
Magritte
Meta-Described Web Application Development

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Lukas Renggli

Juni 2006

Leiter der Arbeit

Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

ii

Further information about this work, the tools used and an online version
of this document can be found at the following places.

Lukas Renggli
renggli@gmail.com
http://www.lukas-renggli.ch

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://www.iam.unibe.ch/~scg/

mailto:renggli@iam.unibe.ch
http://www.lukas-renggli.ch
http://www.iam.unibe.ch/~scg/

Abstract

Developing applications that end users can customize is a challenge, since
end users are domain experts but still have concrete requirements. In this
master thesis we present how we used a meta-driven approach to support
the end user customization of Web applications. We present Magritte, a re-
cursive meta-data meta-model integrated into the Smalltalk reflective meta-
model. The adaptive model of Magritte enables to not only describe existing
classes but also let end users build their own meta-models on the fly. Further
on we describe how meta-interpreters automatically build views, reports,
validating editors and persistency mechanisms.

As a complete example of how we applied a meta-model to a Web application
we present Pier, the second version of a fully object-oriented implementation
of a content management system and Wiki engine. Pier is implemented with
objects from the top to the bottom and is designed to be customizable to
accommodate new needs. The integration of a powerful meta-description
layer makes it a breeze to extend the running system with new functionality
without having to patch the core engine.

We describe the lessons learned from using the Magritte meta-model to build
applications. Both projects described in this thesis are open source and can
be downloaded from the Web site of the author.

iii

iv ABSTRACT

Acknowledgements

First I wish to thank my supervisor Prof. Dr. Stéphane Ducasse for his
guidance and that he motivated me to learn Smalltalk and join the Software
Composition Group. It was a great experience to travel with him to different
places around Europe and to give presentations about my work.

I would like to thank Prof. Dr. Stéphane Ducasse and Prof. Dr. Roel
Wuyts for the discussions on the design and implementation of SmallWiki,
Pier and Magritte. Thanks for writing with me the two papers, [Duca05]
and [Reng07], which were an important point of reference for this master
thesis.

Also I would like to thank Prof. Dr. Oscar Nierstrasz, head of the Software
Composition Group, for giving me the opportunity to work in his group, for
the careful reading of this master thesis and the constructive comments that
helped me to improve it.

I would like to thank my parents for all their support and encourage-
ments during my studies. I also would like to express my thanks to all
my friends.

Lukas Renggli
June 2006

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1

1.1 Approach . 1

1.2 Outline . 2

2 Magritte 3

2.1 Context and Constraints . 3

2.2 Describing Domain Objects 4

2.3 Interpreting Descriptions . 7

2.3.1 Building Textual Views 7

2.3.2 Object Relational Mapping 8

2.3.3 Building Validating Editors 8

2.3.4 Customizing the Meta-Interpretation 10

2.4 Meta Magritte . 11

2.4.1 Adaptive Model . 11

2.5 Aare . 13

2.6 Implementation . 14

2.6.1 Descriptions . 15

2.6.2 Accessors . 15

2.6.3 Conditions . 17

2.6.4 Mementos . 18

3 Pier 19

3.1 Introduction . 20

3.2 History . 21

3.3 Pier in Action . 23

3.4 Architecture . 24

3.4.1 Separation of Concerns 24

vii

viii CONTENTS

3.4.2 Pages and Files . 25

3.4.3 Visitors . 28

3.4.4 Context and Commands 30

3.4.5 Environment . 32

3.5 Extending Pier . 33

3.5.1 Fixing broken links . 33

3.5.2 Converting documents 34

3.5.3 Security . 35

3.6 Pier at the Meta-Level . 36

3.6.1 Searching . 37

3.6.2 Persistency and Versioning 38

3.6.3 Adaptive Forms . 39

3.7 Lessons Learned . 43

3.8 Summary . 45

4 Conclusion 47

4.1 Related Work . 48

4.2 Lessons Learned . 51

4.3 Further Work . 52

Documentation 53

Magritte-Model-Core . 53

MACompatibility . 53

MADistribution . 53

MAObject . 53

Magritte-Model-Models . 55

MAAdaptiveModel . 55

MAFileModel . 56

MATableModel . 57

Magritte-Model-Description . 57

MABooleanDescription . 57

MAClassDescription . 58

MAColorDescription . 58

MAContainer . 58

MADateDescription . 58

MADescription . 58

MADurationDescription . 63

MAElementDescription . 63

MAFileDescription . 64

MAMagnitudeDescription . 64

MAMemoDescription . 64

MAMultipleOptionDescription 65

MANumberDescription . 65

MAOptionDescription . 65

CONTENTS ix

MAPasswordDescription . 65
MAPriorityContainer . 66
MAReferenceDescription . 66
MARelationDescription . 66
MASingleOptionDescription 67
MAStringDescription . 67
MASymbolDescription . 67
MATableDescription . 67
MATimeDescription . 68
MATimeStampDescription . 68
MATokenDescription . 68
MAToManyRelationDescription 68
MAToOneRelationDescription 68

Magritte-Model-Accessor . 68
MAAccessor . 69
MAAutoSelectorAccessor . 69
MABlockAccessor . 69
MAChainAccessor . 70
MAContainerAccessor . 70
MADictionaryAccessor . 70
MANullAccessor . 70
MASelectorAccessor . 70
MAVariableAccessor . 71

Magritte-Model-Condition . 71
MAAllCondition . 71
MAAnyCondition . 71
MACondition . 71
MAFalseCondition . 72
MANoneCondition . 72
MASelectorCondition . 72
MATrueCondition . 73

Magritte-Model-Memento . 73
MACachedMemento . 73
MACheckedMemento . 73
MAMemento . 74
MAStraitMemento . 74

Magritte-Model-Exception . 74
MAConditionError . 74
MAConflictError . 74
MAError . 75
MAKindError . 75
MAMultipleErrors . 75
MARangeError . 75
MAReadError . 75

x CONTENTS

MARequiredError . 76
MAValidationError . 76
MAWriteError . 76

Magritte-Model-Visitor . 76
MAVisitor . 76

Magritte-Model-Utility . 77
MADynamicObject . 77
MANamedBuilder . 77
MAPragmaBuilder . 78
MAProxyObject . 78

Pier-Model-Core . 78
PRObject . 79

Pier-Model-Kernel . 80
PRContext . 80
PRCurrentContext . 81
PRKernel . 81

Pier-Model-Structure . 82
PRChildren . 82
PRDecorated . 83
PRDecoration . 84
PRFile . 85
PRHider . 85
PRPage . 85
PRStructure . 86

Pier-Model-Document . 89
PRAnchor . 89
PRDocument . 89
PRDocumentGroup . 89
PRDocumentItem . 90
PRDocumentParser . 90
PRDocumentWriter . 91
PRExternalLink . 91
PRHeader . 91
PRHorizontalRule . 92
PRInternalLink . 92
PRIsbnLink . 92
PRLink . 93
PRList . 94
PRListItem . 94
PRMailLink . 94
PROrderedList . 94
PRParagraph . 94
PRPreformatted . 94
PRRfcLink . 95

CONTENTS xi

PRTable . 95
PRTableCell . 95
PRTableRow . 95
PRText . 95
PRUnorderedList . 96

Pier-Model-Command . 96
PRCommand . 96

Pier-Model-Visitor . 98
PRFullTextSearch . 99
PRIncomingReferences . 99
PROutgoingReferences . 99
PRPathLookup . 100
PRPathReference . 100
PRVisitor . 101

Index 102

Bibliography 107

xii CONTENTS

Chapter 1

Introduction

“I would rather write programs to help me write programs
than write programs.”

— Dick Sites

Many applications consist of a large number of input dialogs and reports
that need to be built, displayed and validated manually. Often these dialogs
remain static after the development phase and cannot be changed unless a
new development effort occurs. End users often need to rapidly adapt their
applications to new business needs [Yode02]. In many cases they would know
how to make the required adaptations if the application would let them do
so [Atki87].

For certain kinds of application domains such as small-businesses, changing
business plans, modifying workflows, etc. usually boils down to minor mod-
ifications to domain objects and behavior, for example new fields have to be
added, configured differently, rearranged or removed. Unfortunately most
of today’s applications don’t provide this flexibility to their end users. The
situation is even more striking for Web applications that are typically built
for a lot of different people with varying needs. Furthermore it is often the
case that software systems have a static object model: one that has been
defined by the software architect at implementation time and that cannot
be changed later without changing and recompiling the source code.

1.1 Approach

Our solution to this problem is to describe domain objects with Magritte, a
self-described meta-model, and to provide a framework that interprets this

1

2 CHAPTER 1. INTRODUCTION

meta-model in different ways, for example to display, manipulate, validate
and store domain objects. Magritte is simple enough that end users are
actually able to modify or extend the existing meta-model to make the ap-
plication fit their exact needs. Moreover Magritte is self-described, enabling
the automatic generation of meta-editors. Finally Magritte is integrated
in the Smalltalk language which serves as an executable meta-language
[Clar04, Mull05a].

Magritte is an adaptive object model implementation that does not concen-
trate on a specific domain as suggested in [Rieh05, Yode02], but is more
generic and can be potentially used in any software project. The Magritte
meta-model is powerful enough that application developers can specify how
their domain objects are structured, how they should be stored, and how
they can be modified so that views, editors and reports can be built auto-
matically.

1.2 Outline

• Chapter 2 introduces Magritte, explains the basic usage of the frame-
work and discusses important points about its implementation. More-
over it presents use-cases and examples where the framework has suc-
cessfully been applied to.

• Chapter 3 presents Pier, a meta-described content management and
Wiki system. This chapter will illustrate the use of Magritte in a
wider context and the lessons learned while developing a large meta-
described Web application in two iterations.

• Chapter 4 we will conclude our experience while implementing and
using Magritte in large projects, such as Pier. It will compare our
approach with related work and identify future work.

• The Appendix will provide a complete class documentation of Magritte
and Pier, automatically generated from the source code of the respec-
tive projects.

Chapter 2

Magritte

“René Magritte: A consummate technician, his work fre-
quently displays a juxtaposition of ordinary objects, or an un-
usual context, giving new meanings to familiar things. The rep-
resentational use of objects as other than what they seem is typ-
ified in his painting, La trahison des images, which shows a pipe
that looks as though it is a model for a tobacco store advertise-
ment. Magritte painted below the pipe, ceci n’est pas une pipe,
which seems a contradiction, but is actually true: the painting is
not a pipe, it is an image of a pipe.”

— Wikipedia, http://en.wikipedia.org/wiki/Magritte

This chapter is structured as follows: Section 2.1 presents the context and
the constraints that influenced Magritte. Section 2.2 introduces the Magritte
framework. Section 2.3 presents various examples of how Magritte descrip-
tions can be interpreted. Section 2.4 explains how Magritte is self-described
and how this enables end users to customize their applications. Section 2.5
gives a concrete example how we applied Magritte in a Web based workflow
engine.

2.1 Context and Constraints

As a result of our experience with developing complex Web applications
we recognized the need to introduce a meta-layer to provide us with more
flexibility. However, the meta-layer has to cope with the constraints and the
context of our development.

For our Web development we are using Seaside [Seaside], a framework com-
bining an object-oriented approach with a flow-based one. Seaside gives

3

http://en.wikipedia.org/wiki/Magritte

4 CHAPTER 2. MAGRITTE

us key advantages over traditional page-centric approaches [Frat99], as it
represents pages as a set of collaborating components or objects which do
not need taking into consideration HTTP constraints. With Seaside, all
the development tools (versioning, navigation, testing, debugging) behave
as if we were developing a desktop application, for example Seaside Web
applications can be as easily debugged as any Smalltalk application:

• Hot-Debugging: The debugger can inspect, modify and send messages
to objects on the fly.

• Hot-Recompilation: Methods can be changed and added while the
application is running.

• Dynamic Code Reloading: The application can be updated while the
server is running.

Since applications developed using our meta-model should be extended or
changed (maintainability), the introduction of meta-descriptions should not
disrupt the normal way and the tools used to program. In particular, Sea-
side and plain object-oriented programming should be possible. Generative
techniques should be avoided, as these make it difficult to maintain and
change the code later on. Moreover generative techniques prevents one from
dynamically change the meta-model at runtime. The development tools
(refactorings, versioning, navigation, testing, ...) should continue to work as
if there would be no meta-descriptions. For all these points, the approach
should be integrated as close as possible into the object-oriented paradigm,
the tools and the programming environment. In our case we use Squeak, an
open-source Smalltalk [Inga97].

The solution we describe next is based on meta-descriptions which are tightly
integrated in the Smalltalk reflective architecture [Riva96].

2.2 Describing Domain Objects

Describing domain entities is not a new idea. Object-oriented meta-
languages such as MOF [Grou97], EMOF [Grou04] or ECore [Budi03] are
often used to describe domain specific language meta-models. However,
such object-oriented meta-languages only support the structural descrip-
tion. They do not have support for the definition of behavior and as
such cannot be used to specify the operational semantics of meta-models
[Mull05a]. Magritte is a meta-description framework, describing domain
classes and their respective fields and relationships. Magritte is integrated
in the Smalltalk meta-model. Smalltalk is used to define Magritte meta-
entities and their behavior. A field description contains the type informa-
tion, the way the field is accessed, some optional information such as a field

2.2. DESCRIBING DOMAIN OBJECTS 5

comment and label, relationships and validation conditions; furthermore it
defines Boolean properties, such as if the field is required, read-only, visible,
persistent, etc.

:Person :Container
Description

:String
Description

:Date
Description

name :String

birthday :Date

Figure 2.1: Person model instance (left) with associated descriptions (right).

Example. A described instance of a person domain-model, with the fields
name and birthday, could look like Figure 2.1. To describe the three entities
in this model we need three corresponding description instances, that can
be built statically at design-time, dynamically at run-time, or even a combi-
nation of the two. Either-way, the code to create those description instances
looks exactly the same: to describe the name, we give it an access-selector,
a label, and we tag it as a required value1.

(StringDescription selector: #name label: ’Name’)

beRequired;

yourself

Note that statically typed languages could provide some clues about what
is stored within instance variables using their introspection facilities. In
Smalltalk there is no static-typing, therefore the field birthday could point
to any kind of object, e.g., a date, a time-stamp, a number or even a string
object. Nevertheless typing does not solve this problem, since types do
not tell us how the value should be displayed (June 11, 1980, 11 June 1980,
06/11/1980), edited (text-input fields, drop-down boxed, date-picker), saved
or validated. The following description definition looks similar to the one
above but adds a different validation condition: the birthday is not required
but if a date is given, it has to be between 1900 and today:

(DateDescription selector: #birthday label: ’Birthday’)

between: (Date year: 1900) and: Date today;

yourself

1Note that all the code expressions given here can be evaluated and inspected by
copying them to a Smalltalk workspace.

6 CHAPTER 2. MAGRITTE

Description

Container ElementDesc.

ColorDesc. MagnitudeDesc. StringDesc. ReferenceDesc.

DateDesc. NumberDesc. OptionDesc. RelationDesc.

ToOneDesc. ToManyDesc.SingleDesc. MultipleDesc.

children

BooleanDesc.

reference

*

Figure 2.2: The description hierarchy is a composite of meta-entities.

Descriptions, as we have seen in the above examples, are naturally organized
in a description hierarchy. A class diagram of the most important descrip-
tions is shown in Figure 2.2. Different kinds of descriptions exist: simple
type-description that directly map to Smalltalk classes, and some more ad-
vanced descriptions that are used to represent a collection of descriptions,
or to model relationships between different entities.

Type Descriptions. Most descriptions belong to this group, such as the
ColorDescription, the DateDescription, the NumberDescription, the
StringDescription, the BooleanDescription, etc. All of them describe a
specific Smalltalk class; in the examples given, this would be Color, Date,
Number and all its subclasses, String, and Boolean and its two subclasses
True and False. All descriptions know how to perform basic tasks on those
types, such as to display, to parse, to serialize, to query, to edit, and to
validate them.

Container Descriptions. If a model object is described, it is often nec-
essary to keep a set of other descriptions within a collection, for example the
description of a person consists of a description of the title, the family-name,
the birthday, etc. The ContainerDescription, and its subclasses, provides
a collection container for other descriptions. In fact the container imple-
ments the whole collection interface, so that users can easily iterate (#do:),
filter (#select:, #reject:), transform (#collect:) and query (#detect:,
#anySatisfy:, #allSatisfy:) the containing descriptions.

Option Descriptions. The SingleOptionDescription describes an en-
tity, for which it is possible to choose up to one item from a list of objects.

2.3. INTERPRETING DESCRIPTIONS 7

The MultipleOptionDescription describes a collection, for which it is pos-
sible to choose any number of items from a predefined list of objects. The
selected items are described by the referencing description.

Relationship Descriptions. Probably the most advanced descriptions
are the ones that describe relationship between objects. The ToOne-

RelationshipDescription models a one-to-one relationship; the ToMany-

RelationshipDescription models a one-to-many relationship using a
Smalltalk collection. In fact, those two descriptions can also be seen as ba-
sic type descriptions, since the ToOneRelationshipDescription describes
a generic object reference and the ToManyRelationshipDescription de-
scribes a collection of object references. The referenced objects are de-
scribed by the referencing description, which is – if not manually defined
by the developer – automatically built from the intersection of the element
descriptions.

2.3 Interpreting Descriptions

Having described domain objects opens up a number of different possibilities
by writing meta-interpreters that walk over the descriptions and perform
different tasks on the model. The most immediate is that descriptions are
used to automatically build views, editors and reports.

2.3.1 Building Textual Views

The simplest interpreter that can be written is one that iterates over all
descriptions of a domain model and prints the labels and the current values
onto a text stream. The following code shows everything that is needed to
accomplish this task on any described domain-model aModel:

aModel description do: [:desc |

aStream

nextPutAll: (desc label);

nextPutAll: ’: ’;

nextPutAll: (desc toString: (desc accessor readFrom: aModel));

cr]

First we ask the model for its container-description, then we iterate over its
individual description elements. Within the loop, we first print the label,
then we ask the accessor of the description to return the associated attributes
from aModel and transform this value to a string, so that we can append it
to the output.

8 CHAPTER 2. MAGRITTE

Since every description knows how to print its values, we get a readable
list of all the described attributes of our domain-model. By defining a dif-
ferent string-conversion strategy in descriptions, we are able to change the
way some values are printed, for example if we want to print dates with
the months name written out. When we are adding, removing or changing
descriptions in the domain-model, the above code will still print the cor-
rect output without us having to change a single line of the interpretation
code.

2.3.2 Object Relational Mapping

In a very similar way, we are able to automatically create SQL statements to
store, load and query objects from a relational database. Since the descrip-
tions of Magritte can be directly mapped to an entity-relationship model, it
is straightforward to define such interpreters:

• Container-descriptions map to tables, with a primary key to uniquely
identify the objects in the database and the containing descriptions as
attributes.

• Type-descriptions map to attributes of the appropriate SQL data-
types: BooleanDescriptions map to BOOLEAN attributes, String-

Descriptions map to VARCHAR attributes, etc.

• Relationship-descriptions map to a foreign key of a different table. De-
pending on the cardinality of the relationship an intermediate linking
table is automatically introduced.

The strength of this approach is that we are not forced to embed SQL
into our application code: changes to persistent objects are automatically
handled by Magritte and propagated to the database. Simple changes of
the descriptive model, such as adding, removing or changing descriptions,
trigger a transparent migration of the database. Moreover the database
back-end can be changed anytime, a customized SQL code generator will
take care of the differences in the dialects.

2.3.3 Building Validating Editors

Most business applications today consist of a large number of input-dialogs
that need to be built and validated manually. One of the goals of Magritte
was that developers could specify how their domain objects can be modified,
so that it becomes possible to automatically build editors for different user
interface frameworks, as seen in Figure 2.3.

2.3. INTERPRETING DESCRIPTIONS 9

Figure 2.3: Interpreting descriptions for different GUI frameworks: the Web
(left) and Morphic Squeak [Sque10] (right)

Sending the message #asComponentOn: to a description with a domain
model as argument returns a ready-to-use Seaside [Seaside] component that
can be plugged into a Web application. For convenience one might also
send the message #asComponent to the domain model and let Magritte fig-
ure out the required descriptions itself. As in Section 2.3.1, Magritte will
iterate over the descriptions and compose an editor from the collection of
descriptions.

During an edit operation, Magritte works on a copy of the model, so that the
original model remains in a valid state all the time and the edit operation
can simply be cancelled by closing the editor window or hitting the cancel
button. The original object is never touched until the edited model satisfies
all its validation conditions. Moreover, before committing the changes to
the actual object, Magritte checks that there are no edit conflicts caused by
other people editing the same objects at the same time, and, if necessary,
offers to merge those changes. The unit of work during an edit operation
is the described object. Changes to other objects are not automatically
tracked by Magritte.

All this is very convenient for software developers, as they don’t have to
do the caching, the validation and the conflict detection for every editor
manually. Not only does this increase the development speed, but it also
makes the software more robust. All kinds of editing concerns are handled
at only one place and not duplicated across all editors in the system.

10 CHAPTER 2. MAGRITTE

2.3.4 Customizing the Meta-Interpretation

Metadata driven architectures are ideal for supporting meta-tools and as
such let the programmer automate cumbersome tasks such as building input
forms, editors, and serializer. However, they often hamper the fine-grained
customization of the resulting elements such as widgets. For Magritte we
paid attention not to enclose the developer within a specific interpretation
of the description, but to give him or her the possibility to customize any
part of the editor building process:

Custom Rendering. The default builder puts the edit widgets from top
to bottom with the labels on the left side, as seen in Figure 2.3. Sometimes
other layouts are more convenient, for example the widgets should be laid out
from left to right with the labels on top, or they should appear within other
user interface elements that are maybe not under the control of Magritte.
In a Web context different style-sheets can sometimes help to achieve the
desired effect, however there are examples where this doesn’t help or is
simply too cumbersome. Magritte allows one to define one’s own builder by
subclassing a Visitor and overriding some of the methods used to place the
user interface elements.

Figure 2.4: Different custom widgets for a single-selection description (left)
and a multi-selection description (right).

Custom Widgets. Magritte tries to guess which widgets suits the de-
scription best, such as a text-input field for a string description or a check-
box for a Boolean description. However there are cases where different wid-
gets make sense, such as with a single-selection description, that could be
displayed as a drop-down box or as an radio-group, see Figure 2.4. Magritte
provides developers with the choice among a vast collection of possible wid-
gets, and even gives the possibility to provide custom widgets that behave
exactly the way it is required.

2.4. META MAGRITTE 11

2.4 Meta Magritte

Magritte is integrated into Smalltalk, where everything is an object. This
means that any Smalltalk object can be described using Magritte, either
by a primitive type description such as String, Boolean or Number, or for
composed objects by a composite description. The reflective facilities of
Smalltalk are cleanly enhanced with those provided by Magritte.

It is natural that we apply descriptions recursively, therefore descriptions are
also described. As seen in Figure 2.5, there is an optional association to a set
of descriptions from the root of the class hierarchy in Object. The default
implementation in Object returns an empty description container, however
subclasses usually add their own specific descriptions to accommodate their
needs, and Description is such a class.

Description

Object *

*

Figure 2.5: Descriptions as described objects.

2.4.1 Adaptive Model: Enabling End User editable Meta-
Descriptions

Having a meta-described framework makes it possible to let end users create
and edit their meta-models on the fly. To accommodate this need we cre-
ated a generic object model called AdaptiveModel, mapping descriptions to
actual values, as seen in Figure 2.6. The AdaptiveModel has two instance
variables, the first being used to refer to the description of the model instance
and the other one to keep a list of the actual values of the model.

The user is able to edit the adaptive model at two different levels, at the
meta-model and at the model level:

Meta-Level Editing. The descriptions of an adaptive model can change
on the fly, since they are stored as part of the model-data. The descriptions
can be either changed programmatically by the developer, or through end
user interactions from a description editor. Since descriptions are described

12 CHAPTER 2. MAGRITTE

Adaptive
Model

+ descriptions
+ mapping

Description

*

*

Object
1 *

+ copy()

Copies the values, but
not necessarily associated
descriptions. values

de
sc

rip
tio

ns

Figure 2.6: An adaptive model, mapping a set of descriptions to actual
model values.

using themselves, an editor allows one to modify the descriptions of the
model itself can be built automatically, see Figure 2.7.

Figure 2.7: A Magritte description editor for the description of an adaptive
model.

Model-Level Editing. Since the adaptive model is described, it can be
edited as shown in Section 2.3.3. The only difference is that the described
values are not stored in instance variables of the model, but are kept within
a hash table inside the adaptive model, mapping descriptions to their ac-
tual values, as seen in Figure 2.6. This gives much better flexibility when
descriptions are changed. The resulting editor in Figure 2.8 looks the same
as if the descriptions were defined statically.

Descriptions can be shared among different adaptive model instances or can
be unique to every instance. Therefore when copying an adaptive model one
has to specify if the descriptions should be copied as well. If descriptions
are shared, editing the meta-model affects all its associated instances:

2.5. AARE 13

Figure 2.8: A Magritte editor for the adaptive model.

• Adding a new description creates a new attribute with the default
value specified in the description.

• Editing existing descriptions propagates to all existing attributes.
Note that most edit operations on descriptions do not affect the valid-
ity of the actual value, such as to change the label or the default value.
However there might be changes that change validation conditions and
that might turn existing models invalid. Our adaptive model doesn’t
fix those invalid instances automatically, either the programmer has
to treat the problem manually or at the next edit operation the user
will be notified by the validation code of Magritte and has to fix the
problem.

• Removing an existing description removes the associated values.

2.5 Aare: A Workflow Definition- and Runtime-
Engine with adaptive Forms

Figure 2.7 shows a screenshot of a workflow definition engine that we imple-
mented using Seaside [Seaside, Duca04] and Magritte. It allows end users
to specify their own forms for their workflow activities: the drop-down box
offers a list of possible description prototypes that can be added to the form
definition, such as text, memo, number, date, time and money fields, check,
and option boxes, and some special fields such as uploaded documents or
tables.

Since not all the descriptions are meaningful to the end users or too im-
plementation specific, we do not allow end users to add all the available

14 CHAPTER 2. MAGRITTE

descriptions in Magritte, but only a small selection of commonly used de-
scriptions. Moreover we do not offer the possibility of editing every property
of a description, again to reduce the complexity of the application: when
adding or editing descriptions only a subset of the available properties are
displayed, such as the label, a comment, the default value and some other
description specific editors.

Figure 2.9: Defining the validation-conditions.

Validation conditions for form fields are defined in a different part of the
editor, as seen in Figure 2.9. In the given example the field category has
to be filled and a screenshot must be uploaded to validate the form. De-
pending on the underlying description the condition editor displays a set of
usable conditions that can be added to or removed from the list, for example
for a text field these are is, is not, begins with, ends with, matches; for a
number field these are is, is not, greater than, smaller than; etc. Prototype
conditions (i.e., is not, greater than) that are themselves described by de-
scriptions, are defined by every description class (i.e.,StringDescription,
DateDescription, ...), so that an editor for all the conditions can be built
and displayed automatically.

In Figure 2.8 the defined form is shown as it is presented to the end user
at runtime of the workflow engine. To allow people to save activities that
are in progress and that have failed validation conditions, we decided to
strictly separate editing and validation: the form can be saved any time and
is automatically validated as seen below, however the activity can only be
completed if the conditions all validate.

2.6 Implementation

Magritte consists of a collection of packages. In the following sections we
describe the responsibilities of the most important packages and show how
they relate to each other.

2.6. IMPLEMENTATION 15

2.6.1 Descriptions

The description hierarchy, see Figure 2.2, plays a central role in Magritte. It
provides the different description types, as explained in Section 2.2:

• “Type descriptions” describe specific Smalltalk classes. They are prim-
itive entities in Magritte and do not delegate to other descriptions.
Their implementation is straightforward and often directly maps to
methods already present in the Smalltalk class library, such as to parse
numbers or to serialize strings.

• “Container Descriptions” describe collections of descriptions. Often
it is necessary to store descriptions in a specific order or to group
them, for example a model is usually described by a single container
description that references a collection of other descriptions for each of
its instance variables. Containers understand the collection protocol
as known from the Smalltalk class library.

• “Option Descriptions” describe attributes for which one or more items
out of a list of objects can be selected. The objects to choose from
are described by the reference description. Option descriptions can
potentially be extended by end users with custom options at runtime.

• “Relationship Descriptions” describe relationships between objects. A
relationship is always defined from the described object to the refer-
enced object. To describe a two-way relationship the developer has to
define a relationship description at both ends of the association.

2.6.2 Accessors

In Smalltalk data can be accessed and stored in different ways. Most com-
mon data is stored within instance variables and read and written using
accessor methods, but sometimes developers choose other strategies, for ex-
ample to group data within a referenced object, to keep their data stored
within a dictionary, or to calculate it dynamically from block closures.

Accessor

Chain Selector Dictionary

Auto

Block Null

next, accessor

Figure 2.10: The accessor is a strategy on how to access model data

16 CHAPTER 2. MAGRITTE

To give Magritte the full flexibility and a transparent way to access dif-
ferent data sources, we provide a Strategy pattern [Alpe98, Page 339] as
seen in Figure 2.10. By far the most commonly used accessor type is the
SelectorAccessor. It can be instantiated with two selectors: a zero argu-
ment selector to read, and a one argument selector to write. For convenience
it is possible to specify a read selector only, from which the write selector is
inferred automatically.

A special form of the SelectorAccessor is the AutoSelectorAccessor: it
automatically creates read accessors, write accessors, and instance variables
if necessary. This is very useful for fast prototyping, if the model classes
haven’t been fully specified yet; at a later stage of development this accessor
can be easily replaced with a SelectorAccessor.

The DictionaryAccessor is used to add and retrieve data from a dictionary
with a given key. This access strategy is also mainly used for prototyping
as it allows one to treat dictionaries like objects with object-based instance
variables.

The ChainAccessor is used to build a sequence of two or more access strate-
gies. To read and write a value the accessor is evaluated on the given model
and the result is passed into the next accessor.

o: Object d: Description a: Accessor

readUsing: d

accessor

read: o

write: v using: d

accessor

write: v to: o

<strategy a>

<strategy a>

Figure 2.11: Reading from and writing to a described model

As visualized in Figure 2.11 all parts of Magritte access data by dispatching
it through the model using the description and its associated accessor. This
allows one to reify or intercept access from the model, before it is actually
performed by the accessor instance. Being able to reify model access opens
a lot of new possibilities, such as to provide a security layer, or to dispatch
data access to other sources, e.g., external resources (internet, database, file
system).

2.6. IMPLEMENTATION 17

2.6.3 Conditions

Applications often require a lot of slightly different validation strategies. As
an example one would like to store an e-mail address as a string. Obviously
the StringDescription would be the perfect choice, but you would need to
add conditions, so that the input has to match a specific pattern and that
it is enforced to belong to a Swiss domain. To avoid an unlimited growth
of the description hierarchy by creating subclasses for every new validation
strategy, it is possible to provide block closures that serve as additional
validation strategies:

(StringDescription selector: #email label: ’E-Mail Address’)

addCondition: [:value |

(value matches: ’*#@#*.#*’)

and: [value endsWith: ’.ch’]]

label: ’Invalid E-Mail’;

yourself

The problem with this approach is that in Smalltalk block closures are hardly
serializeable, since they might reference globals and other variables within
their execution context. To avoid this problem #asCondition can be sent to
the block closure to turn it into a composite of condition objects that can be
easily stored to and loaded from external sources. This is currently possible
for simple expressions only and if there are no external references. It works,
however, in most of the common cases where the value is the receiver of
some messages to check its validity.

(StringDescription selector: #email label: ’E-Mail Address’)

addCondition: [:value |

(value matches: ’*#@#*.#*’)

& (value endsWith: ’.ch’)] asCondition

label: ’Invalid E-Mail’;

yourself

Of course it is also possible to manually build condition objects, either
through an end user interface or by writing code that instantiates and com-
poses the condition objects:

(StringDescription selector: #email label: ’E-Mail Address’)

addCondition: (AllCondition

with: (SelectorCondition

selector: #matches:

arguments: #(’*#@#*.#*’))

with: (SelectorCondition

selector: #endsWith:

arguments: #(’.ch’)))

label: ’Invalid E-Mail’;

yourself

18 CHAPTER 2. MAGRITTE

In fact, all the tree source examples above answer a description that shows
the same validation behaviour, however the second and the third one only
are serializeable. When giving preference to readability and serializeability
to choose the second approach would probably be preferable.

2.6.4 Mementos

The Memento design pattern [Alpe98, page 297] records the state of an
object so that it is possible to delay changes, to detect changes to an object or
to restore the object to its original state later. Most users of Magritte don’t
need to know about the Memento pattern which is only used internally to
cache model state. However the mementos play a central role if a developer
wants to fully understand the internal workings of the framework, especially
together with the automatic building of user interfaces.

Editing a model object might temporarily invalidate it: this means that
model invariants could be invalid, and not all the built-in or manually added
conditions are satisfied all the time. Especially if multiple users concurrently
work on the same model it is important to always ensure the consistency of
the model. Moreover people might decide to cancel edit operations, which
should turn back the model state exactly to the point it was before the edit
operation was started.

The memento hierarchy in Magritte provides classes that behave – from
the perspective of Magritte – like the corresponding original model and that
delay modifications until they are proven to be valid. Modifications can then
be committed in a controlled transaction, so that concurrent changes can
be detected and conflicts can be sorted out and eventually merged. Finally
the cached data can be stored into the model.

Since it might be required to tweak the behaviour of the default memento
in some cases, for any Smalltalk object the method #mementoClass can be
overridden to return a different memento class. This can be especially useful
for databases that require one to update, commit or tag modified objects,
which can be efficiently done within a memento subclass after committing
the changes to the persistent object.

Chapter 3

Pier

“A pier is a raised walkway over water, supported by widely-
spread pillars. Today the most common form of a pier is the
industrial pier which can be found at ports throughout the world.
A pier may be open air or closed. Sometimes a pier has two
decks.”

— Wikipedia, http://en.wikipedia.org/wiki/Pier

This chapter presents Pier, a second version of a fully object-oriented im-
plementation of a meta-described content management1 and Wiki2 system.
Pier still inherits a lot of Wiki functionality from its first version called
SmallWiki. Over the years Pier has grown into a full-fledged application
and content management framework. It is written with objects from the
top to the bottom and it can be customized easily to accommodate new
needs. Pier is based on Magritte to enable the building of all the user inter-
face elements declaratively, and to enable sophisticated search queries and
persistency.

This chapter is structured as follows: Section 3.1 gives an introduction of the
problems of current Wiki implementations and why we decided to develop a
new one. Section 3.2 presents the history and evolution of Pier. Section 3.3
reveals several real world examples that make use Pier in productive envi-
ronments. Section 3.4 explains the core architecture of Pier and the most
important design decisions. Section 3.5 gives examples of how to extend the
system with new functionality. Section 3.6 presents the benefit of having a

1A content management system is software to organize and edit documents. Most of
the time editing is done through a Web interface by dedicated editors.

2A Wiki is a Web site that allows anybody to add and edit content collaboratively,
mostly without requiring registration. The term Wiki also refers to the software that helps
to create such a Web site.

19

http://en.wikipedia.org/wiki/Pier

20 CHAPTER 3. PIER

descriptive meta-model for its implementation. Section 3.7 finally presents
the lessons learned while implementing a content management system in two
major iterations.

3.1 Introduction

While Wiki systems offer a significant degree of freedom to their users to edit
and share content [Leuf01], the underlying implementations are often less
flexible and powerful than the collaborative model they promote. Wiki and
content management systems are mostly implemented using string-based ap-
proaches (regular expressions) to parse, generate and transform their pages.
While such approaches work well for straightforward systems, they hamper
the customization and adaptability of systems to the variety of end users
that require more sophisticated needs, for example different output formats,
user interfaces, security policies, etc.

One might think that advanced Wikis that provide functionality of content
management systems are not really necessary, and hence that simple im-
plementations that only allow users to change the contents of pages suffice.
Experience shows that this is not the case:

Input and Output. Most Wikis provide users with a simple Wiki syntax
to create rich XHTML pages, however they hamper the possibility
to use other input and output formats. This is the reason why Pier
stores the contents of a page within an abstract document tree that
can be traversed to emit different output formats such as XHTML,
LATEX or plain text. Systems based on strings require to duplicate
the parsing functionality for every new output format. For complex
applications, such as WikiPedia [WikiPedi], there are so many slow
regular expressions applied to the input that they are forced to imple-
ment sophisticated caching algorithms for different output and search
formats.

User Interface. An experiment using Wikis in classrooms showed that
children and teachers require different user interfaces and functionali-
ties [Duca00]. Students should have a simpler user interface compared
to the teachers, who should be able to lock all the pages of her students
at once.

Management. Another example is maintenance, which typically requires
sophisticated functionalities such as searching for all the pages contain-
ing more than 10 external links or finding all pages that were edited
on a certain date and that have more than twenty uploaded pictures.
Since such activities are typically done by end users themselves, they

3.2. HISTORY 21

should be supported by the system itself as not to break the metaphor
of the medium.

Customizability. The metaphor of a content management system should
not stop at the level of editing pages. Therefore we need a customiz-
able application with an underlying implementation that supports the
definition of new components and not only of changing the content
of pages. Pier allows one to customize its look using meta-pages that
can be edited just as any other page, and to include active components
that provide tools enhancing the user experience, such as to display
additional information and to provide navigational links.

3.2 From SmallWiki to Magritte and Pier

2003

2004

2005

2002

SmallWiki started as
University Project

1st public
presentation

SmallWiki
released

1st productive
users

1st price in
ESUG Innovation

Technology Awards
Started with
SmallWiki 2

Changed development from
VisualWorks to Squeak

Changed product name from
SmallWiki to Pier

Extracted
Magritte

Advanced Software Design
lecture is using SmallWiki

SqueakMap
release

2006

Smalltalk Solutions
Toronto 2006

Unix Security
Model

Figure 3.1: The history and evolution of Pier and Magritte

The history of Pier, as visualized in Figure 3.1, started late in 2002. In
the beginning the software was called SmallWiki, because its initial goal
was to provide a nicely designed, fully tested and easily extensible replace-
ment for the existing Wiki implementations in Smalltalk. A first version of
SmallWiki [Reng03] implemented in Cincom VisualWorks was released by
the end of 2003. It is still widely adopted in productive environments all
over the world, as listed in Figure 3.2, and is still being maintained and
extended by a small group of people. SmallWiki has been ported to Squeak
[Sque10] and #Smalltalk [Branb]. Some other open-source frameworks such
as Gaardner [Groo], TinyWiki and PicoWiki3 used the parser, the document

3TinyWiki and PicoWiki are both ports of a subset of SmallWiki to Seaside. The
initial implementation of SmallWiki did not use Seaside as a Web server.

22 CHAPTER 3. PIER

representation and the rendering engine for similar projects.

European Smalltalk User Group www.esug.org
Hans Beck www.hans-n-beck.org
Katholische Kindertagessẗatte www.kita-st-anna.de
Logo Wiki www.logowiki.net
Lukas Renggli www.lukas-renggli.ch
Research Center on Structural
Software Improvement restructuring.ulb.ac.be
Seaside www.seaside.st
Squeak www.squeak.org
Squeak Germany www.squeak.de
Tierpark Köthen www.tierpark-koethen.de
Tweak tweak.impara.de
Software Composition and
Decomposition (deComp) decomp.ulb.ac.be
University of Berne smallwiki.unibe.ch
WireSong www.wiresong.ca

Table 3.1: Public instances of SmallWiki and Pier

By the year 2004 it became clear that the implementation of SmallWiki
was lacking some important features that weren’t easy to integrate into the
existing model. One major problem was that the model and the view were
too tightly coupled, and therefore the view could not be easily replaced with
a different one. Moreover there was a lot of duplicated code that was used to
generate views and editors of the model. A related problem was that some
parts of SmallWiki were not easy to extend, for example it was impossible to
add additional fields to a page without patching the original source code at
several places. The solution to these problems was to introduce an extensible
meta-layer, called Magritte.

Early in the development of Pier, it became clear that Magritte could also be
useful on its own. From the very beginning, Magritte did not depend on and
was not specific targeted to SmallWiki. In spring 2005 we extracted Magritte
to become its own independent framework because we needed a very similar
meta-framework for a workflow system that was being developed at that
time, see Section 2.5. In the same year we changed the name of SmallWiki
to Pier: with the integration of a meta-framework and the use of Seaside as
its default view the software became much more than a wiki. Furthermore,
the code base was not that small anymore.

http://www.esug.org
http://www.hans-n-beck.org
http://www.kita-st-anna.de
http://www.logowiki.net
http://www.lukas-renggli.ch
http://restructuring.ulb.ac.be
http://www.seaside.st
http://www.squeak.org
http://www.squeak.de
http://www.tierpark-koethen.de
http://tweak.impara.de
http://decomp.ulb.ac.be
http://smallwiki.unibe.ch
http://www.wiresong.ca

3.3. PIER IN ACTION 23

Pa
ge

 C
on

te
nt

Na
vi

ga
tio

n
Tr

ee
Co

m
m

an
d

Li
st

Vi
ew

 L
is

t
He

ad
in

g

Se
ar

ch
Pa

th
In

de
x

Figure 3.2: The default installation of Pier comes with a big collection of
ready made components

3.3 Pier in Action

Pier structures its layout out of different components: heading, command
list, navigation tree, table of contents, search interface, page content, etc.
For example in Figure 3.2 the page contains the header on top and the
document in the center; on the left there is a list of possible commands and
a tree for easy navigation; on the right there is a table of content widget,
the current navigation path and a search field.

Figure 3.3 shows a public instance of Pier where fewer components are used:
the page contents, a navigation tree, a list of possible commands, and a
search input box. Note that the look of Pier is based on Cascading Style
Sheets (CSS), allowing the page and each component to be “skinned” dif-
ferently using its CSS specification.

Logo is a simple programming language for children, used to teach the basics
of computer programming. Figure 3.4 shows an instance of the “Logo Wiki”
that has been built on top of Pier to enable kids to write and test Logo
programs from within their Web browser. Pier takes full advantage of the
wiki model that allows one to place normal paragraphs of text between the
code, it makes an ideal instrument to write tutorials, and to collect and
document snippets of Logo code. The “Logo Wiki” was implemented using

24 CHAPTER 3. PIER

Figure 3.3: The personal Web site of the author of Pier

Pier by Luke Andrews, Avi Bryant, Andrew Catton, and Colin Putney, after
an idea of Alan Kay, one of the inventors of Smalltalk.

3.4 Architecture

Pier’s design has matured over the years [Reng03]. During this process
we tried to simplify it while making it more flexible. Pier has been imple-
mented and re-implemented from scratch by the author of this master thesis.
As a development environment we used Squeak, an open-source Smalltalk
[Inga97]. We present here the key aspects of the implementation and the
architecture of Pier.

3.4.1 Separation of Concerns

Web application development is difficult when dealing with the shortcom-
ings of the HTTP protocol, as the right abstractions are missing [Duca04].
We therefore decided to use Seaside [Seaside] as a framework of choice for
the default view in Pier. This approach greatly enhances the development
of complex widgets. Since the user interface is built from Seaside compo-
nents that automatically keep their state during a user session, it is easy to
implement, for example, a tree-widget that is displayed on every page and
remembers its expanded nodes.

http://www.lukas-renggli.ch

3.4. ARCHITECTURE 25

Figure 3.4: The “Logo Wiki”, a collaborative wiki to write, collect and play
with Logo programs

Since Seaside offers a proper separation between the model and the view,
Pier takes full advantage of it. As an example, it is possible to use a different
non Web based view using the OmniBrowser [Putn] framework as shown in
Figure 3.5; the same pages can be browsed and altered via the OmniBrowser
interface or via a Web browser.

Another prototypical view was implemented to allow one to browse and
change the model of Pier using an FTP client. It is evident that this can
be useful to provide different views of the same model, depending on the
location of the server and the location and abilities of the client. Having a
proper meta-layer makes it possible to easily provide different views without
having to duplicate the logic to create editors everywhere: for every view it
is only a matter of writing a new interpreter of the meta-layer.

3.4.2 Pages and Files

As in most content management systems, structures can be nested arbitrar-
ily within each other. Every structure consists of a unique name and a title.
The Pier core implementation provides two basic structure types, pages and
files, that build the main entities for any Pier site. A page is a structure
containing a document, that can be edited using the wiki syntax described

26 CHAPTER 3. PIER

Figure 3.5: OmniBrowser view on a Pier model

below. A file is a resource that has been uploaded, for example an image,
video, sound or PDF file. Other page types might be available depending
on the current view (view specific structures) or if extensions to the base
package have been loaded.

Pages reference a document representing their contents. The document is a
Composite [Alpe98, page 137] and includes all the basic elements to represent
text, such as paragraphs, ordered and unordered lists, tables, pre-formatted
texts, and links, as shown in Figure 3.6.

When the user saves a text using the wiki syntax, it is parsed using SmaCC
[Brana], a compiler-compiler for Smalltalk. Only the document tree is stored
within the page. A Visitor [Alpe98, page 371] walking over this tree is able
to transform this composite document back into an equivalent string that
the user can modify again. Some nice features, such as the possibility to
align table cells and add links everywhere, even within headings, greatly
enhances the uniformity of the input.

Pier supports the following wiki syntax:

Paragraph. Carriage returns are preserved, simply add a newline to begin
a new paragraph.

Header. A line starting with one or more ! becomes a header line.

Horizontal Line. A line starting with (underscore) becomes a horizontal
line. This is often used to separate topics.

List. Using lines starting with one or more # and -, creates a list: A block

3.4. ARCHITECTURE 27

Anchor

Document
Item Page

Document
Group

Horizontal
Rule

Document

Header

Link

List

Paragraph

Preformatted

Table

TableCell

TableRow

Text

Internal

External

Ordered

Unordered

ListItem

children

1

*

Figure 3.6: The document hierarchy

of lines, where each line starts with - is transformed into a bulleted
list, where each line is an entry. A block of lines, where each line starts
with # is transformed into an ordered list, where each line is an entry.
Lists can be nested.

Table. To create a table, start off the lines with | and separate the elements
with |s. Each new line represents a new row of the table. The contents
of cells can be aligned left (default), centered or aligned right by using
|{, || or |} respectively.

Pre-formatted. To create a pre-formatted section, begin each line with
=. A pre-formatted section uses equally spaced text so that spacing is
preserved.

Reference. To create a reference to a different structure, put it be-
tween * to create a clickable link or + to embed the reference di-
rectly into the document. All links have the form *reference* or
alias>reference, where reference is in one of the following kinds:

Internal Reference. An internal reference can be written either as
an absolute */Information/Copyright* or relative *../Copy-

right* path. People unfamiliar with this concept will create a
link without any path elements and this will reference a child
of the current page, which in most cases is desired anyway. In
case the path points to a non-existing structure, the user will be
offered the possibility to create a new one when clicking on the
link.

28 CHAPTER 3. PIER

External Reference. If the reference is a valid URL *http://www.-

domain.com*, a link to that external page shows up. External
references cannot be embedded.

Mail Reference. If the reference is a valid e-mail address *self@-

mail.me.com*, a link to mail that person shows up. The e-mail
is obfuscated to prevent robots from collecting.

ISBN Reference. If the reference is an ISBN4 number *isbn:3446-
202102*, a link to the given book shows up.

RFC Reference. If the reference is a RFC5 number *rfc:2616*, a
link to the given RFC page shows up.

Users are able to embed any referenced structures into the containing page,
where the target is another page or file that can be embedded into the
XHTML output. Note that embedding or nesting elements inside each other
can lead to recursion, which when not treated correctly, would lead to infinite
XHTML streams. Pier detects possible recursion problems and in case of
recursion just uses link-anchors instead of embedding. Element embedding
is transparent to the user in the sense that it is expressed using familiar
syntax, for example a page with two columns is achieved by creating a table
embedding two different pages each into one column of the table. This
greatly enhances the possibility to build complex layouts without bloating
the wiki syntax with new features or using XHTML.

Extensions have been written to enable sophisticated in-place page editing
facilities in Pier: unlike most wikis, where the user is forced to edit a page
as a whole entity in one big text-area, it is possible to just edit a specific
paragraph that is then replaced within its context of the document with a
smaller edit box. Saving that paragraph causes the text to be parsed and
be merged back into the current document tree. More sophisticated editing
models could also be implemented using Web 2.0 technologies, such as drag
and drop and rich text editing.

3.4.3 Visitors

The implementation of Pier makes it possible to use the Visitor pattern
[Alpe98, page 371] to apply operations over structures, decorations and doc-
uments. Having such a fine-grained object-oriented representation makes it
very uncomplicated to implement certain features in Pier, such as to pro-
vide different input and output formats, to search for contents, or to look
for broken external links, as we will demonstrate in Section 3.5.

4International Standard Book Number, a unique identifier for books.
5Request for Comments, a series of numbered internet standards.

3.4. ARCHITECTURE 29

Object

Decorated Decoration

Children

Page File

SecurityStructure

1 *

* 1

decorations

children

Figure 3.7: The core architecture of Pier

As seen in Figure 3.7, a Page or a File is a DecoratedObject, an object
using a Chain of Responsibility [Alpe98, page 225] for certain aspects of its
behavior, such as security or children. The decorations are tightly integrated
into the Visitors so that they can easily interact with the underlying model.
Decorations contain a priority that is used by the Visitor to determine the
order in which the decorations are processed. The decorated object has a
priority of 0. To ensure that it is processed first, the security decoration is
assigned a negative priority; for details about possible security frameworks
see Section 3.5.3.

v :Visitor

visit: p

p :Page s :Security c :Children

visit: s

acceptDecorated: p

acceptDecorated: s

visitSecurity: s

visitPage: p
acceptDecorated: c

visitChildren: c

priority = -1 priority = +1priority = 0

accept: s

accept: s

accept: s

Figure 3.8: A Visitor interacting with a decorated page

Example. Figure 3.8 shows a sequence diagram of a Visitor operating
on a page decorated with a security and a children decoration. Visiting the
page aVisitor visit: aPage, triggers the callbacks for the decorations and

30 CHAPTER 3. PIER

the page in the right order according to their priorities: #visitSecurity:,
#visitPage: and #visitChildren:.

3.4.4 Context and Commands

Whenever Pier is browsed or edited it remembers within a context object the
current state, this is the currently browsed structure, the running command,
the user logged in, etc. Unlike most other content management systems Pier
does not keep this information as a string in the URL or in session cookies.
Seaside provides a nice abstraction over the low-level HTTP protocol and
allows us to keep all the state within proper objects that persist along the
session. It is therefore not necessary to manually serialize and de-serialize
our context as strings.

Since every part of Pier can potentially modify the current context, say to
navigate to a different structure, we must make sure that we do not lose
the old context, since we might still need the original one for logging the
changes with the persistency framework. With this in mind we decided to
make context objects immutable. Sending a message that would modify the
context does not touch the original object but instead returns a modified
copy. It is the responsibility of the developer to make the new context the
current one.

In Seaside the current context is hold in the top-level component of the wiki
and can be requested or changed by raising a notification. We don’t store
the context within a global session object, since we would like to keep the
possibility to embed Pier into existing Seaside applications that presum-
ably already have their own session implementation. In the OmniBrowser
view (see Figure 3.5), the current context is kept within the model of the
browser.

Representing Actions as Commands

Every context references an associated command. Pier uses the Command
design pattern [Alpe98, page 245] to cleanly represent operations on the
model using objects. Every command class is meta-described and there-
fore can be configured using an automatically built Magritte user interface,
without having to know all the available commands that might have been
loaded through extensions of the core framework. Commands are executed
by the kernel, which gives transactional behavior for all modifications of the
model. Since applied commands are logged to the history, we are able to
provide multi-level undo facilities.

3.4. ARCHITECTURE 31

The core distribution of Pier comes with a small collection of command
classes for basic actions on the model:

View. The view command plays a special role in the whole command hi-
erarchy. It is the only command that does not modify the model, but
represents a read-only view on the currently browsed structure. Its
action semantics follows the Null Object Pattern [Wool96].

Edit. The edit command displays a Magritte form to edit the currently
browsed structure. The editor is built using the descriptions of the
structure that have been marked editable with the method #beEdit-

able.

Add. The add command instantiates a new structure of the selected class,
assigns the given name and adds it as a child of the currently browsed
structure.

Remove. The remove command removes the currently browsed structure
and all its children from the parent. The user is asked for confirmation
before applying this command.

Copy. The copy command copies the currently browsed structure and all
its children to a new location. References within the copied subtree
are automatically updated.

Move. The move command moves the currently browsed structure and all
its children to a new location. This command is also useful to re-
name structures. Other pages that reference the moved structure are
automatically updated.

Sending the message #execute to a command instance executes this com-
mand under mutual exclusion, so that concurrent modifications of the do-
main model don’t interfere with each other. In addition this ensures the
modifications to be valid before processing and that they are logged in the
persistency layer after execution.

Example. Adding a new structure to Pier is implemented as follows: #do-
Execute is a hook method that is called from within the critical section in
#execute. The first line actually adds the newly created child to the cur-
rent page and remembers the child within a temporary variable structure.
It then activates a new context by sending #goto:command: to enter the
edit mode on the newly created child. However this new context won’t be
activated right away and it is remembered as the answer of the add com-
mand. In the meantime the Pier persistency framework is able to log the
executed command together with the old context, so that it can be undone
or replayed if necessary.

32 CHAPTER 3. PIER

AddCommand>>doExecute

| structure |

self structure children

add: (structure := self newChild).

self answer: (self context

goto: structure

command: structure editCommandClass new)

The command hierarchy offers a clean interface to modify the model of Pier.
Actually every modification (or write access) to the model goes through a
command, so that it can be logged and possibly undone at a later point in
time. As we will see in Section 3.6.2, having an initial state of the model
and a list of logged commands with their associated contexts allows the
implementation of a prevalence or changeset-like persistency mechanism,
in which each change is stored with a time-stamp. Hence, it is not even
necessary to keep the old versions of a page explicitly in the model, because
they can be easily obtained by going back through the history of commands
selecting all edit-commands on a particular page.

3.4.5 Environment

Pier unifies the look of the site with the wiki metaphor and allows one
to define the look of the page using the wiki syntax itself. Thus people
only have to learn one concept that can be used seamlessly in different
areas. Anywhere within the system one is able to define a special page
called environment that is invisible to the casual user and that defines the
look of a portion of the application. An environment is shared between all
the children of the same page, unless a new environment is defined that
replaces the previous one. Since the environment is simply a page, it can be
edited and modified like any other page.

The default environment page creating the standard look of Pier consists of
the following piece of wiki text:

+Header+

+Views+
 +Commands+
 +Tree+ | +Contents+

Powered by Seaside and Pier

The first line with +Header+ embeds a special header widget. Even though
the Header structure could be yet another page, in this particular case we are
using a Seaside component to draw and provide the necessary functionality.
The next line creates a table containing the command and tree widget in a
column on the left and the actual contents on the right. At the bottom we
include a paragraph of static text that will be displayed on every page.

Furthermore, in Pier any Seaside component can be added exactly the same
way as one would add a page into the wiki tree. In the above example we were

3.5. EXTENDING PIER 33

Figure 3.9: Seaside SushiNet application in Pier

using Seaside components that were particularly designed to be used within
the wiki and provide its core functionality. Any other Seaside application,
however, can be added exactly the same way. In Figure 3.9 one can see a
“Sushi Web Shop” that is included with the Seaside framework and is often
used to demonstrate the power of Seaside [Duca04]. Without changing a line
of code in the embedded application and in Pier, the Seaside application can
be plugged into the running content management system.

All embedded components and applications, no matter if they were espe-
cially designed for Pier or if they were originally used in a different con-
text, can be conmufigured through the Web interface. Thanks to the use of
Magritte descriptions the settings of those components can be easily changed
by the site administrator.

3.5 Extending Pier

As Pier has been designed to be extensible and customizable, we want to
give some examples of small extensions in this section.

3.5.1 Fixing broken links

Since URLs and associated resources are changing from day to day it is
a common issue that Web pages contain invalid links. There are plenty
of tools available that address this problem by going through a Web site,

34 CHAPTER 3. PIER

parsing the HTML and checking the validity of the links. In Pier we are able
to address this issue simply by creating a subclass of Visitor and overriding
the message visitExternalLink: to ask the link whether it is pointing to
a valid resource and collect the broken ones within a collection. A user
interface might then start this Visitor, display the broken links within a
report and allow the responsible user to edit the links from one central place
without being forced to go into every page and fix them manually. The only
method to be implemented looks as follows:

BrokenLinkCollector>>visitExternalLink: anExternalLink

anExternalLink isBroken

ifTrue: [collection add: anExternalLink]

As we will demonstrate later on in Section 3.6.1 we might also use the
query engine and specify a query string like kind = ’ExternalLink’ AND

isBroken = true to achieve the same result.

3.5.2 Converting documents

It can be very convenient to convert a particular page or even a whole tree
of pages to a different format than XHTML, for example for exporting or
printing6. Since all the pages and documents are kept in one tree of objects
it is trivial to write a Visitor that walks this tree of entities and exports the
contents to formats like LATEX, OASIS (Open Document Format for Office
Application, OpenOffice) or RTF (Rich Text Format, Microsoft Word). In
fact this is exactly the same way how the wiki syntax and the XHTML view
for the Web browser are generated. The following code extract shows the
part of the rendering Visitor that emits a LATEX list:

LatexRenderer>>visitOrderedList: anOrderedList

stream nextPutAll: ’\begin{enumerate}’; cr.

self visitAll: anOrderedList children.

stream nextPutAll: ’\end{enumerate}’; cr

LatexRenderer>>visitUnorderedList: aUnorderedList

stream nextPutAll: ’\begin{itemize}’; cr.

self visitAll: aUnorderedList children.

stream nextPutAll: ’\end{itemize}’; cr

LatexRenderer>>visitListItem: aListItem

stream nextPutAll: ’\item ’.

self visitAll: aListItem children.

stream cr

6In fact, the whole documentation of Magritte and Pier in the Appendix was automat-
ically generated using this Visitor on the source code comments written using the Pier
wiki syntax.

3.5. EXTENDING PIER 35

3.5.3 Security

Pier doesn’t come with a built-in security framework, this means that out
of the box there are no possibilities to restrict access to specific views or
commands. However the implementation of Pier allows one to load a security
system as a plug-in so that users can choose an implementation that suits
their needs the best.

The key idea to enable that kind of pluggability is the use of decorations to
attach security properties to any structure in the system. Visitors walking
the model can then restrict access to a structure the user is not allowed to see.
Details about the workings of Visitors can be found in Section 3.4.3.

Structure

Security
Decoration

User Group

Command

Principal

Spielverderber

AclList
Decoration

AclRule

*

*

Single
Right

Right
Set

Right

*

*

owningUser

Pier Unix Security

owningGroup

user
group
other

Figure 3.10: Two pluggable security architectures for Pier

Currently there are two security plug-ins available, as pictured in Figure 3.10
Both implementations have a similar notion of users and groups, they define
their access rules and their security decorations differently:

Access Control List. This security model [Plus05] is defined through
access control lists (AclList), consisting of an ordered list of rules that
control the permissions (AclRule). Each rule specifies three things: a user
or group, a right, and whether that command is allowed or denied. One
of the main advantages of this model is that permissions can not only be
rejected but also explicitly granted. The drawback is the complexity: since
the order of the rules is significant it can become difficult to manage sites
with many large access control lists. The support of good tools is crucial
here.

36 CHAPTER 3. PIER

Unix Permissions. This package [Reng06] provides a lightweight imple-
mentation of a Unix-like security system. The security decoration has a
notion of an owning user and an owning group, each with associated per-
missions. There is also a list of permissions for all other people, that neither
match the owning user nor the owning group. Permissions are defined using
the available command classes. This is basically the only difference to the
security model in Unix where they merely have the permissions to read,
write and execute. The package provides different commands that manage
the permissions in similar ways as the well known Unix tools: chown to
change the owning user, chgrp to change the owning group, and chmod to
change the permissions.

3.6 Pier at the Meta-Level

Content management systems and wikis consist of a large number of input
forms and dialogs that need to be built and validated manually. Developers
need a way to specify how objects are structured and how they can be
modified so that views and editors can be created almost automatically.
In Pier, each domain element is described by a Magritte meta-description.
Having such a description not only allows us to automatically create Seaside
components as views for the Web, but also to build other user interfaces
without having to write a single line of code. It automates searches on our
domain model, implements persistency, etc.

Moreover, when changing the structure of a class one has to change the
description at one single place and all the parts of the model and the user
interface that rely on the provided descriptions immediately adapt to the
new requirements, avoiding the need to refactor different parts of the code.
Hence Magritte opens more possibilities to extend the system without having
to patch existing code.

Meta-descriptions in Pier are not only used for describing the domain model
itself but also for the Pier back-end object representation objects, such as
the command objects mentioned in Section 3.4.4. As an example let’s have a
look at the copy command in Pier. On the class side there are two methods
each returning a description. Both methods are initialized with a selector
to access the value of the model; i.e., for the title description only the
read-accessor title is specified, but Magritte will automatically define the
write-accessor #title:. The descriptions of the title and target are tagged
to be required, which means that neither fields can be left empty.

CopyCommand class>>descriptionTitle

^(StringDescription selector: #title label: ’Title’ priority: 100)

beRequired;

yourself

3.6. PIER AT THE META-LEVEL 37

CopyCommand class>>descriptionTarget

^(StructureDescription selector: #target label: ’Target’ priority: 200)

beRequired;

yourself

When asking an instance of such a copy command for its description,
Magritte collects all the methods on the class side starting with the name
description and returns a composed description consisting of the two ele-
ments as seen above. The value of the priority is used to sort the descriptions
as preferred to give a consistent look in the user interface.

There are multiple uses of such meta-descriptions. The most immediate one
is that a description is used to create a visual Seaside component. Getting
a Seaside component allowing the user to edit the command instance is
as simple as sending #asComponent. Usually the returned component is
then decorated with a form, displaying a save and a cancel button, and a
validator, catching and displaying validation errors. In a very similar way
we are able to send #asMorphic to the same command to get a dialog for
the OmniBrowser user interface.

In the following sections we discuss the implementation of the search engine
and the persistency framework with the help of Magritte.

3.6.1 Searching

Content management systems tend to grow over time, hence it becomes very
important to have sophisticated ways to locate the desired information. In
most cases we want to search for a page containing a particular substring,
however sometimes it would be more precise to only look for pages that
satisfy a certain condition. Pier with the help of the meta-descriptions of
Magritte allows one to write such conditions in the search field and dis-
play the matching pages. The query kind = ’Table’ AND rowCount >
3 returns all the pages with tables that have more than 3 rows and url

matches: ’*.ch/*’ returns pages with external links having a swiss do-
main.

To implement this functionality we have written a parser that reads the
search expression and builds a tree of conditions, see Section 2.6.3. When we
send the #value: to the root node of this condition tree, we either get true
if the argument matches the criterion or false if it doesn’t match as a return
value. The condition tree is evaluated recursively using an escaper to abort
the evaluation immediately if nothing can change the result of the expression
anymore, which significantly improves the speed of query processing. To
determine if a certain basic condition such as title beginsWith: ’Pier’

is met, the meta-descriptions come into play again: the model object to be

38 CHAPTER 3. PIER

checked is asked for its descriptions and it is checked if it has got an attribute
called title and if this attribute is usable with the condition beginsWith:.
If those two preconditions are fulfilled the value is read from the domain
model, the comparison is done and the result is returned. Again we have a
Visitor that walks over the wiki tree and collects all the possible matches.
A simple widget is used to display the result of the query.

Object

Decorated Decoration

Children

Page

Structure

1 *

* 1

accept: Visitor
Visitor

visitPage: Page
visitChildren: Children

QueryVisitor
visitPage: Page

visitChildren: Children

QueryVisitor>>visitChildren: anObject
 super visitChildren: anObject.
 anObject do: [:child | self visit: child]

QueryVisitor>>visitPage: anObject
 super visitPage: anObject.
 self visit: anObject doument

Figure 3.11: Walking through the Pier model using a Visitor

The following example shows how the query string is parsed and passed into
the Visitor, which descends into each wiki structure, as seen in Figure 3.11,
and then collects and returns all the matching structures.

SearchWidget>>search

searchResults := QueryVisitor

start: self context kernel root

query: (RelationParser parse: self queryString)

BasicCondition>>value: anObject

| description |

description := anObject description

at: self selector

ifAbsent: [^ false].

^ super value: (anObject readUsing: description)

3.6.2 Persistency and Versioning

Pier takes a prevalence [Wues] or change-set-based approach to version its
data. The idea is to keep the whole data in RAM – if there isn’t enough
RAM on the server it will be transparently swapped out by the operation
system – so the system runs very fast as no objects have to be de-serialized.
To avoid losing data, every night, or at any reasonable time, a snapshot of

3.6. PIER AT THE META-LEVEL 39

the whole page tree is saved. In addition all commands that are executed
on the model are serialized immediately after being processed. The meta-
descriptions of the command tells the persistency layer how the object has
to be serialized and eventually restored later on. During crash recovery,
Pier retrieves its last saved state from the snapshot and then reads in the
commands and applies them to the model exactly as if it had just come from
the user interactions.

With this approach we get versioning and undo facilities for free. Suppose
we want to see all the changes that have been made to a specified page, we
just have to go through the command log and select all the edit commands
of this particular page. Loading them allows us to see the changes of that
page, and restore any old version by re-applying the command.

3.6.3 Adaptive Forms

Often end user of a content management system not only want to collect data
in the form of text documents and files but also in more structured ways,
e.g., addresses within an address book, movies in their DVD collection, items
in a to-do list, etc. A possible use case of an actor database can be seen in
Figure 3.12. With the help of Magritte it is easy to enable adaptive forms, see
Section 2.4.1, that can be configured by end users. This section will briefly
document the code that was written to enable such a functionality.

We will start by defining a new structure class that behaves like a normal
page and displays the contents of the form as a read-only view (see Fig-
ure 3.12.c). Then we will enable the edit command to take the custom
fields of the new form structure into account (see Figure 3.12.b). Finally
we will provide a meta-edit command to change the meta-model itself (see
Figure 3.12.a). Noticeably the implementation only requires to add two new
classes, has no view-specific code and therefore works out of the box for all
available views.

First we define a new structure (see Section 3.4.2) by subclassing Structure,
having two instance variables, accessors and an initialize method. We also
implement the method #postCopy to copy the model but not the meta-
model.

Structure subclass: #Form

instanceVariableNames: ’model metamodel’

classVariableNames: ’’

poolDictionaries: ’’

category: ’Pier-Forms’

Form class>>isAbstract

^ false

40 CHAPTER 3. PIER

(c) View

(b) Editor(a) Meta Editor

Figure 3.12: (a) Defining an adaptive form for a movie actor database.
(b) Editing an instance of the adaptive form. (c) Presenting a read-only
view of the instance of the adaptive form.

Form>>metamodel

"Answer a Magritte container with the description of the receiver."

^ metamodel

Form>>metamodel: aDescription

metamodel := aDescription

Form>>model

"Answer a dictionary mapping the descriptions of the receiver to

actual values."

^ model

Form>>model: aDictionary

model := aDictionary

Form>>initialize

super initialize.

self model: Dictionary new.

self metamodel: Container new

3.6. PIER AT THE META-LEVEL 41

Form>>postCopy

super postCopy.

self model: self model copy

Next we override the method #description to return a concatenation of
the description of the super class and the adaptive meta-model of the re-
ceiver. To tell Pier that it should use our adaptive descriptions to build the
default editor, we have to make it editable by sending the message #beEdit-
able.

Form>>description

^ (Container withAll: super description) ,

(self metamodel do: [:each | each beEditable]

To be able to read the data from the two possible sources, the receiver as
described by the superclass or our dictionary as described by our adaptive
meta-model, we have to override the methods #readUsing: and #write:-

using:. These two methods are invoked by Magritte to read and write
values from a described object.

Form>>readUsing: aDescription

"Answer the actual value described by aDescription. If our meta-model

includes aDescription return the associated value from the dictionary,

else use the super implementation."

^ (self metamodel includes: aDescription)

ifTrue: [

self model

at: aDescription

ifAbsent: [aDescription default]]

ifFalse: [super readUsing: aDescription]

Form>>write: anObject using: aDescription

"Set the value described by aDescription to be anObject. If our meta-

model includes aDescription put anObject into the dictionary, else use

the super implementation."

(self metamodel includes: aDescription)

ifTrue: [self model at: aDescription put: anObject]

ifFalse: [super write: anObject using: aDescription]

To get the read-only view of the new structure class working we need to
define a method #document returning a Pier document composite. We pro-
grammatically build a list by iterating over the meta-model and transforming
our model to strings:

Form>>document

^ Document new

add: (UnorderedList new

add: (self metamodel children collect: [:desc |

42 CHAPTER 3. PIER

ListItem

with: (Text with: ’’ , desc label , ’’);

with: (Text with: (desc

toString: (self readUsing: desc)));

yourself]);

yourself);

yourself

The only missing piece is the ability to edit the meta-model. We do this by
implementing a new command class:

Command subclass: #EditFormCommand

instanceVariableNames: ’metamodel’

classVariableNames: ’’

poolDictionaries: ’’

category: ’Pier-Forms’

EditFormCommand class>>label

^ ’Edit Form’

EditFormCommand class>>structureClass

^ Form

EditFormCommand class>>isAbstract

^ false

Then we implement accessors and override the method #description to
return the description of the meta-model:

EditFormCommand>>metamodel

"Answer the meta-model of the command, fetch it from the current

structure if it is not initialized."

^ metamodel ifNil: [metamodel := self structure metamodel]

EditFormCommand>>metamodel: aDescription

metamodel := aDescription

EditFormCommand>>description

^ self metamodel description

Last but not least we have to implement the method #doExecute to actually
change our model:

EditFormCommand>>doExecute

super doExecute.

self structure metamodel: self metamodel

This is all needed to get a working implementation as shown in Figure 3.12.
Still there is some space left for improvements, such as to provide better
views and user interfaces to make it simpler to utilize.

3.7. LESSONS LEARNED 43

3.7 Lessons Learned

During the implementation of Pier and its ancestor SmallWiki, we learned
that having a fully object-oriented design is the key to efficiently implement
an extensible content management system that adapts to a wide variety of
needs. In the following paragraphs we compare some implementation details
of SmallWiki, Pier and other wiki implementations:

Testing. Compared with SmallWiki, Magritte and Pier increased the num-
ber of unit tests from 200 to more than 2500, covering the whole model
of both frameworks. This makes it possible to change and verify the
code and is extremely useful when porting Pier to other Smalltalk
dialects or when writing extensions that could break existing code.

Parser. Using a parser to read the Wiki input, to build a proper object
model and to walk through it using Visitors saves a lot of code: the
current implementation of Pier featuring scanner, parser and docu-
ment hierarchy consists only of 550 lines of Smalltalk code, whereas
the same functionality implemented for WikiPedia [WikiPedi] using
regular-expressions requires more than 3000 lines of code (exclud-
ing comments). Moreover these regular-expressions are duplicated
throughout the code base of WikiPedia, for example to implement
the query engine, which makes it extremely difficult to change and
enhance the syntax.

Structures. In the first version of SmallWiki, we distinguished between a
folder (this is a page with children) and a page. This led to problems
because it was difficult to change the structure of a Wiki after the
fact. In the new version, we only have pages and no folders but any
structure can be decorated to get children. Hence any structure can
play the role of a folder. A page can also lose its children. This means
the user is not forced to decide up front how his Web site will be
structured, but is able to add and remove children later on as desired.
Pier also provides an interface to move and copy whole subtrees to
different locations easily.

Separation. SmallWiki was designed to be used within a Web context
[Reng03]. It was built on top of its own Web framework. However,
Web application development is difficult when having to deal with
the shortcomings of the HTTP protocol as the right abstractions are
missing [Duca04]. In SmallWiki the model and the view were strongly
coupled. For example an action to be performed on a page was a
mixture between a Command design pattern [Gamm95] and the asso-
ciated Web view. It was then nearly impossible to use a command in
a different view. Now Pier cleanly separates the model and the view

44 CHAPTER 3. PIER

in different packages that can be loaded and used independently.

View. In SmallWiki all the application state was kept as strings in the URL,
in its query parameters, in HTTP header fields and in associated ses-
sion cookies, exactly the way most of today’s Web applications do.
Using Seaside as a default view allows us to introduce a much cleaner
solution. Seaside provides a nice abstraction over this low-level proto-
col and we are now able to keep all our state within the application
components themselves as proper objects. It is therefore not necessary
to manually serialize and de-serialize our objects as strings.

Embedding. Structures can be embedded into each other by creating a
special kind of reference. This greatly enhances the possibilities to
layout and structure the Wiki. Pier supports absolute and relative
links, so that editors can easily create navigation facilities between the
nested structures.

Commands. Modifying the model through the use of a clean implemen-
tation of the command pattern enables the implementation of a
prevalence-like framework. It logs the history of commands to al-
low one to restore any point in the past by loading a snapshot and
subsequently applying the stored commands. Furthermore having the
whole command history available gives us the possibility to undo and
redo modifications.

Meta-Description. We learned that having a powerful meta-model brings
a lot of flexibility to different areas of the framework. Without writing
additional code we are able to alter different parts of Pier, such as
the views, the search engine and the persistency solely by changing or
adding Magritte meta-descriptions.

Persistency. Persistency and versioning is a crucial part of any Wiki. In
SmallWiki we were using a simple snapshot mechanism, dumping out
all the structures in user-defined intervals. The obvious problem here
is that if the computer crashes just before doing a snapshot all the
changes since the last snapshot are lost. The versioning of the pages
was achieved by keeping a collection of all the old pages within the
model, which has disadvantages as well: old versions are only accessed
rarely and therefore it is not efficient to keep them in memory all the
time. In addition, the memory footprint of SmallWiki never shrank,
since all the changes had to be versioned, therefore even deleting parts
of the Wiki didn’t reduce its actual size. This could lead to perfor-
mance problems when saving and loading a snapshot of a huge Wiki
with lots of mutations over the time. Pier provides a prevalence-based
approach to versioning, so that every change is stored to the filesys-
tem and only the current model is kept in memory. Any point after a

3.8. SUMMARY 45

snapshot can be easily restored by reapplying the commands from the
history.

3.8 Summary

Content management systems and Wikis both offer quick and efficient ways
to collaborate via simple Web browser interfaces. However, as Web sites
grow, more advanced functionalities (such as advanced management, main-
tenance and search operations) need to be incorporated. Current implemen-
tations based on string manipulation are poorly suited to support this new
generation of collaboratively created Web sites.

In this chapter we have presented Pier, a fully object-oriented content man-
agement system that is described using Magritte as a meta-model – forming
the conceptual backbone of the implementation – and that uses the Sea-
side framework to overcome traditional HTTP limitations. Seaside lets Pier
cleanly divide the application domain model from the UI, alleviating the
need for object serialization. The resulting combination was shown to be
very customizable.

Our long term goal for Pier is to define an environment to enable user-
scriptable Web applications, similar to HyperCard in its time.

46 CHAPTER 3. PIER

Chapter 4

Conclusion

“Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.”

— Christopher Alexander

As we have observed while developing several real world applications, having
a meta-framework such as Magritte greatly reduces recurrent work. Often
it is much simpler to write a generic interpreter of the meta-model, than
to manually build specific implementations of the functionality in different
places of the application. Hence, the use of Magritte not only reduces the
overall code size, but it makes the application more adaptable to changing
needs of customers and reduces the number of possible bugs: developers
only change the description at one single place in the source code, without
having to refactor all places that deal with the object. In addition, complex
meta-model manipulations are made once and for all by a meta-programmer,
and the other programmers and users can benefit from them.

Model Code Web-View Morphic-View

Magritte 2490 1801 286
Pier 2978 1021 249
Pier Security 472 0 0
Pier Forms 61 0 0

Table 4.1: Lines of Code in Magritte and Pier.

47

48 CHAPTER 4. CONCLUSION

Table 4.1 shows the lines of code (LOC) of Magritte, Pier and some exten-
sions thereof. The columns show the difference between the model code and
the code used to generate the different views. It is interesting to see that
the security and the form extension don’t have any view-specific code, since
their user interface is all automatically generated using Magritte. There is
only very little model code that makes up the Pier Forms package – an ex-
tension we presented in Section 3.6.3 allowing end users to define their own
forms in the system – because most of this functionality is already provided
by Magritte itself.

The fact that descriptions are used to describe Magritte itself makes the
system even more versatile: it gives end users the possibility to customize
existing models or to build new ones, without having to write a single line
of code. The interpreting software system can easily control how far this
meta-customization should go. We observed that exposing a small subset of
Magritte to end users greatly reduces complexity and increases productivity.
Having adaptive models is the key for customizable applications, to allow
end users build their own data-models.

As stated by Ralph Johnson [Yode02] a meta-model introduces additional
complexity to an application and therefore inexperienced developers might
have conceptual problems. Another problem might be a reduced execution
speed, as there are additional indirections introduced through the interpre-
tation of the meta-model. We have not observed any performance cost or
noticeable speed reductions through the use of Magritte. Other factors such
as the network connection or the persistency back-end are by far more critical
for business applications than the use of an underlying meta-model.

4.1 Related Work

Yoder et al propose the type-square design pattern [Yode01], based on the
type object that separates the entity from its entity type [John98]. Magritte
uses these patterns as well, but it makes some generalizations, as seen in Fig-
ure 4.1: the distinction between components and properties is not made. A
component and a property are just any kind of object. It is the same for
component-types and property-types. They are all descriptions with the
same superclass. A couple of descriptions refer to other descriptions, such
as the container descriptions, the option descriptions and the relationship
descriptions. Strategies and Business Rules are modeled in Magritte using
conditions and different Visitors that can be associated to any description
object and that are meta-described, so that they can be changed or cus-
tomized by end users as well.

Formulator [Formulat] and Mewa [Lien03] propose frameworks that ease the

4.1. RELATED WORK 49

Component
Type Component

Property
Type Property

1 *

1

*
*1

*

1

Type
Object

Type
Object

(a) Type-Square

Object

Description

Ty
pe

O

bj
ec

t

*

*

de
sc

rip
tio

n

attributes
1 *

(b) Magritte

Figure 4.1: (a) The type-square, and (b) the meta-recursive model of
Magritte are both making extensive use of the type-object design pattern.

creation and validation of Web forms, however neither approach uses the
meta-model for anything other than building forms. Formulator includes
basic Web interfaces to build forms interactively. Mewa requires the devel-
oper to write all the code to generate a meta-model. Both frameworks have
difficulties with customizing parts of the automatic form generation.

One reason that most frameworks do not describe themselves is that they
all tend to be very domain-specific: some concentrate on the modeling of a
specific business model, others concentrate on a specific output format, such
as for a Web framework. Unfortunately this leads to adaptive models that
are not able to describe themselves. Therefore they require a lot of additional
work if end users should be able to modify the adaptive-models. Magritte
tries to consolidate everything by enabling meta-editing using itself.

Muller et al [Mull05b] present an approach to platform-independent Web
application modeling and development in the context of model-driven engi-
neering. A specific meta-model (and associated notation) is introduced and
motivated for the modeling of dynamic Web specific concerns. Web appli-
cations are represented via three independent but related models (business,
hypertext and presentation). A kind of action language (based on OCL and
Java) is used all over these models to write methods and actions, specify
constraints and express conditions.

We decided against using yet another language and preferred to use the
complete power of our chosen development language Smalltalk, as it of-
fers a simple object-oriented model with OCL-like iterations and a powerful
set of development tools (hot debugger, session-debugging, hot-server re-
compilation). In addition, Seaside, the framework we use to develop Web
applications, allows us to build Web applications as if they were desktop

50 CHAPTER 4. CONCLUSION

applications. Therefore if we were to adopt a generative approach we would
lose the power of Seaside [Seaside, Duca04].

Named
Element

Typed
Element Type

Operation PropertyParameter PrimitiveTypeClass

Multiplicy

attribute

operationparameter

Element

Package

Comment

*
**

*

*

super
*

Figure 4.2: The Essential Meta-Object Facility (EMOF)

EMOF. Figure 4.2 shows a class diagram of the Essential Meta-Object
Facility (EMOF), a standard for model driven engineering defined by the
Object Management Group (OMG) [Grou04]. Contrary to EMOF Magritte
is not designed as a four-layered architecture. In Magritte there is not dis-
tinction drawn between the meta-meta-model (M3), the meta-model (M2),
the model (M1) and the instances (M0). Descriptions are objects that can
all be seen at different levels at once: the meta-level, the model-level, etc.
In Smalltalk everything is an object, in particular descriptions and classes
are objects that can be described as well.

There is no notion of named elements, packages or namespaces in Magritte.
Descriptions don’t need to be identified by name, Factory Methods [Alpe98,
page 63] are used to build description instances and from then on they
are merely stored in instance variables and passed around using object ref-
erences. Descriptions are not part of the underlying source code and don’t
necessarily describe something that has been written by an application devel-
oper, hence they neither need a name nor belong to a package or namespace.
Descriptions are compared using object identity, consequently two descrip-
tions are identical if they are represented by the same object. Descriptions
happily live together with the other model-instances in the memory or in
external data sources.

Compared to MOF Magritte has no notion of instantiation, inheritance
and classes. We describe objects that are already instantiated. Magritte
is tightly embedded into the Smalltalk object model. Smalltalk is used to

4.2. LESSONS LEARNED 51

instantiate, configure and compose the descriptions, as well as to model the
behavior of the meta-descriptions. In Magritte every object can have mul-
tiple descriptions that can be used in sequence or in parallel on the same
object. Additionally descriptions can be shared among different objects, as
long as the object implements the described elements.

The Magritte description classes define a type hierarchy for the Smalltalk
class library. This is similar to the subclasses of Type in EMOF, where a
distinction between classes and primitive types is made. An instantiated
Magritte description can be seen as the EMOF class Property. Magritte
also provides means to define multiplicity, but not as fine grained as this
is done for MOF. In Magritte there is no built-in functionality to describe
behavioral aspects, such as operations, their parameters and return values.
The pluggable design of Magritte however allows one to use descriptions to
model simple operations on objects. This has been shown in Section 2.5
where we provided different comparators with user definable arguments.
It is desired to extend this model to allow describing arbitrary operations
on objects. Magritte supports condition objects on its descriptions, this is
similar to the constraints that are part of the Complete Meta-Object Facility
(CMOF) only.

WebML. WebML [Ceri00] enables the high-level description of a Web
site according to distinct orthogonal dimensions: its data content (structural
model), the pages that compose it (composition model), the topology of links
between pages (navigation model), the layout and graphic requirements for
page rendering (presentation model), and the customization features for one-
to-one content delivery (personalization model). WebML goes in the same
direction as Netsilon: An application is modeled using different perspectives
and generated. Our approach is different. Our object-oriented applications
are implemented in Smalltalk but meta-described, and this connected meta-
description is used to support the generation of Web user interface, queries
and persistency. There is no automatic code generation involved in our
approach, therefore if the meta-model changes, all the users of the meta-
model behave in the new way automatically.

4.2 Lessons Learned

• Meta-descriptions considerably enhance the possibilities to refactor
and change existing code, since the changes are localized to one place.
In other words “Describe once, get everywhere”.

• Smalltalk as a meta-language offers the possibility to use all the tools
provided by the development environment: browser, debugger, ver-

52 CHAPTER 4. CONCLUSION

sioning, testing, refactoring, etc. Moreover it eases the entry level as
developers do not need to learn another language.

• Using the same descriptive paradigm on different meta-levels turns
Magritte into a powerful recursive framework: being able to describe
any kind of domain-objects, including descriptions themselves makes
it possible to enable end user customizability.

• The simplicity and extensibility of Magritte makes it possible to write
interpreters that perform completely different actions on described
models, as the ones provided with the framework (building Web edi-
tors, serializing domain-models, querying data).

4.3 Further Work

We have described our practical knowledge of using a meta-model integrated
in the reflective meta-model of Smalltalk to support the development of
flexible Web applications. Our meta-model is self-described, which enables
end user customization. We demonstrate that we could reap the benefits of
the two worlds: on the one hand we keep our efficient and dynamic object-
oriented programming with an outstanding tooling context, and at the same
time we gained the flexibility and compactness of meta-descriptions to factor
out repetitive tasks of our application development.

As future work, we would like to investigate how the control flow of appli-
cations could be meta-described with Magritte. Especially in the context of
Web application it would be interesting to model the flow between pages as
a meta-described graph that can be modified by the user on the fly. Also
we would like to implement ideas from EMOF to model operations on ob-
jects.

Documentation

Magritte-Model-Core

MACompatibility

Superclasses Object

I am providing all the platform compatibility code on my class side, so
that porting to different Smalltalk dialects can concentrate in a single
place.

MADistribution

Superclasses Object

I am responsible for building a distribution and publishing a complete pack-
age on SqueakMap. All my settings, such as which packages I depend on,
are defined on the class side and can be overridden to create different dis-
tributions based on Magritte.

building

• dump

Dump the SAR archive to the file-system.

• publish

Publish the package as a new release on SqueakMap.

MAObject

Superclasses Object

53

54 DOCUMENTATION

Subclasses MAAccessor, MAAllCondition, MAAnyCondition, MAAuto-

SelectorAccessor, MABlockAccessor, MABooleanDescription,
MACachedMemento, MAChainAccessor, MACheckedMemento, MAClass-

Description, MAColorDescription, MACondition, MAContainer,
MAContainerAccessor, MADateDescription, MADescription,
MADictionaryAccessor, MADurationDescription, MAElement-

Description, MAFalseCondition, MAFileDescription, MAMagnitude-

Description, MAMemento, MAMemoDescription, MAMultipleOption-

Description, MANoneCondition, MANullAccessor, MANumberDescription,
MAOptionDescription, MAPasswordDescription, MAPriorityContainer,
MAReferenceDescription, MARelationDescription, MASelector-

Accessor, MASelectorCondition, MASingleOptionDescription,
MAStraitMemento, MAStringDescription, MASymbolDescription,
MATableDescription, MATimeDescription, MATimeStampDescription,
MATokenDescription, MAToManyRelationDescription, MAToOne-

RelationDescription, MATrueCondition, MAVariableAccessor

I provide functionality available to all Magritte objects. I implement a dictio-
nary of properties, so that extensions can easily store additional data.

accessing

• properties

Answer the property dictionary of the receiver.

• propertyAt: aKey

Answer the value of the property aKey, raises an error if the property
doesn’t exist.

• propertyAt: aKey ifAbsentPut: aBlock

Answer the value of the property aKey, or if the property doesn’t exist
adds and answers the result of evaluating aBlock.

• propertyAt: aKey ifAbsent: aBlock

Answer the value of the property aKey, or the result of aBlock if the
property doesn’t exist.

• propertyAt: aKey put: aValue

Adds or replaces the property aKey with aValue.

comparing

• hash

Answer a SmallInteger whose value is related to the receiver’s identity.
Also redefine the message #= when redefining this message.

55

• = anObject

Answer whether the receiver and the argument represent the same
object. This default implementation checks if the species of the com-
pared objects are the same, so that superclasses might call super before
performing their own check. Also redefine the message #hash when
redefining this message.

copying

• postCopy

This method is called whenever a shallow copy of the receiver is made.
Redefine this method in subclasses to copy other fields as necessary.
Never forget to call super, else class invariants might be violated.

testing

• hasProperty: aKey

Test if the property aKey is defined within the receiver.

Magritte-Model-Models

MAAdaptiveModel

Superclasses Object

I am an adaptive model referencing a dynamic description of myself and a
dictionary mapping those descriptions to actual values.

accessing

• description

Answer the description of the receiver.

• values

Answer a dictionary mapping description to actual values.

model

• readUsing: aDescription

Answer the actual value of aDescription within the receiver, nil if
not present.

56 DOCUMENTATION

• write: anObject using: aDescription

Set anObject to be that actual value of the receiver for aDescription.

MAFileModel

Superclasses Object

I represent a file with filename, mimetype and contents within the Magritte
framework.

querying

• extension

Answer the file-extension.

• maintype

Answer the first part of the mime-type.

• size

Answer the size of the file.

• subtype

Answer the second part of the mime-type.

testing

• isApplication

Return true if the mimetype of the receiver is application-data. This
message will match types like: application/postscript, application/zip,
application/pdf, etc.

• isAudio

Return true if the mimetype of the receiver is audio-data. This mes-
sage will match types like: audio/basic, audio/tone, audio/mpeg, etc.

• isImage

Return true if the mimetype of the receiver is image-data. This
message will match types like: image/jpeg, image/gif, image/png,
image/tiff, etc.

• isText

Return true if the mimetype of the receiver is text-data. This mes-
sage will match types like: text/plain, text/html, text/sgml, text/css,
text/xml, text/richtext, etc.

57

• isVideo

Return true if the mimetype of the receiver is video-data. This mes-
sage will match types like: video/mpeg, video/quicktime, etc.

MATableModel

Superclasses Object

I am a model class representing a table within the Magritte framework.
Internally I store my cells within a flat array, however users may access
data giving row and column coordinates with #at:at: and #at:at:put:.
I can support reshaping myself, but of course this might lead to loss of
data-cells.

accessing

• at: aRowIndex at: aColumnIndex

Answer the contents of aRowIndex and aColumnIndex. Raises an error
if the coordinates are out of bounds.

• at: aRowIndex at: aColumnIndex put: aValue

Set the contents of aRowIndex and aColumnIndex to aValue. Raises
an error if the coordinates are out of bounds.

• columnCount

Answer the column count of the table.

• rowCount

Answer the row count of the table.

operations

• reshapeRows: aRowCount columns: aColumnCount

Change the size of the receiving table to aRowCount times
aColumnCount, throwing away elements that are cut off and initial-
izing empty cells with nil.

Magritte-Model-Description

MABooleanDescription

Superclasses Object, MAObject, MADescription, MAElement-

58 DOCUMENTATION

Description

I am a description of the Boolean values true and false. My visual repre-
sentation could be a check-box.

MAClassDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

I am a description of Smalltalk classes, possible values can be any of
Smalltalk allClasses.

MAColorDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

I am a description of colors, possible values are instances of Color. My
visual representation could be a color-chooser.

MAContainer

Superclasses Object, MAObject, MADescription

Subclasses MAPriorityContainer

I am a container holding a collection of descriptions, all instances of
subclasses of MAElementDescription. I keep my children within an
OrderedCollection, but I don’t sort them according to their priority.

I fully support the collection protocol: descriptions can be added and re-
moved. Moreover I implement most enumeration methods, so that users
are able to iterate (do:), filter (select:, reject:), transform (collect:),
extract (detect:, detect:ifNone:), and test (allSatisfy:, anySatisfy:,
noneSatisfy:) my elements.

MADateDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAMagnitudeDescription

I am a description of dates, possible values are instances of Date. My visual
representation could be a date-picker.

59

MADescription

Superclasses Object, MAObject

Subclasses MABooleanDescription, MAClassDescription, MAColor-

Description, MAContainer, MADateDescription, MADuration-

Description, MAElementDescription, MAFileDescription,
MAMagnitudeDescription, MAMemoDescription, MAMultiple-

OptionDescription, MANumberDescription, MAOptionDescription,
MAPasswordDescription, MAPriorityContainer, MAReference-

Description, MARelationDescription, MASingleOptionDescription,
MAStringDescription, MASymbolDescription, MATableDescription,
MATimeDescription, MATimeStampDescription, MATokenDescription,
MAToManyRelationDescription, MAToOneRelationDescription

I am the root of the description hierarchy in Magritte and I provide most
of the basic properties available to all descriptions. If you would like to an-
notate your model with a description have a look at the different subclasses
of myself.

Example

If your model has an instance variable called title that should be used to
store the title of the object, you could add the following description to your
class:

MyModel class>>descriptionTitle

^ (MAStringDescription auto: #title label: ’Title’)

beRequired;

yourself.

The selector #title is the name of the accessor method used by Magritte
to retrieve the value from the model. In the above case Magritte creates the
accessor method and the instance variable automatically, if necessary. The
label is used to give the field a name and will be printed next to the input
box if a visual GUI is created from this description.

The write-accessor is automatically deduced by adding a colon to the read-
selector, in this example #title:. You can specify your own accessor strat-
egy using one of the subclasses of MAAccessor. If you have multiple descrip-
tion within the same object, the priority field is used to order them. Assign
a low priority to have descriptions printed first.

60 DOCUMENTATION

accessing

• accessor

Answer the access-strategy of the model-value described by the re-
ceiver.

accessing-configuration

• kind

Answer the base-class (type) the receiver is describing. The default
implementation answers the most generic class: Object, the root of
the Smalltalk class hierarchy. Subclasses might refine this choice.

• name

Answer the name of the description, a human-readable string describ-
ing the type.

accessing-properties

• comment

Answer a comment or help-text giving a hint what this description is
used for. GUIs that are built from this description might display it as
a tool-tip.

• conditions

Answer a collection of additional conditions that need to be fulfilled so
that the described model is valid. Internally the collection associates
conditions, that are either blocks or subclasses of MACondition, with
an error string.

• label

Answer the label of the receiving description. The label is mostly used
as an identifier that is printed next to the input field when building a
GUI from the receiver.

• persistent

Answer true if the model described by the receiver is persistent.

• priority

Answer a number that is the priority of the receiving description. Pri-
orities are used to give descriptions an explicit order by sorting them
according to this number.

• readonly

Answer true if the model described by the receiver is read-only.

61

• required

Answer true if the model described by the receiver is required, this is
it cannot be nil.

• visible

Answer true if the model described by the receiver is visible, as an
opposite to hidden.

accessing-strings

• stringReader

Answer a Visitor that can be used to parse the model described by the
receiver from a string.

• stringWriter

Answer a Visitor that can be used to convert the model described by
the receiver to a string.

• undefined

Answer a string that is printed whenever the model described by the
receiver is nil.

converting

• asContainer

Answer a description container of the receiver.

operators

• , aDescription

Concatenate the receiver and aDescription to one composed descrip-
tion. Answer a description container containing both descriptions.

• <= anObject

Answer whether the receiver should precede anObject in a priority
container.

strings

• fromStringCollection: aCollection

Answer a collection of objects being parsed from aCollection of
strings.

62 DOCUMENTATION

• fromStringCollection: aCollection reader: aParser

Answer a collection of objects being parsed from aCollection of
strings using aParser.

• fromString: aString

Answer an object being parsed from aString.

• fromString: aString reader: aParser

Answer an object being parsed from aString using aParser.

• toStringCollection: aCollection

Answer a collection of strings being formatted from aCollection.

• toStringCollection: aCollection writer: aFormatter

Answer a collection of strings being formatted from aCollection using
aFormatter.

• toString: anObject

Answer a string being formatted from anObject.

• toString: anObject writer: aFormatter

Answer a string being formatted from anObject using aFormatter.

testing

• hasChildren

Answer true if the receiver has any child-descriptions. A description
container usually has children.

• hasComment

Answer true if the the receiver has got a non empty comment.

• hasLabel

Answer true if the the receiver has got a non empty label.

• isContainer

Answer true if the receiver is a description container.

• isDescription

Answer true if the receiver is a description.

validation

• addCondition: aCondition labelled: aString

Add aCondition as an additional validation condition to the receiver

63

and give it the label aString. The first argument is either a block-
context, a composite of the subclasses of MACondition, or any other
object that responds to #value: with true or false.

• isSatisfiedBy: anObject

Answer true if anObject is a valid instance of the receiver’s descrip-
tion.

• validateConditions: anObject

Validate anObject to satisfy all its custom conditions.

• validateKind: anObject

Validate anObject to be of the right kind.

• validateRequired: anObject

Validate anObject not to be nil if it is required.

• validateSpecific: anObject

Validate anObject to satisfy all its description specific validation rules.
Subclasses mostly want to override this method.

• validate: anObject

Validate anObject in the context of the describing-receiver, raises an
error in case of a problem. If anObject is nil and not required, most
tests will be skipped. Do not override this message, instead have a
look at #validateSpecific: what is usually a better place to define
the behaviour your description requires.

MADurationDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAMagnitudeDescription

I am a description of durations, possible values are instances of
Duration.

MAElementDescription

Superclasses Object, MAObject, MADescription

Subclasses MABooleanDescription, MAClassDescription, MAColor-

Description, MADateDescription, MADurationDescription, MAFile-

Description, MAMagnitudeDescription, MAMemoDescription,
MAMultipleOptionDescription, MANumberDescription, MAOption-

Description, MAPasswordDescription, MAReferenceDescription,

64 DOCUMENTATION

MARelationDescription, MASingleOptionDescription, MAString-

Description, MASymbolDescription, MATableDescription, MATime-

Description, MATimeStampDescription, MATokenDescription, MATo-

ManyRelationDescription, MAToOneRelationDescription

I am an abstract description for all basic description types.

MAFileDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

I am a description of files, their contents, filename and mime-type. Possible
values include instances of MAFileModel. My visual representation could be
a file-upload dialog.

MAMagnitudeDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

Subclasses MADateDescription, MADurationDescription, MANumber-

Description, MATimeDescription, MATimeStampDescription

I am an abstract description for subclasses of Magnitude. The range of
accepted values can be limited using the accessors min: and max:.

accessing

• max: aMagnitudeOrNil

Set the maximum for accepted values, or nil if open.

• min: aMagnitudeOrNil

Set the minimum for accepted values, or nil if open.

conveniance

• min: aMinimumObject max: aMaximumObject

Set the minimum and maximum of accepted values, or nil if open.

65

MAMemoDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAStringDescription

I am a description of multiline strings, possible values are instances of
String. My visual representation could be a text-area field.

MAMultipleOptionDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription, MAOptionDescription

I am a description of multiple options, possible options are stored within
the options field, possible values are instances of Collection. My visual
representation could be a multi-select list or a group of check-boxes.

MANumberDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAMagnitudeDescription

I am a description of numbers, possible values are instances of Number and
all its subclasses, including Integer and Float. My visual representation
could be a number input-box or even a slider-control.

MAOptionDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription

Subclasses MAMultipleOptionDescription, MASingleOption-

Description

I am an abstract description of different options the user can choose from.
My instance variable options references the options I am representing. The
options can be sorted or unsorted.

MAPasswordDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAStringDescription

66 DOCUMENTATION

I am a description of a password string, possible values are instances of
String. My visual representation could be a password field, where there
are stars printed instead of the characters the user enters.

MAPriorityContainer

Superclasses Object, MAObject, MADescription, MAContainer

I am a container holding a collection of descriptions and I keep them sorted
according to their priority.

MAReferenceDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

Subclasses MAMultipleOptionDescription, MAOptionDescription,
MARelationDescription, MASingleOptionDescription, MATable-

Description, MATokenDescription, MAToManyRelationDescription,
MAToOneRelationDescription

I am an abstract superclass for descriptions holding onto another descrip-
tion.

MARelationDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription

Subclasses MAToManyRelationDescription, MAToOneRelation-

Description

I am an abstract description for descriptions representing a relation. My
instance variable classes references a collection of possible classes that I
can relate to. If required the reference description will be automatically
built from this list of classes.

accessing-dynamic

• commonClass

Answer a common superclass of the classes of the receiver. The algo-

67

rithm is implemented to be as efficient as possible. The inner loop will
be only executed the first few iterations.

• reference

The reference within a MARelationDescription is calculated auto-
matically from all the classes of the receiver, if set to nil. By setting
the reference to a MAContainer instance it is possible to customize the
reference description.

MASingleOptionDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription, MAOptionDescription

I am a description of a single option, possible values are stored within the
options field, but I might also be extensible so that the user can add its
own option. My visual representation could be a drop-down list or a group
of option-buttons.

MAStringDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description

Subclasses MAMemoDescription, MAPasswordDescription, MASymbol-

Description

I am a description of strings, possible values are instances of String. My vi-
sual representation could be a single line text-field. Use MAMemoDescription
for multi-line strings.

MASymbolDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAStringDescription

I am a description of symbols, possible values are instances of Symbol.

MATableDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription

68 DOCUMENTATION

I am a description of tables, their cells and labels. I hold a reference to the
description of my cells, that are all described using the same description.
Possible values include instances of MATableModel.

MATimeDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAMagnitudeDescription

I am a description of times, possible values are instances of Time. My visual
representation could be a time-picker.

MATimeStampDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAMagnitudeDescription

I am a description of timestamps, possible values are instances of TimeStamp.
My visual representation could be a date- and time-picker.

MATokenDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription

I am a description of tokens all described by the referenced description,
possible values are instances of SequenceableCollection.

MAToManyRelationDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription, MARelationDescription

I am a description of an one-to-many relationship, possible values are in-
stances of Collection.

MAToOneRelationDescription

Superclasses Object, MAObject, MADescription, MAElement-

Description, MAReferenceDescription, MARelationDescription

I am a description of an one-to-one relationship.

69

Magritte-Model-Accessor

MAAccessor

Superclasses Object, MAObject

Subclasses MAAutoSelectorAccessor, MABlockAccessor, MAChain-

Accessor, MAContainerAccessor, MADictionaryAccessor, MANull-

Accessor, MASelectorAccessor, MAVariableAccessor

I am the abstract superclass to all accessor strategies. Accessors are used
to implement different ways of accessing (reading and writing) data from
instances using a common protocol: data can be uniformly read and written
using #readFrom: respectively #write:to:.

model

• read: aModel

Read from aModel using the access-strategy of the receiver.

• write: anObject to: aModel

Write anObject to aModel using the access-strategy of the receiver.

testing

• canRead: aModel

Test if aModel can be read.

• canWrite: aModel

Test if aModel can be written.

MAAutoSelectorAccessor

Superclasses Object, MAObject, MAAccessor, MASelector-

Accessor

I am very similar to my super-class MASelectorAccessor, however I do
create instance variables and accessor methods automatically if necessary.
I am especially useful for prototyping. I never change existing accessor
methods.

70 DOCUMENTATION

MABlockAccessor

Superclasses Object, MAObject, MAAccessor

I am an access strategy defined by two block-closures. The read-block ex-
pects the model as its first argument and is used to retrieve a value. The
write-block expects the model as its first and the value as its second argu-
ment and is used to write a value to the model.

MAChainAccessor

Superclasses Object, MAObject, MAAccessor

I am an access strategy used to chain two access strategies. To read and
write a value the accessor is performed on the given model and the result
is passed into the next accessor.

MAContainerAccessor

Superclasses Object, MAObject, MAAccessor

I am a read-only access strategy and I answer the model itself when being
read.

MADictionaryAccessor

Superclasses Object, MAObject, MAAccessor

I am an access strategy to be used on dictionaries. I use my key to read
from and write to indexed collections.

MANullAccessor

Superclasses Object, MAObject, MAAccessor

I am a null access strategy and I should be neither read nor written. I am
still comparable to other strategies by holding onto a unique-identifier.

MASelectorAccessor

Superclasses Object, MAObject, MAAccessor

71

Subclasses MAAutoSelectorAccessor

I am the most common access strategy defined by a read- and a write-
selector. I am mostly used together with standard getters and setters as
usually defined by the accessing protocol. If there is only a read-selector
specified, the write selector will be deduced automatically by adding a colon
to the read-selector.

MAVariableAccessor

Superclasses Object, MAObject, MAAccessor

I am an access strategy that directly reads from and writes to instance
variables. I strongly violate encapsulation and most of the time I should be
replaced by an instance of MASelectorAccessor.

Magritte-Model-Condition

MAAllCondition

Superclasses Object, MAObject, MACondition, MAComposed-

Condition

I am a condition that is satisfied if all of my child-conditions are satis-
fied.

MAAnyCondition

Superclasses Object, MAObject, MACondition, MAComposed-

Condition

I am a condition that is satisfied if any of my child-conditions are satis-
fied.

MACondition

Superclasses Object, MAObject

Subclasses MAAllCondition, MAAnyCondition, MAFalseCondition,
MANoneCondition, MASelectorCondition, MATrueCondition

72 DOCUMENTATION

I am an abstract condition. To check if the condition is satisfied by a given
model-object, send the message #value: to myself.

evaluation

• numArgs

Answer the number of arguments that must be used to evaluate this
condition.

• value: anObject

Evaluate the receiver with the argument anObject. Answer a Boolean

telling if the condition is met for anObject.

operators-binary

• & aCondition

The resulting condition will require the receiver and aCondition to
be satisfied.

• | aCondition
The resulting condition will require the receiver or aCondition to be
satisfied.

operators-unary

• not

Negates the receiving condition.

MAFalseCondition

Superclasses Object, MAObject, MACondition, MAConstant-

Condition

I am a condition that is satisfied for no input. I always answer false.

MANoneCondition

Superclasses Object, MAObject, MACondition, MAComposed-

Condition

I am a condition that is satisfied if none of my child-conditions are satis-
fied.

73

MASelectorCondition

Superclasses Object, MAObject, MACondition

I am a condition that performs a specific selector on the model to test if a
condition is satisfied or not.

MATrueCondition

Superclasses Object, MAObject, MACondition, MAConstant-

Condition

I am a condition that is satisfied for all input. I always answer true.

Magritte-Model-Memento

MACachedMemento

Superclasses Object, MAObject, MAMemento

Subclasses MACheckedMemento

I cache values being read and written without touching the model. When
committing changes, the modifications will be propagated to the model all
at once.

testing

• hasChanged

Answer true, if the cached data is different to the data in the model.

MACheckedMemento

Superclasses Object, MAObject, MAMemento, MACachedMemento

I cache values as my superclass and also remember the original values of the
model at the time the cache is built. With this information I am able to
detect edit conflicts and can prevent accidental loss of data by merging the
changes.

74 DOCUMENTATION

testing

• hasConflict

Answer true, if there is an edit conflict.

MAMemento

Superclasses Object, MAObject

Subclasses MACachedMemento, MACheckedMemento, MAStrait-

Memento

I am an abstract memento. I reference a model I am working on and the
description currently used to describe this model.

actions

• commit

Commit the receiver into the model.

• reset

Reset the memento from the model.

• validate

Check if the data in the receiver would be valid if committed. In case
of problems an exception is raised.

MAStraitMemento

Superclasses Object, MAObject, MAMemento

I am a memento that forwards read- and write-access directly to the model.
I can mostly be replaced with the model itself.

Magritte-Model-Exception

MAConditionError

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever a user-defined condition is failing.

75

MAConflictError

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever there is an edit conflict.

MAError

Superclasses Object, Exception, Error

Subclasses MAConditionError, MAConflictError, MAKindError,
MAMultipleErrors, MARangeError, MAReadError, MARequiredError,
MAValidationError, MAWriteError

I represent a generic Magritte error.

MAKindError

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever a description is applied to the wrong
type of data.

MAMultipleErrors

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever there are multiple validation rules
failing.

MARangeError

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever a described value is out of
bounds.

76 DOCUMENTATION

MAReadError

Superclasses Object, Exception, Error, MAError

I am an error that gets raised when there is problem reading serialized
data.

MARequiredError

Superclasses Object, Exception, Error, MAError, MAValidation-

Error

I am an error that is raised whenever a required value is not supplied.

MAValidationError

Superclasses Object, Exception, Error, MAError

Subclasses MAConditionError, MAConflictError, MAKindError,
MAMultipleErrors, MARangeError, MARequiredError

I am a generic validation error. I reference the description that caused the
validation error.

MAWriteError

Superclasses Object, Exception, Error, MAError

I am an error that gets raised when there is problem writing serialized
data.

Magritte-Model-Visitor

MAVisitor

Superclasses Object

I am a visitor responsible to visit Magritte descriptions. I am an abstract
class providing a default implementation for concrete visitors. The pro-
tocol I am implementing reflects the hierarchy of MADescription with its
subclasses so that visiting a specific class automatically calls less specific

77

implementations in case the specific implementation has been left out. The
code was automatically created using code on my class-side.

visiting

• visitAll: aCollection

Visit all elements of aCollection with the receiving visitor.

• visit: anObject

Visit anObject with the receiving visitor.

Magritte-Model-Utility

MADynamicObject

Superclasses MAProxyObject

A dynamic object can be used for almost any property within Magritte that
is not static but calculated dynamically. This is a shortcut to avoid having to
build context sensitive descriptions manually over and over again, however
there are a few drawbacks:

• Some messages sent to this proxy, for example #class and #value,
might not get resolved properly.

• Raising an unhandled exception will not always open a debugger on
your proxy, because tools are unable to properly work with the invalid
object and might even crash your image.

MANamedBuilder

Superclasses Object, MADescriptionBuilder

I dynamically build container descriptions from class-side methods using a
simple naming convention for the selector names:

1. The method #defaultContainer is called to retrieve the container
instance.

2. All the unary methods starting with the selector #description are
called and should return a valid description to be added to the con-
tainer.

78 DOCUMENTATION

3. All the keyword messages with one argument having a prefix of a
method selected in step 2 will be called with the original description
to further refine its definition.

MAPragmaBuilder

Superclasses Object, MADescriptionBuilder

I dynamically build container descriptions defined statically in classes
using all the methods being tagged with the pragmas description or
description:. I only work with Smalltalk implementations that have a
decent implementation of Pragmas, such as Squeak 3.9.

MAProxyObject

Subclasses MADynamicObject

I represent an abstract proxy object, to be refined by my subclasses.

copying

• copy

It doesn’t make sense to copy proxies in most cases, the real-subject
needs to be looked up and will probably return a new instance on every
call anyway.

printing

• printOn: aStream

Print the receiver on aStream but within square-brackets to show that
it is a proxied instance.

testing

• isNil

This method is required to properly return true if the realSubject

is nil.

79

Pier-Model-Core

PRObject

Superclasses Object

Subclasses PRAnchor, PRChildren, PRCommand, PRContext,
PRDecorated, PRDecoration, PRDocument, PRDocumentGroup,
PRDocumentItem, PRExternalLink, PRFile, PRHeader, PRHider,
PRHorizontalRule, PRInternalLink, PRIsbnLink, PRKernel, PRLink,
PRList, PRListItem, PRMailLink, PROrderedList, PRPage, PRParagraph,
PRPreformatted, PRRfcLink, PRStructure, PRTable, PRTableCell,
PRTableRow, PRText, PRUnorderedList

I am the root of objects within Pier. I hold a dictionary of properties, so
that users can easily annotate me with new values. I am visitable.

accessing-properties

• properties

Answer the property dictionary of the receiver.

• propertyAt: aKey

Answer the value of the property aKey, raises an error if the property
doesn’t exist.

• propertyAt: aKey ifAbsentPut: aBlock

Answer the value of the property aKey, or if the property doesn’t exist
adds and answers the result of evaluating aBlock.

• propertyAt: aKey ifAbsent: aBlock

Answer the value of the property aKey, or the result of aBlock if the
property doesn’t exist.

• propertyAt: aKey put: aValue

Adds or replaces the property aKey with aValue.

testing

• hasProperty: aKey

Test if the property aKey is defined within the receiver.

80 DOCUMENTATION

visiting

• accept: aVisitor

Dispatch to aVisitor depending on the receiver.

Pier-Model-Kernel

PRContext

Superclasses Object, PRObject

I am the context in which a user is browsing the system. I hold all the
information any part of Pier might be interested in: the currently used
kernel, the structure that is currently displayed, the command that is being
executed and the user currently logged in.

I am an immutable object. Users should never try to modify me. Instead
use the modification methods that return a copy of myself.

accessing

• command

Answer the active command of this context.

• enumerator

Answer a default structure enumerator for the current context.

• kernel

Answer the underlying kernel of this context.

• structure

Answer the currently browsed structure of this context.

accessing-conveniance

• commands

Answer a list of possible commands, dispatching through the command
class.

• root

Answer the current root node of the structure-tree.

• timestamp

Answer the timestamp when this context was used to execute its com-
mand, nil if never executed.

81

enumerating

• enumerator: aStructure

Answer an enumerator on aStructure.

navigation

• command: aCommand

Create a copy of the current context with the current command re-
placed by aCommand.

• structure: aStructure

Create a copy of the current context with the current structure re-
placed by aStructure and the current command replaced by the de-
fault view.

• structure: aStructure command: aCommand

Create a copy of the current context with the current structure re-
placed by aStructure and the current command by aCommand.

testing

• isValid

Answer true if the receiver is a valid context.

• isValidCommand: aCommandClass

Answer true if the receiver is a valid context with the current com-
mand replaced by aCommandClass.

PRCurrentContext

Superclasses Object, Exception, Notification

I am a dynamic variable. I answer the current context when being
raised.

PRKernel

Superclasses Object, PRObject

I am the kernel of Pier. Several instances of myself might exist at the same
time, but they all exist independently and don’t share any data. I know
the root structure and the persistency strategy of the whole data-model.

82 DOCUMENTATION

Moreover I prevent any concurrent modifications to the model by providing
a global mutex.

accessing

• name

Answer the name of the kernel.

• persistency

Answer the persistency strategy of the receiver.

• root

Answer the root structure of the kernel.

accessing-readonly

• mutex

Return a mutex (an object that understands #critical:) to ensure that
only one process is modifying the model at once. This is needed to
make certain that the model remains in a consistent state. All write
access must go through this mutex.

Pier-Model-Structure

PRChildren

Superclasses Object, PRObject, PRDecoration

I hold the children of the decorated object.

accessing

• size

Answer the number of children of the receiver.

accessing-children

• at: aString

Answer the child structure with the name aString, raise an error if
the child can’t be found.

83

• at: aString ifAbsent: aBlock

Answer the child structure with the name aString, evaluate aBlock

if the child can’t be found.

actions

• add: aStructure

Add aStructure as a child to the receiver.

• remove: aStructure

Remove aStructure from the receiver.

PRDecorated

Superclasses Object, PRObject

Subclasses PRFile, PRPage, PRStructure

I am an abstract decorated object. My decorations are subclasses of
PRDecoration. I provide all the tools to add, remove, query and visit my
decorations.

accessing

• decorations

Answer the sorted decorations of the receiver.

adding

• addDecoration: aDecoration

Add aDecoration to the receiver. This message ensures that
aDecoration is only added once and that the decorations remain prop-
erly sorted.

• addDecoration: aDecoration ifPresent: aBlock

Add aDecoration to the receiver. This message ensures that the dec-
orations remain properly sorted and that there are no duplicates. In
case aDecoration is already within the receiver, the existing decora-
tion is passed into aBlock.

84 DOCUMENTATION

enumerating

• decorationsDo: aBlock

Evaluate aBlock in the right order with each of the receiver’s decora-
tions as the argument.

• decorationsDo: aBlock ownerDo: anOwnerBlock

Evaluate aBlock and anOwnerBlock in the right order with each of
the receiver’s decorations and the receiver as the argument.

querying

• decorationOfClass: aClass

Answer the first decoration of aClass, raise an error if none could be
found.

• decorationOfClass: aClass ifAbsent: aBlock

Answer the first decoration of aClass, evaluate aBlock if none could
be found.

removing

• removeDecoration: aDecoration

Remove aDecoration from the receiver, an error is raised if
aDecoration is not part of the receiver.

• removeDecoration: aDecoration ifAbsent: aBlock

Remove aDecoration from the receiver, aBlock is evaluated if
aDecoration is not part of the receiver.

PRDecoration

Superclasses Object, PRObject

Subclasses PRChildren, PRHider

I am an abstract decoration to add new behaviour and data to structures.
Every decoration knows its owner, a subclass of PRDecorated. Decorations
are considered to be equal if they are of the same species, but subclasses
might want to refine this behaviour to be able to add multiple instances of
the same class.

85

Within the owner decorations are ordered according to their priority. Dec-
orations with a negative priority are visited before the owner, decorations
with a positive one after the owner.

accessing

• decorated

Answer the owner of the receiver, the decorated object.

• priority

The default priority returns a number that defines in witch order the
visitors will traverse through decorated objects. Negative numbers are
visited before the decorated objects, positive numbers afterwards.

testing

• isAllowedCommand: aCommandClass in: aContext

Answer true if the receiver allows one to execute aCommandClass in
aContext. The default decoration is fine with all the commands, sub-
classes might restrict to a selected set of commands within a given
context. This method might be overridden by decorations that want
to control the security.

PRFile

Superclasses Object, PRObject, PRDecorated, PRStructure

I represent a data container for images, videos, sound, pdf or zip files. I
reference an instance of MAFileModel. The mime-type is used to deter-
mine how the given file is be displayed. As an example images and videos
are attempted to be inlined into the resulting output, whereas zip-files are
referenced as a link to allow downloading.

PRHider

Superclasses Object, PRObject, PRDecoration

I hide the decorated object.

PRPage

Superclasses Object, PRObject, PRDecorated, PRStructure

86 DOCUMENTATION

I am the most important class of the structure hierarchy. I reference a com-
posite of documents modeling the contents of the page that the user entered
using the Wiki syntax. When initializing the instance a default document
will be created to make the user aware of the newly created page.

accessing

• document

Answer the document of the receiver.

accessing-configuration

• defaultDocument

Answer the default document of the receiver.

• parserClass

Answer the default document parser for the receiver.

• rendererClass

Answer the default document writer for the receiver.

PRStructure

Superclasses Object, PRObject, PRDecorated

Subclasses PRFile, PRPage

I am an abstract structure, representing the model of a single page. I’ve got
a name, that must be unique within the scope of my parent, and a title. A
structure is identified with a path of structure names.

accessing

• name

Answer the name of the receiver. The name should be simple and only
contain letters and numbers, since it is used as an identifier within
restrictive protocols.

• parent

Answer the parent structure of the receiver.

87

• title

Answer the title of the receiver, essentially the name but starting up-
percase.

accessing-children

• addChild: aStructure

Add aStructure as child to the receiver.

• enumerator

Answer an enumerator on the children of the receiver.

accessing-commands

• editCommandClass

Answer an instance of the default edit command of the receiver.

• viewCommandClass

Answer the default view command of the receiver. Most likely you
never need to change the default implementation.

accessing-dynamic

• icon

Return the raw data of an icon representing the type of the receiver.

• kernel

Answer the kernel of the receiver.

• level

Answer the nesting level of the receiver.

• parents

Answer an ordered collection of all the parents of the receiver up and
including the receiver itself.

• root

Answer the root structure of the receiver.

accessing-persistency

• creationTimestamp

Answer the creation-timestamp or nil.

88 DOCUMENTATION

• modificationTimestamp

Answer the modification-timestamp or nil.

actions

• remove

Remove the receiver from the parent structure.

decorations

• childrenDecoration

Answer a decoration with the children of the receiver. If no children
exist, an empty children decoration is added to the receiver.

testing

• canBeChildOf: aStructure

Answer true if the receiver can be a child of aStructure.

• canBeParentOf: aStructure

Answer true if the receiver can be a parent of aStructure.

• hasChildren

Answer true if the receiver has got children, they might not be visible
however.

• hasParent

Answer true if the receiver has got a parent. This is the negation of
#isRoot.

• isAllowedCommand: aCommandClass in: aContext

Answer true if the receiver accepts aCommandClass as allowed in
aContext on the receiver. If a command class is allowed is a secu-
rity question and should therefore only depend on the permissions in
the current context. The default implementation delegates the deci-
sion to the decorations of the receiver. Therefor this method should
never be overridden by subclasses.

• isAncestorOf: aStructure

Answer true if the receiver is an ancestor of aStructure.

• isApplyableCommand: aCommandClass in: aContext

Answer true if the receiver accepts aCommandClass as applyable in
aContext on the receiver. If a command class is applyable or not is a
question of saneness and compatibility, not of security. This method

89

should be overridden by subclasses who want to forbid some com-
mands.

• isRoot

Answer true if the receiver is the root of the Pier model. This is the
negation of #hasParent.

• isValidCommand: aCommandClass in: aContext

Answer true if the receiver accepts to execute aCommandClass

in aContext. This message is the combination of
#isApplyableCommand:in: and #isAllowedCommand:in:. It
should not be overridden.

Pier-Model-Document

PRAnchor

Superclasses Object, PRObject, PRDocumentItem

I am an anchor within a document. I am used as a reference point within a
large document.

PRDocument

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am the root of a document composite.

PRDocumentGroup

Superclasses Object, PRObject, PRDocumentItem

Subclasses PRDocument, PRExternalLink, PRHeader, PRInternalLink,
PRIsbnLink, PRLink, PRList, PRListItem, PRMailLink, PROrdered-

List, PRParagraph, PRPreformatted, PRRfcLink, PRTable, PRTableCell,
PRTableRow, PRUnorderedList

I am an abstract group of document items.

90 DOCUMENTATION

accessing

• children

Answer the children of the receiver.

PRDocumentItem

Superclasses Object, PRObject

Subclasses PRAnchor, PRDocument, PRDocumentGroup, PRExternal-

Link, PRHeader, PRHorizontalRule, PRInternalLink, PRIsbnLink,
PRLink, PRList, PRListItem, PRMailLink, PROrderedList, PRParagraph,
PRPreformatted, PRRfcLink, PRTable, PRTableCell, PRTableRow, PRText,
PRUnorderedList

I am an abstract superclass for the document hierarchy. My subclasses
include all the basic elements to represent a document.

accessing

• owner

Answer the object owning the receiver. The default implementation
doesn’t know about its owner and therefore always returns nil.

accessing-dynamic

• text

Answer a string representation of the receiver.

PRDocumentParser

Superclasses Object, SmaCCParser

I am a parser that builds a composite of document-items from a Wiki string.
I don’t raise errors for invalid input, but instead try to build a parse tree
that is as close to the source as possible. I am automatically generated
from the Smalltalk Compiler Compiler (SmaCC), do not edit my code man-
ually.

91

Example

(PRDocumentParser parse: ’!Foo bar’)

explore

PRDocumentWriter

Superclasses Object, PRVisitor

I am a visitor being able to transform a composite of document-items back
into the original Wiki string.

Example

| document |

document := PRDocumentParser parse: ’+Hello+ *World*’.

string := PRDocumentWriter write: document.

string inspect.

visiting-document

• visitText: anObject

Write out anObject’s text to the receivers output-stream and escape
$* everywhere within. Also take care of the character escaping with
$=, $|, $!, $# and $- at the beginning of a line.

PRExternalLink

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRLink

Subclasses PRIsbnLink, PRMailLink, PRRfcLink

I am an abstract external link with an URL (Uniform Resource Locator) as
reference.

accessing

• url

Answer the URL the receiver is pointing to.

92 DOCUMENTATION

PRHeader

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I represent a header within a document. My level is a natural number.

PRHorizontalRule

Superclasses Object, PRObject, PRDocumentItem

I am a horizontal rule.

PRInternalLink

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRLink

I am an internal link pointing to a structure within the current kernel. I
reference my owning structure to be able to lookup the referenced structure.
The referenced structure is cached in the instance variable target.

accessing

• anchor

Answer an anchor string the receiver is pointing to.

• target

Answer the referenced structure.

actions

• refresh

This message will be sent by the structure whenever it is parsed and
the references have to be set up. It simply starts a look-up in the
owner using the reference-string. In case the reference is invalid the
target will be set to nil and the receiver is in a broken-state.

• update

This method will be sent to all the internal-links whenever the owner
is renamed or moved to a different location in the structure tree. It
automatically adjusts the receivers state, so that the reference still
points to the right location and doesn’t get broken.

93

PRIsbnLink

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRLink, PRExternalLink

I am an external link pointing to an ISBN (International Standard Book
Number).

PRLink

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

Subclasses PRExternalLink, PRInternalLink, PRIsbnLink, PRMail-

Link, PRRfcLink

I am an abstract link built from an alias and a reference. The alias is the
string representation that will be displayed to the user, whereas the reference
is a string identifying the target. If there is no alias, the reference itself is
displayed. Links can try to embed the referenced target into the containing
document.

Examples

Reference

+Alias>Embedded Reference*

accessing

• embedded

Answer true if the reference should be embedded.

• reference

Answer the reference of the receiver.

accessing-dynamic

• alias

Answer the alias of the receiver or an empty string if none.

94 DOCUMENTATION

testing

• isBroken

Answer true if the receiver is broken.

PRList

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

Subclasses PROrderedList, PRUnorderedList

I am an abstract list. My children are instances of PRListItem.

PRListItem

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am a item within a PRList.

PRMailLink

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRLink, PRExternalLink

I am an external link pointing to a mail address. I encode my URL to
prevent spam bots collecting the address.

PROrderedList

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRList

I am an ordered list. I am typically used for numbered items.

PRParagraph

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am a paragraph of text.

95

PRPreformatted

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am preformatted text or source code. My children are instances of
PRText.

PRRfcLink

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRLink, PRExternalLink

I am an external link pointing to a RFC (Request for Comments) docu-
ment.

PRTable

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am a table. My children are instances of PRTableRow.

PRTableCell

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am a cell of a table.

PRTableRow

Superclasses Object, PRObject, PRDocumentItem, PRDocument-

Group

I am a row of a table. My children are instances of PRTableCell.

PRText

Superclasses Object, PRObject, PRDocumentItem

I am a plain text. I am the most important leaf node of the document
composite.

96 DOCUMENTATION

accessing

• text

Answer the string the receiver is representing.

PRUnorderedList

Superclasses Object, PRObject, PRDocumentItem, PRDocumentGroup,
PRList

I am an unordered list. I am typically used for unnumbered lists

Pier-Model-Command

PRCommand

Superclasses Object, PRObject

I am an abstract superclass of the command pattern in Pier. All modifica-
tions to the model have to be done through subclasses of myself, else they do
not get properly logged with the persistency mechanism. I hold the context
in which the receiver is executed in the instance variable context. To modify
the resulting context, create a copy of the current context and store it in
the instance variable answer.

The following event-handlers are called when executing an action in the
given order. Do override these messages to customize the command, never
override the other internal methods:

• Override the message #doValidate to check the valid setup of the
command and to raise exceptions in case any precondition isn’t met.
Speak here or forever have your peace! Don’t change the model in
there.

• Override the message #doExecute to execute the actual command. Do
not raise exceptions in there, catch all the problems in #doValidate.

• Override the message #doPersistency to save the command that has
been just executed with the current persistency strategy. Most com-
mands don’t need to override this message and just stick with the
default behavior.

• Override the message #doAnswer to create the answer context. Most
commands don’t need to override this message and just stick with the
default behavior.

97

Do not play with funny jumpy things, such as resumable exceptions or con-
tinuations, inside the code of the command hierarchy or you will very likely
run into severe problems.

accessing

• answer

Return a new context that should be activated after executing this
action.

• answer: aContext

Set the resulting context of this command.

• context

Return the current context of the receiver.

• context: aContext

Set the current context of the receiver.

accessing-delegated

• kernel

Answer the kernel the receiver is working on.

actions

• execute

Execute the command of the receiver. To implement your action in
the code of one of my subclasses. Never override this message, but
instead have a look at the different template methods (#doValidate,
#doExecute, #doPersistency, #doAnswer) available in the events pro-
tocol.

events

• doAnswer

Override this message to create the answer context. Most commands
don’t need to override this message and just stick with the default
behavior.

• doExecute

Override this message to execute the actual command. Do not raise
exceptions in there, catch all the problems in #doValidate.

98 DOCUMENTATION

• doPersistency

Override this message to save the command-context that has been just
executed with the current persistency strategy. Most commands don’t
need to override this message and just stick with the default behavior.

• doValidate

Override this message to check the valid setup of the command and
to raise exceptions in case any precondition isn’t met. Speak here or
forever have your peace! Don’t change the model in there.

testing

• isLogged

Most commands are logged. This means they do modify the model
and are therefore preserved in the history. However there are some
that just display something or change the state of the current context
and neither change the model nor need to be logged.

• isQuick

Quick commands do not have a configuration interface (probably not
even Magritte descriptions) and therefore should not be presented to
the user but simply executed.

• isView

Most commands are not a view. This means they override #doExecute
to do something meaningful on the context or the model.

validating

• validateChild: aChildStructure in: aStructure

Make sure that aChildStructure can be added as child or replace an
existing child in a aStructure.

• validateName: aString of: aChildStructure in: aStructure

Make sure that aChildStructure with the title aString can be added
as child or replace an existing child in a aStructure.

• validateNestingOf: aChildStructure in: aStructure

Make sure that aChildStructure can be added as child to aStructure

and that aStructure can have aChildStructure as a child.

99

Pier-Model-Visitor

PRFullTextSearch

Superclasses Object, PRVisitor, PRPluggableVisitor

I am a pluggable visitor to quickly look for matching text in a subtree of
structures.

Example

The following example opens an inspector on all structures with the text
foo:

(PRFullTextSearch

from: aStructure

find: ’foo’

caseSensitive: false)

inspect

PRIncomingReferences

Superclasses Object, PRVisitor, PRPluggableVisitor

I am a pluggable visitor to detect incoming references.

Example

The following example opens inspectors on all instances of PRInternalLink
that point aStructure:

PRIncomingReferences

from: aRootStructure

to: aStructure

do: [:each | each inspect]

PROutgoingReferences

Superclasses Object, PRVisitor, PRPluggableVisitor

I am a pluggable visitor visiting and eventually following outgoing references.
To do so I visit all the links of the page and evaluate my pluggable block
for each of them, if the block answers true I follow the link and continue
visiting the references of the target structure. I take care not to run into
infinite recursion, so no structure will be visited more than once.

100 DOCUMENTATION

Example

The following example opens an inspector on all the broken references that
are seen when displaying aStructure:

PROutgoingReferences

start: aStructure

do: [:each |

each isBroken

ifTrue: [each inspect].

each isEmbedded].

PRPathLookup

Superclasses Object, PRVisitor, PRPath

I am a visitor used to look up a given path. I am able to lookup absolute
and relative paths, following the syntax of unix operating systems.

Example

(PRPathLookup

start: aStructure

path: ’/Information/Copyright/..’)

inspect

visiting-decorations

• visitChildren: anObject

This method does the lookup of the next structure by checking for
a child with that name, since this value is hashed it can be done
efficiently. If the lookup by name fails, it tries to match the title
by iterating through the children. If this fails as well, the message
#childNotFound: is sent.

PRPathReference

Superclasses Object, PRVisitor, PRPath

I am a visitor used to print a short path from a structure to another
one.

101

Example

(PRPathReference

from: aFirstStructure

to: aSecondStructure)

inspect

PRVisitor

Superclasses Object

Subclasses PRDocumentWriter, PRFullTextSearch, PRIncoming-

References, PROutgoingReferences, PRPathLookup, PRPath-

Reference

I am an abstract visitor. I provide a default implementation of all visit
messages that does not descend automatically into children of the visited
graph. Subclasses should override all my messages in appropriate ways to
visit the nodes they need.

Index

<=, 61
=, 55
&, 72

accept:, 80
Accessor, 69
accessor, 60
AdaptiveModel, 55
add:, 83
addChild:, 87
addCondition:labelled:, 62
addDecoration:, 83
addDecoration:ifPresent:, 83
alias, 93
AllCondition, 71
Anchor, 89
anchor, 92
answer, 97
answer:, 97
AnyCondition, 71
asContainer, 61
at:, 82
at:at:, 57
at:at:put:, 57
at:ifAbsent:, 83
AutoSelectorAccessor, 69

BlockAccessor, 70
BooleanDescription, 57

CachedMemento, 73
canBeChildOf:, 88
canBeParentOf:, 88
canRead:, 69
canWrite:, 69
ChainAccessor, 70
CheckedMemento, 73

Children, 82

children, 90

childrenDecoration, 88

ClassDescription, 58

ColorDescription, 58

columnCount, 57

Command, 96

command, 80

command:, 81

commands, 80

comment, 60

commit, 74

commonClass, 66

Compatibility, 53

Condition, 71

ConditionError, 74

conditions, 60

ConflictError, 75

Container, 58

ContainerAccessor, 70

Context, 80

context, 97

context:, 97

copy, 78

creationTimestamp, 87

CurrentContext, 81

DateDescription, 58

Decorated, 83

decorated, 85

Decoration, 84

decorationOfClass:, 84

decorationOfClass:ifAbsent:,
84

decorations, 83

decorationsDo:, 84

102

INDEX 103

decorationsDo:ownerDo:, 84
defaultDocument, 86
Description, 59
description, 55
DictionaryAccessor, 70
Distribution, 53
doAnswer, 97
Document, 89
document, 86
DocumentGroup, 89
DocumentItem, 90
DocumentParser, 90
DocumentWriter, 91
doExecute, 97
doPersistency, 98
doValidate, 98
dump, 53
DurationDescription, 63
DynamicObject, 77

editCommandClass, 87
ElementDescription, 63
embedded, 93
enumerator, 80, 87
enumerator:, 81
Error, 75
execute, 97
extension, 56
ExternalLink, 91

FalseCondition, 72
File, 85
FileDescription, 64
FileModel, 56
fromString:, 62
fromString:reader:, 62
fromStringCollection:, 61
fromStringCollection:reader:,

62
FullTextSearch, 99

hasChanged, 73
hasChildren, 62, 88
hasComment, 62
hasConflict, 74

hash, 54
hasLabel, 62
hasParent, 88
hasProperty:, 55, 79
Header, 92
Hider, 85
HorizontalRule, 92

icon, 87
IncomingReferences, 99
InternalLink, 92
isAllowedCommand:in:, 85, 88
isAncestorOf:, 88
isApplication, 56
isApplyableCommand:in:, 88
isAudio, 56
IsbnLink, 93
isBroken, 94
isContainer, 62
isDescription, 62
isImage, 56
isLogged, 98
isNil, 78
isQuick, 98
isRoot, 89
isSatisfiedBy:, 63
isText, 56
isValid, 81
isValidCommand:, 81
isValidCommand:in:, 89
isVideo, 57
isView, 98

Kernel, 81
kernel, 80, 87, 97
kind, 60
KindError, 75

label, 60
level, 87
Link, 93
List, 94
ListItem, 94

MagnitudeDescription, 64

104 INDEX

MailLink, 94
maintype, 56
max:, 64
Memento, 74
MemoDescription, 65
min:, 64
min:max:, 64
modificationTimestamp, 88
MultipleErrors, 75
MultipleOptionDescription,

65
mutex, 82

name, 60, 82, 86
NamedBuilder, 77
NoneCondition, 72
not, 72
NullAccessor, 70
numArgs, 72
NumberDescription, 65

Object, 53, 79
OptionDescription, 65
OrderedList, 94
OutgoingReferences, 99
owner, 90

Page, 85
Paragraph, 94
parent, 86
parents, 87
parserClass, 86
PasswordDescription, 65
PathLookup, 100
PathReference, 100
persistency, 82
persistent, 60
postCopy, 55
PragmaBuilder, 78
Preformatted, 95
printOn:, 78
priority, 60, 85
PriorityContainer, 66
properties, 54, 79
propertyAt:, 54, 79

propertyAt:ifAbsent:, 54, 79

propertyAt:ifAbsentPut:, 54,
79

propertyAt:put:, 54, 79

ProxyObject, 78

publish, 53

RangeError, 75

read:, 69

ReadError, 76

readonly, 60

readUsing:, 55

reference, 67, 93

ReferenceDescription, 66

refresh, 92

RelationDescription, 66

remove, 88

remove:, 83

removeDecoration:, 84

removeDecoration:ifAbsent:,
84

rendererClass, 86

required, 61

RequiredError, 76

reset, 74

reshapeRows:columns:, 57

RfcLink, 95

root, 80, 82, 87

rowCount, 57

SelectorAccessor, 70

SelectorCondition, 73

SingleOptionDescription, 67

size, 56, 82

StraitMemento, 74

StringDescription, 67

stringReader, 61

stringWriter, 61

Structure, 86

structure, 80

structure:, 81

structure:command:, 81

subtype, 56

SymbolDescription, 67

INDEX 105

Table, 95

TableCell, 95

TableDescription, 67

TableModel, 57

TableRow, 95

target, 92

Text, 95

text, 90, 96

TimeDescription, 68

timestamp, 80

TimeStampDescription, 68

title, 87

TokenDescription, 68

ToManyRelationDescription,
68

ToOneRelationDescription, 68

toString:, 62

toString:writer:, 62

toStringCollection:, 62

toStringCollection:writer:, 62

TrueCondition, 73

undefined, 61

UnorderedList, 96

update, 92

url, 91

validate, 74

validate:, 63

validateChild:in:, 98

validateConditions:, 63

validateKind:, 63

validateName:of:in:, 98

validateNestingOf:in:, 98

validateRequired:, 63

validateSpecific:, 63

ValidationError, 76

value:, 72

values, 55

VariableAccessor, 71

viewCommandClass, 87

visible, 61

visit:, 77

visitAll:, 77

visitChildren:, 100
Visitor, 76, 101
visitText:, 91

write:to:, 69
write:using:, 56
WriteError, 76

106 INDEX

Bibliography

[Alpe98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design
Patterns Smalltalk Companion. Addison Wesley, 1998.

[Atki87] Bill Atkinson. “HyperCard”. 1987. Hypercard.

[Brana] John Brant and Don Roberts. “SmaCC, a Smalltalk Compiler-
Compiler”. http://www.refactory.com/Software/SmaCC/.

[Branb] John Brant and Don Roberts. “#Smalltalk (Sharp Smalltalk)”.
http://www.refactory.com/Software/SharpSmalltalk/.

[Budi03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Eller-
sick, and Timothy Grose. Eclipse Modeling Framework. Addison
Wesley Professional, 2003.

[Ceri00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. “Web model-
ing language (WebML): a modeling language for designing Web
sites”. In: Ninth International World Wide Web Conference,
2000.

[Clar04] Tony Clark, Andy Evans, Paul Sammut, and James Willans.
“Applied Metamodelling: A foundation for Language Driven De-
velopment”. 2004.

[Duca00] Stéphane Ducasse and Florence Ducasse. “De l’enseignement de
concepts informatiques”. Journal de l’association EPI Enseigne-
ment Public et Informatiques, Vol. 4, No. 97, Sep. 2000.

[Duca04] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. “Sea-
side — a Multiple Control Flow Web Application Framework”.
In: Proceedings of 12th International Smalltalk Conference
(ISC’04), pp. 231–257, Sep. 2004.

[Duca05] Stéphane Ducasse, Lukas Renggli, and Roel Wuyts. “SmallWiki
— A Meta-Described Collaborative Content Management Sys-
tem”. In: Proceedings ACM International Symposium on Wikis

107

108 BIBLIOGRAPHY

(WikiSym’05), pp. 75–82, ACM Computer Society, New York,
NY, USA, 2005.

[Formulat] “Formulator, an extensible framework that eases the
creation and validation of web forms for Zope”.
http://www.infrae.com/download/Formulator.

[Frat99] Piero Fraternali. “Tools and approaches for developing data-
intensive Web applications: a survey”. ACM Computing Sur-
veys, Vol. 31, No. 3, pp. 227–263, 1999.

[Gamm95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley Professional, Reading, Mass., 1995.

[Groo] Cees de Groot. “Gardner, a Seaside Wiki”.
http://map.squeak.org/package/6805c4ca-6a33-4396-801a-
b7ea1c3e3567.

[Grou04] Object Management Group. “Meta Object Facility (MOF) 2.0
Core Final Adopted Specification”. Tech. Rep., Object Manage-
ment Group, 2004.

[Grou97] Object Management Group. “Meta Object Facility (MOF) Spec-
ification”. Tech. Rep. ad/97-08-14, Object Management Group,
Sep. 1997.

[Inga97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. “Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself”. In: OOPSLA’97: Proceedings of the
12th International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 318–326, ACM Press,
Nov. 1997.

[John98] Ralph Johnson and Bobby Wolf. “Type Object”. In: Robert C.
Martin, Dirk Riehle, and Frank Buschmann, Eds., Pattern Lan-
guages of Program Design 3, Chap. 4, Addison Wesley, 1998.
ISBN:0-201-31011-2.

[Leuf01] Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration
and Sharing on the Internet. Addison-Wesley, 2001.

[Lien03] Adrian Lienhard. “Mewa: Meta-level Architecture for Generic
Web-Application Construction”. Informatikprojekt, University
of Bern, Nov. 2003.

[Mull05a] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel.
“Weaving Executability into Object-Oriented Meta-Languages”.

BIBLIOGRAPHY 109

In: S. Kent L. Briand, Ed., Proceedings of MODELS/UML’2005,
pp. 264–278, Springer, Montego Bay, Jamaica, Oct. 2005.

[Mull05b] Pierre-Alain Muller, Philippe Studer, Frédérick Fondement, and
Jean Bézivin. “Independent Web Application Modeling and De-
velopment with Netsilon”. Software and System Modeling, Vol. 4,
No. 4, pp. 424–442, Nov. 2005.

[Plus05] Roland Plüss and Philippe Marschall. “Spielverderber, an Access
Control List (ACL) based security framework for Pier”. 2005.
http://smallwiki.unibe.ch/advanceddesignlabs/admin/.

[Putn] Colin Putney. “OmniBrowser, an extensible browser framework
for Smalltalk”. http://www.wiresong.ca/OmniBrowser.

[Reng03] Lukas Renggli. “SmallWiki: Collaborative Content Manage-
ment”. Informatikprojekt, University of Bern, 2003.

[Reng06] Lukas Renggli. “Pier Unix Security, an Unix file-
system based security framework for Pier”. 2006.
http://map.squeak.org/package/1ae18f4e-086a-46e3-83ff-
72ab6673c382.

[Reng07] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. “Magritte
— A Meta-Driven Approach to Empower Developers and End
Users”. In: Gregor Engels, Bill Opdyke, Douglas C. Schmidt,
and Frank Weil, Eds., Model Driven Engineering Languages and
Systems, pp. 106–120, Springer, Sep. 2007.

[Rieh05] Dirk Riehle, Michel Tilman, and Ralph Johnson. “Dynamic
Object Model”. In: Pattern Languages of Program Design 5,
Addison-Wesley, 2005.

[Riva96] Fred Rivard. “Smalltalk: a Reflective Language”. In: Proceed-
ings of REFLECTION ’96, pp. 21–38, Apr. 1996.

[Seaside] “Seaside home page”. http://www.seaside.st.

[Sque10] Squeak. “Squeak Home Page”. http://www.squeak.org/,
archived at http://www.webcitation.org/5p1poT9Ta, 2010.

[WikiPedi] “WikiPedia, a web-based, free-content encyclopedia”.
http://www.wikipedia.org.

[Wool96] Bobby Woolf. “The Null Object Pattern”. In: Design Pat-
terns, PLoP 1996, Robert Allerton Park and Conference Center,
University of Illinois at Urbana-Champaign, Monticello, Illinois,
1996.

110 BIBLIOGRAPHY

[Wues] Klaus Wuestefeld. “Prevayler, a prevalence layer for Java”.
http://www.prevayler.org.

[Yode01] Joseph Yoder, Federico Balaguer, and Ralph Johnson. “Archi-
tecture and Design of Adaptive Object Models”. In: Conference
on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA ’01), pp. 50–60, 2001.

[Yode02] Joseph W. Yoder and Ralph Johnson. “The Adaptive Object
Model Architectural Style”. In: Proceeding of The Working
IEEE/IFIP Conference on Software Architecture 2002 (WICSA3
’02), Aug. 2002.

	Title
	Abstract
	Acknowledgements
	Contents
	Introduction
	Approach
	Outline

	Magritte
	Context and Constraints
	Describing Domain Objects
	Interpreting Descriptions
	Building Textual Views
	Object Relational Mapping
	Building Validating Editors
	Customizing the Meta-Interpretation

	Meta Magritte
	Adaptive Model

	Aare
	Implementation
	Descriptions
	Accessors
	Conditions
	Mementos

	Pier
	Introduction
	History
	Pier in Action
	Architecture
	Separation of Concerns
	Pages and Files
	Visitors
	Context and Commands
	Environment

	Extending Pier
	Fixing broken links
	Converting documents
	Security

	Pier at the Meta-Level
	Searching
	Persistency and Versioning
	Adaptive Forms

	Lessons Learned
	Summary

	Conclusion
	Related Work
	Lessons Learned
	Further Work

	Documentation
	Magritte-Model-Core
	MACompatibility
	MADistribution
	MAObject

	Magritte-Model-Models
	MAAdaptiveModel
	MAFileModel
	MATableModel

	Magritte-Model-Description
	MABooleanDescription
	MAClassDescription
	MAColorDescription
	MAContainer
	MADateDescription
	MADescription
	MADurationDescription
	MAElementDescription
	MAFileDescription
	MAMagnitudeDescription
	MAMemoDescription
	MAMultipleOptionDescription
	MANumberDescription
	MAOptionDescription
	MAPasswordDescription
	MAPriorityContainer
	MAReferenceDescription
	MARelationDescription
	MASingleOptionDescription
	MAStringDescription
	MASymbolDescription
	MATableDescription
	MATimeDescription
	MATimeStampDescription
	MATokenDescription
	MAToManyRelationDescription
	MAToOneRelationDescription

	Magritte-Model-Accessor
	MAAccessor
	MAAutoSelectorAccessor
	MABlockAccessor
	MAChainAccessor
	MAContainerAccessor
	MADictionaryAccessor
	MANullAccessor
	MASelectorAccessor
	MAVariableAccessor

	Magritte-Model-Condition
	MAAllCondition
	MAAnyCondition
	MACondition
	MAFalseCondition
	MANoneCondition
	MASelectorCondition
	MATrueCondition

	Magritte-Model-Memento
	MACachedMemento
	MACheckedMemento
	MAMemento
	MAStraitMemento

	Magritte-Model-Exception
	MAConditionError
	MAConflictError
	MAError
	MAKindError
	MAMultipleErrors
	MARangeError
	MAReadError
	MARequiredError
	MAValidationError
	MAWriteError

	Magritte-Model-Visitor
	MAVisitor

	Magritte-Model-Utility
	MADynamicObject
	MANamedBuilder
	MAPragmaBuilder
	MAProxyObject

	Pier-Model-Core
	PRObject

	Pier-Model-Kernel
	PRContext
	PRCurrentContext
	PRKernel

	Pier-Model-Structure
	PRChildren
	PRDecorated
	PRDecoration
	PRFile
	PRHider
	PRPage
	PRStructure

	Pier-Model-Document
	PRAnchor
	PRDocument
	PRDocumentGroup
	PRDocumentItem
	PRDocumentParser
	PRDocumentWriter
	PRExternalLink
	PRHeader
	PRHorizontalRule
	PRInternalLink
	PRIsbnLink
	PRLink
	PRList
	PRListItem
	PRMailLink
	PROrderedList
	PRParagraph
	PRPreformatted
	PRRfcLink
	PRTable
	PRTableCell
	PRTableRow
	PRText
	PRUnorderedList

	Pier-Model-Command
	PRCommand

	Pier-Model-Visitor
	PRFullTextSearch
	PRIncomingReferences
	PROutgoingReferences
	PRPathLookup
	PRPathReference
	PRVisitor

	Index
	Bibliography

