6.2.2 Impact of Full DoodleDebug Integration On Performance
While the above performance measurements provide numbers on computation time with DoodleDebug
attached to Jackrabbit, they don’t give insight into how a full switch from log4j to DoodleDebug would
impact overall Magnolia performance under realistic conditions. As a repeatable procedure with a fair
amount of logging traffic, the start up phase was chosen as reference to acquire a relevant comparison.

Since Magnolia consists of several modules which all may contribute to the log, replacing all logging
statements with Doo.dle ones would have been an ineffective approach. Implementing a custom log4j
appender in order to redirect logging requests to DoodleDebug might have introduced additional overhead
skewing results and brought along other conceptual issues, as discussed in 6.2.6. As an alternative, an
unmodified Magnolia was started up and the number of items in the log counted. Based on previous
performance measurements, the additional delay caused by DoodleDebug was estimated. Time savings due
to removal of log4j events were neglected since they are much smaller than additional time consumption
by DoodleDebug.

A full startup under default configuration in Magnolia 5.4.1 took 67,175 ms (median of three runs) and
generated 559 log4j events. Using a linear interpolation between previous measurements of 100 and 1000

3https://www.jcp.org/en/jsr/detail?id=170
4https://jackrabbit.apache.org/jcr/index.html
5http://wiki.apache.org/jackrabbit/Performance

https://www.jcp.org/en/jsr/detail?id=170
https://jackrabbit.apache.org/jcr/index.html
http://wiki.apache.org/jackrabbit/Performance
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* doodledebug

* clickables
- 0 : [...]
- 1 : [...]

* doodles_html
- 0 : [...]
- 1 : [...]

...

(a) First, most obvious implementation - each
node under doodledebug represents a map,
each property is one tuple in that map. With
more objects being doodled, no new nodes are
generated, just new properties added to existing
ones, leading to a very flat tree in the long term.

* doodledebug

* clickables

* 0
- 0 : [...]

* 1
- 1 : [...]

* doodles_html

* 0
- 0 : [...]

* 1
- 1 : [...]

...

(b) This second implementation adds a new
node for each map tuple, and stores data into
a property of it. As a result, there are no more
single nodes with huge amounts of data, which
slightly increases performance of Jackrabbit.

Figure 6.5: Schematic excerpts of resulting JCR trees with the two different implementations of Doodle-
DatatbaseMap. * marks a node, - marks a property.

(see 8.1.2) doodles, an additional delay of 224,129 ms for the naive implementation and 54,812 ms for the
optimized one would be expected. However, since the measured times appear to grow exponentially, a
linear interpolation would exceed the actual expected time and should only be seen as an upper bound. On
the other hand, a proportional continuation of measured time for 100 doodles could be referred to as a lower
bound, which would would be 60,031 ms for the naive and 45,487 ms for the optimized implementation.
In any case, the impact on start-up time would be heavy, making it a questionable solution for real-world
users. Further optimization through smarter organization of data in JCR as discussed in 6.2.1.1 might solve
this problem.

Assuming the same scenario as before, but with a standalone HBase connected to DoodleDebug, would
result in an estimated additional time consumption of 8,228 ms. In contrast to Jackrabbit connections,
execution time with HBase didn’t grow exponentially, but slower than linearly. As a consequence, linear
interpolated values should be considered lower bounds, and proportional continuations from lower data
points as upper bounds. In this case, based on the measurement of 100 doodles, an additional computation
time of 24,321 ms could be calculated as an upper bound. Thus, the actual delay caused by DoodleDebug
would make up notably less than 50% of the original start-up time in any case, which could be regarded as
a reasonable trade-off for the gained benefits.

6.2.3 Reading the Log
As mentioned before, DoodleDebug 2 consists of two parts, one that receives data form the user’s
application to save it to a database in a standardized way, and another one which reads from there to
present it to users. While embedding the former into an application is fairly straightforward by including
appropriate libraries and setting up a database, integration of the latter is more complex. It consists of a
full-fledged, standalone web server and features highly dynamic pages through excessive communication
with clients via WebSockets.

Having such a log reader directly integrated into an application’s user interface appears desirable, as
users don’t need to open a different website in order to read the log. Magnolia’s user interface consists of
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apps, which of each serves one main purpose, similar to smartphone operating systems. Apps are grouped
by topics and can be hidden for certain users, allowing us to only let developers and system administrators
access the DoodleDebug log.

Even though the primary use case for our DoodleDebug web app is to use it as a standalone appli-
cation and start it via command line, there’s a programmatic hook, DoodleDebugWebapp.start-
Server([port]), for launching it from another application. We’re using a custom magnolia module
which listens for a startup event and launches the DoodleDebug webapp on a separate port. The magnolia
app itself is configured to simply display this page embedded into the UI. Figure 6.6 shows the resulting
opened app with some sample doodles.

Figure 6.6: The DoodleDebug output embedded into a Magnolia app.

6.2.4 Multiple Instances
Magnolia is able to run on multiple instances, which are all separate Tomcat webapps. By default, there is
one so-called author instance, where editors manage and review content that’s not publicly accessible yet.
Once it’s ready for publication, data is sent to one or more so-called public instances which serve web
sites to internet users.

Those instances may run in the same Tomcat, and thus write their output into the same log file, or run
in different Tomcats and write to different logs. However, DoodleDebug allows developers to actively
decide which way to go. Doodle logs of multiple instances can easily be merged by connecting them to
one and the same database, e.g. a clustered HBase. On the other hand, two different instances may declare
unique log names, virtually separating their doodle logs for readers (3.5.3).
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6.2.5 Limitations
When trying to doodle an object that’s heavily entangled into the system, e.g. an instance of MgnlContext6,
an OutOfMemoryError may occur. The reason for this issue is that DoodleDebug tries to serialize an
object and all of its dependencies for later reconstruction when inspecting its doodle in the log, which
naturally consumes more memory with bigger object graphs.

In many cases, such an error may cause the program to crash completely, since recovering from it is
difficult as handling it might lead to its re-occurrence [2].

As discussed in 7.2.1.1, overcoming this issue programmatically is not trivial. As a workaround, users
may simply increase the amount of memory dedicated to the JVM they’re running.

6.2.6 Migrating Logging Code to DoodleDebug
By default, Magnolia uses log4j for managing application output, usually through the slf4j API, and thus
it’s obvious to do the same for third party modules. For migrating logging statements in existing code to
DoodleDebug, there are mainly two possible ways to go: Write a custom log4j appender or replace all
code snippets in question.

Writing a custom log4j appender which doodles each item to be logged seems like an elegant solution,
since existing code would remain untouched, and the logging to DoodleDebug could be arbitrarily switched
on and off. However, there are two drawbacks to this approach.

On the one hand, DoodleDebug internally uses log4, which might lead to recursive invocation of
another log task, ending in an infinite loop. This would require a detection of circular calls, which exclude
DoodleDebug-induced log requests from being propagated.

On the other hand, slf4j works with string based messages. But one of DoodleDebug’s strengths is its
ability to visualize objects based on their type and storing their run-time state for later inspection. Just
doodling textual representations would boil DoodleDebug down to the equivalent of a simple textual log
file.

Replacing all log4j related code snippets by appropriate Doo.dle statements would obviously incur
higher costs, but give developers the opportunity to make use of all features. Simple tools like search and
replace could be utilized for quick, naive replacements over large amounts of code. However, since log4j
and DoodleDebug don’t exclude each other and can be used simultaneously in the same application, a
continuous migration should work without difficulty.

6.2.7 Required Effort
With the goal of more modularity, such integrations should be possible with a reasonable amount of effort
and only little changes or additions in code. The efforts required to achieve above features contained two
parts: Java coding and configuration of Magnolia.

Coding We work with a total of two custom Java classes. One is JcrDatabase, which extends
DoodleDatabaseMap and implements methods for persisting a map to JCR. The other one is Doodle-
DebugModule, an class that’s automatically generated by the maven archetype used to generate the
module. It manages the module life cycle and contains start and stop methods executed on application
start up or shut down, respectively. We added code for registering our JCR database in DoodleDebug as
described in 6.2.1, and for starting/stopping the webapp for reading doodles.

6https://nexus.magnolia-cms.com/content/sites/magnolia.public.sites/ref/5.3.6/
apidocs/info/magnolia/context/MgnlContext.html

https://nexus.magnolia-cms.com/content/sites/magnolia.public.sites/ref/5.3.6/apidocs/info/magnolia/context/MgnlContext.html
https://nexus.magnolia-cms.com/content/sites/magnolia.public.sites/ref/5.3.6/apidocs/info/magnolia/context/MgnlContext.html
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Configuration The only configuration required was the definition of a Magnolia app for displaying
doodles, which simply embeds the output page of our webapp, as described in 6.2.3.

All those efforts are straightforward and worked well with intended paradigms of both, Magnolia and
DoodleDebug. Everything was achieved by adding code or configuration, i.e. no changes in the existing
applications or other hacks were required. A developer familiar with both worlds could probably complete
everything in a few hours.



7
Conclusion and Future Work

In this chapter, we look back at the second iteration of the DoodleDebug project, what has been achieved,
where we are standing now, and what could be improved in future iterations.

7.1 Conclusion
In previous work, the concept of DoodleDebug had been introduced. The main idea was to create a tool
for developers to understand program states by combining the most useful features of existing solutions in
a smart way. The implementation at that time focused on the development process - it was based on the
Eclipse IDE and data would be volatile with no external database attached.

During this second iteration, DoodleDebug was detached from its dependencies on Eclipse and
enhanced to a more adaptable framework. It has been split up into a part producing doodles and a second
one being able to read them. Both of these can be connected to any kind of database as specified by users
through the framework. On the one hand, developers may still use it as a debugging tool while coding on
an application, for instance by persisting data to the local file system. On the other hand, DoodleDebug
can be utilized for large-scale software running on multiple nodes. Several instances of an application
may be configured to send doodles to one and the same database, for instance through the built-in HBase
connection. Maintainers of the system may configure the DoodleDebug webapp to read from said HBase
and get insights about current or historical program states.

In terms of a logging solution, DoodleDebug silhouettes itself against text-based tools especially
through its ability to conserve run time states of an object, and its following support for post-mortem
inspection. As a common use case, additional technical context of an observed error can be acquired
without having to reproduce it locally, which often would be difficult and expensive.

However, persisting snapshots of object states causes fairly high resource costs. Computation time
increases significantly with many objects being doodled, especially compared to other logging frameworks.
While serialization is already expensive, another critical factor is the database being used for persistence.
Big amounts of data need to be stored in real time and should be randomly accessible afterwards. Doodle-
Debug currently runs completely in the thread where a visualization is triggered, in order to assure correct
order of doodles in the output. As a consequence, the main program is being blocked during that time.

37
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While the principles and features coming with DoodleDebug constitute noteworthy innovations in
terms of logging solutions, it still suffers from several shortcomings to be resolved before using it in real
world production systems. Those issues and possible solutions are listed in the future work section (7.2).

7.2 Future Work
During conceptual design, implementation and validation of DoodleDebug, several issues and possible
features were noted. They’ve been grouped into problems in the current version of DoodleDebug and
potential new features.

7.2.1 Solving Current Problems
This section lists issues with DoodleDebug that have been observed during this work, and suggests possible
solution approaches.

7.2.1.1 Smarter Serialization of Objects

Currently, deep copies of doodled objects are stored into the database for later reconstruction, using
XStream for serialization. Creating deep copies with XStream leads to problems when operating on objects
which are strongly entangled into big software. Due to growing memory needs with more dependencies,
an OutOfMemoryError may occur.

While solving this issue is relatively easy for users by just increasing the JVM’s memory, logging
software like DoodleDebug should under no circumstances break the main application.

One option would be to find a serialization solution that features a lower memory footprint. Another
approach would be to introduce smarter serialization, e.g. only serialize up to a certain number of hops on
the object’s dependency tree. However, this could lead to new problems, like missing data when trying to
inspect a doodle.

7.2.1.2 Versioning of Classes

A DoodleDebug log can be arbitrarily long-living, which leads to the problem that user-provided visu-
alizations might change over time. Technically speaking, classes containing rendering information may
change internally while keeping the same canonical name, resulting in a collision inside the class map
kept by DoodleDebug. Neither keeping the old one nor replacing it with the newer version will yield fully
satisfying results. Instead, old doodles created before a certain change in visualization code should use the
old version and vice versa to assure consistency.

Technical Difficulties One of the biggest problems is that a class can only exist once in a Java application
with the same canonical name. Attempting to change a class’ name would lead to probably insurmountable
problems, like broken dependencies. Instead, classes could be replaced by a different version for the time
of a specific rendering.

7.2.1.3 Old CSS

A related problem is that each doodle has a snippet of CSS code associated, which gets inserted into the
output page along with its corresponding HTML code. On the one hand, this is redundant when doodling
the same type with the same rendering multiple times. On the other hand, a new version of a type’s CSS
interferes with the old one.
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A possible simple solution would map each CSS snippet to its doodle, based on a unique identifier, e.g.
using an HTML class attribute. However, a more efficient way would be to detect changes in rendering,
using above discussed class versioning system, and only load new CSS when a new version is available.
Doodles would then get an HTML class attribute referring to a rendering version:

<div class="doodle string version-0">
<p>Hello World</p>

</div>
<div class="doodle string version-1">

<p>Hello World</p>
</div>

and CSS snippets would address one version each:

.string.version-0 p {
font-family: monospace;

}
.string.version-1 p {

font-family: sans-serif;
color: blue;

}

7.2.1.4 Storing Doodles Unwrapped

Currently, a doodle is stored in the database as a snippet of HTML and another one of CSS, both wrapped
into JavaScript. The historical reason for this is discussed in 5.3.1.1.

This wrapping limits flexibility for third-party applications trying to integrate DoodleDebug into
contexts different from the standard webapp. Pure HTML and CSS snippets would be more flexible to
handle and thus introduce more modularity.

7.2.1.5 Security

At present, DoodleDebug doesn’t use any kind of security mechanism to prevent third parties to read data.
There are two parts to be protected from unauthorized access: The database containing all doodles and
meta data, and the webapp exposing rendered output.

Database As of version 0.92, HBase supports SASL authentication of clients accessing it1. Thus, given
a central HBase configured like that, DoodleDebug would only need to provide an API for users to deposit
login data when reading and writing doodles.

Webapp Currently, the DoodleDebug webapp neither requires a login nor sends data in an encrypted
way. In order to prevent random users knowing the webapp’s URL from accessing output pages, jetty’s
built-in authentication and authorization features2 could be utilized. On top of that, user account and
access right information could be configured via an additional web interface and persisted in the same
database as doodles and other meta data.

However, a simple login mechanism does not solve the problem of eavesdropping attacks, where a
third party logs all traffic between server and client, and can therefore reconstruct data or even passwords,
as long as they’re sent as plain text. Also, malicious third parties may perform a man-in-the-middle
attack, which means they mock the server towards the client and vice versa, and thus can manipulate all

1http://hbase.apache.org/book.html#hbase.secure.configuration
2http://www.eclipse.org/jetty/documentation/current/configuring-security-authentication.

html
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http://www.eclipse.org/jetty/documentation/current/configuring-security-authentication.html
http://www.eclipse.org/jetty/documentation/current/configuring-security-authentication.html
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communication. To counteract this problem, a secure communication protocol like HTTPS is required. On
the one hand, this prevents man-in-the-middle attacks by safely identifying a server from a client’s point of
view, using certificates from a trusted third party instance. The drawback here is, that such a certificate
needs to be registered first at a so-called certificate authority. On the other hand, HTTPS encrypts all data
for their transport between client and server in both directions.

7.2.1.6 Concurrency

Since doodling is executed synchronously, we did not consider concurrency so far. When accessing Dood-
leDebug from multiple threads at the same time, problems may occur, especially related to its database
connection. The simplest way to prevent such problems would be to run everything synchronized using
one global monitor. However, when introducing parallelism for performance reasons, a more sophisticated
concept needs to be formed.

7.2.2 Desirable Features
DoodleDebug’s flexible nature clears the way for new features not feasible with classical logging or debug-
ging systems. This section outlines possible, but non-trivial feature ideas collected during development. It
discusses difficulties coming with them and possible approaches.

7.2.2.1 Meta Information About Doodles

There are situations where a developer sees some piece of content in the output, e.g. an error message, and
would like to locate the line of code which printed this error in order to have a good point to start analyzing
and debugging. In DoodleDebug, this could be realized by tracking back the stack trace to the Doo.dle
call, then integrate class name and line number information in each doodle’s visual representation.

Other meta data of interest for developers might be the date of a doodle or name/IP of the machine
generating it (in a clustered setup).

7.2.2.2 Categorization of Doodles

Log4j uses built-in categories for users to categorize messages by their level of importance. Based on
this, logging output can be filtered in order to adjust it to specific use cases, like debugging, where a
verbose output is desirable, or just simple monitoring, only showing warnings and errors. In DoodleDebug,
we could introduce a similar system, or even a more powerful one with features like multiple categories
(tags) per doodle or arbitrary importance levels, based on a floating point number. One huge benefit of
HTML-based output is that categories could be differentiated more powerfully, for instance by mapping
each one to a color and framing them with it.

7.2.2.3 Versioning of Doodles

As stated in previous work, one major use case of System.out.println and DoodleDebug is com-
parison between objects or an object’s different versions by printing them one after another [16]. To
enhance this type of debugging, DoodleDebug could compare objects and highlight differences in the
output. Comparison would most probably happen between consecutive prints of the same type and could
either be based on raw objects or generated HTML code of doodles.
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7.2.2.4 Command Line for Inspection

We previously argued that a big advantage of debuggers over System.out.println is the ability
to inspect any object to arbitrary detail at a certain point of execution, or even evaluate custom code
expressions [16]. Since a snapshot of the object behind each doodle is stored in the database, inspecting
that appears feasible to a certain point. Instead of working with plain java expressions, a DSL like groovy3

could be considered for more convenience.

7.2.2.5 Parallelism

Currently, DoodleDebug runs completely synchronous in the thread where the Doo.dle call is made.
A drawback of this method is the performance penalty caused by relatively expensive rendering and
serialization steps.

Letting the DoodleDebug run asynchronously and let the original thread continue might result in a
strong boost, but introduce new problems:

Mutations Objects may mutate while rendering is not complete yet, leading to unexpected results. To
overcome this issue, each object could be synchronously cloned, then its clone be doodled. Yet, this would
only make sense if the cost of cloning objects doesn’t exceed the benefits of parallel execution.

Order Chronological order of doodles in the output may not be preserved anymore, since different
objects take different times to render. As a solution, each new object to be doodles could be assigned a
timestamp, allowing applications to insert them in the right place inside the output.

7.2.2.6 Asynchronous HBase Communication

As explicated in 6.1.2, performance is heavily affected by HBase communication, but only slightly by
serialization. As soon as an object to be stored has been serialized, the main thread could safely continue
without the danger of causing inconsistencies, while a different thread would asynchronously execute
HBase operations based on the serialized object.

While this would work flawlessly for write-only operations, there are cases where asynchronous
database operations could lead to problems. For instance, doodles are indexed with consecutive numbers,
new ones based on the last number in the database. To avoid inconsistencies caused by uncoordinated read
and write access to HBase, a cache object could be introduced. This would proxy the actual HBase and
cache all communication, i.e. periodically synchronize its data with HBase.

3http://groovy.codehaus.org/

http://groovy.codehaus.org/
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8
Appendix

8.1 Logging Performance Measures Logging

8.1.1 Exception Object

1 10 100 1000 10000 100000
Doo.dle (distributed Hbase) 3035,362457 3256,101743 5378,092369 17838,51116 80836,11213 628695,5176
Doo.dle (standalone Hbase) 2202,30823 2388,061641 3765,550716 11223,29829 47622,71727 316763,8301
Doo.dle (no Hbase) 690,625234 715,625209 993,961481 1929,919923 4437,770438 13412,86478
Doo.dle (no Serialization) 527,621299 557,623999 796,754017 1447,900566 3018,674109 9825,87062
Doo.dle (Jackrabbit) 629.661565 2184.778766 81544.423888
Doo.dle (Jackrabbit, optimized) 767.59644 1897.966263 10363.266205 101041.076279
Logger.error (stout & file) 8,735859 15,821908 47,905965 206,986058 2107,475018 21281,48053
Logger.error (stout) 5,473467 7,504814 26,864249 169,059736 1887,433613 18654,00048
Logger.error (bare) 1,975852 2,060413 2,235754 5,048011 40,110254 59,639311
System.out.println 0,090877 0,459299 4,935718 44,692925 300,86698 2815,498811

Table 8.1: Time [ms] taken to log an exception object up to 100000 times
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8.1.2 String Object

1 10 100 1000 10000 100000
Doo.dle (distributed Hbase) 3060,228806 3389,720309 6449,460724 17631,99923 82559,87353 643915,0131
Doo.dle (standalone Hbase) 2348,98924 2637,000372 4350,842893 11952,64217 45157,55335 305115,0385
Doo.dle (no Hbase) 696,911506 717,205528 937,908382 1793,138938 4052,352456 12806,28842
Doo.dle (no Serialization) 515,00131 556,582099 696,858178 1258,19551 2704,244234 9302,363002
Doo.dle (Jackrabbit) 542.014391 1307.886133 10739.061657 429151.24842
Doo.dle (Jackrabbit, optimized) 636.937298 1390.13083 8137.219618 99656.403972 3004560.727409
Logger.error (stout & file) 4,3182 10,29832 36,714118 122,023731 1193,747782 12131,40346
Logger.error (stout) 0,760116 1,315547 6,658909 54,29045 997,787684 10197,36325
Logger.error (bare) 0,815181 0,905926 1,238802 3,567737 35,704638 50,53007
System.out.println 0,063425 0,495399 5,205929 46,444227 809,674804 9098,191995

Table 8.2: Time [ms] taken to log a string object up to 100000 times
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