
Navigation in Object-Oriented
Reverse Engineering

Diplomarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universiẗat Bern

vorgelegt von

Daniel Schweizer

2002

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz
Dr. St́ephane Ducasse

Michele Lanza

Institut für Informatik und angewandte Mathematik

Further information about this work, the used tools and anonline version of this
document can be found at:
http://www.iam.unibe.ch/˜scg/

The address of the author:

Daniel Schweizer
Effingerstrasse 9
CH-3011 Bern

or

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubr̈uckstrasse 10
CH-3012 Bern
dschwzr@iam.unibe.ch
http://www.iam.unibe.ch/˜dschwzr/

http://www.iam.unibe.ch/~scg/
mailto:dschwzr@iam.unibe.ch
http://www.iam.unibe.ch/~dschwzr/

Abstract

Tool support is needed to cope with the complexity and the large amounts of infor-
mation in reverse engineering. By creating representations in another form, often
at a higher level of abstraction, state-of-the-art tools aid in reducing complexity
and gaining insights into parts of a system’s structure. However, orientation and
navigation among these representations remains difficult. Often superfluously tool-
induced effort is needed to perform a certain task. We call this artificially added
effort friction.

Tools with the right navigation support can reduce thisfriction, and increase
productivity. This work classifies navigation in models of object-oriented software
systems, and shows that among the great number of possibilities, only a few make
sense. We determine which kinds of navigation steps are useful, and why. We
summarize our experience and best practices of state-of-the-art tools in a set of re-
quirements for an ideal reverse engineering tool.

As a validation for these requirements, we analyze data about the user’s be-
havior during reverse engineering sessions. To collect that data, and for studying
various ways of navigation and orientation, we builtMooseNavigator, a prototype
reverse engineering navigator.

i

Contents

Abstract i

1 Introduction 1
1.1 Friction in Reverse Engineering. 4
1.2 Reducing Friction with Navigation. 6
1.3 The Structure of this Document. 7

2 Background 8
2.1 Knowledge Management. 8

2.1.1 Managing Information. 9
2.1.2 Topic Maps. 13
2.1.3 Navigating Information. 17

2.2 The FAMIX Reverse Engineering Model. 19
2.3 Usability. 21
2.4 Concerns Identified. 24

3 Context & Requirements 27
3.1 Moose & CodeCrawler. 27
3.2 The SORTIE Experience. 28

3.2.1 Experience. 28
3.2.2 Results . 32

3.3 Tool Requirements. 33

4 Classifying Navigation 40
4.1 Navigation Steps between Tool States. 41
4.2 Semantic Navigation Steps. 42
4.3 The Dimensions of Navigation. 45
4.4 State-of-the-Art Navigation. 45

5 Navigation for Reverse Engineering Tools 47
5.1 Perceptions. 47
5.2 A Prototype - MooseNavigator. 50

5.2.1 Conception. 50
5.2.2 User Interface. 51

ii

CONTENTS iii

5.2.3 Metrics . 55
5.2.4 Layouts & Views. 56
5.2.5 Reports. 58

6 Experiments 59
6.1 Automatic Navigation Support. 59
6.2 Experiment with Students. 63

6.2.1 Observations. 63
6.2.2 Experience. 65
6.2.3 Results . 66

6.3 Experiment with an Expert. 66
6.3.1 Observations. 67
6.3.2 Experience. 69
6.3.3 Results . 70

6.4 Summary . 71

7 Conclusion 72
7.1 Summary . 72
7.2 Main Contribution . 73
7.3 Outlook & Future Work. 74

A Moose 75
A.1 Meta Model . 76
A.2 CodeCrawler . 77
A.3 MooseExplorer . 77
A.4 MooseFinder . 78

B SORTIE Report 81
B.1 Project Background. 81
B.2 Project Success. 82
B.3 SCG Report. 84

C State-of-the-Art Tools 95
C.1 Introduction. 95

C.1.1 Selection . 95
C.1.2 Scope. 98
C.1.3 Template . 99

C.2 Tools. .100
C.2.1 Eclipse . 100
C.2.2 Javadoc. 104
C.2.3 Rigi .109
C.2.4 SHriMP. 113
C.2.5 Small Worlds. 118
C.2.6 TheBrain . 122

iv CONTENTS

C.2.7 Together . 126
C.2.8 Additional Features. 131

C.3 Summary .132

D MooseNavigator Implementation 134

List of Figures

1.1 Software Reengineering Lifecycle.. 2

2.1 The Elements of the FAMIX Model. 20
2.2 The Entities in the FAMIX model. 20

3.1 Screen Capture ofCodeCrawler. 28
3.2 SORTIE System Complexity.. 29
3.3 SORTIE Class Blueprint.. 30
3.4 SORTIE System Packages.. 31

5.1 Screen Capture ofMooseNavigator, Tools In-lined. 51
5.2 Screen Capture ofMooseNavigatorSession Viewer.. 52
5.3 Screen Capture ofMooseNavigatorDescription Viewer.. 53
5.4 Screen Capture ofMooseNavigatorSystem Overview. 54
5.5 Screen Capture ofMooseNavigatorFilter Editor. 54
5.6 Screen Capture ofMooseNavigatorFilter Library Editor. 55
5.7 A Typical Circle (Double) View. 56
5.8 Typical Navigation Trails Evolving over Time.. 57

6.1 Procedure of a Typical Student User Session.. 63
6.2 Distribution of Selected Views by Students.. 64
6.3 Percentage of Visited Classes and Entities by Students.. 65
6.4 Procedure of an Expert User Session.. 67
6.5 Distribution of Selected Views by an Expert.. 68
6.6 Percentage of Visited Classes and Entities by an Expert.. 69
6.7 Navigation Trails in the Duploc Experiment.. 70

A.1 MooseArchitecture.. 76
A.2 FAMIX Core. 77
A.3 Screen Capture ofCodeCrawler. 78
A.4 Screen Capture ofMooseExplorer. 79
A.5 Screen Capture ofMooseFinder. 80
A.6 Screen Capture ofMooseFinderQuery Composer.. 80

C.1 Screen Capture of Eclipse.. 100

v

vi LIST OF FIGURES

C.2 Screen Capture of Internet Explorer with Google Toolbar & Javadoc.104
C.3 Screen Capture of Rigi.. 109
C.4 Screen Capture of SHriMP.. 113
C.5 Screen Capture of Small Worlds.. 118
C.6 Screen Capture of PersonalBrain.. 122
C.7 Screen Capture of Together ControlCenter.. 126

List of Tables

2.1 Tasks of Knowledge Management.. 11
2.2 Acceptance Factors of Knowledge Management Tools.. 12
2.3 Relations in Class Hierarchies.. 16
2.4 Mapping between FAMIX Elements and its Graphical Representa-

tions.. 21
2.5 Concerns of Designing a Reverse Engineering Navigator.. 25

4.1 Navigation between Tool States.. 41
4.2 Navigation Steps Starting from a Class.. 43
4.3 Navigation Steps Starting from an Attribute.. 44
4.4 Navigation Steps Starting from a Method.. 44
4.5 State-of-the-Art Navigation Overview.. 46

6.1 Methods of MSEAttribute’s Fullclass.. 60
6.2 Attributes of MSEAttribute’s Fullclass.. 61
6.3 Average Time between Student User Interactions.. 64
6.4 Average Time between Expert User Interactions.. 68

B.1 SORTIE Participating Tool Teams.. 82

C.1 Tools of the Category Knowledge Management.. 96
C.2 Tools of the Category Text Browsing.. 96
C.3 Tools of the Category Source Code Browsing.. 97
C.4 Tools of the Category IDE.. 98
C.5 Tools of the Category UML Modeling.. 98
C.6 Tools of the Category Static Analysis / Documentation.. 98
C.7 State-of-the-Art Features Overview.. 133

vii

viii LIST OF TABLES

Chapter 1

Introduction

“A successful and used software product must be subject to evolution,
else it becomes progressively less satisfactory.”

-Manny M. Lehman [LEHM 96]

This work is about navigation in object-oriented reverse engineering. In this
first chapter we explain why this is an issue and define a terminology for reverse
engineering. We detect the key objectives of reverse engineering and identify prob-
lems that make orientation and navigation in representations of software systems
difficult. In a further section we introduce the concept offriction which is the su-
perfluously tool-induced effort needed to perform a certain task. At the end of this
chapter you find an overview of the structure of this document.

Today’s continuously changing environments influence the methods of devel-
oping and maintaining software. Several factors make object-oriented re- and re-
verse engineering an important chapter of software development. The trend to-
wards bigger systems, component- and framework architectures and the depen-
dency to development kits, huge class libraries, and other third party components
makes it difficult to keep the complete overview of a complete software system.
Programmers do not like to document what they implement, and the job fluctua-
tion is high. As a result, we find many not- or poorly documented systems [Duc 99]
[Dem 02]. In combination with the increasing popularity of the object-oriented
paradigm, this situation causes people to rethink traditional software development,
and results in iterative processes. For example, an agile process likeExtreme Pro-
gramming[BECK 00] [JEFF 01] emphasizes short release cycles, collective code
ownership, merciless refactoring and rotating developer pairs.

Iterative processes turn software development into a continuous reengineering
or maintenance job. Typically the system’s maintainers are not its original de-
signers. In this work we try to identify ways to support developers in program
understanding. To avoid confusion, we begin by introducing a vocabulary for the

1

2 CHAPTER 1. INTRODUCTION

common understanding of terms and concepts. After discussing thesoftware re-
engineering lifecycle, we continue by definingfriction in reverse engineering. We
list thefriction’s major drivers, and present our strategy for reducing it.

Figure 1.1: Software Reengineering Lifecycle.

The elements of thesoftware reengineering lifecycleareReengineering, For-
ward Engineering, andReverse Engineering. Figure1.1 illustrates how the el-
ements interrelate. The following definitions are in compliance with Chikofsky
[CHIK 90]:

“ Reengineeringis the examination and alteration of a system to cor-
rect faults, improve the design or performance, and change the product
to meet additional or changing requirements”

“ Forward engineeringis the traditional process of moving from high-
level abstractions and logical implementation-independent designs to
the physical implementation of a system”

“ Reverse engineeringis the process of analyzing a system to identify
its components and interrelationships in order to create representa-
tions in another form, often at a higher level of abstraction.”

Before a developer is able to make modifications in the traditional forward
engineering view, he has to spend some effort in studying and trying to understand
the structure and architecture of the legacy system. This task of reverse engineering
is also called design recovery. If we want to support the reverse engineers at their
work, we must first know in detail about the versatile list of their objectives. Here is
the list of objectives according to Chikofsky [CHIK 90], each complemented with
a brief explanation.

• Cope with complexity. It is difficult to keep the overview of large amounts
of source code. One way to cope with complexity, is reducing the volume

3

in hiding some details, and stressing some aspects. Other ways include the
creation of different meaningful representations.

• Generate multiple views. Depending on your current point of view, alterna-
tive ways of putting things together may be appropriate - new layouts and
views are required.

• Recover lost information. This includes the re-documentation of a system,
if there is no documentation. Often the existing documentation is based on
the original design, and it is not in sync with the current system anymore.
Sometimes companies recover also forgotten details on their processes and
workflows from within software implementations.

• Detect side effects. Without a clear picture of the overall architecture, and
without the support of analysis tools, it is often hard to identify interfaces
and dependencies. Especially if you make modifications to software, where
many technologies from different manufacturers must work together, it is
hard to determine the impact to the total system.

• Synthesize higher level abstractions. Higher level abstractions can evolve
during the reverse engineering process, with the input of additional concepts
and knowledge of users. An example is the aggregation of artifacts to con-
tainers, by inspecting the “virtual name spaces” - implicit semantics, derived
from a assumed naming scheme.

• Facilitate reuse. Developers avoid reusing what they do not understand.
Higher level abstractions help in reducing the efforts needed for compre-
hending the design of third-party components.

The primary motivation for the objectives described above is normally doing
modifications, which implies reverse engineering as an inevitable part at the begin-
ning of the reengineering task. To keep the system in a good shape, alterations are
frequently accompanied by efforts of restructuring. Restructuring is today, espe-
cially in the context of object technology, more popular under the namerefactoring.

“ Refactoringis the inner modification of a system in favor of a better
design, without changing its external behavior.”

-Martin Fowler [FOWL 99]

An improvement of the design leads also to systems that are easier to under-
stand, maintain and extend. Sometimes performance or security issues motivate the
refactoring of a system. More candidate refactorings can be detected via anomalies
[RIEL 96] and hotspots. It can be wise to think about whetherforegoing refactor-
ings simplify alterations, and it is a good piece of advice, to check if the design

4 CHAPTER 1. INTRODUCTION

needsrefactoringafter having done a modification.

While the field of design patterns is widely explored and documented in litera-
ture [GAMM 95] [BECK 97] [ALPE 98] - up to now, approaches towards a method-
ology for the better understanding of object-oriented systems, are in its beginnings
[DUCA 01a] [Dem 02] [STOR 97]. We believe that a key prerequisite of successful
reverse engineering is to have a clear plan. First of all, you should think about
what you want to find out. Once you have defined the concrete goals, you need
good tools supporting you in exploring the system efficiently and in finding and
remembering what you were looking for. To determine decisive factors for effi-
ciency we first identify typical sources of inefficiency. This leads us to the concept
of “friction” in reverse engineering. In the following we explain what we under-
stand by this term and why we should try to reduce it.

1.1 Friction in Reverse Engineering

Tool support is needed to cope with the large amounts of complex information
while reverse engineering a system. State-of-the-art reverse engineering tools aid
in reducing complexity and gaining insights into parts of a system’s structure by
creating representations in another form, often at a higher level of abstraction,
however orientation and navigation among these rather static representations is
difficult. The exploration of large systems offers a wide range of ways to get lost
[CONK 87] [NIEL 90] [MCKN 91]. On the way to the target you lose a lot of time
in not being able to directly get where you want. We call this tool-induced loss of
productivity“friction” :

Definition: Friction in reverse engineeringis all the additional, arti-
ficially tool-induced effort, which is superfluous but necessary to per-
form a certain action for achieving a certain goal.

In terms of Human Computer Interaction (HCI),friction is mainly caused by
the design of inefficient Graphical User Interfaces (GUIs). Another term forfric-
tion, although exclusively in respect to HCI, isexcision[COOP95]. State-of-the-
art tools help in reducing the complexity in reverse engineering object-oriented
systems, still they induce a considerable amount offriction. Here are the six ma-
jor groups of contributors which we compiled from existing literature [COOP95]
[RASK 00] [WARE 00]: Incompleteness of the model and features, indirection,
oversaturation, red herrings, degradation of knowledge,andlack of classification.
We describe them below in more detail:

1. Incompleteness of the model and features. For being able to find informa-
tion, a first requirement has to be fulfilled, before all others: Completeness
of the model and features. This is the prerequisite to navigate along real ref-
erences or interrelationships. We cannot get there if it is not there or there

1.1. FRICTION IN REVERSE ENGINEERING 5

is no feature for getting there. It is also important that all information can
be accessed in the same tool. Switching over to other applications to find
missing pieces of information means great friction.

2. Indirection . Sometimes we know exactly where we want to go. But it takes
us many interactions to get there. Not being able to access relevant infor-
mation directly is expensive, tedious and de-motivating, especially when we
perform the same task many times. Support for getting fast from A to B
provides shortcuts and includes the elimination of obstacles.

3. Oversaturation. We are bad in coping with large numbers of entities si-
multaneously and sometimes we get lost in the great number of entities and
possible navigation paths. A way of reducing complexity (and the chance of
getting lost) is by reducing the amount of information that is concurrently
presented, for example by applying filters.

4. Red herrings. We easily get lost, being attracted by a red herring which
is something of which we are mistaken by what it is or by its contributing
value to our current task [K ICZ 96]. Overloaded menus with many seldom
used commands distract the user. A well designed tool reduces the possibil-
ities to a small number of navigation steps, since often the useful actions in
a certain situation are few and always the same [GRIS 92]. Straightforward
dynamic menus make the choice for further actions simpler. The automatic
and immediate display of all relevant information about the currently se-
lected entity makes additional interactions for visiting detailed information
superfluous. A history function is needed to provide ways back out of blind
alleys in the labyrinth.

5. Degradation of knowledge. To support reuse of perceptions a system must
remember what we find out once, and we must be able to access this know-
ledge in the future. We need some sort of memory to reduce the degradation
of discovered knowledge. In state-of-the-art reverse engineering tools, book-
marks or similar capabilities are rare. Most reverse engineering sessions do
not result in anything storable, except static reports or pictures. Users throw
away everything after every single use. Users must restart from scratch when
they want to find out the same thing at a later moment of time. Throwing
away instantly the insights is inefficient. After all, users should be able to
generate detailed reports about their sessions, these reports must be adapt-
able and extensible. The result sets must be in a form that can be imported
for further use in other data analysis tools. This is even more important,
when reverse engineering in a team where support for sharing and exchang-
ing sessions, resources, and insights with colleagues is needed.

6. Lack of classification. Without a concept of classification, it is hard to dis-
tinguish different kinds of entities of information. Since normally not every
entity is of the same importance, it can be helpful to rate them according to

6 CHAPTER 1. INTRODUCTION

their relevance, to a certain aspect, or a context. Usually you have no idea
where you already passed by and which area of the system you or anybody
else did not yet touch. The coverage of visited parts of a system, can also be
expressed by classification.

1.2 Reducing Friction with Navigation

“I saw a statistic from a U.C. Berkeley study saying that it took us
300,000 years to generate an amount of information and will take only
the next 2.5 years to get the same amount.”

-Thomas H. Davenport [DAVE 98]

One of the primary goals of software reverse engineering is very much the same
as in knowledge management: It is finding relevant information. The goal of this
document is to present successful navigation strategies for reverse engineering. For
that, we start by identifying the concerns to be considered in building navigation
tools. This set of concerns is used to structure the discussion of best practices
and example solutions of state-of-the-art tools from knowledge management and
reverse engineering.

We identify appropriate navigation features to be one possible force to consid-
erably reduce friction. We discuss and classify possible navigation steps on models
of object-oriented software systems in order to determine useful and useless navi-
gations. We study possibilities for reducing the chance of getting lost as well as to
support learning from previous investigations.

The statements are validated by the analysis of data which was collected to
study the behavior of users during reverse engineering sessions. Indeed, the loca-
tion of so called trails, or so far untried areas of a system - generally, meta informa-
tion about the popularity and experiences of past investigations - can help to build
more efficient navigating tools.

As a major result of this work we collect a set of requirements for an ideal
reverse engineering tool that supports orientation, navigation, as well as learning
from previous investigations. We believe that this can further reduce complexity
and thus increase productivity in reverse engineering.

1.3. THE STRUCTURE OF THIS DOCUMENT 7

1.3 The Structure of this Document

The rest of this document is organized as follows:

• The background. Chapter2 starts by encompassing the broader context of
navigation in reverse engineering: namely managing, modeling and navigat-
ing information. The chapter presents our reverse engineering meta model,
identifies some issues of usability, and results in a set of concerns that has
to be addressed when thinking about the ideal navigation support of reverse
engineering tools.

• The motivation. We present the strengths and weaknesses of our reengineer-
ing environmentMooseand the experiences we made in an industrial case
study in Chapter3. This leads us to a set of concrete tool requirements.

• A classification. Chapter4 introduces some terms and concepts for distin-
guishing different kinds and the building blocks of navigation. We summa-
rize state-of-the-art solutions for efficient navigation in reverse engineering
tools and identify some gaps.

• Our contribution. We describe the main perceptions gained in this work in
Chapter5. We present our prototypeMooseNavigatorand give some exam-
ples of how the tool requirements could be implemented in our environment.

• The validation. In Chapter6 we first describe an experiment of searching
ways to dynamically provide features for navigation. After that we describe
and analyze data about the navigation behavior of reverse engineers. The
data was collected in two additional experiments of using our prototype.

• The conclusion. We summarize what we have done and give an outlook to
future work in Chapter7.

• In addition there are four appendices: AppendixA presents theMoosere-
engineering platform and its tools that were developed in the Software Com-
position Group at the University of Bern.

• While we describe our experience made in the SORTIE case study in Chap-
ter 3, we summarize the project background and success in AppendixB.
There you can also find the originally submitted SCG project report.

• In Section4.4 we present a summary of state-of-the-art tools with an ex-
clusive focus on navigation and orientation. The complete evaluation of the
tools can be found in AppendixC.

• We describe the implementation details of our prototypeMooseNavigatorin
AppendixD.

Chapter 2

Background

“Jede Erinnerung schreibt die Vergangenheit neu.”1

-Gilbert Probst [PROB 99]

In this work, we are interested in navigating information for reverse engineer-
ing. Navigating information is not new - the field of information retrieval, to-
day rather known as knowledge management, studies this for decades. Before
we focus on navigation in reverse engineering, we consequently introduce general
knowledge management practices and terminology. For the following discussion
we split the field of knowledge management into the three subsections managing-,
modeling-, and navigating information. In the section about modeling information
we present a concrete example model. It is the topic maps model. The next section
presents the FAMIX reverse engineering model which is the base of our research
and reengineering environment. After that follows a brief survey on usability. The
chapter ends with an accumulated list of concerns for the design of navigation
tools. This list of concerns is later used as a structure to analyze the problems in
navigation and discuss state-of-the-art solutions.

2.1 Knowledge Management

“Sharing knowledge means multiplying knowledge.”

-Thomas H. Davenport [DAVE 98]

The goal of this section is to introduce the concepts and a terminology for man-
aging, modeling and navigation information in knowledge management. Many of
the concepts and a considerable amount of the terminology can be reused in reverse
engineering.

1Literally: “Every reminiscence rewrites the past.”

8

2.1. KNOWLEDGE MANAGEMENT 9

Sharing knowledge means multiplying knowledge. This substantial difference
between knowledge and any other physical good, is one driver of the information
flood, with which we are faced in knowledge management. Many criteria to mea-
sure the usefulness of tools and methods in knowledge management, are the same
as in reverse engineering. Indeed, some of the primary goals are to support human
thinking and coping with huge and complex sets of information, to filter them, and
to find relevant pieces, with regard to your current context.

2.1.1 Managing Information

This subsection guides you to the background of information and knowledge man-
agement. It defines what we understand by knowledge and classifies different kinds
of knowledge. We also present a terminology for the methods and the tools of
knowledge management.

Background

The management of information and knowledge evolved to one of the most im-
portant disciplines in today’s world. The global knowledge economy is predicted
to be the successor to the information age. We all use tools to improve our capa-
bilities, in most fields of our lives, but usually not in thinking - up to now. As a
result of the increasing needs for efficiency in the age of globalization the process
of knowledge creation and transformation is growing to be a key competence of
any business [RHEI 85]. An example proving the monetary interest, not only on
what the company owns, but also what it knows is SKANDIA ’s idea of “Intellectual
Capital” recently applied also at ERICSSON2. At the end of the year SKANDIA ’s
shareholders are not only presented a balance sheet with a financial statement but
also the intellectual capital, as a combination of customer human capital and orga-
nizational capital.

Like many technology fields, the area of knowledge technology has suffered
from overly high expectations and excessive levels of hype, particularly with re-
gard to expert systems. It is fair to say that many of the“ new” technologies and
tools of knowledge management date one or two decades back. Those days they
were called information systems. The discipline was also known asInformation
Retrieval.

Knowledge Classification

Scientists could not yet agree on a unified definition for knowledge. One reason for
this is the continuous confusion about the termsData, InformationandKnowledge.
Here is how we use them:Symbolsare a subset ofData. A Symbolis taken out of

2More on Intellectual Capital at SKANDIA or ERICSSONat: http://www.skandia.com/
andhttp://www.ericsson.se/intellectualcapital/

http://www.skandia.com/
http://www.ericsson.se/intellectualcapital/

10 CHAPTER 2. BACKGROUND

anAlphabetto build a word. A word is an instance ofData. To construct words you
need a certain syntax or language. Within a specific context one or more words can
becomeInformation. Only combined and interpretedInformationwill ever have
the chance to becomeKnowledge. Here is our definition for knowledge:

“Knowledge is the ability people have to use information to solve com-
plex problems and adapt to change; the individual ability to master the
unknown; the ability to act.”

-Karl-Erik Sveiby [SVEI 97]

We distinguish two kinds of knowledge:

1. Tacit knowledge. Tacit knowledge is highly personal and hard to formalize
and communicate - thus not directly accessible to others. It consists of know
how and mental models, beliefs and perspectives based on experience. It can
be transformed to explicit knowledge - e.g., by socializing.

2. Explicit knowledge. Explicit knowledge is formal and systematic, can be
stored and easily be communicated and shared. It is articulated - the words
we speak, the books we read, the reports we write, the data we compile.

Tacit knowledge exists in human brains only, and can therefore not be stored
on any other media. The only thing that can be put into a non-human system is
data. If the knowledge contributor and the knowledge customer have the same
language and the same cultural background, often this data is easily converted to
information. After that, you need to have the know-how to present this information
in such a comprehensive way - that hopefully people can regenerate knowledge out
of it. However, we sometimes also use knowledge as synonym for information - for
simplification and compatibility with terminology in common literature. Patents,
trademarks, copyrights, and trade secrets appear to be viable candidates for explicit
knowledge, and of course software.

Knowledge Management Methods

The six core tasks of knowledge management by Probst [PROB 99] are: Identify,
Store, Utilize, Distribute, Create (internal), and Buy (external). Table2.1 shows
our extendedlist of tasks which also takes in account slightly varying definitions
found in literature [DAVE 98] [ANTO 99].

Studies have shown that companies primarily collect and manage knowledge
about methods rather than about products, customers or market and competitors.
But finally, the key success factors for the implementation of knowledge man-
agement in an organization, are rather soft: Culture and Vision of the Company,

2.1. KNOWLEDGE MANAGEMENT 11

Task Comment
Identify / detect
knowledge

Identifying knowledge carriers, - flow, - structures, and generating a
knowledge portfolio is the first step towards knowledge management. It
is important to detect also the knowledge gaps. Benchmarking tells you
what you know in comparison to others.

Create knowledge
(internal / external)

Enlarging the total sum of knowledge can be achieved by techniques and
measures like education, think tanks, forums, insourcing, outsourcing,
or hiring external experts and consultants.

Collect knowledge Tacit knowledge must be transformed into explicit knowledge, for it can
be stored in databases, dictionaries, best practices, red books, white pa-
pers, or other sorts of containers. A weak form of collecting knowledge
is to collect information about knowledge carriers or places where fur-
ther information can be found. This leads to white pages (people), yel-
low pages (organizations), or blue pages (governmental departments).

Filter / evaluate
knowledge

While collecting information, you should also rate it. Criteria can be rel-
evance, trustworthiness of information source, timeliness, scope. This
task is complex and needs experts.

Categorize, syn-
thesize and struc-
ture knowledge

For simpler management and easier relocation of information, as well
as to know the scope of specific pieces of knowledge, you need to cate-
gorize it. To be able to perform this task, the antecedent formation of a
controlled vocabulary and a common ontology is necessary.

Store knowledge Media, that theoretically can store knowledge or information are: DNA,
brains, software, hardware, and books. Today’s knowledge economy
attempts to port most of the information to be managed in hard- and
software.

Distribute and
share knowledge

“Lessons Learned” represent a popular method to get better in recurring
tasks. They not only show how to do something, but also how not to do.
Pushmeans distributing knowledge actively, whilepull means offering
ways for people to come and get it.

Utilize knowledge Apply the gathered knowledge. This is the first task where you can
make profit of the preceding tasks of preparation.

Update and main-
tain knowledge

Without a continuous feedback, reviews, and contributions of
knowledge-workers; without the cooperation between end-users and
operators, knowledge management can not be kept alive. The process
of making explicit to others what you learn, is called “unlearning”.

Table 2.1: Tasks of Knowledge Management.

Structure and Processes, Employees Motivation and Qualification, Encouragement
through Top Management, Pressure to Succeed, Clear Targets, Training and Edu-
cation, Incentives, and Integration of External Knowledge [ANTO 99].

The majority of these soft factors can be disregarded in the context of reverse
engineering, because a lot of work in the non-technical tasks of identifying, creat-
ing, and collecting knowledge is done by the computer that parses the source code
and generates the models automatically. This is an advantage, since with that, the
work is less vulnerable to lazily contributing knowledge-workers, political games
or other barriers.

12 CHAPTER 2. BACKGROUND

Knowledge Management Tools

The success factors for implementing knowledge management tools in organiza-
tions include simplicity, efficiency, and still more barriers (Table2.2).

Factor Comments
Simplicity Tools must not be complicated to operate, otherwise users do not use them.

The user must see a clear benefit of using a tool, over traditional ways of
searching for information.

Maintainability A knowledge tool must be always up-to-date, otherwise people will stop
trusting it. Easy contribution must be possible, otherwise users contribute
rarely to enlarge or improve the knowledge pool.

User-
Friendliness

The tool must not only be simple to use, but also provide nicely presented
results. This data must be available for further processing. Queries and
result sets must be storable.

Political Barri-
ers

Sharing knowledge means giving it away - this often causes the fear to
lose power or the “right to exist”. This benchmark thinking within the
team can hinder people to contribute.

Psychological
Barriers

No habit in working with tools frightens people to harm any content. Miss-
ing self confidence and the fact that everybody will be able to criticize
contributions lets many users keep their insights for themselves. Other
people could maybe interpret contributing to the knowledge pool as hav-
ing nothing more important to do. The “not-invented-here syndrome” can
decrease the acceptance of external knowledge.

Structural Bar-
riers

“Internal intransparency” and unprecise responsibilities cause knowledge
management to be no “real project” on which working hours can be
booked on - this leaves the impression that it is not that important.

Table 2.2: Acceptance Factors of Knowledge Management Tools.

Knowledge management tools can roughly be separated in two groups: Tools
for supporting communication and tools that provide access to information.

1. Communication support: Communication is important for sharing know-
ledge. Communication can be supported by technology: E-mail, chat, in-
stant messaging, electronic blackboard, wiki and more sophisticated know-
ledge systems. A minimal technical communication support is necessary but
not sufficient. It cannot replace physical meetings and oral communication
[PROB 99]. However technology should enable work everywhere and shar-
ing information transparently. Another way of making people communicate
are institutions like a hotline, forums or knowledge brokers. However still
more important than technology, is the company’s culture and organizational
methods; clear targets, training and education, pressure to succeed, or incen-
tives.

2. Information access: This group of tools includes libraries and archives that
primarily contain textual documents or databases. Especially popular in con-
sulting companies are “Lessons Learned” and “Best Practices”. They are
what design and process patterns are to software development and what we

2.1. KNOWLEDGE MANAGEMENT 13

expect from reverse engineering patterns. ‘Yellow Pages” listing experts,
kind of “who-is-who” sometimes can be derived from implicit information
in documentation or annotations of the version control system. Other li-
braries and archives include search engines, meta search engines, indices,
dictionaries, encyclopedias and product catalogues. Moderated libraries in-
clude directories or special databases for genealogy or patents, enhanced
content management systems, and information portals. Information maps
build a common way for visualizing knowledge. Whether landscape maps,
hyperbolic trees or simple hyperlink collections, the content can vary inde-
pendently of the type; they can show knowledge carriers, knowledge portfo-
lios, knowledge configuration, knowledge implementation, knowledge flow,
or implementations of local theories. When coping with models of object-
oriented code, trees and graphs are used to represent the artifacts and rela-
tionships.

3. Artificial intelligence: Neural networks and other technologies were used
to build expert systems, which try to support making decisions by deriving
advice from a set of rules. Associative search agents try to inform you about
things from which they reason that it would be relevant to you.

Being sure that two people are talking about the same thing, requires a common
thesaurus of technical terminology and a controlled vocabulary - otherwise tools
will fail. A model for topics and aims is needed. In the following we present ways
of modelling and navigating knowledge. We show that the way we model our
information space, has an impact on the possible ways of managing and navigating
them later.

2.1.2 Topic Maps

Within the fields of semantics and artificial intelligence, many concepts were al-
ready - and still are - used to describe various models for representing knowledge
structures within a computer. These include: “Semantic Networks” [GRIF 82]
[LEHM 92], “Semantic Web” [BERN 99], “Associative Networks” [FIND 79] and
“Resource Description Frameworks (RDF)”3, the “Knowledge Interchange Format
(KIF)” 4 or “Conceptual Graphs” [YANG 93]. Many of these already correspond
closely to the topic/association model. The concept of topic maps, by adding the
topic / occurrence axis, provides a means for “bridging the gap” between know-
ledge representation and the field of information management.

Because of the general nature of topic maps, we chose to use them to introduce
the concepts for modeling information. By doing that, we visit the relevant issues,
and typical classes of topic types and relations. This helps also in understanding

3http://www.w3.org/RDF/
4http://logic.stanford.edu/kif/

http://www.w3.org/RDF/
http://logic.stanford.edu/kif/

14 CHAPTER 2. BACKGROUND

the possibilities of navigation in representations of object-oriented code, and builds
a viable vocabulary for further discussions.

The topic map standard defines the model and interchange syntax for topic
maps [ISO 99]. This is not the only way of representing knowledge or information,
however it covers the centrals issues, and is a perfect example for discussing the
questions relevant to our context. The original motivation for topic maps dates
back to the early 1990’s related to the desire to model intelligent electronic indexes
in order to be able to merge them automatically. Today topic maps are considered
to become the “GPS of the information universe” [RATH 99]. Topic maps became
an ISO 13250 industry standard in 19995.

Topic Map Concepts

We start with a short introduction to the key elements of the topic map model,
which are: Topic, occurrence, association, scopeand facet, as well as its corre-
spondingrolesandtypes. For each concept, we give one or more examples.

Topic. Topics are the building blocks of a topic map. A topic, in its most generic
sense, can be anything, regardless of whether it exists or has any other specific
characteristics. An individual topic is an instance of zero or moretopic types.
Topic types themselves are defined as topics again. Topics have three kinds of
characteristics:names, occurrences,androles in associations. Example topics are
Bern, Switzerland, andUniversity of Bern.

Occurrence. A topic may be linked to one or more information resources that
are relevant to the topic in some way. Such resources are called occurrences of
the topic. Occurrences may be of any number of different types. Such distinctions
are supported in the standard by the concept of theoccurrence role. As with topic
types, occurrence roles are topics. Occurrences ofBerncould be a web site with
tourist information or a city map.

Association. A topic association is (formally) a link element that asserts a rela-
tionship between two or more topics. Just as topics can be classified according to
their type (class, method, attribute, etc.) and occurrences according to role (“Ac-
cess”, “InheritanceDefinition”, etc.), so can associations between topics be clas-
sified according to their type. Viable candidates for a “defines” are “belongsTo”
(structural information), “invokes”, “accesses”, and “accessedby”. As with most
other constructs in the topic map standard, association types are themselves de-
fined in terms of topics. The ability to do typing of topic associations increases the
expressive power of the topic map, making it possible to group together the set of

5More information about topic maps can be found online. A recommended starting point is
http://easytopicmaps.com/

http://easytopicmaps.com/

2.1. KNOWLEDGE MANAGEMENT 15

topics that have the same relationship to any given topic. This is of great impor-
tance in providing intuitive and user-friendly interfaces for navigating large pools
of information. Each topic that participates in an association has a corresponding
“association role” which states the role played by the topic in the association. Also
association roles are regarded as topics in the topic map standard. An example
association “isin” connects the two topicsBernandSwitzerland. This association
has the typeLocation.

Scope. From the preceding discussion we see that topics can have various char-
acteristics assigned to them: they can have names, they might have occurrences,
and for every association in which they partake, they have a role. These different
kinds of assertions that can be made about a topic are collectively known as “topic
characteristics”. In the topic map standard, any assignment of a characteristic to a
topic, be it a name, an occurrence or a role, is considered to be valid within certain
limits, which may or may not be specified explicitly. The limit of validity of such
an assignment is called its scope, also scope is defined in terms of topics. If not
further specified the scope is global. Whether scope is hierarchical or transitive
along types, is not defined in the standard. Another association which states, that
theUniversity of Bernis also inBerncan be out of scope when considering only
geographical facts.

Facet. The final feature of the topic map standard to be considered in this intro-
duction is the concept of the facet. Facets basically provide a mechanism for as-
signing property-value pairs to information resources. A facet is simply a property;
its values are called facet values. Facets are typically used for supplying the kind of
meta data that might otherwise have been provided by SGML or XML attributes.
This could include properties such as “language”, “security”, “applicability”, “user
profile”, et cetera. Once such properties have been assigned, they can be used to
create query filters producing restricted subsets of occurrences. This provides a
complement to scopes; whereas scopes can be seen as a filtering mechanism that
is based on properties of the topics, facets provide for filtering based on properties
of the occurrences. Considering web sites aboutBernwith the assumption that the
reader does not understand German. With the concept of facets, you can specify
that only web sites in English are returned as a result of your search.

Topic Map Templates

All topics, occurrences, and associations can be seen as instances of classes (types).
The classes themselves are expressed as topics. This class-instance relationship is
in fact merely a syntactically privileged association type, as the standard makes
clear: “The class-instance relationship ... could alternatively be established by a
topic association link whose semantic is the relationship between a class and an
instance of that class”. This means that the class-instance relation is an association
type predefined by the standard. Of course this is not enough. If we are looking at

16 CHAPTER 2. BACKGROUND

the class-instance relation from an object oriented view, then there is a justifiable
demand for a superclass-subclass relationship as well. However, the standard ex-
plicitly declares that such a relationship has to be user-defined.

When needed, maps can be merged. This allows users to use the concept of
“templates” and logical modules in separate maps. A certain topic map A thus can
include atemplate mapB which consist of all constructs which have a declara-
tive meaning for the map A - for example the basic topic types, occurrence roles,
associations, and association roles from which topic map A only defines the in-
stances. Other modules could consist of clusters of all typing topics for the various
objects, the class hierarchy information, or consistency constraints. With the help
of templates, the design and creation of topic maps can be split up into sub tasks.
Furthermore, user access rights, user groups as well as roles can be assigned.

Relation Type Examples
Superclass-subclass (indirect ancestor) is a, equals, identical to
Superclass-subclass (direct ancestor) is a, equals, identical to
Brothership similar to
Kindship less than, older than, closer to

Table 2.3: Relations in Class Hierarchies.

One practical application for templates are type hierarchies. We list some basic
class hierarchy relationships in (Table2.3). With such a type hierarchy, we could
e.g., find implicit relationships along transitive associations likeis a.

More on templates and association taxonomies, class hierarchies or consistency
checking can be found in a paper written by Rath [RATH 00].

Retrieve Information from Topic Maps

Posing a query in a way that the computer understands it quickly requires profound
semantic background knowledge and in-depth expertise about the data model. An
association taxonomy including meta information about relations like transitivity,
symmetry, implication et cetera, can make queries look simpler, while they still
are powerful. There is a standard for formulating topic map queries. It is called
Topic Map Query Language(TMQL) in which queries resemble SQL statements
([KSIE 00]). Querying, as primary information retrieval discipline, is typically
concerned with single uses of the system, by a person with a one-time goal.

Another discipline of information retrieval is filtering. Filtering is rather con-
cerned with repeated uses by a person or persons with long-term goals or interests.
The two concepts for filtering topic maps are scopes (domain, aspects like the user
privileges) and facets (occurrence characteristics like the language).

2.1. KNOWLEDGE MANAGEMENT 17

2.1.3 Navigating Information

This section introduces navigation steps and issues of navigating information in
knowledge management - again with the broader view on general information
spaces, and not restricted to topic maps.

We classify navigation on different levels, according to the knowledge about
the semantics in the model, in order to determine possible navigation steps and
their applicability. First we consider navigation between tool states. Since topic
maps are essentially graphs we then have a closer look at issues of navigation in
graphs. Finally we stress the characteristics of navigation in models using specific
information about the semantics, and show how navigation tracking can be used in
a feedback loop to enrich the model.

Navigation between Tool States

The most general navigation is a sequence of user interactions and resulting tool
states over time. Knowledge about the structure or semantics of the model is not
needed for navigating from one tool state to the next, clicking on something, mov-
ing your mouse over something, or selecting a number of objects on the screen.

Among these navigation steps we can further distinguish between major and
minor steps. The first category consists of steps that do modifications on the cur-
rent model or selections, by changing the scope of the view, or the view itself. The
second category consists of steps that only affect the visual representation of the
same model, by moving the mouse over an object, zooming, or scrolling.

Considering sequences of actions and tool states we need a concept for mod-
elling them. We want to memorize these sequences in a container and call that a
“session”. Whatever a user does with his tool is stored in this session. Navigation
steps between tool states - we can call them navigation steps on sessions - include
Back, Forward, Peek, Undo, and Redo.

Navigation in Graphs

Navigation in graphs is basically navigating from node to node along edges. To
generalize and qualify this neighborhood we introduce a new concept: the concept
of proximity.

Definition: Proximity between two nodes is the inverse of the number
of associations that has to be traversed on the minimal path from one
node to another. If there is more than one minimal path between two
nodes, the proximities are accumulated. In the case that two nodes are
totally separated we define their proximity to be 0.

18 CHAPTER 2. BACKGROUND

Proximity is dependent of the mapping between domain model and graph. This
simplified proximity is a hard fact. It is a measure that can be computed on every
graph. More complex definitions of proximity would also consider further possible
(not minimal) paths [PINT 95], though the computation of such a proximity can be
hard.

Navigation based on Semantics

After having considered the way of navigation in an information space, indepen-
dently from what the topics are, we now have a look at what the additional seman-
tic information could contribute to enhance this most specific form of navigation,
along real associations between topics. Since some of the associations are more
relevant than others, we need a concept for rating associations. This leads us to the
concept of affinity.

Definition: Affinity between two topics is the weighted cumulated
proximity of the corresponding nodes. To calculate affinity between
two topics you must specify the weight of their association. A method
can have a big affinity to one of its extenders or overriders.

Affinity is a soft measure. Semantics and experience is needed to find param-
eters in a form that the calculated affinity really conforms to the ideas of a user.
Finding good parameters is difficult [PINT 95]. In different situations different
configurations may suit better.

Good navigation support lets you quickly find the way from a topic A to other
topics, having a big affinity to topic A.Quicklycan be measured by quantification
methods, developed in the field of Human Computer Interaction (HCI) [RASK 00].
Depending on the number of currently selected topics, more complicated associ-
ations are possible. Considering sets of selected topics, not only the number but
also their type or the combination of their types is relevant. The large number of
variations quickly reaches great complexity.

Navigation Tracking

“If you want to know where to lay a path between a new office build-
ing and its car park, cover the whole area with wood chips. Paths
appear in the chips as each individual solves their own problem, and
others can choose whether to use this solution. Within a short time a
collective solution–a few well-used paths–emerges.”

-Norman Johnson6

6Norman Johnson is the leader of the Symbiotic Intelligence Project at Los

2.2. THE FAMIX REVERSE ENGINEERING MODEL 19

A reasonable way to get parameters for calculating affinity between topics is
to measure the popularity of navigation trails observed in previous investigations.
Of course there is a danger of falsifications caused by the fact that also impasses or
paths leading to red herrings attract future users. The usefulness of this feedback
loop is dependent on the expertise and discipline of the early users of the system, if
they are just clicking around, the results of navigation tracking will be of no use. It
should always be clear which task the current user wants to perform. While search-
ing dead code it makes no sense using trails gathered in sessions with the aim to
detect duplicated code. Ideal navigation tracking records as much as possible, from
mouse movements and clicks to currently selected objects, from performed actions
to resulting tools states.

Another use of navigation tracking lies in gaining knowledge about heavily ex-
plored, or so far not visited areas of the system. We can draw navigation paths in
a new kind of view. Storing the information about what entity is visited when, di-
rectly in the model, allows us to use“intensity of observation”as a metric. We can
apply filters to hide them when exceeding a certain limit, color them accordingly,
link them to other node characteristics, or take entities with a minimum metric
value as a reduced subset for deeper inspections.

2.2 TheFAMIX Reverse Engineering Model

After having discussed navigation in knowledge management, we now focus on
issues in reverse engineering. Since this work is based on considerations made
with the Moosereengineering environment (AppendixA), we present the model
thatMooseis based on. It is the FAMIX model [DEME 01] [TICH 01] on which a
short overview follows now.

Various other formats to represent and exchange models of object-oriented
code exist. The Rigi Standard Format (RSF) [WONG 98], is one of the more tra-
ditional ones. For a better interoperability between reverse engineering tools and
components, various reverse engineering institutions formed a consortium to stan-
dardize a common Graph Exchange Language (GXL) [WINT 01]. GXL is an XML
sublanguage.

The class hierarchy of all objects in a FAMIX model is illustrated in Figure2.1.
The core elements are entities and associations. The entities represent source code
artifacts. The abstractions Class, Attribute and Operation from the Unified Model-
ing Language (UML), find themselves in FAMIX too. They are called accordingly
Class, Attribute, and Method. The associations reflect relations between entities,

Alamos National Laboratory in New Mexico. The quote stems from an inter-
view in Washington Technology. “A New Paradigm for Organizing Businesses”.
http://ishi.lanl.gov/Documents/interview.htm

http://ishi.lanl.gov/Documents/interview.htm

20 CHAPTER 2. BACKGROUND

Figure 2.1: The Elements of the FAMIX Model.

which includes structural information about affiliations and about the class hier-
archy, accesses and invocations. How the object-oriented entities and connecting
associations work together, is presented in Figure2.2. For mapping FAMIX models
to topic maps we used topic map templates. One topic map consisted only of the
structural definition of FAMIX entities, another topic map contained the relation
taxonomy (including facts like the transitivity of inheritance), and a last topic map
was filled up with the concrete instances of the FAMIX model.

Figure 2.2: The Entities in the FAMIX model.

We briefly sketch how FAMIX models are mapped to graphs. Current graphical
visualizations of FAMIX models [LANZ 99] map the objects of the model to nodes
and edges as summarized in Table2.4.

Having a closer look at the entities, the source code artifacts in FAMIX (Fig-
ure 2.2), we see that all structural information is represented through direct rela-
tions between structural and behavioral entities (belongsToClass). All other re-

2.3. USABILITY 21

FAMIX Element Node Edge
Class ×
Structural Information(including In-
heritanceDefinition and belongsTo-
Class)

×

Attribute ×
Access ×
Method ×
Invocation ×

Table 2.4: Mapping between FAMIX Elements and its Graphical Representations.

lations are represented by indirection through their own association entities (In-
heritanceDefinition). Note that this is not a must, but one possible way to do it.
This decision has an impact on the concept of proximity, and the quantification of
affinity. Relations could alternatively be modelled consistently, according to a one-
to-one mapping - of the class hierarchy of the implementation - to nodes and edges.
In the concept of topic maps you need not to decide whether a relation becomes a
topic or just an association between two or more topics, since an association is just
a specialization of a topic.

An example of good navigation support is when your are able to quickly find
the way from two methods to attributes, which are commonly accessed by both,
these two methods. We discuss the strategies for finding reasonable navigation
steps and good parameters for affinity in Chapter5.

2.3 Usability

“As far as the customer is concerned, the interface is the product.”

-Jef Raskin [RASK 00]

After having described the“what” we now want to have a closer look at the
“how” - this leads us to issues of usability, or more general to the field of Hu-
man Computer Interaction (HCI), and the underlying principles of psychology
[WARE 00].

This section gives an overview of usability, although it is an extract and there
is by far no claim for completeness. Only aspects that seemed interesting in the
context of this work were regarded. We outline characteristics for the ideal and
humane interface, show how efficiency can be quantified, and end up with a set of
relevant factors for measuring usability.

The ideal human interface reduces the interface components of a user’s work
to begin habituation. Many problems that make products difficult and unpleasant

22 CHAPTER 2. BACKGROUND

to use are caused by human-machine design that fails to regard the helpful, but also
dangerous, properties of forming habit. Easy to use applications provide no multi-
ple ways to accomplish one task, they support “Undo’s” for any action instead of
boring confirmation dialogs. They avoid confusing modes and cryptic shortcuts,
but form automatizations and habit instead [RASK 00].

A superior interface is an exceptional long-term investment. IT returns not only
higher productivity for customers, but also increased user satisfaction, a greater
perceived value, a lowered cost of customer support, faster and simpler implemen-
tation, a competitive marketing advantage, simpler manuals or online help, and
finally also safer products. In conformance with Raskin [RASK 00], we consider
the following factors as measures of usability:

• Simplicity or Ease of Learning. We can measure usability by comparing
the time it takes users to learn to do a job when working with an unfamiliar
computer system to the time it takes them to learn to do the same job some
other way. As measured by time, it takes the user more effort to learn a
system that does not incorporate and build on the user’s existing habits. The
users will have to ignore what they already know about the job to develop
a new collection of habits. Consistency, unification, standardization, and
monotony help the users in creating habit, thus they simplify learning.

• Efficiency or Ease of Use. The minimum number of actions required to
complete a task successfully becomes an increasingly important measure of
usability for more experienced operators. For example, the number of mouse
clicks entered per procedure is a good way to compare the ease of use of two
designs. Other factors being equal, the design that requires fewer keystrokes
per procedure will be more usable. There can be a trade-off between ease of
learning and ease of use; consider the speed of execution of a shortcut-key-
expert working with Emacs.

• Complete Memory. Any system must not harm your content at any time -
user’s input is sacred. A system must not lose or forget any input, action, or
state. Memory must be physically storable and sharable.

• Undo and Redo. A system must not only remember any tool state in the
past, but also provide ways to return to a previous point of interest at any
time. Undoing and redoing actions are essential for an efficient system that
does not harm your content.

• Consistent Overview.To hinder us from forgetting where we are, we need
the support of a permanent overview. If possible, the overview must con-
tain the whole system and show where our current focus lies, or which part
of a view currently is visible in the current window.“Geographical con-
sistency” is when an entity in a view is found at the “upper left corner” of

2.3. USABILITY 23

the whole system - it will always be there. Studies in the field of user cog-
netics [K ITC 97] [RASK 00] prove that such cribs are helpful for humans
to remember something and refind it. Arrangements in certain orders, e.g.,
alphabetical, can further simplify orientation.

• Seamless Zooming.To change quickly the viewpoint and switch granularity
of detail, seamless zooming is needed. This is how we are used to work
efficiently: looking at something in detail, going closer - then lying back and
considering it in the context from a bigger distance.

• Extensibility andAdaptability. Aside from a good designed interface that
regards the strengths and the weaknesses of humans - an interface that forms
habit, there is another issue: Especially in areas of high complexity like re-
verse engineering where sessions vary by so many factors, tool designers
cannot think of every feature that future users might need. There are also
too many different programming languages, Integrated Development Envi-
ronments (IDEs), or built-in constructs for source code management, that
the model could be designed once - for all needs. In a small amount of
time, users should be able to define their own views, navigation steps, menu
entries, abbreviations, and do other adaptations.

24 CHAPTER 2. BACKGROUND

2.4 Concerns Identified

With the common understanding about managing, modeling and navigating infor-
mation and after visiting paradigms of usability, we are now ready to quickly sum-
marize the most important considerations in three paragraphs. We end this chapter
with a catalog of concerns that should be observed, when thinking about designing
reverse engineering tools.

1. Navigation capabilities in object-oriented reverse engineering have their ori-
gin in decisions, taken at the time of modeling the information. Friction is induced
because of several reasons, among them incompleteness of the model and features,
indirection, red herrings, degradation of knowledge, and lack of relevance. We
have discussed these in detail in Chapter1.

2. Navigation can be performed at different levels. One classification of nav-
igation steps according to the knowledge about the semantics of the underlying
system, divides them into three groups: Navigation that is completely independent
of the model, navigation on graphs from which we do not have to know what they
are representing, and finally specific navigation in object-oriented systems. We
cannot say which group of navigations is more important, all of them are neces-
sary. The more we know about the semantics, the more complicated and individual
the specific navigation features become. With increasing granularity they get more
dependent on the reverse engineering task at hand and the characteristics of the
current underlying subject system.

3. Another important issue in tool conception and design, is usability. Better
usability, in general, is one of the major contributors for reducing friction in reverse
engineering. Simplicity, efficiency, memory, rolling back, consistency, overview-
ing and zooming are key factors for usable tools. However, the task of reverse
engineering is too complex, that you could think of all eventualities. An extensible
architecture is helpful, for users can implement their additional needs with a mini-
mum of effort.

We close this chapter with a catalog of concerns summarized in Table2.5,
whereas the individual concerns are itemized subsequently. This catalog will be
revisited to identify strengths and weaknesses in our own reengineering environ-
mentMoose(Chapter3) as well as for analyzing navigation and state-of-the-art
implementations in Chapter4.

2.4. CONCERNS IDENTIFIED 25

Concern
1. Low Entry Barriers
2. Completeness
3. Simplicity
4. Navigation between Tool States
5. Navigation in Graphs
6. Navigation in Object-Oriented Models
7. Efficiency
8. Feedback
9. Classification

10. Complexity Reduction
11. Consistency
12. Memory
13. Storage
14. Extensibility

Table 2.5: Concerns of Designing a Reverse Engineering Navigator.

1. Low Entry Barriers. Low political, psychological, and structural barriers
for using the tool are essential. Simplicity, ease of use, a good user interface
that is nice to use, and a clear predictable benefit from using the tool lower
the barriers. Consistent undo-capabilities kill the fear of harming something
or leaving unwanted traces.

2. Completeness.The completeness of navigation possibilities depends on the
completeness of the model. Features for being able to access the whole
amount of available information must be provided.

3. Simplicity. Ease of use, short time learning, nice-to-use, useful presenta-
tions of information, intuitive interfaces lower the barriers of using a tool.

4. Navigation between Tool States.Independently from the characteristics of
the underlying model and the current content, a tool must provide possibil-
ities to navigate between tools states. This includes going back, forward,
return to the start, or undoing and redoing actions.

5. Navigation in Graphs. Graphs are a viable representation for information.
They allow us to navigate from node to node along edges, using layout al-
gorithms that arrange the nodes and edges in different ways. The concept of
proximity within a graph is the base for the computation of affinity.

6. Navigation in Object-Oriented Models. This is the most specific kind of
navigation. Using the semantics of object-oriented systems, new navigations
can be identified. The concept of affinity can be applied to find related topics.
For computing affinity an association taxonomy is necessary.

7. Efficiency. From the HCI point of view, efficiency is to perform a task within
a minimum number of user interactions. With the help of affinity and statis-
tics, reduced dynamic menus can provide abbreviations, metaphors and other

26 CHAPTER 2. BACKGROUND

cribs for finding relevant information directly. For the most frequent sets of
selections, we need a one-click-distance to the most likely next step. Un-
doing lets you quickly test things with the safe possibility to rollback - redo
further increases your performance. Displaying automatically as much as
possible of the most important detailed information, saves additional time.

8. Feedback. Unlearning (Table2.1) is a basic driver for creating benefit in
team working. It includes rating and annotating of topics and views. Auto-
matic navigation tracking, and writing this information directly back to the
model, is another technique that leads to something like round trip reverse
engineering - where refactorings and restructurings, performed on the visual
representation, find their way back into the code base, if desired.

9. Classification. A concept for the classification of topics and associations
is important to know the value of direct and indirect navigations between
topics. A classification can be obtained by rating topics and associations - it
necessitates feedback, experience and knowledge about the specific task at
hand.

10. Complexity Reduction. Reducing the amount of information reduces com-
plexity. Filtering, zooming, aggregation, and diving in combination with
relevance can help in concentrating on aspects, switching on and off the vis-
ibility of certain categories of information details.

11. Consistency. Geographical consistency is important for remembering and
keeping a permanent overview. Consistency in menus, or generally, in the
whole user interface, supports the creation of habit. Undoing should really
result in the exact identical state from before, redoing should work as sup-
posed. Information must always be up-do-date.

12. Memory. For not risking to harm any content, for relocating previous points
of interest, as well as for navigation tracking, a memory is needed. This
includes a history about all tool states, views, visited entities, user actions
and movements or selections. Memory also traces feedback from users and
lets you create your own bookmarks.

13. Storage. Memory must be physically storable, for sharing within a team,
exporting to backup, and exchanging over a network or e-mail. This includes
also verbose reports, the extraction of tables, or other data and statistics.

14. Extensibility. A tool must be adaptable to new situations: Domain-specific
issues or tasks that cause changes in the model, new features, different affin-
ity definitions, extended menus, refined rating mechanisms, new metrics,
navigation paths, and personalized views - all this requires an architecture
that makes extensions and adaptations easy.

Chapter 3

Context & Requirements

“Be your first customer!”

-This is our guideline for developing tools.

After having identified the concerns of building tools with the right naviga-
tion support for reverse engineering we now describe the environmental context
and derive concrete requirements. We presentMoose, our reengineering research
platform (Section3.1) and describe the experience we made in an industrial case
study (Section3.2). At the end of this chapter we put this described experience
together with the theoretical concerns from the previous chapters. We compile a
set of concrete tool requirements in Section3.3.

3.1 Moose & CodeCrawler

Mooseis our reengineering research platform based on the FAMIX meta model.
Read more aboutMooseand its tools in AppendixA. FAMIX is a meta model that
represents artifacts of source code in different programming languages with a spe-
cial emphasis on object-oriented software.

Several tools were developed to provide different services to be performed on
theMooserepository. Among the addressed fields are:

• Detection of duplicated code

• Analysis of runtime behavior

• Impact and dependency analysis

• Software visualization

• Software metrics

• Software evolution

• Refactoring and restructuring

27

28 CHAPTER 3. CONTEXT & REQUIREMENTS

Figure 3.1: Screen Capture ofCodeCrawler.

CodeCrawler is the visualization tool withinMoose. It supports different views
on a model, combining metrics and graphs [DEME 99] [LANZ 99]. The tool vi-
sualizes entities with shape and color according to metric values combined with
different graph layouts. It enables a user to gain insights in large systems in a short
time. Furthermore the graphs help a user to quickly identify source code entities
with special combinations of metric values.

3.2 The SORTIE Experience

SORTIE is an established tool for modeling forest succession, implemented in
C++. The system has evolved over a long period of time leading to a brittle archi-
tecture. Developers of state-of-the-art tools from research and industry analyzed
the SORTIE system to recover the existing architecture, and to propose a new ar-
chitecture. Read more about the project and see the full SCG report in AppendixB.

3.2.1 Experience

Loading SORTIE intoMooseworks fine. The system consists of 69 classes. From
foregoing discussions we know that SORTIE is written with Borland C++ Builder,
and none of the base classes is available, unless we buy a license of this product
which we do not intend to do just for this experience.

3.2. THE SORTIE EXPERIENCE 29

For gaining further insights we useCodeCrawler. We start by creating aSys-
tem Complexityview (Figure3.2) to get an overview of the system. This view
combines metrics and tree visualizations for locating hot spots [LANZ 99]. Hot
spots help to find entry points and decide which parts to inspect in more details, or
before the other parts.

Figure 3.2: SORTIE System Complexity.

In theSystem Complexityview shown in (Figure3.2), each node represents a
class in the system. The edges represent inheritance relations. Visual character-
istics of the nodes are bound to metrics applied to the corresponding class: Node
width ' NOA (number of attributes of a class), Node height' NOM (number of
methods of a class), Node color' supposed name spaces. This view shows a flat
hierarchy. Most of the classes are standalone, and not clustered in class trees. After
zooming the view to fit to the window size, the nodes are too small to work with.
We miss an overview where we can see the whole system with a hint to the part
that is currently visible.

We identify a number of “tall” classes. Among them we find the classTMain-
Windowwhich contains 237 attributes and 78 methods. It seems to be a kind of
god class [BROW 98]. Diving into the class’ internals in form of creating aClass
Blueprint shows that there is one central methodRunSimulation()which is basi-

30 CHAPTER 3. CONTEXT & REQUIREMENTS

Figure 3.3: SORTIE Class Blueprint.

cally a procedural call of the complete program functionality. Another example
Class Blueprintis shown in Figure3.3, where nodes are either methods (yellow) or
attributes (blue). From left to right the columns begin by listing methods accord-
ing to their invocation depth - this is increased by one for each column. Thus we
end up with: Interface methods, utility methods (multiple depths possible), pure
accessors methods, attributes. Edges represent method invocations (dark blue) or
attribute accesses (light blue).

The creation of views like theClass Blueprintthat give insights into the in-
ternals of a class are complex and can be quite processing-time consuming. The
ability for automation in creating the corresponding views for all the classes as a
background process can help in faster navigation among the prepared views at a
later moment of time. We write a small script generating all these views and are
now able to parse a list of classes to quickly step through theirClasses’ Blueprints.
Such an automation is ideally combined with the concept of a session which memo-
rizes views, and supports managing views, and skipping from one to another. Such
a session is also valuable to keep interesting views, like for guessing the system
packages which we discussed above.

For quickly navigating we would like to have a concept of hyperlinks instead
of user-action-costly procedure of selecting a node and then performing an action
on that node via menu entries of the application window.

Even for us a help system describing the features of our tools is necessary, e.g.,
as a quick reference for the acronyms and names of metrics (like WLOC which
stands for total number of lines of code). Another question that again and again
raises is the naming scheme in the different types of views (like green which sig-
nalizes methods to be initializers).

To separate Graphical User Interface (GUI) and domain classes we create a

3.2. THE SORTIE EXPERIENCE 31

Figure 3.4: SORTIE System Packages.

Class Communicationview. With this view we obtain an idea about which class
is communicating how much with what other class. Applying layout algorithms
that qualify edges, can help to arrange the classes according to their relation to
each other. An example layout algorithm for that is theSpring[GIUS 99]. We help
the algorithm in manually arranging some classes into clusters. This is especially
necessary for the standalone classes. Repeating these steps leads to an overview of
probable system packages (Figure3.4). In this view, each node represents a class.
The edges represent communication between two classes. The thickness of the
edges is in relation to the qualitative intensity (i.e., the sum of method invocations
and attribute accesses). Colors were applied according to a speculation about the
systems sub domains: GUI dialog classes in red, GUI form classes in blue, SOR-
TIE core classes in yellow, structs and other not further specified classes in white.

A FAMIX model does not necessarily include the source code of methods. De-
pending on the level of detail while parsing, only the methods’ signatures may be
available. This turns out not to be enough for understanding what the system does.

32 CHAPTER 3. CONTEXT & REQUIREMENTS

After inspecting the system for a while we are guessing what parts of the sys-
tem we have visited and what parts we might have overlooked so far. The current
version ofCodeCrawlerdoes not support any functionality for tracking the navi-
gation.

We work in a team of four people. Partly we work in pairs, partly each on his
or her own. The current version ofMoosedoes not support shared repositories and
distributed working. So, each of us has to collect and extract the results by himself
or herself. A phase of result integration and coordination is needed before the final
report can be written.

Since the current version ofMoosedoes not support the generation of reports,
we collect the necessary data by inspecting the model, and reading the numbers
and facts in our tool. Partly, we have to type the information manually in a text
editor where we prepare the final report that has to be in HTML format. We use
other tools to generate statistics and charts, and we use screen captures for illustrat-
ing interesting views, instead of having e.g., the ability to automatically generate
pictures of all the views in the session.

3.2.2 Results

We summarize the main results of the SORTIE experience as follows:

• Factors for the completeness of the model are not always technical, but some-
times also of a political or financial nature.

• We are missing an overview of the system and the ability to know which part
of the total system currently is visible.

• Metrics applied to views can save you the time to dive, or help you to decide
which containers you want to explore in detail.

• Diving is necessary to understand a class’ internals. A viable way of pre-
senting the class internals is theClass Blueprint.

• We lack quick navigation based on a concept of hyperlinks.

• The ability for automation can increase the efficiency.

• We need a history of views between which navigation is possible.

• We need a help system - even for the experienced tool experts this is neces-
sary.

• Layout algorithms like thespringcan help you to reconstruct system pack-
ages, by arranging objects according to their interrelation. However, addi-
tional manual help is needed.

3.3. TOOL REQUIREMENTS 33

• You need the source code of a system in order to understand it - method
signatures and invocations are not enough.

• We need a way to determine the coverage of visited and inspected parts of
the system.

• We lack support for working in teams, like for instance a shared repository.

• We are missing better support for creating reports, and export sets of data.

Extensibility is a key feature for a tool that assists us in doing such complex
and multifaceted tasks as reverse engineering a software system. The project spe-
cific needs are always different from what you expect, depending on the concrete
task they want to perform. During our own case study we permanently extend and
improve our environment for being able to cope with new requirements.

At this point we would like to underline the importance of working with tools
that provide flexibility. E.g., tools written in Smalltalk do not need a scripting
language, or API, and allow just-in-time adaptations. This has the advantage of
shorter product lifecycles - short enough to be released before the case study is
closed.

3.3 Tool Requirements

“You ain’t gonna need it.”
- “Do the simplest thing that could possibly work.”

-Kent Beck [BECK 01]

Having a clear plan is a prerequisite to successful reverse engineering. How-
ever, it is difficult to know what you want to find out about a system. A proposition
towards a methodology of exploring an unknown system [DUCA 01a] foresees four
clusters of investigations: FIRST CONTACT, EXTRACT ARCHITECTURE, FOCUS

ON HOT AREAS, and finally PREPAREREENGINEERING.

In search of ways to implement a reasonable support for navigation in object-
oriented reverse engineering, we found that there is yet no methodology or cook-
book for navigation support in reverse engineering tools. In this work we take a
first step towards such a cookbook. We have collected problems and issues of nav-
igation in object-oriented code in Chapter2. This resulted in a list of concerns
that an ideal reverse engineering tool has to address (Table2.5). We analyzed and
classified state-of-the-art solutions for navigation in Chapter4. At the beginning
of this chapter we summarized the main observations we made. Now we compile a
set of tool requirements, by revisiting the set of concerns for a last time - providing

34 CHAPTER 3. CONTEXT & REQUIREMENTS

concrete answers and recommendations. For many issues we point to state-of-the-
art solutions, and summarize how they can be implemented.

Many of the concerns depend on each other. The three concernsSimplicity,
Complexity ReductionandExtensibilityare especially linked to all others.

1. Low Entry Barriers. Low political, psychological, and structural barriers
for using the tool are essential.

• Clear benefit. A clear predictable benefit attracts users to work with a
tool. This can happen when the tool really helps in better understand-
ing a system. This can also be, because of the ability to generate views
with the tool, illustrating the system’s classes or components. The user
should be supported in performing every task in one single tool, with-
out having to juggle with data from one tool to the other. Finally a tool
must allow easy, local and personal adaptations, so that users don’t feel
limited and patronized.

• Installation Support. Installing a tool must be easy, without the need
of making changes to the development environment or code base. The
source code must be parsed without risking to harm it, or with the limit
that while parsing current development must be paused. It is an advan-
tage when the tool is integrated into the IDE, so that developers might
incorporate reverse engineering in their daily work.

• Short Learning Time. Short learning time is dependent on an habitual
look & feel. Providing a demo for first-time users can lower time-to
productiveness and the fear of not understanding how the tool works.
Assistants & wizards help to perform a certain task for the first time, or
complex tasks that are seldom used. Consistency in menus and actions
is important to keep the overview and not being confused. A clear,
integrated, and up-to-date help system is necessary.

• Safety. Undo-capabilities mitigate the fear of harming any content.

2. Completeness.The completeness of a system is a prerequisite for users to
build trust in a tool.

• Model. On the one hand, the model must be complete, so that no avail-
able information is lost.

• Features. On the other hand, the set of features must be adequate; for
accessing all this information; for navigating from one piece to the
next; for creating useful views, and finally for printing nice reports.

3. Simplicity. A good user interface is intuitive, shortens learning time, and is
fun to use.

3.3. TOOL REQUIREMENTS 35

• Simple Manipulation. Simplicity helps in forming habit. Ease of use,
simple navigation, intuitive menus and buttons, are sample require-
ments. Users must be able to easily perform their tasks, and rapidly
form habit. Efficient navigation is provided with short interaction dis-
tances to related information (SectionC.2.6).

• Simple Representation. Useful graphs and views help in reducing com-
plexity and showing the system from new perspectives, e.g., at higher
levels of abstraction (SectionC.2.5).

4. Navigation between Tool States.A good tool provides ways for managing
tool states and actions. It memorizes what we do, and where we go.

• Creating Tool States. For being able to go back to a certain position the
memory remembers every tool state. Features include: Back, Forward,
First, Last, or selecting a specific tool state from a list.

• Manipulating Tool States. By zooming, scrolling et cetera existing tool
states can be manipulated marginally, without the need of creating a
new one.

• Actions. Another useful feature is when a tool lets us redo and undo
actions. This is not trivial, since the reasoning about what exactly a
user wants to undo or redo is difficult, and many actions are hard to
discard or repeat.

5. Navigation in Graphs. If a tool represents information in the form of
graphs, a series of features must be provided to enable navigating from node
to node along edges.

• Neighborhood. Finding neighbor topics in navigating along associa-
tions lead to the concept of proximity within a graph.

• Hyperlinks. Selecting nodes and wandering in a new graph where the
selected node is the one with focus is an intuitive way for navigation.

• Layouts. Graph layout algorithms help in creating useful views. Differ-
ent levels of detail or aspects call for different representations of graphs
- while we find a tree useful for representing class hierarchies it is not
the layout to display a methods call graph - this is better done with a
Class Blueprint.

6. Navigation in Object-Oriented Models. Considering the specific seman-
tics of object-oriented systems, a new set of navigations results.

• Fixed Navigations. Finding neighbor topics in navigating along asso-
ciations leads to the concept of proximity within a graph. Proximity is
the base for computing affinity. Navigating along affinity.

36 CHAPTER 3. CONTEXT & REQUIREMENTS

• Affinity. Based on proximity within a graph, affinity can be an efficient
criteria for finding useful navigation steps, though it can be difficult to
determine felicitous affinity parameters. Usually an association taxon-
omy is inevitable.

7. Efficiency. From the HCI point of view, efficiency is to perform a task with
a minimum number of user interactions.

• Pushing Information. Displaying automatically as much as possible
of the most important detailed information, safes additional time in
making extra accessing superfluous. You can usemouse-overevents to
display details about underlying elements.

• Pulling Information. Short ways to find information, are provided by
abbreviations, cribs, or other metaphors - they must be configurable
and extensible. They can be acquired with the help of proximity and
affinity, but also via feedback loops - rating or navigation tracking.

• Near Features. To avoid red herrings, reduced clear dynamic menus
only provide the most frequent or likely next commands. Other, more
seldom used commands, are possible, but hidden in deeper menu hi-
erarchies. The most likely next step can be performed ideally by a
minimum number of user interactions, e.g., by double clicking (Sec-
tion 5.1). Undoing lets you quickly test things, with the safe possibility
to rollback, this saves time. Also can redo further increase your perfor-
mance.

• Automation. The programmability per API or scripts can reduce the
effort of performing recurring tasks. These “macros” can also perform
computing-time-intensive tasks, e.g., during night.

8. Feedback. Unlearning - the process ofmaking-explicit-to-othersof what
you learn (Table2.1) - is a basic driver for creating benefit of team working.
New metrics can open new fields of views about a system - showing new
aspects. Metrics can be set in the form of ratings, but also automatically,
e.g., metrics about navigation paths.

• Manual Feedback. The rating of topics and views helps to increase the
precision of affinity. Leaving annotations, considerations, questions
and experiences directly in the model, leverages the total information
about a system. Sometimes tasks or problems are too big or too com-
plex, that one single person would be able to solve them alone. Di-
viding tasks, to be solved easily, and reintegrate the different sub tasks
to one single result set, allows us to solve bigger and more complex
problems than one single person could cope with. Also for quality as-
surance reasons one should not let one single person do crucial tasks.
Annotations and ratings of colleagues can help in avoiding making the
same errors or doing work twice.

3.3. TOOL REQUIREMENTS 37

• Automatic Feedback. Another way of feedback is the automatic en-
richment of the model with statistics about user behavior. This lets us
locate so called trails and detect so far untried areas of a system. In
general, feedback loops help in improving the efficiency of navigating
a system, based on the popularity and experiences of past investiga-
tions. It can help us to identify blind alleys that are taken often, or
other problems with the tool.

• Round Trip Engineering. Ideally, a tool provides the possibility that
modifications on the model or visual representation, find their way back
into the code base, if desired. Round trip engineering without harming
either design or code is difficult, though.

9. Classification.A concept for classifying topics and associations is important
to determine their relevance, or the value of direct and indirect navigations
between topics.

• Explicit Classification. A classification of relevance can be obtained in
rating topics and associations - it necessitates feedback, experience and
knowledge about the specific task at hand.

• Implicit Classification. Based on the popularity identified in tracking
the user behavior in previous investigations, a system can try to au-
tomatically classify topics and associations. Knowledge management
systems that seek automatically for affinity using the techniques ofAr-
tificial Intelligence, are yet in their beginnings.

10. Complexity Reduction. Reducing the amount of information reduces com-
plexity of the information glut.

• Meaningful Representation. Using good layout algorithms, aggregat-
ing, zooming, or diving, you can switch on and off the visibility of
certain categories or levels of information details. By decorating, color-
ing, highlighting or applying metrics to forms and figures, you further
achieve better and faster recognition of topic and association character-
istics.

• Reducing Volume. To get simpler views you can hide certain aspects
or concerns by filtering. The variety of possibilities for doing that in-
creases, by a foregoing process of rating, since you can use this meta
information in a feedback loop, as an additional criteria to further re-
duce the volume.

11. Consistency.Consistency is important for building trust in an environment,
and keeping the overview.

• Geographical Consistency(Section4.3). It can help to keep the over-
view of the whole system, and for finding back to previous points of
interest.

38 CHAPTER 3. CONTEXT & REQUIREMENTS

• User Interface. A consistent user interface helps in forming habit, and
thus, ease of use. This includes consistency in menus, in names, and in
presenting information.

• Content and State. No content must be harmed at any time. Going back
or undoing actions must lead to exactly the same content and state as
before. This comprises also a possibility to freeze a tool state - to leave
a system and refind it in exactly the same state in a future moment of
time, or even exchange a complete model from one person or machine
to the other, so your colleague can tie up working, exactly where you
stopped.

12. Memory. For not risking to harm any content, and for better refinding pre-
vious points of interest, as well as a base for applying concepts for a classi-
fication of relevance, a memory is needed.

• Recovery. The memory remembers every view, tool state, positions,
actions, mouse movements, and visited entities, or selections. If con-
sistency is fulfilled, you are able to easily find everything back. In-
struments for that include bookmarks, sessions or histories, and the
management of such.

• Model Enrichment. Implicit and explicit classifications can be used to
determine relevance within a system, according to a certain concern.
Annotations or comments must be memorized in the model.

• Team Support. A shared memory is needed to collaborate within a
team. Ideally this allows you to work concurrently, while you see -
in real time - the modifications, questions, and considerations of your
colleagues.

13. Storage. Memory must be physically storable, for safety and collaboration
reasons.

• Safety. For being able to store models and insights for the future, the
gathered information must be saved in a file that can be duplicated for
copies, backup et cetera.

• Exchangeability. We might want to exchange models and insights. A
first step towards collaboration, is having the possibility to save the
current work and later tie up where the work has been stopped. Another
step, includes being able to work on a shared repository. The most
sophisticated edition, lets you work in separated places, and merge the
work when you are connected again.

• Reports. Finally you want to create nice reports of your session. You
want to print documents, including different statistical analysis, and
nice views, without the need to take screen captures. Lists of visited
entities, metrics applied to certain subsets, et cetera, should be ready

3.3. TOOL REQUIREMENTS 39

to be exported in a common file format, for the case that you want to
process them in other tools. Navigation logs, annotations and the like
must also be available for reporting.

14. Extensibility. The systems and tasks in reverse engineering are too diverse,
that one single implementation can be found to meet optimally all require-
ments. A tool must be open and easily extensible, to make all users satisfied.

• Model. Domain- and system specific issues may require an extension
or adaption of the model.

• Tool. New features, menus, navigations can be useful to increase effi-
ciency or to enable performing new tasks.

• Concerns. Under different concerns, different parameters count for de-
termining relevance or affinity. New metrics might be needed to cover
the new aspects. Personalized views can better fit to the current task.

• Export. What you want to export out of your reverse engineering ses-
sion is personal and can vary. The format of information must be con-
figurable (reports, tables, lists, et cetera)

This is the end of the set of requirements. In the next section we present some
example implementations on the base of our prototypeMooseNavigator.

Chapter 4

Classifying Navigation

“The real danger is not that computers will begin to think like men,
but that men will begin to think like computers.”

-Sydney J. Harris (1917-1986), journalist & author

The previous chapters were about introducing the general concepts of naviga-
tion and explaining the context. We compiled a set of requirements for measuring
state-of-the-art navigation tools. In this chapter we split navigation into its building
blocks and introduce a terminology for classifying concrete solutions and features
of existing reverse engineering tools. The chapter ends with a summary of Ap-
pendixC which is the evaluation of a set of state-of-the-art navigation and reverse
engineering tools.

We begin by introducing two utilized concepts - the concept ofviewsand the
concept ofnavigation steps.

Definition: A viewis a visual representation of a subset of a model. In
our case these are usually graphs on which a certain layout is applied.
A typical view is a class hierarchy tree.

Definition: Navigation stepsare the atomic building blocks of navi-
gation. We distinguishNavigation Steps between Tool StatesandSe-
mantic Navigation Steps. A typical navigation step between tool states
is pushing theBack-button in a web browser. A typical semantic nav-
igation step in an object-oriented model is to navigate from a class to
its superclass.

In the following two sections we list navigation steps of each group. The pre-
sented lists contain steps that we have seen by example in the state-of-the-art in
Appendix C; navigation steps observed in other tools; navigation steps that we
have implemented in our own tool (which we will describe in Chapter5); and fi-
nally candidate navigation steps, from which we know - through our daily reverse

40

4.1. NAVIGATION STEPS BETWEEN TOOL STATES 41

Navigation Step Description
Session First Return to first tool state of the current session
Session Back Return to the previous session state. Especially interesting is to

observe which actions preceded going back - these actions are
candidate blind alleys and red herrings, attracting the user but
turning out to bring no value

Session Peek Return to certain session state in the history list
Session Forward Jump to the next session state
Session Last Jump to the next session state
Change Focus Change the focus in the current view, my moving the mouse

cursor over a figure
Change Selection Change the selection in the current view, by clicking on a figure

or selecting a number of figures alternatively
Change Extract Change the visible extract of the current view, by scrolling or

zooming
Change Layout Change the layout of the current view, by rearranging the fig-

ures applying another layout algorithm, collapsing or out fold-
ing, coloring nodes of a certain kind, transform nodes or edges,
grouping them, applying new metrics to their characteristics et
cetera

Change Filter Change the currently applied filters on the view, and hide or
unhide figures of certain kinds

Dive Reduce model to selection, throw away the rest
Crawl / Change View Create a new view on the same model
Pop Return from a subset of the model back to the complete one
Spawn Create a new window, clone and display the current view in it
Undo If the previous user interaction was a minor step there is nothing

to undo, if it was a major step thenUndo is equal toSession
Backwith following elimination of the latest view.

Redo If the previous user interaction was a minor step there is nothing
to redo, if it was a major step then try to abstract the previous
user interaction and repeat it.

Table 4.1: Navigation between Tool States.

engineering experience and experiments (Chapter6) - that they can be of use. At
the end of this chapter we present a summary of the evaluated state-of-the-art tools
and show in what respect they address the compiled concerns of navigation.

4.1 Navigation Steps between Tool States

Considering the process of reverse engineering, we usually need quite a lot of time
to understand one single view, and identify all relevant information. Usually we
need also quite a lot of time to come to a decision about what we want to see next,
and how this should be presented. In this work we do not further focus on issues
of computer supported decision support.

People tend to have problems with remembering hard and exact facts like
numbers, positions, series et cetera, especially for many things simultaneously

42 CHAPTER 4. CLASSIFYING NAVIGATION

[RASK 00]. The bottleneck of progress in understanding is human thinking, not
the performance of the tool in presenting new views. On the other hand this is
exactly what computers are good for.

Definition: A sessionis a list that holds a series of tool states over
time in form of views, and the actions that lead to the specific tool
states in form of navigation steps.

When we once have created some interesting views, we want to be able to
switch quickly between them, to compare them, to combine them, zoom in, zoom
out again, or test something with the aim of undoing it immediately afterwards. We
collected all these possible navigation steps between tool states in Table4.1

4.2 Semantic Navigation Steps

In this section we list semantic navigation steps in models of object-oriented code.
For compiling them we also inspect ways of automatically extracting possible navi-
gation steps from a given situation. Since we focus on navigation in object-oriented
reverse engineering, semantic navigation is navigation along interdependencies of
object-oriented code artifacts. In an experiment we tried to scan the meta model
for the artifacts’ relationships. The experiment resulted in the perception that this
still needs a lot of human input. Read more about the experiment in Section6.1.

We present navigation steps that have their origin in semantic relations between
artifacts in the model. The following lists of navigation steps are grouped accord-
ing the type of the particular artifact where a navigation step starts, the discussed
types includeclass, attribute, andmethod, since these are the basic building blocks
of every object-oriented system.

If the current focus is on an entity representing aclassin an object-oriented
system, some of the most popular navigation steps are:Attributes, Methods, Full-
class, Superclass, and Subclass. See a extended list of frequently used navigation
steps in Table4.2 . In dynamically typed languages like Smalltalk, an extra effort
is needed to findDeleted Classes, Overhanded ClassesandReturned Classesfor
navigation steps starting on entities representing classes or methods.

Starting on an entity representing anattribute , reasonable next navigation
steps include:Class, Accessors, and Initializers. Table4.3 lists further popular
navigation steps for this situation. In dynamically typed languages an extra effort
is needed to findValue Classesas a navigation step starting on attribute-entities.

Having the current focus on amethod-entity, we might want to find out its
Class, Senders, Implementors, Overriders, or Extenders. We list other possible
navigation steps starting on method-nodes in Table4.4.

4.2. SEMANTIC NAVIGATION STEPS 43

Navigation Step Description
Attributes Attributes of a class
Inherited Attributes Attributes that a class inherits from one of its superclasses
Additional Attributes Attributes of a class’ class or metaclass
All Attributes All attributes of a class, including all methods of its superclasses
Accessed Attributes Attributes of other classes that are directly accessed by a class,

this is not possible in many programming languages
Methods Methods of a class
Inherited Methods Methods that a class inherits from one of its superclasses
Extender Methods Methods that extend superclasses’ methods
Overrider Methods Methods that override superclasses’ methods
Overridden Methods Methods that get overriden by subclasses
Accessor Methods Methods of other classes that are directly accessing a class, this

is not possible in many programming languages
Invoker Methods Methods of other classes that are invoking methods of a class
Invoked Methods Methods of other classes that are invoked by methods of a class
Additional Methods Methods of a class’ class or metaclass
All Methods All methods of a class, including all methods of its superclasses
Fullclass Fullclass of a class, which is all attributes and all methods not

only from the class itself, but also all inherited attributes and
methods from the classes superclasses, except the attributes
from the object root (e.g. the classObjectin Smalltalk)

Direct Subclasses Direct subclasses of a class
Subclasses Subclasses of a class
Direct Superclass Direct superclass of a class
Superclasses Superclasses of a class
Accessing Classes Classes with Accessing Methods
Accessed Classes Classes with Accessed Methods
Invoking Classes Classes with Invoking Methods
Invoked Classes Classes with Invoked Methods
Created Classes Classes of which instances are created in a class
Deleted Classes Classes of which instances are deleted in a class
Overhanded Classes Classes of which instances are overhanded as a parameter value

of a method in a class
Returned Classes Classes of which instances are returned from methods in a class
Class Tests Unit tests covering a class (Granularity can be Methods,

Classes, Applications etc)
Related Classes Subclasses, Superclasses, Accessing Classes, Accessed

Classes, Invoking Classes, Invoked Classes, Created Classes,
Deleted Classes, Overhanded Classes, Returned Classes

Related Stuff Owner, SRS, other Documents, Source File, Configuration
Map, etc

Table 4.2: Navigation Steps Starting from a Class.

44 CHAPTER 4. CLASSIFYING NAVIGATION

Navigation Step Description
Class Class defining an attribute
Accessing Methods Methods accessing an attribute
Accessing Classes Classes defining Accessing Methods
Accessor Methods Methods uniquely for accessing an attribute (Setters & Getters)
Accessor Classes Classes defining Accessor Methods
Initializer Methods Methods initializing an attribute
Initializer Classes Classes defining Initializer Methods
Values Classes Classes of objects that are stored in an attribute

Table 4.3: Navigation Steps Starting from an Attribute.

Navigation Step Description
Class Class defining a method
Senders Classes invoking a method
All Senders Classes invoking a method, including the subclasses that can

send methods via inheritance
Implementors Classes implementing a method
All Implementors Classes implementing a method, including the subclasses that

know how to process a method by delegating it recursively to
its superclass

Super Method Method that is overridden by a method
Super Method Classes Classes defining the Super Methods
Overrider Methods Methods of subclasses that override a method
Overrider Classes Classes defining Overrider Methods
Extender Methods Methods of subclasses that extend a method
Extender Classes Classes defining Extender Methods
Accessed Attributes Attributes accessed by a method (Granularity: Local, All)
Accessed Classes Classes defining Accessed Attributes
Invoked Methods Methods invoked by a method (Granularity: Local, All)
Invoked Classes Classes defining Invoked Methods
Created Classes Classes of which instances are created in a method
Deleted Classes Classes of which instances are deleted in a method
Overhanded Classes Classes of which instances are overhanded as a parameter value

of an invoked method in a method
Returned Class Class of which an instance is returned from a method
Method Tests Unit tests covering a method (Granularity can be Methods,

Classes, Applications etc)

Table 4.4: Navigation Steps Starting from a Method.

4.3. THE DIMENSIONS OF NAVIGATION 45

4.3 The Dimensions of Navigation

In this last section of classifying navigation we introduce the concept of dimensions
in navigation. We exemplify the given definitions by navigation steps which were
introduced earlier in this chapter.

Definition: Horizontal navigation is changing the focus from one
topic to another topic, without changing the level of detail. Ahorizon-
tal navigation step isDirect Superclassperformed on a hierarchy tree
of a class.

Definition: Vertical navigationis changing the level of detail without
changing the topic under focus. Avertical navigation step isMethods
performed on a hierarchy tree of a class, leading to a representation of
this single class’ internals.

Definition: Diagonal navigationis navigatinghorizontallyandverti-
cally simultaneously. Adiagonalnavigation step isOverridden Meth-
odsperformed on a hierarchy tree of a class, leading to a representation
of the internals of all the classes that implement methods that override
methods of the original class.

Another issue in navigation and keeping the overview is a consistent way of
presenting data. There are tools that display objects always in the same manner in
respect to their relative positions. In such tools users easier relocate objects, since
they can better remember their positions with the help of cribs or other metaphors
like “the slim, dark object in the upper left corner, on the left of the tall one”
[K ITC 97] [RASK 00].

Definition: Geographical consistencyis the characteristic of a tool to
display objects always in the same manner in respect to their relative
positions.

4.4 State-of-the-Art Navigation

To study best practices in navigation we evaluated several state-of-the-art tools. We
discuss nine of them in detail in AppendixC. This section is a short summary with
the exclusive focus on supported navigation features.

All the evaluated tools support the modification and interaction with the gen-
erated views. Most of the tools provide navigation within a history of tool states
includingBackor Forward, whereas a history of actions and the possibility ofUn-
doingor Redoingactions is not equally widespread.

46 CHAPTER 4. CLASSIFYING NAVIGATION

Except from Eclipse and Javadoc all tools pursue a concept of neighborhood
and represent artifacts and relationships visually as graphs of nodes and edges.
Graph layout algorithms help to arrange the nodes and edges in different ways.

Hyperlinks are a popular concept for navigation. Efficient navigation is when
the system can propose short-cuts for these often used series of commands and
provide navigation steps for directly getting there. For this semantic information
about the model is needed. Some tools use a concept of affinity which can be used
to find related information or as an input for layout algorithms to group related
entities and identify clusters.

Many tools do not providegeographical consistencyor a permanent overview
on the complete system.

Table4.5 gives an overview of the evaluated tools and shows which features
are supported. This table is an extract of TableC.7. The paradigm in the first
columns correspond to the tool requirements for the three concernsNavigation be-
tween Tool States, Navigation in GraphsandNavigation in Object-Oriented Mod-
elswhich were compiled in Section3.3. Read more about the tools in AppendixC.

Legend for TableC.7
	 Not supported / missing - Insufficient
∼ Supported with reservations - Sufficient√

Satisfactorily supported, implemented, available - Good
N/A Not Applicable or Unknown

Paradigm E
cl

ip
se

Ja
va

do
c

R
ig

i

S
H

riM
P

S
m

al
lW

or
ld

s

T
he

B
ra

in

To
ge

th
er

Tool State History
√

∼
√ √ √ √

∼
Manipulate Tool States

√ √ √ √ √ √ √

Actions History
√

	 	 	 	
√ √

Neighborhood 	 	
√ √ √ √ √

Hyperlinks ∼
√ √ √

∼
√ √

Graph Layouts 	 	
√ √

∼
√

∼
Semantic Navigation

√ √ √ √ √ √ √

Affinity 	 ∼
√ √ √ √

∼
Geographical Consistency N/A N/A

√ √ √ √ √

Overview N/A N/A
√ √ √

	
√

Table 4.5: State-of-the-Art Navigation Overview.

Chapter 5

Navigation for Reverse
Engineering Tools

“It is impossible to make anything foolproof because fools are so in-
genious.”

-Edward A. Murphy, engineer

This document focuses on navigation in object-oriented reverse engineering.
The previous chapters build the foundations for our work. We encompassed the
broader context of reverse engineering and navigation, discussed the theory of
managing, modelling, and navigating information - and introduced some relevant
issues of human computer interaction. This resulted in a set of concerns that an
ideal reverse engineering navigator has to address, listed in Chapter2. In Chap-
ter3 we described our experience with our own reengineering environment during
a case study. We identified strengths and weaknesses concerning navigation and
compiled a set of requirements. After that we analyzed and classified issues and
best practices of state-of-the-art tools in navigation (Chapter4).

This chapter brings all this information together, we first summarize the main
perceptions made in this work. After that we presentMooseNavigator, and show
prototypically for some of the previously compiled tool requirements how they
could be realized in our environment.

5.1 Perceptions

During this work we learned a lot about navigation in reverse engineering. We eval-
uated many tools, and we set up several experiments. In this section we describe
the most important perceptions on the users’ behavior in reverse engineering and
adequately efficient navigation support.

47

48 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

The complete set of possible navigation steps on a model of object-oriented
code is huge. The distinction between useful and useless navigation can only be
made with the help of knowledge about the semantics of the model and human
experience in the domain. We did a small experiment on that issue, it is described
in Section6.1.

Efficiency is to perform a task within a minimum number of user interactions
(Section2.3). Consequently, for building an efficient navigator, we must know the
tasks, and provide short-cuts for these often used series of commands. We tracked
how users navigate a system in reverse engineering. The experiments are described
in Section6.2and Section6.3.

Here are the main observation we made, we describe them in more detail sub-
sequently.

1. Users often visit detailed information.

2. Users complain about inconsistent or incomplete functionality.

3. Users navigate slowly.

4. Users usually navigate only in one dimension at a time.

5. Many features are seldom used.

In giving the users the possibility to permanently displaying detailed informa-
tion about the current entity we could reduce the necessary number of navigation
steps, we even achieve a “zero-interaction-distance” for the task of inspecting nor-
mal detailed information.

When users detect missing functionality their focus of attention changes from
the task of reverse engineering a system to the task of evaluating the reverse engi-
neering tool. This user distraction decreases efficiency and increases psychological
barriers to work with the tool.

Users do not quickly create new views, but rather spend a lot of time to un-
derstand a current view. When they navigate quickly, it is between previous tools
states, for comparing views that they already know to a certain extent. Users prefer
vertical andhorizontal to diagonalnavigation which includes changing multiple
dimensions simultaneously is seldom performed. Changing one dimension at the
time, is apparently complex enough. Users that have to cope with more information
than they can understand at once, try to catch the complexity and the interrelations
by scrolling, zooming in and out, by hiding and un-hiding details, diving and pop-
ping. Raskin calls his answer to this phenomenonZoomable Interface Paradigm
(ZIP) [RASK 00]. The ZIP suggests to present the whole available information on
a two dimensional pane. On that you navigate with a magnifier, of which you can

5.1. PERCEPTIONS 49

adjust the strength. We adopted a similar approach inMooseNavigator.

The most frequently used tasks we would like to reach by a “one-interaction-
distance”. Since users tend to use only a few views, and these are always the same,
we want to provide short paths between them. Concretely this means that we want
to provide transitions from one view to another by double clicking figures. We
identified the following navigations to cover a reasonable part of the needs:

• System Overview. Normally users start with an overview of the system to
see class hierarchies and detect eye-catching classes. An example of this
type of view isSystem Complexity[LANZ 99].

– Class node. Double clicking a class node in this view results in a pre-
sentation of aClass Blueprintview of the according class.

– Inheritance definition edge. Double clicking an edge representing an
inheritance definition in this view results in a presentation of aClass
Blueprintview containing the according class and all its superclasses.

• Class Internals. This is the view that presents the internals of a class. Here
the user can see the attributes and the role and collaboration of the methods.
The view can also be applied to two classes, showing the overall cooperation.
An example of this type is theClass Blueprint[LANZ 01a].

– Class node. Double clicking a class node in this view results in a pre-
sentation of aSystem Complexityview of the class’ root and all its
subclasses.

– Method node. Double clicking a method node in this view results in
a presentation of anotherClass Blueprintview, showing all involved
classes, which are classes that have a direct relationship - in form of
accessors or invocations - to the according method.

– Attribute node. Double clicking an attribute node in this view results
in a presentation of anotherClass Blueprintview, showing all involved
classes, which are classes that have a direct relationship - in form of
accessors - to the according attribute. In many programming languages
the access of an attribute from outside the class is not possible, in this
case this results in anotherClass Blueprintview of the single class.

– Edge within a class. Double clicking an edge within a class in this view
results in a presentation of aSystem Complexityview of the class’ root
and all its subclasses.

– Edge connecting two classes. Double clicking an edge that connects
two class in this view results in anotherClass Blueprintview, showing
these two involved classes.

50 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

All other navigation features can still be performed by using the conventional
menu entries. To formulate more complex queries, especially for creating specific
data sets we suggest rather using query tools likeMooseFinderandMooseExplorer,
and running the predefined queries, fetching the result sets and proceed with them
afterwards again in navigation tools likeMooseNavigator. If this is not enough, or
the tasks at hand call for other navigation short-cuts, the tool must be extensible
and adaptable, so that this can be changed within a short amount of time. This
leads us to the next issue:

Extensibility is a key feature for a tool that assists us in doing such complex and
multifaceted tasks as reverse engineering a software system. The specific needs of
users may vary, depending on the concrete task they want to perform [FAVR 01].
The ability of permanently extending and improving the environment to cope with
new requirements can be a crucial success factor for a case study. We describe our
own experience that validates this statement in Section3.2.

5.2 A Prototype - MooseNavigator

For better being able to study issues of navigation in object-oriented reverse engi-
neering we needed a tool for testing ideas, implementing features, and to observe
and record the behavior of users. This was the motivation to buildMooseNavigator,
a prototype reverse engineering navigator.MooseNavigatoris an extension to
CodeCrawlerwhich combines metrics and graphs to visualize software systems
[LANZ 99]. CodeCrawleris one of the tools of theMoosereengineering environ-
ment [DUCA 00a] [DUCA 01b] [TICH 01]. More information aboutMooseand
CodeCrawlercan be found in Section3.1, AppendixA, or online1.

For every component ofMooseNavigatorwe briefly indicate which concern
(Table2.5) it addresses or what tool requirement (Section3.3) it implements.

5.2.1 Conception

While CodeCrawlerwas designed under a lightweight approach with the primary
aims of scalability and simplicity, the constraints forMooseNavigatorwere differ-
ent. Scalability or performance were not in the foreground, but support for naviga-
tion, orientation, and efficiency.MooseNavigatoroffers purposely a wider range
of partly redundant features for studying which features are preferred by users.
MooseNavigatorconcurrently displays a lot of detailed information in one single
application, with the aim to reduce complexity by supporting interactive and dy-
namic navigation in a subject system. One of the main differences toCodeCrawler
is that an application is not tied to one single view, but holds a collection of views.
This collection is stored in a user session. A system can be browsed like surfing

1http://www.iam.unibe.ch/˜scg/

http://www.iam.unibe.ch/~scg/

5.2. A PROTOTYPE - MOOSENAVIGATOR 51

along the Internet, clicking on entities and diving into its details, or jumping back-
wards and forwards within the list of previous views.

The three central concernsSimplicity, Complexity ReductionandExtensibility
guided us through all the design decisions. We implemented many navigation fea-
tures which can not be assigned to one particular component of the system, such
asNeighborhoodor Hyperlinks. We start by presenting the user interface followed
by some other key features and components.

5.2.2 User Interface

Figure 5.1: Screen Capture ofMooseNavigator, Tools In-lined.

Figure5.1 shows the main window ofMooseNavigatorwith all its sub tools
integrated in a single window interface. The proportions of each sub tool can be
varied by two sliders: a horizontal and a vertical one. In-lining the tools is an op-
tion, all of them can be run as separate windows alternatively. In the following we
describe in detail the separate tools.

The primary concerns which guided us through the design of the user interface
wereLow Entry Barriers, Simplicity, Efficiency, andConsistency.

52 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

Main Window

Like in CodeCrawler, the main sub window ofMooseNavigatoris the drawing,
which displays the current view (Upper right pane in Figure5.1). The toolbar
contains buttons for accessing navigation and other features directly (from left to
right): Session first, session previous, session next, session last, session remove
current, switch current filters on, switch current filters off, open filter library editor,
zoom in, zoom out, find entities by block, print current view. Clicking on the view
pane, or on a node- or edge-figure is considered a major change of the current point
of view, and thus causes a new session state to be created. A double click on a node
figure, automatically causes the system to perform the next, most likely navigation
step. This is, for example, to display the class’ blueprint when the double click
is performed on a node in the system complexity view. The context menu which
pops up on right mouse clicking above a figure, is dynamically created. Depending
on the type of the entity which is underlying a displayed figure as model, the right
plug-in hierarchy is scanned for applicable commands to this specific entity. Like
that, no unnecessary menu entries distract the user’s attention.

The main window implements all the tool requirementsPushing Information,
Pulling Information, Near Features, andAutomationwhich we identified as ad-
dressing the concernEfficiency.

Session Viewer

Figure 5.2: Screen Capture ofMooseNavigatorSession Viewer.

Main purpose of the session viewer is to manage the tool states within a ses-
sion, and giving an overview of previous views and selected entities. The context
menu offers possibilities for renaming, deleting, annotating, and inspecting session
states. Selections of multiple states can be removed, or inverted. Single states can
be cloned and appended to the session. States are displayed in a tree, grouped by
view type, after that sorted by time of creation. The session viewer user interface
is shown in Figure5.2.

5.2. A PROTOTYPE - MOOSENAVIGATOR 53

The session viewer primarily addresses the concernNavigation between Tool
Statesbut also implements some tool requirements addressingEfficiency, Feed-
back, Consistency, andMemory.

Description Viewer

Figure 5.3: Screen Capture ofMooseNavigatorDescription Viewer.

Figure5.3 shows the description viewer user interface. Main purpose of the
description viewer is to continuously display as much as possible of the available
detailed information about the current item with focus. This includes a verbose
description of the view, if no specific figure has the focus; a detailed description
containing the name, characteristics, annotations, and metric values, if the figure’s
model is a class, attribute, inheritance definition or an access; and additionally the
source code, if for example a method-figure has the focus. A special context menu
allows the user to change the label of the window; save the current text to a text
file; spawn the content in another description viewer; or spawn the content in a
workspace.

The description viewer implementsPushing Information, a tool requirement
addressing the concernEfficiency.

System Overviewer

Figure5.4shows the system overviewer user interface. Main purpose of this small
window is to provide a permanent overview of the current view, the actually visible
area and selected figures. The drawing contains three visual elements:

1. A black frame. It shows the closure of all nodes in the current view.

2. A bold red frame. It shows the currently visible area within the current view.

3. Small black circles. They symbolize the center position of currently selected
nodes and edges.

54 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

Figure 5.4: Screen Capture ofMooseNavigatorSystem Overview.

The system overviewer implementsgeographical consistencywhich is intro-
duced in Section4.3. In general it addresses concerns ofComplexity Reduction
andConsistency.

Filter Editor

Figure 5.5: Screen Capture ofMooseNavigatorFilter Editor.

Figure 5.5 shows the filter editor user interface. Main purpose of the filter
editor is to define filters. Filters are used for showing or hiding specific content in
the views, e.g., in situation where a certain aspect is not relevant. The three main
input fields for declaring a filter are:

1. Name. This is the display name for the filter.

2. Block. This must be a valid condition for a Smalltalk block, whereaseachis
the input parameter and has the role of the current entity, when the filter is
applied.

3. Type. This is the type of entity to which a filter shall be applied, or not. If
no specific type is selected the filter has general typeEntity. Possible types
are:Class, Attribute, or Method.

5.2. A PROTOTYPE - MOOSENAVIGATOR 55

Filtering explicitly implements the tool requirementReducing Volumeas one
of the requirements addressingComplexity Reduction.

Filter Library Editor

Figure 5.6: Screen Capture ofMooseNavigatorFilter Library Editor.

Figure5.6 shows the filter library editor user interface. The main purpose of
the filter library editor is to manage the filter library, but also to define what filters
currently shall be applied. This is the place to add, remove, or edit existing filters.
The repository of filters is kept centralized and only once in the system, whereas
the configuration regarding which filters are currently applied and which are not,
can be specified for every single session state.

5.2.3 Metrics

For being able to access navigation tracking information efficiently, we introduce
two new metrics, which can be applied to any kind of entity:

NTMC. Navigation Tracking Mouse Clicks.This is the number of
mouse clicks that were performed on a figure, representing an entity.

NTMO. Navigation Tracking Mouse Overs.This is the number of
times that the mouse moved over a figure, while in the meanwhile
having again been moved over another figure.

With these new metrics we have an instrument at hand for measuring the nav-
igation intensity in a model. These metrics are a prerequisite for the navigation
trails which are presented subsequently.

56 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

5.2.4 Layouts & Views

Circle Layout. Sometimes the metaphor of a cherry is used to illustrate encap-
sulation in an object-oriented class. The core is the class description, the meat is
the data and internal behavior, and the peel the publicly accessible interface. With
this analogy in mind we wanted to have a layout at hand, which allows us to layout
sets of entities in circles. Since inCodeCrawlerthere was already a circle layout
we used this and extended it. This resulted in a circle layout which arranges a set
of entities around a centered entity. The layout can be used recursively to obtain
multiple layers. We provide the possibility to layout nodes in a circle with a fixed
size radius, or a radius that is computed for fitting in the current size of the drawing
window.

The circle views implement views to show the class internals which in the
previous section was identified as one of the two most popular and efficient kinds
of views. At the time of its origin theClass Blueprintwas not available yet.

Figure 5.7: A Typical Circle (Double) View.

Circle (Single). With the above analogy to a cherry we created new views to
present the class internals. The simplest view positions the class entity in the center
of the drawing, and arranges around it, all methods and attributes. The edges are
drawn along accesses of methods to attributes.

Circle (Double). This view is like Circle (Single) but draws two circles. The
set of entities to arrange in each circle can be passed as parameter list. Usually

5.2. A PROTOTYPE - MOOSENAVIGATOR 57

we draw the attributes in the inner circle, and the methods in the outer - with the
ideas of encapsulation in mind. Figure5.7shows an example view. In the middle
is the class entity in yellow, in the inner circle the attributes in blue, and in the
outer circle the methods. Methods are colored according to their characteristics:
Green for initializers, gray for constants, brown for extenders, or red if not further
specifiable. Additionally nodes withNTMC > 0 show their name in white,
instead of black, to directly demonstrate that they already have been visited.

Circle (FixedSize). This view works like Circle (Double), but has a fixed radius
size, so that the circle has always the right size to the number of contained entities.
The trade-off between Circle (FixedSize) vs. Circle (Double) is the risk of needing
to scroll vs. the risk of overlapping nodes.

Navigation Trails. The Navigation Trails view draws blue edges along naviga-
tion paths. Like that, you can see from which node to what node you have nav-
igated. The color metric of nodes stays like it is in system complexity (WLOC),
width and height are bound to the new introduced metrics (NTMC and NTMO re-
spectively). Figure5.8shows an extract of a system complexity view (upper left),
which over time gets navigated (below the same extract evolving at three differ-
ent times). With this kind of view you may identify heavily navigated parts of the
system, and others, that were not considered in previous investigations. Entities
which only attract users to mouse over get slim and tall, entities which the user has
a closer look at it terms of clicking on the figure get rather fat.

Figure 5.8: Typical Navigation Trails Evolving over Time.

Navigation trails are a concept that address the concernsFeedback, Classifica-
tion, andMemory.

58 CHAPTER 5. NAVIGATION FOR REVERSE ENGINEERING TOOLS

5.2.5 Reports

The user session can be asked for several reports. The tab-separated columns can
easily be used in any other data analysis or data mining tools.Reportsare a ma-
jor tool requirement addressing theStorageconcern. Here are some predefined
reports:

Report Visited Entities / Report Visited Classes. This report is a simple list of
the names of all visited entities, or classes respectively:

ArborModuleComponent
MenuItem_class
Collection_class
ArborModule
ArborCoreUtils
ArborRedefinedClassSignature
ArborAbstractTree
ArborModuleComponentReader

Report Actions and States. This report verbosely informs about past user inter-
actions. This first line reports when the session has been created. The following
lines report actions and states. For actions the columns are: timestamp, name,
receiver, message. If it is a state the columns are: timestamp, name, numberOfEn-
tities in the current view, view name, view nodes size, view edges size, filters size,
first uuid in selections, first name in selections, annotation:

Session: MooseNavigator Session, started on: February 16, 2002 23:05:19.000
February 16, 2002 23:05:27.000 ’System Complexity (205/138)’14739 ’System Complexity’0 0 0
February 16, 2002 23:05:28.000 ’MooseNavigator.crawlWithView:’MooseNavigator #crawlWithView:
February 16, 2002 23:05:28.000 ’MNDrawing.selectNodes:’MNDrawing #selectNodes:
February 16, 2002 23:05:28.000 ’MNDrawing.raiseNodes’MNDrawing #raiseNodes
February 16, 2002 23:07:38.000 ’MNDrawing.redButtonPressedOnDrawing’MNDrawing #redButtonPressed
February 16, 2002 23:07:38.000 ’System Complexity (78/69)’4612 ’System Complexity’0 0 0 137 #Model

Report Annotated Entities. This report lists all entities for which an annotation
has been created:

#chkFunction -> This method smells - duplicated code
#CCMetricSubcanvas -> Should be split!
#CCMetricSubcanvas_class -> This class is never used

Chapter 6

Experiments

“Example isn’t another way to teach, it’s the only way to teach.”

-Albert Einstein, physicist

In search of ways for dynamically providing features for navigation, we did an
experiment of automatically extracting possibilities of navigation from a specific
meta model description. We describe why we found this not to be a promising
method in Section6.1.

To validate the statements of the previous chapters about the user behavior
in reverse engineering, we set up two experiments of letting people work with
MooseNavigatorin real reverse engineering sessions. During the sessions we
recorded the behavior of the users. Section6.2and Section6.3present the analysis
of the collected data and experiences.

6.1 Automatic Navigation Support

In search of ways for automatically computing all possible navigation steps on a
certain model, one of our ideas was to scan the meta model for all its relationships
(see also [FAVR 01]). The goal was to use the set of relationships as a base for pos-
sible navigation steps from one topic to related topics. If this would be possible we
could use the information for automatically and dynamically create menu entries
and navigation features. No human was necessary to decide in tool design time
which navigation steps to support, or what navigation paths to allow.

In the following we describe our proceeding by giving a concrete example. Our
first attempt was to check paths to neighbor topics along associations. Our meta
model under consideration isMoose(AppendixA), the Smalltalk implementation
of FAMIX , described in Section2.2. With the assumption thatMooseis complete,
all the needed information for our endeavor is available. We purposely start with

59

60 CHAPTER 6. EXPERIMENTS

Class Hierarchy Number of
Protocols

Number of
Methods

Accumulated Num-
ber of Methods
(without Object’s)

MSEAttribute 8 22 155
MSEAbstractStructuralEntity 8 40 133
MSEAbstractEntity 4 10 93
MSEAbstractObject 7 33 83
MSEAbstractModelRoot 7 39 50
MSEAbstractRoot 4 11 11
Object 30 181 (0)

Table 6.1: Methods of MSEAttribute’s Fullclass.

a non-technical example, with the aim of reducing the risk of confusion between
objects (attribute) and meta objects (MSEAttribute).

Example: We consider an object-oriented classWine which has an
attributevintage.

In Moose, classes are represented by instances ofMSEClass, and attributes are
represented by instances ofMSEAttribute. If we now focus on thisMSEAttribute-
instancevintage, and if we want to find all possibilities of relations from such an
entity, we can collect all attributes and methods ofMSEAttribute- since this would
be all the explicit information we have in the model. By doing that, we obtain
all direct neighbor topics ofvintage. In a first step we focus on the methods of
MSEAttribute.

As (Table6.1) shows, the total number of methods ofMSEAttributeand all its
superclasses is 155. This is greater than a reasonable number of navigation op-
tions. On the one hand, the methods of the Smalltalk root classObjectwere not
counted. On the other hand, there might be counted a little bit too many methods,
since abstract methods, overridden by subclasses, were counted multiply. How-
ever, this imprecision falsifies the real number of available methods for a class
only marginally. Still, the set of methods is too big to serve as base for proposed
navigation steps. We could try to reduce the number of candidate navigations by
focusing on a certain kind of methods, like public methods, private methods, ini-
tializers, et cetera. None of these approaches seems promising to us, because they
are not restricting enough or hard and vague to find out.

After having discussed navigation along the methods ofMSEAttribute, we now
focus on the attributes. We realize that there are not as many of them as for the
methods - we can list them all explicitly, as done in Table6.2. Before we are able
to explain this table we need to introduce two more concepts.

Definition: A domain classis a class that has its origin in the field of
the current project-specific considerations. In our case typicaldomain
classesincludeMSEClassandMSEAttribute.

6.1. AUTOMATIC NAVIGATION SUPPORT 61

Class Hierarchy Attribute Class of
Attribute’s
Value

Domain
Class

Reasonable
Naviga-
tion

MSEAttribute belongsToClass MSEClass Yes Yes
accessControlQualifier String No No
hasClassScope Boolean No No

MSEAbstractStructuralEntity declaredType (Type of
Repre-
sented
Entity)

(Yes) (Yes)

declaredClass (Class
of Rep-
resented
Entity)

(Yes) (Yes)

interfaceSignatureSet Collection
of Strings

No No

accessedByList Collection
of
MSEAc-
cess

(Yes) (Yes)

MSEAbstractEntity name String No No
MSEAbstractObject namedPropertiesDict Collection

of any-
thing

(Yes) (Yes)

commentCollection Collection
of Strings

No No

sourceAnchor String No No
MSEAbstractModelRoot uuid Integer No No
MSEAbstractRoot - - - -
Object (-) (-) (-) (-)

Table 6.2: Attributes of MSEAttribute’s Fullclass.

Definition: Non-domain classesare all the classes that are notdomain
class. These include base classes likeInteger, Collection, or String.

We come back to our previous example. An exampleWinemight be of the year
1981. This means that the attributevintageholds an instance of the classInteger
with the value “1981”. We would say thatvintageholds instances ofnon-domain
classes. In contrast, if our classWinewould have another attributechateauholding
instances ofChateau, the latter would be calleddomain class.

What we observed now, was a relationship between the reasonability of navi-
gating along a certain attribute and the fact whether this attributes hold instances
of domain classes.

Here is how we came up to this speculation. To explain it, we reconstruct
the content of Table6.2 step-by-step. We start with columns 1 & 2, which list
MSEAttributeand all its superclasses, each with all its attributes. Again we do not

62 CHAPTER 6. EXPERIMENTS

consider the Smalltalk root classObject, since its attributes have nothing to do with
the semantics of our example.

• The classMSEAttributehas an attributebelongsToClass.

Now we add column 5 where we put our estimation for the reasonability of
navigating along each attribute.

• We find it reasonable to navigate from an attribute to its class. Example:
Navigate fromchateauto Wine.

• We find it not reasonable to navigate from an attribute to its access control
qualifier. Example: Navigate from achateauto “Private” .

If we look at the table and try to derive a rule we find that those attributes that
are not reasonable for navigation usually hold some kind of“leaf-information”
which does not offer ways of further navigation. Examples of“leaf-information”
include “Private”, “TRUE”, or “129748”. The classes of these values are Strings,
Booleans, and Integers - all representatives ofnon-domain classes. We add columns
3 & 4 and indeed observe a correlation between the values in the columnsDomain
ClassandReasonable Navigation.

So far our view was restricted to direct one-to-one neighborhood along associ-
ations between topics. Now we widen our angle of view, and inspect more complex
relations, based on compositions of associations.

Example: To find composed relationslike a method’s overridersall
the method’s class’ subclasses must be parsed on methods that extend
this particular method.

This indirect neighborhood can be important, especially in cases of complex
relations which are not explicitly modeled by direct associations, like in the given
example. Another case of composed relations, is the occurrence of transitive re-
lations between topics, like“is superclassof” between two classes. However the
potential set of all compositions of associations between topics is huge. Since all
these compositions have primarily the same possibility of being useful, we need a
way to reduce the set, like a concept of priority.

With the concept of affinity we have an instrument to measure the relevance
of these relations. To be able to determine affinity we must assign weights to as-
sociations. For that we need information about the semantics of the model, and
we need also to know the specific task which has to be performed. When we do
a change-impact-analysis, affinity between topics must be different from affinity,
when we search duplicated code. The configuration of affinity can not be done
automatically. There are two ways for favoring associations: First, we know some

6.2. EXPERIMENT WITH STUDENTS 63

important relations, because we use them every day, like extenders of a method.
Secondly, we can track the user’s behavior, collect information about the paths,
identify so called trails, and try to abstract the importance of indirect associations
with the help of data mining and statistics.

Summary: It is difficult to find useful navigation support computationally.
Knowledge about the semantics of the model is needed to introduce concepts of
affinity and relevance. Finally, human experience is inevitable to define reason-
able navigation support. Navigation tracking can help to reason about the users’
behavior, and to improve the efficiency of a user interface.

6.2 Experiment with Students

Within the scope of the practical lectureSoftware Engineering Applied, the stu-
dents of the University of Bern learn about reverse engineering. In a lab session
of two hours they usedMooseNavigatorto exercise the use of reverse engineer-
ing tools to examine an existing object-oriented system. The subject system was
Moose, includingCodeCrawler. After a short introduction, four groups of three to
four people sat together, and with the help of three assistants, tried to get an idea
about the subject system.

6.2.1 Observations

Figure 6.1: Procedure of a Typical Student User Session.

Users surf always either on top or on the bottom of the abstraction depth. This
is typically at the level of an inheritance tree, or down at the detail level of class
internals and in the methods’ bodies. Figure6.1shows a typical reverse engineer-
ing session. In the horizontal dimension are the different types of views the user
selects and the vertical axis covers the time that passes by staying at the particular

64 CHAPTER 6. EXPERIMENTS

User Interaction Number of Average Time in between
Occurrences [in Minutes and Seconds]

Change Selection 38 1’16”
Change Filter - -
Dive 8 6’00”
Change View Type 10 4’48”
Pop 5 9’36”
Spawn - -

Table 6.3: Average Time between Student User Interactions.

state. The particular views selected in the session areSystem Complexity, Circle
(Double), andClass Blueprint. Examples of these views can be found in the fol-
lowing figures: FigureA.3, Figure5.7, and Figure3.3.

Users interact seldom. We were astonished how seldom users change the view
and how long they tend to stay on one certain view. Table6.3 shows the average
time that passes between the user’s interactions. Basis of these measurements is
the above user session. The observed period was 48 minutes - depending on what a
user wants to find out, and depending on how much expertise he already has about
the subject system as well as in using the tool, the numbers probably vary a lot.
Some of the basic features were not used at all. The corresponding fields in the
table are marked by “-”.

Figure 6.2: Distribution of Selected Views by Students.

Users select always the same few views. Figure6.2 shows the only three dif-
ferent kinds of views which are selected over the complete time. This is probably
because users, once familiar with a certain kind of view, feel familiar and produc-

6.2. EXPERIMENT WITH STUDENTS 65

tive with it, and do not want to get confused by introducing new views, and with it
new aspects.

Figure 6.3: Percentage of Visited Classes and Entities by Students.

Users surf vertically and horizontally, but not diagonally. Figure6.3shows the
relative coverage of visited classes or entities during a session. The real number of
entities is 39,462 which covers approximately 10,000 accessors, 8,000 accessor ar-
guments, and 6,000 expression arguments. In our analysis we considered only the
most important entities, which also are represented as nodes in the graphs. These
are classes, attributes, and methods. The number of these entities is 2,165. Acces-
sors are implicitly visited when we follow edges in the graph. We did not explicitly
count these visits, because we believe that the user did not want to visit the acces-
sor itself, but the user only uses the relation to find a related target. The correlation
between the ratio of visited classes within the total number of classes, and the ratio
of visited entities within the total number of entities, can be interpreted as a ten-
dency to the fact that users either navigate just on the top level of abstraction, i.e.,
on hierarchy diagrams of classes, or they navigate at the bottom level of detail, i.e.,
in methods source code.

Users complain about missing features. By, for example, scrolling a view in
MooseNavigator, theSystem Overvieweris automatically updated. Users expected
to be able to move the squares in theSystem Overviewerwith the feedback-effect
of really changing the current visible part of the system. This functionality was
not provided by the prototype. Users valued this to be disturbing, inconsistent and
incomplete.

6.2.2 Experience

In the beginning we thought that the results will show a broad diversity, which
means that many users show much different behavior. Many outer circumstances
influence a reverse engineering session. A pair of engineers quickly gets to dis-

66 CHAPTER 6. EXPERIMENTS

cussing about patterns and anti-patterns they recognize, good or bad style of cod-
ing et cetera. They talk about questions like why this node is colored green, and
whether it does get the color of being an initializer, or of being an extender, if it is
satisfying both criteria. The reasons that people actually do something other than
what they currently are expected to do are manifold. We have to consider that the
views presented by our tools are complex, so that users need a lot of time to digest
what they see on the screen, before they click further. The behavior of different
teams are quite similar, we suppose that the relevant dimensions that influence a
session were similar in our case. They are: Subject system, given task, instructions
of supervisor, expertise of the user with a) the subject system, and b) the tool.

6.2.3 Results

We summarize the main results of the experiment with students as follows:

• Different users show similar behavior.

• Users like to navigate either on top or at the bottom levels of abstraction.

• Users select always the same few views.

• Users interact seldom, since they need a lot of time to understand a single
view.

• Users prefer vertical and horizontal to diagonal navigation.

• Users complain about not consistent or incomplete functionality.

Since the observed users did not know the system, since they were beginners in
reverse engineering, and since they were not used to work withMooseNavigator,
they might behave different from experienced users. We supposed professional
reverse engineers to surf faster than novices, since they can quicker interpret and
understand what they see. For verifying this speculation we set up another experi-
ment of observing an expert user. This experiment is described in the next section.

6.3 Experiment with an Expert

Duploc is a tool for the visualization of duplicated code. It is written in Smalltalk,
and was developed at the University of Bern1. For about one hour, the system has
been reverse engineered by an expert ofCodeCrawlerusingMooseNavigator. His
aim was to detect the internal architecture. The expert did already have an idea
about the functionality ofDuplocand its design. However, he did not yet have a
closer look at the project and its source code before.

1http://iamwww.unibe.ch/˜rieger/duploc/

http://iamwww.unibe.ch/~rieger/duploc/

6.3. EXPERIMENT WITH AN EXPERT 67

LoadingDuploc into Mooseleads to the following picture: 758 classes; 5,493
methods; 794 attributes; 634 inheritance definitions; 19,327 invocations; 30,682
accesses; with a total number of entities of∼ 95,000. SinceDuploc is written
in Smalltalk where a meta class exists for each class, and also the necessary base
classes were extracted by the parsers, we estimate the number of “real” classes in
the system to approximately 300.

6.3.1 Observations

The expert utilizes eight different views while inspecting the system. This is al-
most three time as many as the a typical student utilized in the same time. Fig-
ure6.4shows the procedure of visited views during the expert session. Most of the
transitions from one view to the next view are of ahorizontalnavigation nature,
like changing from aSystem Complexityview to anotherSystem Complexityview
while only changing the selection. Thedimensionsof navigation are described in
Section4.3. All horizontal transitions in Figure6.4correspond tohorizontalnavi-
gation steps, though changing the view type can be averticalnavigation step when
keeping the same selection, or adiagonalnavigation step when changing view and
selection.

Figure 6.4: Procedure of an Expert User Session.

Only few vertical navigation steps are performed, like diving fromSystem
Complexityto Circle (Double)which is beside theClass Blueprintanother view
to show the details of a class’ internals. A detailed description of these views can
be found in Section5.2and [LANZ 99]. Which view is visited how many times is
shown in Figure6.5.

68 CHAPTER 6. EXPERIMENTS

User Interaction Number of Average Time in between
Occurrences [in Minutes and Seconds]

Expert User Students
Change Selection 59 0’57” 1’16”
Zoom 6 9’30” -
Change Filter 2 28’30” -
Dive 4 14’15” 6’00”
Change View Type 6 9’30” 4’48”
Pop 4 14’15” 9’36”
Spawn - - -

Table 6.4: Average Time between Expert User Interactions.

Figure 6.5: Distribution of Selected Views by an Expert.

In contrast to our speculation - the expert doesnot navigate faster than the stu-
dents. Also the expert pauses an average of around one minute after the creation
of a view, before he performs his next action. Table6.4 shows a comparison of
performed user interactions by the expert and by the students.

Also the expert uses many features either seldom or never. For example the
expert never renames a tool state so that he could more easily remember what it
shows.

Albeit seldom, in contrast to the students, the expertdid use most of the ad-
vanced features like zooming, filtering, selecting nodes matching a certain criteria,
applying advanced layouts to a selection of nodes, coloring a selection of nodes,
skipping among tool states, or annotating tool states.

A class counts as visited when a user clicks on the node, e.g., for diving into
the details. The total number of visited classes in the session is only 13. As illus-
trated in Figure6.6 this is around 2% of the system. Considering the number of
visited entities, we get a coverage of visited entities among the whole system of

6.3. EXPERIMENT WITH AN EXPERT 69

0.002%. This is a sign that the expert did not browse into the details of the system,
but surfed primarily on the top abstraction level, where the nodes represent classes,
and the views make statements about the overall architecture rather that about the
class’ internals.

Figure 6.6: Percentage of Visited Classes and Entities by an Expert.

6.3.2 Experience

In an interview the expert describes the procedure as follows. The expert starts
with aSystem Complexityview to get an overview of the system. By removing the
meta classes he reduces the number of nodes by a factor two. Three similar trees
let the expert suppose a concept like Model-View-Controller (MVC) [CINC 02] to
be utilized in the design of the system. After moving the mouse over the corre-
sponding trees, and reading the names of the classes, this speculation seems to be
verified. ApparentlyDuploc implements a lot of Graphical User Interface (GUI)
specific functionality by itself, rather than using a third party framework. The rest
of the system is not characterized by deep inheritance, the class hierarchy is rather
flat. Still on the same view the expert proceeded by coloring nodes according to
their characteristics, e.g.,abstractclasses in yellow, GUI classes in red, and the
rest in blue. This lead to the speculation that approximately one third of the system
can be considered asdomain. The standalone classes have to be visited separately.

Advanced grouping mechanisms would have been helpful to classify nodes,
and to have and additional criteria for coloring or arranging nodes. Advanced
grouping mechanisms include also aggregation. The fact that detailed information
is displayed automatically in theDescription Viewerwhile moving the mouse over
an object, reduces the necessity of diving into the details. This increases the effi-
ciency in inspecting a number of classes one after the other.

70 CHAPTER 6. EXPERIMENTS

Figure 6.7: Navigation Trails in the Duploc Experiment.

After the session, we wanted to visualize what the expert visited. For that we
created aNavigation Trailsview, shown in the screen capture Figure6.7. Out-
standing is that all the navigation trails end in the same place. It is the classDu-
plocApplicationfrom which most of the functionality seems to be controlled. The
view shows only navigation trails between classes, which have been selected ex-
plicitly (e.g., by diving down to the class internals), and not between classes which
the expert only inspected by moving the mouse over the node and by reading the
description of the class in theDescription Viewer. Since also annotations for each
artifact are displayed, the expert annotates views and classes with his insights and
his experiences. Finally, the expert regards the possibility to navigate among tool
states, and being able to skip back and forward in the list of views.

6.3.3 Results

We summarize the main results of the experiment with an expert as follows:

• The expert utilizes more different views.

• The expert filters information before considering it in detail.

• The expert primarily navigateshorizontally.

• The expert primarily navigates on the top level of abstraction, and seldom
navigates into the details.

6.4. SUMMARY 71

• The expert does not navigate faster that the novices.

• Also the expert uses many features seldom or never, however he used most
of them at least once.

• The expert visits only a small fraction of the system.

• By visualizing class hierarchies the user can detect concepts like MVC.

• With the help of identifying concepts like MVC the user can separate inter-
face and domain.

• By applying metrics to visualizations of class hierarchies the expert can de-
tect hot spots.

• The expert explores the system starting by inspecting hot spots like god
classes [BROW 98].

• The expert misses grouping mechanisms.

• The expert regards the possibility to see detailed information by moving the
mouse over nodes and edges.

• The expert regards the possibility to navigate among the set of previous
views.

6.4 Summary

Automatic navigation support is difficult. Since the number of artifacts and rela-
tions in object-oriented software keep rather stable, we suggest a static selection of
features, based on human experience and the analysis of tracked user behavior.

In an experiment with students we observed in detail the behavior of users. We
identified many users to behave quite similar. They use few features and interact
seldom with the tool.

In another experiment with an expert user we disproved our speculation that he
would navigate faster then the novices. However, the expert utilized more different
features.

We would like to make more experiments and case studies. To date this was
not possible due to limited time resources.

Chapter 7

Conclusion

“Selbstversẗandlichkeit existiert nicht.”1

-Gilbert Probst [PROB 99]

7.1 Summary

Many issues of navigation in object-oriented reverse engineering are the same in
knowledge management. Two major problems are complexity and inefficiency. We
picked up further similarities and differences of both areas, with respect to manag-
ing, modeling, and navigating information. We studied the factors for success of
a reverse engineering navigator which resulted in a set of concerns. This set was
obtained by accumulating and bringing together the following information and in-
sights:

• Ways of reducing friction in the reverse engineering process, addressing its
major causes, among which are the incompleteness of the model, missing
features, indirection of paths, oversaturation of information, red herrings,
degradation of knowledge, and the lack of mechanisms for classifying infor-
mation and relations (Chapter1).

• Requirements for supporting the tasks of knowledge management: Identify,
create, collect, filter, categorize, store, distribute, utilize, and finally maintain
knowledge (Table2.1).

• Key success factors for knowledge management tools, which are simplicity,
maintainability, user-friendliness, low political, psychological and structural
barriers (Table2.2).

• Formal needs derived from paradigms of HCI, like simplicity, efficiency,
memory, consistency in state an orientation, appropriate features, and exten-
sibility (Section2.3).

1Literally: “There is not a single matter of course.”

72

7.2. MAIN CONTRIBUTION 73

With this set of concerns we had a base for further considerations and a struc-
ture for identifying strengths and weaknesses in our own reengineering environ-
mentMoose(Chapter3). We compiled a list of concrete requirements for naviga-
tion support in reverse engineering tools by merging formal needs with the expe-
rience of an industrial case study (Section3.3). We analyzed also best practices
and features of state-of-the-art navigation (Chapter4). We put all this informa-
tion and experience again together in Chapter5, and came up with the following
perceptions:

• Users of reverse engineering tools are slow in generating new views. But
they navigate faster in the list of previous views and along the level of detail.

• The more expertise a user has the more features he uses, still many features
are seldom used.

• Efficiency in navigation first depends on the support for not getting lost,
second on views that reduce complexity, and third on appropriate features to
find relevant information.

• While navigating through a system users prefer to change only one dimen-
sion of a view at the time, otherwise it seems to be too hard to follow.

• Extensibility is a key feature for a tool that assists us in doing such complex
and multifaceted tasks as reverse engineering a software system.

Many of the above statements could be validated or even have its origin in
the described experiments (Chapter6), and by a proof of concept, in the form
of a prototype navigator for object-oriented reverse engineering (MooseNavigator,
which is described in Section5.2).

7.2 Main Contribution

1. This work outlines the involved theory and issues of building useful reverse
engineering tools. It proposes a vocabulary and a simple taxonomy for the
issues of managing, modeling and navigating models of object-oriented sys-
tems. It results in a set of concerns for an ideal navigation tool in reverse
engineering.

2. We compile a set of requirements, concrete solutions and examples, of ways
how to implement and address the before identified concerns.

3. State-of-the-art navigation tools - together with our own prototype - are com-
pared and measured at this list of concerns. This lets us identify:

(a) Best Practices & Solutions.

(b) Gaps, Problems & Challenges.

74 CHAPTER 7. CONCLUSION

4. In an analysis we classify and discuss navigation steps - the building blocks
of navigation - and provide detailed lists of representatives.

5. Finally we present some perceptions that can help to value and distinguish
different issues of navigation in reverse engineering. We identify some of
the major sources of friction and also show solutions of how to reduce this
unnecessary extra effort.

7.3 Outlook & Future Work

Prototype integration. Our experience and feedback shall be used to enrich the
Moosereengineering environment. A merger ofCodeCrawlerand approved ideas,
features, and views ofMooseNavigatoris the first step.

ExtendingMoose. Moosewill be extended towards enhanced classification ca-
pabilities, aggregation, a distributed version of the shared repository. Round trip
engineering could be another goal. A command repository could formalize queries,
test prerequisites, and the applicability according to the set of parameters. There
are no limits to the creativity in designing new, different layouts and views. Better
support for directly illustrating parts, packages of a system would be helpful. More
information about the runtime behavior of the entities in the system could lead to
new insights.

Meta meta models. In the field of meta meta models, still a lot of work has
to be done. The semantic web, or topic maps are concepts in the direction of a
general system for representing any kind of information. The future will show,
whether these standards will be established, or not. In any case some sort of on-
tology is needed, for being able to dynamically add new kinds of entities to the
current model, and to build bridges to other information systems.

We would like to make more experiments and case studies, to have a broader
validation, and to get additional input for understanding the behavior and needs of
reverse engineers.

Appendix A

Moose

In the past few years the Software Composition Group (SCG) at the University
of Bern was involved in a number of research projects in the field of software re-
and reverse engineering. In the FAMOOS project leading European partners came
together to build a number of tool prototypes to support object oriented reengi-
neering. FAMOOS is an acronym forFramework-basedApproach forMastering
Object-OrientedSoftwarewhich is the name of the ESPRIT project 21975, a re-
search and development sponsorship programme of the European Union on infor-
mation technology. The three year project ended in September 1999. More on that
project can be found online1.

The above mentioned prototypes were validated during experiments on various
case studies. The source code of the available case studies was written in different
implementation languages (C++, Ada, Java and Smalltalk).

To avoid equipping the tool prototypes with parsing technology for all those
programming languages, a common information exchange model with language
specific extensions was specified (see FigureA.2). This model has been named
FAMIX (FAM OOS Information EXchange Model). Another practical result of
the FAMOOS project is the “FAMOOS Object-Oriented Re-engineering Handbook”
[Duc 99]. It collects techniques and knowledge on the problem of software evo-
lution with a special emphasis on object-oriented software. Most of the subject
matter is not “new” in the sense that it represents new discoveries. Rather the
handbook regroups much of the knowledge about redesign, metrics and heuristics
into a single work that is focused on practical issues in object-oriented reengineer-
ing.

Since the end of the FAMOOS project in 1999 we further evolved the tools and
optimized the model. In the following we present the meta model and the current
state of the most important tools.

1http://www.iam.unibe.ch/ ∼famoos/

75

http://www.iam.unibe.ch/$sim $famoos/

76 APPENDIX A. MOOSE

Figure A.1:MooseArchitecture.

Moose is our reengineering research platform implemented in VisualWorks
Smalltalk [DUCA 00a] [DUCA 01b] [TICH 01]. It has been developed during the
FAMOOS project to reverse engineer and re-engineer object-oriented systems. It
consists of a repository to store models of source code. The models are stored based
on the entities defined in FAMIX . The software analysis functionality ofMooseis
language independent. The FAMIX models can be loaded from and stored to files.
Apart from the repository, there are other features implemented to support reverse
engineering activities:

• a parser for Smalltalk code

• an interface to load and store information exchange files

• a software metrics calculation engine

• an interface for additional tools to browse and visualize stored entities

A.1 Meta Model

The FAMIX core model (FigureA.2) consists of the basic entities in object oriented
languages, namely Class, Method, Attribute and InheritanceDefinition [DEME 01]
[TICH 01]. For reengineering we additionally need to know about relations be-
tween the basic entities. Invocations and accesses provide information about such
relations. An Invocation represents the definition of a method calling another
method. An access represents a method accessing an attribute. These abstractions
are needed for reengineering tasks such as dependency analysis, metrics computa-
tion and reengineering operations.

A.2. CODECRAWLER 77

Figure A.2: FAMIX Core.

To satisfy the need for information exchange between tools, the CDIF standard
was chosen in the FAMOOS project as the basis for transferring information. CDIF
is an extensible format supported by industry standards. The plain text encoding fa-
cilities of CDIF have ben adopted to support information exchange between tools.
The chosen format is human readable and simple to process. The need for data ex-
change has increased rapidly in the last years through the wide use of the Internet.
XMI has been accepted in industry as a new standard for information exchange.
We plan to shift from CDIF to XMI as exchange format to keep compatibility with
industry standards.

A.2 CodeCrawler

CodeCrawler (FigureA.3) is a visualization tool that supports different views on a
model, combining metrics and graphs [DEME 99] [LANZ 99]. The tool visualizes
entities with shape and color according to metric values combined with different
graph layouts. It enables a user to gain insights in large systems in a short time.
Furthermore the graphs help to quickly identify source code entities with special
combinations of metric values.

A.3 MooseExplorer

MooseExplorer(FigureA.4) provides a uniform way to represent model informa-
tion [DUCA 00a]. It addresses the problems of navigating large amounts of closely
related information.MooseExplorerallows a user to browse different entity types
in a consistent way.MooseExplorershows for each entity its properties and related
entities. A user can click through the entities and thereby further explore related
entities.

78 APPENDIX A. MOOSE

Figure A.3: Screen Capture ofCodeCrawler.

A.4 MooseFinder

MooseFinderis a query tool that helps to compose queries to retrieve source code
entities matching special criteria [LANZ 01b]. Such queries can also be defined on
multiple models defining certain change criteria. This tool helped us to gain the
evolution facts presented in this work [STEI 01] [DUCA 00b].

The main window ofMooseFinder(FigureA.5) contains a list with the cur-
rently loaded queries. These queries can be applied on a set of entities by pressing
therun button. The query is applied on entities of the default model defined in the
query. The query list contains a basic description of each query. Below in a text
field a more detailed description of a query is shown if for the query that is selected.
A popup window in the query list offers several manipulations on the query list and
selected queries. Every query returns a collection of source code entities. We can
choose to which tool this collection is passed to show the output. The default tool
is MooseExplorer. Alternatively the output collection of entities can be passed to
any other application. The output collection can also be passed to the Smalltalk
inspector to analyze and manipulate the actual instances of the resulting entities.
Another option allows the user to pass output entities directly to the visualization
tool CodeCrawler.

The composer user interface (FigureA.6) helps a user to create new queries and
to compose complex queries using the queries defined in the list. The query com-

A.4. MOOSEFINDER 79

Figure A.4: Screen Capture ofMooseExplorer.

position window consists of several subpanels, each one covers the configuration
of a special type of query.

80 APPENDIX A. MOOSE

Figure A.5: Screen Capture ofMooseFinder.

Figure A.6: Screen Capture ofMooseFinderQuery Composer.

Appendix B

SORTIE Report

B.1 Project Background

SORTIE is an established research tool for modeling forest succession. It is ac-
tively used in British Columbia, Canada and in the northeastern U.S. to manage
forests. The program consists of approximately 28 KLOC of C++ code with sparse
documentation. The system has evolved over a long period of time leading to a
brittle and complex architecture. Under the lead of the University of Victoria, dur-
ing a period of six months, developers of state-of-the-art tools from research and
industry (TableB.1) were supposed to collaborate closely to analyze the SORTIE
system. The first task was to recover the existing architecture of SORTIE. Then,
teams were asked to propose a new architecture that is better suited to meeting re-
quirements for future changes.

The background for this collaborative demonstration was based on these main
motivating factors:

• Evidence to Encourage Tool Adoption

• Exploration of Tool Interactions

• Promoting Tool Interoperability

From these motivating factors the following six concrete goals were derived:

1. Improve tools and develop better ones by comparing and evaluating existing
tools.

2. Provide an opportunity for collaboration and community-building.

3. Learn more about the complementary nature of various tools.

4. Acquire experience with tool interoperability necessary to design an infras-
tructure for community-wide sharing of tools.

81

82 APPENDIX B. SORTIE REPORT

Tool Group Institution Contact
Rigi tool Rigi group University of Victoria,

Canada
Holger Kienle

cppX SWAG (Soft-
ware Architecture
Group)

University of Waterloo,
Canada

Andrew Malton

TkSee tool KBRE Group University of Ottawa,
Canada

Sergey Marchenko

Bauhaus tool Bauhaus Project University of Stuttgart,
Germany

Rainer Koschke

SCG P.U.R.E. Software Composi-
tion Group

University of Berne,
Switzerland

Michele Lanza

COLUMBUS/CAN
tool

Research group on
Artificial Intelli-
gence

Hungarian Academy of
Sciences, University of
Szeged

Rudolf Ferenc

KLOCwork Suite KLOCwork group KLOCwork Solutions
Corporation, Canada /
US

Nikolai Mansurov

VIBRO (VIsual-
isation BROker
Framework)

Visualisation
Research Group

University of Durham,
UK

Claire Knight

PBS SWAG group University of Waterloo,
Canada

Davor Svetinovic

Table B.1: SORTIE Participating Tool Teams.

5. Improve tool evaluation techniques.

6. Encourage the use of the Graph eXchange Language (GXL) [WINT 01].

The results of the tools demonstration were presented at WCRE’2001 held in
Stuttgart Germany, October 2-5, 2001. You can find our original submitted report
at the end of this appendix. The full reports - also of the other groups - can be
found at the project’s web site:

http://www.csr.uvic.ca/chisel/collab/

B.2 Project Success

For estimating the overall success of the project we repeat the project’s goals. Here
they are discussed separately:

1. Improve tools and develop better ones by comparing and evaluating existing
tools. Yes we did improve our tools. Comparing and evaluating other tools
was rather restricted in seeing other group’s results, which mostly could not
directly be compared due to quite different original approaches.

2. Provide an opportunity for collaboration and community-building. Like
mentioned above. We did another experience in teamwork within our group,
separate from that we did not much build a community.

http://www.csr.uvic.ca/chisel/collab/

B.2. PROJECT SUCCESS 83

3. Learn more about the complementary nature of various tools. This is in-
teresting. While some tools are source code level oriented, other provide
more general graphical system overviews. Some tools focus on browsing,
navigation and interaction (SCG), others tend to produce batch processed
static views using existing graph drawing frameworks (TkSee). See also
AppendixC.

4. Acquire experience with tool interoperability necessary to design an infras-
tructure for community-wide sharing of tools. Seems to have failed mostly.
To our best knowledge not even a GXL file could be shared among the
groups. On one hand this seems to come from the fact that the various
groups do not extract the same information of a subject system, and on the
other hand not every group is ready to deal with GXL. Finally we also had
the impression that there was an invisible competition between the groups.

5. Improve tool evaluation techniques. We did not, we just had a quick look at
the results of the other groups, but we did not do in a controlled way of first
defining criteria and then systematically measure the tools in compliance.

6. Encourage the use of GXL. Maybe, in any case the study shows that in fact
if everybody would have been working with GXL, much more work could
have been done, if the collaboration would have been one.

Our tools worked fine, parsing was easy, not having the base classes in the
model caused no problems for us. After a short time we already had some nice
illustrations and believed to have understood the system on an overview level.

There are no bad examples. If we would know an example covering a situation
it would not be an example but the situation itself. In the same sense we can learn
from every case study. This one gave us some ideas on how to improve the tools,
especially it reminded us to some problems concerning models of systems written
in C++. Unfortunately the subject system was rather small and makes little use of
object-orientated paradigms. Thus many potential aspects of navigating in object-
oriented systems could not be seen, however we could learn a lot about other daily
problems of a reverse engineer in practice.

Comparison of tools. As a comparison of a couple of state-of-the-art reverse
engineering tools the case study gives a good overview of advantages and disad-
vantages of the different approaches in certain situations.

Community building. A real collaboration where you share knowledge, exper-
tise and experience and build a community failed in our point of view. The reasons
are unclear but seem to lie in geographical separation and some sort of competition-
like atmosphere among the groups. We can not say if any success was made to-

84 APPENDIX B. SORTIE REPORT

wards GXL and adapting the tools to it, for we are not willing to do it with our
tools for the moment.

Reverse engineering success.We consider the experience for ourselves as suc-
cessful, we saw many teams with problems in particular with parsing and perfor-
mant layouts.

Reengineering success.We suggest a new implementation of the system - from
that point of view we must say we are not able to propose major restructurings or
clever changes to the system.

B.3 SCG Report

(In the following you find the original SORTIE report as it was submitted by the
SCG.)

B.3. SCG REPORT 85

Software Composition Group

SORTIE Report
Michele Lanza, Gabriela Arevalo, Daniel Schweizer, Daniele Talerico

Table of Contents

1. Introduction
1. Description of Tools
2. Reverse Engineering Team

2. Preliminary Work
3. Analysis

1. Metric Analysis
2. Statistical Analysis

4. Sortie Explained
1. Our View
2. Conclusion

5. Suggestions & Opinions
6. Conclusion

1. Introduction

1.1. Description of Tools

For our analysis we used the SCG P.U.R.E. toolset written by members and students of the Software
Composition Group, as well as one commercial parser.

1. Sniff+, a commercial parser and integrated development environment for various languages
with which we have parsed the Sortie system.

2. Moose, our language independent reengineering environment, written by various members of
the SCG since 1998.

3. CodeCrawler, a visualization tool which combines visualization techniques with metrics.
CodeCrawler is written by Michele Lanza and is based on Moose.

4. MooseClassifier, an extension to CodeCrawler written by Daniele Talerico.
5. MooseExplorer, a tool which enables textual navigation of Moose Models, developed as part

of the diploma by Pietro Malorgio.
6. MooseFinder, a query engine which enables us to compose complex queries. It was part of the

diploma thesis of Lukas Steiger.
7. MooseNavigator, an extension to CodeCrawler written by Daniel Schweizer as part of his

diploma thesis.

1.2. Reverse Engineering Team

The team for the Sortie experience was composed of the following people:

1. Gabriela Arevalo, did her master on software architecture and is currently doing her Ph.D. on
components.

2. Michele Lanza, did his master on reverse engineering and is currently doing his Ph.D. on
reverse engineering and software evolution.

Page 1 of 10Software Composition Group - SORTIE Report

86 APPENDIX B. SORTIE REPORT

3. Daniel Schweizer, currently doing his diploma thesis on reverse engineering and navigation of
metamodels.

4. Daniele Talerico, currently doing his diploma thesis on reverse engineering.

2. Preliminary Work

Parsing & Loading

The first step consisted of parsing the source code using Sniff+. Parsing did not pose a major
problem. Using a tool called Sniff2Famix we used the symbol table generated by Sniff+ to generate a
CDIF file, which contains a textual representation of all software entities contained in Sortie. Using
that file we can load Sortie into Moose, our Reengineering Environment. Moose is language-
independent. This whole process took less than one hour.

3. Analysis

The analysis made is based on two aspects of the SORTIE system:

1. Structure of the different parts of the system (definition of classes, attributes and methods).
2. Communication and collaboration between different parts of the system.

3.1. Metric Analysis

We ran our metric engine on Sortie, which took a few seconds. An overview of Sortie can be seen in
the table below.

Considering the huge number of attributes and attribute accesses and the low number of inheritance
relationships, we first made a general analysis of the system, and afterwards a study of specific parts
of the system. In the figure below we see a first visualization of the system using CodeCrawler.

Entities Number
Classes + (Structs) 63 + (6)
Methods 763
Attributes 1935
Functions 5
Inheritance Definitions 10
Invocations 683
Attribute Accesses 6736
Formal Parameters 985
Global Variables 72

Page 2 of 10Software Composition Group - SORTIE Report

B.3. SCG REPORT 87

From this picture we can see aspects like inheritance, size of the classes (number of defined
attributes and methods) and namespaces.
Inheritance defintions: The figure shows the inheritance hierarchy of the system, which is very flat.
There are only 10 inheritance definitions.
Namespaces: The colors represent the different (artificial) name spaces we have detected. It seems
the classes can be categorized into the following groups:

1. Dialog Classes (12) which contain the substrings Dialog (10) or Dlg (2).
2. Form Classes (33) which contain the substrings Form (22) or Fm (11).
3. Sortie Classes (6) which contain the substring Sortie
4. Structs (6) which have lowercase names with two exceptions: TGridSubstrate and TPlotPoint
5. The Rest (11) which does not fit the above conventions but which in some cases is a plain

case of name policy breach, i.e., the classes should have one of the above substrings in their
name but they do not.

Size of Classes: In the above view we display all classes of the system and use metrics to render the
size of the nodes as follows:

? The wider a class is the more attributes it defines (NOA)
? The taller the class is the more methods it defines (NOM)

Below we see a summary of some metrics of the largest classes of Sortie.

Class Name NOA Number of
Attributes

NOM Number of
Methods

WLOC Total Lines
of Code

Average LOC per
Method

TMainWindow 237 78 2099 27
THarvestDialog 124 66 2746 42
TSpeciesDialog 255 12 567 47

TPlotDialog 144 25 744 30

Page 3 of 10Software Composition Group - SORTIE Report

88 APPENDIX B. SORTIE REPORT

3.1. Statistical Analysis

Focusing more in a deep analysis, and using the number of attributes and methods per class, we
proposed to make an analysis of how the class distribution is, seen in an statistical way. In the figures
below, we show where the classes (presented in the table) are located in the distribution.
Subsequently, we present the following distributions:

1. Number of Defined Attributes per Class
2. Number of Defined Methods per Class
3. Number of Defined Attributes compared to Defined Methods
4. Defined and Invoked Methods

Number of Defined Attributes per Class

Based on the number of attributes defined in each class, the next figure shows how the distribution of
the classes is: not uniform. Most of the classes have less than 20 attributes but then we see a high
increase. As we saw in the previous table, TSortieIO and TPlotDialog are two classes with an
average of 150 attributes and the classes THarvestDialog and TSpeciesDialog have approximately
240 and 260 attributes respectively. The largest classes in number of attributes belong to the Dialog
namespace.

Number of Defined Methods per Class

Thinking in terms of behavior, we analyzed the number of methods defined in the classes. This
distribution is more uniform than the previous one, except for the classes THarvestDialog and
TMainWindow that contain approximately 70 and 80 methods respectively. This distribution has the
same features as we detected with attributes. The largest classes belong to the Dialog namespace.

TSortieIO 146 28 2946 105

Page 4 of 10Software Composition Group - SORTIE Report

B.3. SCG REPORT 89

Number of defined Attributes compared to defined Methods

As we saw in the first figure, we saw that if we analyze the number of attributes and methods, many
classes seem to be data-containers without almost no behavior. In the first figure we saw that the
classes are wider than tall. In the following picture, we present the information in a different way.
We see the number of attributes in blue and number of methods in red. For example, the class
TSpeciesDialog has little behavior compared to the number of defined attributes.

Defined and Invoked Methods

The concept of classes as data-containers can also be seen when we make a comparison between the
defined methods and the invoked methods of a class in the system. The next picture shows that only
a few of the classes have methods that are invoked in the rest of the system. This fact makes the
system appear smaller than it is, if we think in terms of the level of interaction between the classes.

Page 5 of 10Software Composition Group - SORTIE Report

90 APPENDIX B. SORTIE REPORT

When we see the list of non-invoked methods we see that the most of them are related to the
interface communication, for example OKBtnClick(TObject*), SpeciesListBoxDblClick(TObject*),
CancelBtnClick(TObject*) in the class TWindstormDialog. Most of these "non-invoked" methods are
called in the files *.dfm, as we verified to get a confirmation.

The Classes TSetDensitySizeForm, TDisturbanceDialog, TWindowstormDialog, TEditLambdaForm,
TTimeStepFm, TPlotDimForm, TSetMapscaleForm, TPrinterTypeForm, TSpatialInterp,
TSaveHarvestResultsDialog, TGrowthEquationsForm, TAboutFm and TSavePBFm have two main
features:

1. all their methods are not invoked in the rest of the system
2. their methods do not invoke any method of the rest of the system

As we said previously, these classes seem to belong to the interface part of the system. This reduces
the amount of classes that really model the domain of this system.

Global Variables

In the system, we discovered at first 72 global variables. But in a deeper analysis, we see that the
number of global variables are close to the number of classes (69). When we have a look at the code,
we see declaration like: extern TTreeMapFm *TreeMapFm or TTreeMapFm *TreeMapFm and
TreeMapFm is the global variable. The keyword extern is used to make local names have external
linkage. Like this, in the files classes can be declared local. When they are declared as extern, they
can be used outside the scope of the files where they were declared. Thus, in this system, we
consider that there are no global variables. We think this is also a sign of inexperience of the
developer during the porting of Sortie from C to C++.

Conclusions about the system structure

After looking at the metrics we draw some conclusions:

1. The large number of attributes and the use of GUI classes indicates a mixing of domain model
and GUI. This can only be termed as wrong implementation decisions.

2. The large number of lines of code of the classes also shows some present or future problems:

Page 6 of 10Software Composition Group - SORTIE Report

B.3. SCG REPORT 91

working with large files is bad from a cognitive point of view.
3. The average length of the methods is also somewhat high, in certain cases over 100 (without

counting the .h-file). This can be a possible indicator for procedural coding style, or a lack of a
refactoring policy by the developer.

4. Sortie Explained

4.1. Our View

To understand the basic structure of Sortie we looked at the central class called TMainWindow,
which is also by far the biggest class. This class contains a method called RunSimulation(), which is
the key to the understanding of Sortie. The whole Program is basically a procedural system written in
C++. We know it was ported from C, which strengthens this supposition.
TMainWindow::RunSimulation() contains several calls to certain parts of the system. Although we
do not possess any domain knowledge from the comments within this method, it seems like calls to
subparts which do this:

1. Harvest
2. Light
3. GLI
4. Bath Light
5. Growth
6. Windstorm
7. Mortality
8. Substrate
9. Disperse

10. Planting
11. Demographics
12. I/O

Using this information we generated the following figure:

Page 7 of 10Software Composition Group - SORTIE Report

92 APPENDIX B. SORTIE REPORT

In this figure we see all classes and structs of Sortie. The edges represent the invocations between the
classes. We obtained this figure after removing 3 classes which do not have any domain, but which
get invoked a lot:

1. TYesNoForm
2. TErrorForm
3. TAboutForm

4.2. Conclusion

Every subpart of Sortie mentioned above has a similar structure: A class called TSortiexxx (in
the figure the yellow ones) which can use Dialog classes (red) and/or Form classes (cyan). With
the Dialogs parameters can be set. The Form classes could be there for the Output. The last
"piece" is the IO part where files are saved, etc. There's also a "piece" for batch processing.
The fact that the program was ported by someone not expert in O-O is indicated by the missing
encapsulation (attributes are directly accessed all the time, as good as no private methods), by
the flat hierarchies and in general by the non-O-O way of writing code.

5. Suggestions & Opinions

Here is a list of suggestions and opinions about the Sortie system:

1. Domain mixed with GUI:We guess that during the port from C to C++ the developer(s) made
extensive use of a technology they embraced with too much fervor: The GUI framework of
Borland C++. Nearly all classes are subclasses of Borland GUI classes, which results in a
dangerous mixing of concerns: Porting the Sortie system to other C++ dialects or even
languages will involve problems.

2. Procedural Coding Style:In the figure below we see the collaboration relationships between

Page 8 of 10Software Composition Group - SORTIE Report

B.3. SCG REPORT 93

the classes and structs in the system. What strikes the eye is the low number of edges: 3. This
means that the whole system, although written in a (hybrid) object-oriented language does not
exploit that paradigm: the functionality within the Sortie classes is not being used by
communicating objects, rather by a sequence of classes independent of each other. Noteworthy
is also that the collaborations are between classes and structs. Again a sign for procedural
thinking.

3. Domain Dispersion:A general impression of the system is that the actual domain is dispersed
throughout the system. Therefore it is hard to locate a certain aspect of the domain within a
certain class or number of classes. This has two negative effects on the system:

1. Low extensibility:If the domain needs to be extended, for example a new type of forest,
the developer needs to patch his code in several places.

2. Low migration potential:The dependence introduced by the domain dispersion and
further supported by the GUI-guided development makes it nearly to impossible to
migrate this product towards another programming language or even C++ dialect.

4. We identified a particularly strange imbalance between data and behavior in a number of
classes, some of which we list below:

? TEditSpeciesForm (16 Attributes, 6 Methods, 63 LOC)
? TGrowthEquationsForm (41 Attributes, 1 Methods, 0 LOC)
? TSavePBFm (9 Attributes, 1 Methods, 0 LOC)
? TSetAxisForm (15 Attributes, 1 Methods, 0 LOC)
? TSetDensitySizeForm (9 Attributes, 6 Methods, 32 LOC)
? TSizeClassDialog (65 Attributes, 3 Methods, 90 LOC)
? TWindstormDialog (71 Attributes, 5 Methods, 60 LOC)

One would expect these classes to be abstract because they introduce methods without
implementing them, and contain a lot of data. We can come up with possible reasons for this:

1. The classes in question are unfinished and still under development.
2. The GUI-guided development style leads the developer to first define the GUI and then

to assign functionalities to the system dependent on the GUI. This can cause holes in the
assigned functionalities.

3. The development style which Borland Builder supports enables the developer to link

Page 9 of 10Software Composition Group - SORTIE Report

94 APPENDIX B. SORTIE REPORT

GUI elements and functionality using .dfm files. This has the negative effect that the
domain is further dispersed within non-source files.

5. The lack of polymorphism is a negative sign: one would expect that polymorphism would be
used to model the different kinds of forests, soils, etc., but this seems not to be the case.

6. Conclusion

After looking at the Sortie case study we must say that the reengineering requirements are somewhat
unrealistic. We do not think that the code of Sortie can easily be reused, and considered the small
size of Sortie would rather propose to rewrite the system using the existing knowledge. For a new
architecture we propose to first get a clean notion and implementation of the domain models present
in this system and document it thoroughly. This would at least enable to implement new types of
forests, etc. with little programming effort. The requirement that non-programmers be able to
introduce new types of forests, etc. is unrealistic in this setting and would require a major
implementational as well as economical effort to move Sortie towards a framework architecture.

Software Composition Group, 18-09-2001

Page 10 of 10Software Composition Group - SORTIE Report

Appendix C

State-of-the-Art Tools

“No computer can summarize what you tell it.”

-Lofti Zadeh, AI-pioneer

C.1 Introduction

In this appendix we present, in alphabetical order, various state-of-the-art reverse
engineering and other navigation tools which we have evaluated. We present the
tools in a structured way following a certain template SectionC.1.3). You find
an overview of all the considered tools, and how they fulfill the requirements in
SectionC.3. There are many other tools that could have been discussed here. Nev-
ertheless, at the end of the appendix, in SectionC.2.8, we present some more note-
worthy features of additional tools, without discussing these tools in detail.

C.1.1 Selection

There were four criteria for selecting or rejecting tools to be considered. First, we
categorized all the candidate tools. To have a adequate overview of existing tools,
we set value on having a broad variation over the categories. Second, we wanted
to have the “established market leaders”, as a reference for the others. Third, we
wanted to check whether there are recent tools with new and innovative features.
Fourth, we wanted to experience the look and feel of the tools by ourselves with-
out having to buy any licenses - this is the reason we only discuss tools which are
available for free, at least for evaluation purpose. In the following there is an over-
view of our tool categorization, and why we have chosen which tool for presenting.
Each category is supplemented by a table of other tools in the same category. Some
of these tools were also partly evaluated, from some we just know that they exist.
The sets are a subjective selection among many other possible tools.

• Knowledge Management: In the category of information and knowledge
management tools, there is a bunch of commercial enterprise tools, which

95

96 APPENDIX C. STATE-OF-THE-ART TOOLS

we did not consider. Then there are a couple of navigators for topic maps,
from which we have chosen one of the most traditional, but also innovative
products:The Brain is a lightweight knowledge management tool. Its model
independent architecture is open to be adapted for many purposes.

Application Producer
Brainware SER
FreeMind Joerg Mueller
grapeVINE grapeVINE
Inxight Inxight
K2 Verity
K42 Empolis
KnowledgeMiner USU
KnownSpace KnownSpace Group
Omnigator Ontopia
SemanText Eric Freese
The Brain TheBrain Technologies
Topic Map Designer Ontopia
Topic Navigator Mondeca
TM4J Ontopia

Table C.1: Tools of the Category Knowledge Management.

• Text Browsing: One of the most traditional navigation tools is Netscape
Navigator. It was built to explore the World Wide Web (WWW), based
on text and hyperlinks. In combination withJavadoc it represents a very
simple, but depending on the current task, still quite powerful reverse engi-
neering tool. The search engine Google provides a useful browser add-on.
This additional toolbar, unfortunately, is yet only available for Microsoft’s
Internet Explorer .

Application Producer
CXREF Andrew M. Bishop
Internet Explorer Microsoft
Javadoc Sun Microsystems
Netscape Navigator Netscape
PBS University of Waterloo, Canada
Xrefactory Xref-Tech

Table C.2: Tools of the Category Text Browsing.

• Graph & Meta Model Browsing: This is the category of most popular
reverse engineering tools. It seems to be the classical approach to gener-
ate meta models for representing a subject system. All the views, queries
and metrics are then operated on this meta model. Usually graphs are used
for visualization.Rigi is probably the best known reverse engineering tool.
Because of that, it is a viable candidate for the comparison with its newer
competitors.SHriMP is the C++ to Java port of Rigi, and can be seen as

C.1. INTRODUCTION 97

its successor. Since the two tools follow a contrary approach for navigation,
we present them both. An instance of the latest commercial competitors in
this category, isSmall Worlds which provides many reverse engineering
features.

Application Producer
CIAO AT&T Labs-Research
CodeRover MKS
CodeSurfer GrammaTech
CPPX University of Waterloo, Canada
Datrix Bell Canada
daVinci University of Bremen, Germany
GEN++ University of California, USA
GOOSE University of Karlsruhe, Germany
GraphTool University of Durham, United Kingdom
Headway Headway Software
Imagix Imagix Corporation
inSight University of Moscow, Russia
Rigi University of Victoria, Canada
SHriMP University of Victoria, Canada
Small Worlds Information Laboratory
Source Browser Swiss Federal Institute of Technology Zurich
Source Code Browser Aubjex
Source Explorer Intland
Source Insight Source Dynamics
Source-Navigator Red Hat
SPOOL University of Montreal, Canada
TkSee University of Ottawa, Canada
Visualize it! Power software

Table C.3: Tools of the Category Source Code Browsing.

• Integrated Development Environment (IDE): IDEs have left the stage of
being simple text editors with syntax highlighting. Today’s IDEs cover a
wide range of useful features to support the software development process.
Although most of them do not provide any graphical representation of a sys-
tem, the features for navigation are often quite remarkable. We have chosen
to presentEclipsebecause it is a recent open source project, and we believe
that many of us will use it as the extensible standard IDE of the next years,
to develop Java and other programming languages. Many years of experi-
ence in the development of the VisualAge IDE palette find their application
in Eclipse.

• UML Modeling: The Unified Modeling Language (UML) is the standard
graphical notation for object-oriented design. Several tools support graphical
modeling and development. Probably one of the most evolved tools in this
set, isTogetherJ, which offers full round trip engineering, and for that was
selected by us for presentation.

98 APPENDIX C. STATE-OF-THE-ART TOOLS

Application Producer
Delphi Borland
Eclipse Eclipse Project
Juliet Infotectonica
VisualWorks Cincom
SNiFF+ Wind River Systems
StP Aonix
Understand C & Co. Scientific Toolworks
Visual Studio.NET Microsoft

Table C.4: Tools of the Category IDE.

Application Producer
ArgoUML Tigris
Rose Rational
Together TogetherSoft
XDE Rational

Table C.5: Tools of the Category UML Modeling.

• Static Analysis / Documentation: Finally there are tools for source code
analysis or documentation. Their quality is in creating static result sets, lists,
and other representations. We decided to present none of this group, since
these tools usually do not offer any interactive navigation possibilities.

Application Producer
Insure+ & Co. ParaSoft
KLOCwork KLOCwork
Logiscope Telelogic
PL/I Analyzer Phoenix Software Technologists
Refactorit Aqris
Tarantula Georgia Institute of Technology, USA

Table C.6: Tools of the Category Static Analysis / Documentation.

C.1.2 Scope

Our focus lies on navigation features. What we do not consider in this work,
are issues of performance or enhanced reverse engineering features, like hotspot
search, pattern discovery, impact, or dependency analysis. A state-of-the-art in re-
verse engineering, which also covers such issues, is provided by Si-Triet Nguyen
[NGUY 00]. Nguyen, focuses on ways to parse- , model- , and present big amounts
of information, and thereby, partly treats the same tools like we do.

C.1. INTRODUCTION 99

C.1.3 Template

Each tool is presented in the following structured template:

Application: The name and a short description introduce each tool, and point to
its originators, and relevant publications.

Screen capture: A screen capture gives an impression on how the application
looks like.

Description: We then describe the tool in more details. We identify the tool’s
family, its main purpose, the project or product background, and platform avail-
ability. Each tool’s functionality is considered according parsing, modeling, and
representation of information. The description is completed by a pointer to the
project’s or product’s web site, and other resources.

Relations: After that, we present related tools, involved technology, and exten-
sions, adaptations, add-ons, or plug-ins, if there are. This is also the place for
success stories.

Discussion: Finally, we measure the tool against the concerns of building navi-
gation tools for reverse engineering (Table2.5). We list the best, the worst, and the
most noticeable characteristics and features.

100 APPENDIX C. STATE-OF-THE-ART TOOLS

C.2 Tools

C.2.1 Eclipse

Application: The Eclipse open source platform provides building blocks and a
foundation for constructing and running integrated software-development tools.
The Eclipse/JDT project provides the tool plug-ins that implement a Java IDE
[OTI 01].

Figure C.1: Screen Capture of Eclipse.

Description: The Eclipse Platform is designed for building IDEs that can be
used to create diverse applications as web sites, embedded Java programs, C++
programs, and Enterprise JavaBeans. A plug-in is the smallest unit of Eclipse Plat-
form function that can be developed and delivered separately. Usually a small tool
is written as a single plug-in, whereas a complex tool has its functionality split
across several plug-ins. Except for a small kernel known as the Platform Runtime,
all of the Eclipse Platform’s functionality is located in plug-ins.

C.2. TOOLS 101

http://www.eclipse.org/

Relations: The Java development tool Eclipse/JDT, is what IBM delivers asWeb-
Sphere Studio Application Developerwhich can be seen as the successor product
for bothVisualAgeJavaandWebSphere Studio.

Low Entry Barriers: Eclipse is free. This might be a first reason why you down-
load it and try it out. It is open source and thus independent from certain manufac-
turers or vendors. Download and installation worked without any problems, from
scratch. The trust increases after launching a new program, when a short tutorial
guides you through the most important features of the tool, and successfully ends
in a sample project. Wizards help to perform tasks for the first time. A concise
and complete documentation in form of an integrated online help, gives you the
certainty of being able to solve your problems, also if the solution is not obvious
at the moment. When in the future more useful reverse engineering features will
be provided, as plug-ins, they will probably also be used, since they only ease a
developer’s daily work, and make it not more complicated.

Completeness: The model of Eclipse is the total of source files and folders, thus
the model is complete. Basically Eclipse is a set of editors that are opened - , and
a set of functions that are performed directly on these files. No meta model is
created. The number of features is adequate, and can be extended.

Simplicity: The user interface is nice and intuitive. Menus and commands are
like we are used to from other editors or tools. “Saving” a class does not only
save the source file but, in the background, without that the user has to be aware
of that, automatically compiles the code and generates lists of warnings, or errors,
and updates the parse tree.

Navigation between Tool States: Eclipse keeps an account of all visited views
(in Eclipse views are the subparts of the window), and editor (in Eclipse editors
are instances of views, one for each file). Navigation is possible to the next, the
previous, or to a specific element from the history list. Undo and redo of actions is
possible.

Navigation in Graphs: Eclipse currently supports no graphical views on its con-
tent. The only sight are tree views. Collapsing or out folding of branches is possi-
ble.

http://www.eclipse.org/

102 APPENDIX C. STATE-OF-THE-ART TOOLS

Navigation in Object-Oriented Models: Several prepared views show code ar-
tifacts in hierarchical trees. Navigation alongdeclarationsandreferencesfor all ar-
tifacts is possible. Additional navigation to super class, super method, and Javadoc
is supported.

Efficiency: Hints explain the tool bar buttons. Popup combo boxes help you for
the auto completion while typing complicated class names or signatures of meth-
ods. Refactoring support is not only a question of saving time, but also for reducing
the chance to make oversights. Testing the preconditions, and if everything is ok,
to perform the task automatically is a complicated task that for humans, but if well
implemented, easy for a computer.

Feedback: In contrast to the other tools discussed here, Eclipse has its primary
purpose in forward engineering. This involves that the user can modify the sys-
tem under consideration, and feed back his experience. Four additional ways of
feedback are provided. First, bookmarks can be set, to refind previous points of
interest. Second, annotations can be written directly into the source code. Third,
Javadocs can be created for each class. Fourth, tasks can be added, to not forget
about things to do.

Classification: Various configurable perspectives give different views on a sys-
tem, depending on the current task at hand. The task list can be filtered by type,
location, resource, problem severity, task priority, and task status.

Complexity Reduction: Source code is organized in packages and projects. The
big number of lines of code in a project is split into parts, from which the smallest
is the method. These artifacts can be displayed in various tree views. Several per-
spectives are predefined, like“Java Browsing”, “Resource”, “Team” , or “Help” ,
additional perspectives can be configured. Syntax highlighting eases the readabil-
ity of the code, and contributes to recognizing typing errors sooner. Wizards and
assistants help to perform rarely used tasks, like setting up a new scrap book page.
Scrap book pages are a concept for running and inspecting Java expressions un-
der the control of the debugger, similar to a Smalltalk workspace, although only
performing static methods.

Consistency: A project can be closed and later reopened. Projects can be trans-
ferred, since everything is stored in configuration files. A weak form of geograph-
ical consistency is provided in the trees, since all the containers and code artifacts
are always sorted alphabetically. A local history with the granularity on method
level, lets you reload previous version of source, if you want to discard your recent
work, or just compare versions and see the recent modifications. As repository
for developer teams, Eclipse currently supports the Concurrent Versions System
(CVS), where you lift the granularity to class level at the time of releasing your

C.2. TOOLS 103

work, since CVS is file-based, and Eclipse splits the Java class files only for inter-
nal processing, and not physically.

Memory: Actions can be redone, or undone. A history of visited editors and
views, as wells as lists of breakpoints, bookmarks, tasks, problems, errors, or warn-
ings is kept. Further supported navigation is back and forward in the history of
visited code artifacts in the tree view, as well as jumping to an artifact’s container.

Storage: Eclipse stores everything in regular files and folders. The workspace
configuration is stored on the local machine, the source may be a mix of local files
and divers CVS repositories on various remote servers.

Extensibility: Eclipse is designed to be a platform for creating your own ex-
tensible IDE. We distinguish between configuration and extension. Configurable
toolbars, keyboard-shortcuts, or perspectives build a first category of possibilities
to adapt the tool to your specific needs. Much more flexibility is provided by the
fact that Eclipse is open source. You can create your own, plug-ins, like implement-
ing a new refactoring; new tools, like the support for an additional programming
language; or simply do small modifications in features and behavior. This is the
first Java IDE that in terms of extensibility comes, close to what people are used
from Smalltalk development environments

104 APPENDIX C. STATE-OF-THE-ART TOOLS

C.2.2 Javadoc

Application: Javadoc is the tool from Sun Microsystems for generating API doc-
umentation in HTML format from doc comments in source code. Internet Explorer
is a free web browser from Microsoft. The Google Toolbar increases your ability
to find information.

Figure C.2: Screen Capture of Internet Explorer with Google Toolbar & Javadoc.

Description: Today, Microsoft’s Internet Explorer has by far the greatest share of
web browsers in use. This is the reason why useful add-ons like the Google Tool-
bar, or its counterpart, the Alexa Toolbar1, are not yet available i.e., for Netscape
Navigator. After all, Google announced to port its toolbar to other platforms and
browsers. Among other things, Internet Explorer provides a wide range of features
for the navigation in a world of texts and hyperlinks.

http://www.microsoft.com/ie/

1 http://info.alexa.com/

http://www.microsoft.com/ie/
http://info.alexa.com/

C.2. TOOLS 105

The Google information portal integrates an Internet search engine, active &
archived discussion groups, and a web directory. With the Google Toolbar, all
these services are accessible directly, from within the web browser. Enhanced
features bring real added value, among them are a page ranking, additional page
information like similar pages, pages that link back to that page, or highlighting
and finding occurrences of search terms on the page.

http://toolbar.google.com/

Javadoc is a tool that parses the declarations and documentation comments in a
set of source files, and produces a set of pages in the Hypertext Markup Language
(HTML), describing the classes, inner classes, interfaces, constructors, methods,
and fields - each occurrence of a source code artifact is represented by a hyperlink
to the artifact’s own description.

http://java.sun.com/j2se/javadoc/

Relations: Another lightweight approach for navigation in C and Java source
code by adapting existing tools, isXrefactory2, which is in fact a refactoring brow-
ser for Emacs, with the ability to generate Javadocs and other HTML reports. Lim-
ited to cross-references from C program source code, an alternative program that
produces documentation in LaTeX, HTML, RTF (Rich Text Format) or SGML
(Standard Generalized Markup Language), isCxref3.

Low Entry Barriers: Because web browsers belong to the most frequently used
navigation tools in the world, they are viable candidates to our considerations.
First, no additional installation effort is needed to work with your favorite web
browser, on your favorite machine and platform. Second web browsers are highly
tested and running quite stable, at least at browsing standard HTML. Third, no
extra financial resources are required, since most of the web browsers are free.
Many IDEs support the automatic Javadoc extraction. In many Java projects,
Javadocs have been adopted. Major software developing companies, like Netscape
or Sun Microsystems, refer to reference documentation on their products, in form
of Javadocs, accessible over the Internet, where it is easier to keep them up-to-date.
With the Google Toolbar installed, you can translate a page to your preferred lan-
guage. We appreciate that feature, however translators are still not precise enough,

2http://www.xref.sk/
3http://www.gedanken.demon.co.uk/cxref/

http://toolbar.google.com/
http://java.sun.com/j2se/javadoc/
http://www.xref.sk/
http://www.gedanken.demon.co.uk/cxref/

106 APPENDIX C. STATE-OF-THE-ART TOOLS

to yield useful results. Browsing a Javadoc might even be comfortable for non-
technical people to get an overview of a system, or to look up a certain specifica-
tion detail. Because of the read-only character, the risk to harm source code, is
eliminated.

Completeness: The model is as good as the developers contribute to document
and tag their code. After all, the DocCheck Doclet checks doc comments in source
files and generates a report listing the errors and irregularities it finds. By defining
your own Javadoc Doclets and introducing custom tags, you can theoretically re-
flect all information available about a system in your Javadocs, including paths for
navigation among the pieces of information.

Simplicity: Probably every software developer is familiar with browsing HTML
sites, thus browsing a Javadoc should be easy. No complicated representations or
unfamiliar tool handling requires the formation of new habit. Once a Javadoc is
created, browsing is fast.

Navigation between Tool States: Like at browsing other sites on the Internet,
users can browse a Javadoc - creating bookmarks, inspecting the history of visited
pages, going back and forward, and opening a link in a new window.

Navigation in Graphs: The web can also be represented in graphs. The pages
correspond to nodes, the hyperlinks correspond to edges. The navigation along
edges is one of the primary principles of the web. Internet Explorer provides a
feature“Show Related Links”which asks the Alexa information portal for a list
of related links, and providing other background information about a page like
the number of referring sites, the date of first indexing, and the date of the last
modification. This feature is similar to the “What’s Related” feature in Netscape
Navigator. The Google Toolbar implements additional comfort, e.g., navigation
to the parent directory of a page, listing all indexed pages that have a link on the
current page, and toggle from one occurrence of search terms to the next. A word
or text can be selected, the context menu provides the possibility to turn that di-
rectly over, as search criteria for a new Google search. The context menu above a
hyperlink offers navigation to similar pages, to a cached snapshot of the page, or
to backward links.

Navigation in Object-Oriented Models: Similar to what we state in the para-
graph “Completeness”, the richness of supported navigation depends on the way
of extracting information out of the system and on the way of generating Javadocs.
The default Javadoc parser only regards the most common relations. This first cat-
egory of navigation steps includes package, class, uses, subclasses, super classes,
implementing classes, interface, constructor, fields, inherited fields, field types,
methods, return types, and argument types. Another category of navigation steps

C.2. TOOLS 107

is provided by extra tags, that the programmers have to set at development time.
These include“See Also” sections, in-lined texts, and links to thrown exceptions.
Further optional predefined tags include author, version, information regarding the
version of the Java Developer Kit (JDK) and deprecation.

Efficiency: We believe that Javadoc is a efficient tool to look up implementation
and comments, because it is easy to use and the respond times are very short. The
variety of navigation features provided by the web browser in combination with
detailed references of Javadocs support efficient searching of relevant information.

Feedback: If you want to find out about the navigation behavior, of you want
to additionally annotate what you see in a Javadoc, you must do that externally.
Bookmarks can be set at position of interest, however these will not work as wanted
if browsing with the convenient frame-based view. The same is true for the built-in
page history of the web browser. For linking to further documents or data, you may
also prepare tags, that automatically inline external information while regenerating
a Javadoc. Javadoc itself is a read-only concept. To integrate new information
about the system the model must be changed, and the model is the source code
which has to be modified, re-tagged, or re-commented.

Classification: The highlighting of search terms as they appear on the page helps
to find the relevant text positions. The page ranking makes a statement about the
popularity of a page, in measuring how many other pages are linking to that page,
and how their ranking is, and so forth. Unfortunately, the information portals do
not exactly specify how they compute similarity among pages. However, all above
features for relevance work only if the subject Javadoc was indexed by the infor-
mation portal that provides the toolbar, which is for example the case for Google
and the JDK 1.2 API Documentation4, but usually not in your individual projects.
Based on the Internet Explorer settings for security, privacy, and content, you may
specify additional rules for filtering information.

Complexity Reduction: The frame-based view divides the window in three sec-
tions. The first is listing the packages, another is listing the classes in the selected
package, and the third shows the selected class whatever the users chooses to dis-
play in the main frame. Alternatively a system can be displayed in a frame-less
page, by a big tree view, or by a complete alphabetical index. Javadoc can run with
several parameters for different levels of detail. Once created, it is not possible to
hide and un-hide aspects from a Javadoc. For reducing the complexity no source
code is shown - only method signatures, interfaces and documentation.

4http://java.sun.com/products/jdk/1.2/docs/api/index.html

http://java.sun.com/products/jdk/1.2/docs/api/index.html

108 APPENDIX C. STATE-OF-THE-ART TOOLS

Consistency: A Javadoc is consistent to the source base as long as nobody mod-
ifies the model. To be up to date, a new Javadoc has to be generated after every
change. Consistency in handling is given by use of a standard web browser and
simple HTML pages. The content is not dynamic and thus will be exactly the
same, when revisiting later. The Javadoc can be transferred, it finally consists of
one folder containing a couple of files and sub folders.

Memory: Internet Explorer keeps track of visited pages, the history can be sorted
by date, size, most visited, or order visited today. The bookmarks, or favorites, like
they are called in Microsoft’s jargon, let you additionally set pointers to important
resources that you want to refined directly. Another list that is kept is the list of
search terms.

Storage: A whole Javadoc can be physically stored in an archive file. Javadocs
are typically put on a web server, accessible over the Internet, or in a private net-
work. However, Javadocs can also be stored locally to be able to work offline.

Extensibility: The menus and features of Internet Explorer can be extended by
installing an additional toolbar, providing more navigation features, and access-
ing extra information about pages from an index. Javadocs can be adapted and
extended primarily by two concepts. First, Doclets serve as layout and format tem-
plates, defining how to present which information, similar to Java Server Pages
(JSPs). Javadoc provides default Doclets for the creation of HTML, XML, MIF,
RTF, as well as FrameMaker and PDF documents. Second, custom tags allow the
developers to add new semantics to Javadocs. These custom tags must be consid-
ered in the adapted Doclets, for the Javadoc reader can profit.

C.2. TOOLS 109

C.2.3 Rigi

Application: Rigi is a visual tool for understanding legacy systems, maintained
by the University of Victoria, Canada [WONG 98].

Figure C.3: Screen Capture of Rigi.

Description: Rigi is one of the most traditional reverse engineering platforms,
and has its origin in a PHD thesis dating back to 1986 [M ÜLL 86]. Rigi displays
a system disjointed in graphs of nested boxes, representing containers and arti-
facts of software.Rigireverseis a set of parsers for C, C++, COBOL, and Java.
The artifacts are stored in an underlying repository on aRigiserver. Rigiedit is
the graphical editor which provides editing, manipulation, annotation, hypertext,

110 APPENDIX C. STATE-OF-THE-ART TOOLS

and exploration capabilities. Versions of Rigi are available for Sun SPARCsta-
tions (SunOS), IBM RISC System 6000 (AIX) workstations, and PC-compatible
(Windows 95, Windows NT, Linux 2.x) machines.

http://www.rigi.csc.uvic.ca/

Relations: Rigi software repositories are stored in the Rigi Standard Format
(RSF), RSF is also the standard file format forSHriMP SectionC.2.4- the C to
Java port of Rigi. Graph Exchange Language [WINT 01] (GXL) to RSF converters
are promised to be available in the near future5.

Low Entry Barriers: After installation, clear instructions are provided. Three
illustrative demo tours which guide you through the key features and views. We
soon feel familiar to use Rigi. However, for being able to illustrate own software
projects, more effort is needed. The source has to be parsed to generate the RSF
repository. Since operating not directly on the source code, but on a meta model,
harming any content is not possible. This might give certain users additional safety.

Completeness: At first sight, we did not miss any information about a system.
The number of features is concise, and allows us quickly to display some graphs,
apply layouts, and already collapse some nodes to an container.

Simplicity: Operation with windows, graphs and nodes is intuitive, the names of
the menus entries seem clear. The concept of nested boxes is simple to understand.
Views can be generated showing the dependencies of multiple boxes. To these
graphs, various layouts can be applied to all nodes, or the selected subset of nodes.

Navigation between Tool States: Rigi uses the multi-window interface concept
[STOR 96]. Each window is showing one single view. Double-clicking on a node,
e.g., opens a new window with the detail contents of a clicked node. Diving to a
selection of nodes is possible. Navigation between views is done by changing the
focus from one window to the other. Each window provides scrolling and zooming.
The windows can be cascaded.

Navigation in Graphs: Rigi views consist of boxes (nodes), and directed arcs
(edges). Rigi supports navigation along child nodes, parent nodes, neighbor nodes
in general, or diving to a selection of artifacts. Selections can be made manually or

5http://www.gupro.de/GXL/

http://www.rigi.csc.uvic.ca/
http://www.gupro.de/GXL/

C.2. TOOLS 111

automatically. Automatic ways includeIncoming-, Outcoming Nodes, Forward-,
Reverse Tree, By Attribute..., By Structure..., andBy Name.... Selections can be
complemented. A selection of nodes can be arranged vertically or horizontally.
Beside various simple grids and hierarchical trees, more sophisticated graph layout
algorithms are provided, including spring [GIUS 99], and Sugiyama [SUGI 81].
Nodes can be copied and pasted from one to another view.

Navigation in Object-Oriented Models: A Rigi session starts with a window
showing a top level box which is representing the system under consideration,
double-clicking into it, opens another window showing the classes of the sys-
tem. Double-clicking again on such a class box, open another window showing
the methods and attributes of the corresponding class. The context menu of each
node and each arc, provides ways to open a window for viewing additional struc-
tural information about the source code artifact, and for editing the attributes, the
annotation, or the source (nodes only). Per default, 21 node types are defined,
among themCollapse, System, Release. Procedure, or Module. The 10 prede-
fined arc types areany, call, data, structure, syntactic, block, include, composite,
refractive, andlevel.

Efficiency: For every view it is possible to view a “Window Statistics” which
lists all the nodes and arcs, split by their type. Another predefined report is “Graph
Quality” which gives an overview of the systems composition and encapsulation.
The “Exact Interface” presents the interface of a box. This is helpful if the box is
representing an abstract data type or simply a set of collapsed nodes. For facilitat-
ing reuse, expert users can write scripts in Tcl/Tk using the Rigi Command Library
(RCL).

Feedback: Users may annotate nodes and arcs, for elements from which the sys-
tem does not know the type, the type may be assigned. The artifacts’ attributes’
values can be edited. Also artifacts can be annotated.

Classification: The concept of affinity is applied in spring layout algorithms e.g.,
by takingcallsas a measure for computing the coupling between nodes.

Complexity Reduction: The top down approach of Rigi help a user to start with
one simple single box representing the system, and then slowly dive into the parts
of interest. Interactive view manipulations are helpful for arranging nodes accord-
ing to the current preference. Layouting selections of nodes further help. Renam-
ing nodes can facilitate to recognize the nodes faster, and in a familiar naming
scheme. Nodes are colored according their type. Although this brings additional
information in the same view - it can reduce the complexity. Good layout algo-
rithms can have a great impact on the understandability of a view [STOR 95a].
They help us to arrange nodes in a concise way, with respect to their affinity. With

112 APPENDIX C. STATE-OF-THE-ART TOOLS

the multi-window interface concept, the concurrently displayed information per
window usually keeps manageable. Collapsing nodes and creating components or
abstract data types can further reduce the complexity, by modularizing a system.
Finally, filtering information according to the type, or hiding a specific selection of
elements can ease understanding by reducing the amount of displayed information.

Memory: Source code artifacts can be edited. Its attributes values can be set,
and they can be annotated. This information is memorized by the system. If a view
is considered to be useful, it can be left in that window, and a new windows can be
opened to further process the same graph.

Storage: The complete system is stored in graphs. These graphs are stored in
RSF files. Graphs can be loaded and saved. Additionally you can save and load
single views. Reports, annotations, and statistics are stored in text files.

Extensibility: The domain model specifies the entity types and relationships of
interest. A certain set is predefined, however this means you can define also your
own semantics, as long as your semantic is conform to RSF graphs. With the Rigi
Command Library (RCL) users can define and automate common operations on
graphs. The scripts are be written in Tcl/Tk. In fact such scripts are also the way
how Rigi itself controls the underlying repository and how it creates the nice views
of the demos. With the RCL, you have access to the complete functionality of Rigi.
Even the adaption and creation of new widgets is possible.

C.2. TOOLS 113

C.2.4 SHriMP

Application: SHriMP (Simple Hierarchical Multi-Perspective) is an Interactive
and Customizable Environment for Software Exploration, developed at the Univer-
sity of Victoria, Canada [STOR 95b]

Figure C.4: Screen Capture of SHriMP.

Description: The SHriMP visualization technique was originally designed to en-
hance how programmers understand programs. The research tool presents a nested
graph view of a software architecture. Program source code and documentation are
presented by embedding marked up text fragments within the nodes of the nested
graph. Finer connections among these fragments are represented by a network that
is navigated using a hypertext link-following metaphor. SHriMP combines this
hypertext metaphor with animated panning and zooming motions over the nested
graph to provide continuous orientation and contextual cues for the user. As infor-
mation model, SHriMP uses the Rigi Standard Format (RSF) which comes from

114 APPENDIX C. STATE-OF-THE-ART TOOLS

the reverse engineering toolRigi, described in SectionC.2.3. SHriMP is platform
independent, and based on Java version 1.3.

http://www.csr.uvic.ca/shrimpviews/

Relations: SHriMP has been integrated with theIBM Websphere Studio Work-
benchwhich was open-sourced toEclipse, as described in SectionC.2.1. In this
integration, SHriMP has been customized and re-targeted for visualizing ”flow dia-
grams”. Flow diagrams are e.g., used in an eBusiness project to model the dynamic
aspects of a system, such as the main activities and the movement of information
in a business process [RAYS 01].

Jambalayais the keyword to describe a project to integrate SHriMP with the
Protéǵe tool, developed at Stanford University [NOY 00]. Protéǵe is a general-
purpose knowledge based tool which allows domain experts to build knowledge-
based systems by creating and modifying reusable ontologies and problem-solving
methods. This collaboration will result in an environment for acquiring and brows-
ing knowledge pertinent for cancer clinical trials and other applications [NOY 01].

Jazzis a open source graphical framework for Java, developed by the Univer-
sity of Maryland [BEDE 00]. SHriMP currently supports animated panning and
zooming, usingJazz.

The providedJava Extractorrelies on combining the results of tools created by
third parties. It brings together the data that is extracted byJavaRE, Javasrc, and
Javadocthrough theRigiConverttool and generates RSF.JavaRE - Java Round
trip Engineeringis an open source toolkit for round trip engineering by Anders-
son6. Javasrc - HTML Java Cross Referenceis a tool that parses plain source code
to generate HTML’ized source code7. Javadocis described in (SectionC.2.2).

Low Entry Barriers: To get a first impression on how to use SHriMP, the prod-
uct web site provides a short introduction, some user scenarios, and even example
videos of two exploring sessions. After downloading, the provided installer does
his work. At launching the program, the screen gets tiled by three windows, and
a fourth popup window explaining the controls. Beside the main window showing
the content, the other two windows are for explaining the colors, and to configure
the visibility of the types. One window for the node types, the other window for

6http://javare.sourceforge.net/index.php
7http://home.austin.rr.com/kjohnston/javasrc.htm

http://www.csr.uvic.ca/shrimpviews/
http://javare.sourceforge.net/index.php
http://home.austin.rr.com/kjohnston/javasrc.htm

C.2. TOOLS 115

the edge types. Help is available in the menu, linking to a brief manual provided
on the project’s web site. The main menu offers four demo models for exploration.
The safety of the content is guaranteed, since work is only done on meta model.
For exploring the own projects source code, the extractors must create the models
first. A offline manual for theJava Extractoris provided.

Completeness: SHriMP uses the Rigi Standard Format (RSF) model and parsers.
The Java Extractornot only parses the necessary structural information, but au-
tomatically includes also references to the HTML files produced byJavasrcand
Javadoc. This allows SHriMP to present hyper-linked source code in the boxes of
its views, along which again navigation is possible.

Simplicity: In contrast to the multi-window approach ofRigi, SHriMP is the
code name for its own approach:Simple Hierarchical Multi-Perspective. Stud-
ies for evaluating these two contrasting interfaces resulted in the awareness that
both of them have advantages and disadvantages. Ideal was including the ability
to seamlessly switch between the two interfaces [STOR 96]. SHriMP presents a
system similar toRigi in nested boxes whereas diving and popping is implemented
as animated zooming in always the same view pane. Once having understood the
controls, it is easy to explore a system. The possibility to quickly zoom-out helps
in keeping the overview, also when navigating from one node to another node, the
interfaces animates this “journey” by first zooming-out, and then zooming-in again
to the specific position. Operations are done with the mouse or over the menus. A
Hotboxis provided that similar to a TV remote offers the most frequent commands
in a pop-up window. The additional windowNavigation Viewshows the overall
picture of objects and the current position, optionally with Sugiyama or Radial
layout.

Navigation between Tool States: SHriMP provides ways to navigate between
tool states in form ofBack, Forward, andHome. These steps are based on modifi-
cations in view, layout, or scale, but not on manipulations like a changed selection,
a moved object, or applied filters. Double-clicking a box opens or closes its inter-
nals. Right-mouse-button-clicking is used to zoom-in, if SHIFT key is pressed, to
zoom-out. The tree modes for zooming areZoomwhich is pure step-less zooming;
Magnifywhich zooms to the selected box to optimally fill the window; andFisheye
[FURN 86] which keeps the current point of view and only enlarges or minimizes
the size of the selected box. A search utility provides the possibility to find boxes
according to their name and their type. Regular expressions are accepted as search
terms. Interesting views can be added toFilmstrips. Boxes can be copied, cut, and
pasted.

Navigation in Graphs: References of boxes in the widgets of other boxes are
represented as hyperlinks. These widgets are hypertext documents in the case of

116 APPENDIX C. STATE-OF-THE-ART TOOLS

the boxes are representing source code, but can be different widgets in the case of
e.g., a clinical information system about Diabetes. Navigation along arcs (edges) is
possible manually, by following the “arrow”. Sub boxes of a box can be arranged
with the help of four layout algorithms. First by a grid layout, sorting by number
of children, by number of relationships; by type of node, or in alphabetical order;
second, by a radial layout; third, by a parameterizable spring layout [GIUS 99];
and fourth by Sugiyama trees [SUGI 81].

Navigation in Object-Oriented Models: Since the widgets in “leaf boxes” are
Javadocs, as presented in SectionC.2.2, the semantic navigation along references
is once the same as for Javadocs. The structure of a system is modeled with the
concept of nested boxes, that can be navigated as described above. Independent
from the currently displayed level of detail of a box, the arcs are pointing to boxes
with related information. The nodes types in a sample Java project includeClass,
Interface, Global Variable, or Method. The interconnecting arcs includeaccess,
call, extends, or inFile.

Efficiency: Once familiar with the controls of SHriMP, it is possible to fast
browsing a system, and jumping from one view to the other. Thanks to theBack
button, a short drift into a blind alley is usually not a big loss of time. The possi-
bility of recordingFilmstripshelps in relocating previous points of interest.

Feedback: Nodes can be annotated, and the attributes can be edited. The views
can be interactively manipulated, boxes can be moved to the desired position.

Classification: An explicit rating is made by the user, when adding a view to the
Filmstrip. This means that the users thinks he can use this view at a later time of
moment to get some information. The spring layout considers connecting arcs to
measure the proximity of nodes.

Complexity Reduction: By interactively manipulating a system, opening and
closing boxes, and by magnifying and displaying them in the right format, can
result in expressive views. Information of a certain kind can be hidden by filtering.
The Navigation Viewpresents an overview of hidden and not hidden parts of the
system in different ways, as described in the paragraph about simplicity. Layouts
like the spring can help to identify logical coupling in contrast to the physical
coupling of source code artifacts, based on which SHriMP initially splits a system.

Memory: SHriMP keeps the complete information about a subject system in a
Project. A project contains the RSF graph including the user’s annotations, and
it contains the whole “sessions” of views, which the users has created. Finally a
project contains also theFilmstrip, a collection of views, that the users considered
like a kind of bookmarks.

C.2. TOOLS 117

Storage: Single views can be saved and reloaded later. Views can be used for fur-
ther computation as JPG images.Filmstripscan also be saved and loaded. Finally
whole projects can be saved and loaded.

Extensibility: SHriMP can be extended on various levels. First, the RSF model
allows defining new semantics. Second, theJava Extractorcan be customized
to generate models of different levels of detail. Third, the user interface can be
extended with new widgets displayed in the leaf boxes.

118 APPENDIX C. STATE-OF-THE-ART TOOLS

C.2.5 Small Worlds

Application: Small Worlds is a commercial application for analyzing and visu-
alizing large-scale software, developed by the Information Laboratory.

Figure C.5: Screen Capture of Small Worlds.

Description: Small Worlds is a tool for visually analyzing programs source. It
provides a visual explorer and tools for checking global and local dependencies
- for Java and C++. The Desktop is partitioned intoleft areaandcentral area.
The left area contains navigation controls, which allow users to browse through the
views present in the central area. Both areas host tab-based views. The individ-
ual tabsare like plug-ins. Three versions of Small Worlds are created in response
to their suggestions and inquiries. TheBasic Editionincludesexplorerandanal-
ysis tabs, it is oriented towards individual developers working on small projects.
TheProfessional Editioncomes with, among other tabs,SkeletonandWhat-If; it
is geared towards engineers and senior programmers. TheEnterprise Editionin-

C.2. TOOLS 119

cludes tabs for managers,Reports, Charts, Statistics, Diff, Change Planning, et
cetera. Small Worlds is available for Microsoft Windows, for Sun Solaris, and for
the Linux platform.

http://www.thesmallworlds.com/

Relations: Recently a module for the integration into Sun Microsystems’ Forte
for Java Integrated Development Environment (IDE) has been released.

Information Laboratory announced that it will add C#, C, and Visual Basic
support to its Small Worlds, and finally the application will be able to cope with
relational databases, tracking and analyzing the dependencies among all database
objects, tables, views, and stored procedures.

Low Entry Barriers: Small Worlds promises reduced learning curve for new
team members, a simplification of the knowledge transfer process, the ability to
identify potentially problematic parts of the system by showing bird-eye views
of your software. We believe that this can be true. An online tutorial guides you
through the main tabs of the system and shows the tool in action. After having seen
this tutorial you should know enough to start the tool and run an example analysis.
In the user guide in the Portable Document Format (PDF), all relevant features
and concepts are explained. The help menu links to additional information about
MetricsandMathematical Formulas. There is anApplication Guideshowing the
installedtabsand giving instructions on how to use, and there is a entryNotations
that links to a documentation of utilized graphs, figures, and symbols.

Completeness: Small Worlds integrates a lot of tools in one application. The
navigation area on the left hosts the toolsTree, Groups History, Find, Missing,
Diagrams, andInheritance. The view area in the center hosts the toolsExplorer,
Local Dependencies, Global Dependencies, Skeleton, What-If, Summary, Depen-
dencies, Statistics, Intelli-Change, Paths, Group Analysis, andDiff. We discuss the
functionality of the individual tools along the concerns they address.

Simplicity: At first sight the application looks complicated. However, this is
because Small Worlds integrates many powerful tools into one application. Each
individual tool is simple and intuitive to use. Though, time is needed for learning
to understand the views with the utilized colors or metrics.

http://www.thesmallworlds.com/

120 APPENDIX C. STATE-OF-THE-ART TOOLS

Navigation between Tool States: The possibilities of navigation between tool
states differ, according to the currently used tab. In theExploreryou can navigate
through your system. It supports goingBackandForward in the list of visited ele-
ments which is simultaneously maintained by theHistorynavigation tab.Zooming
is also possible, like in theSkeletonandWhat-If tabs. The skeleton tab arranges
the system’s components in a grid, with the most independent components on the
bottom. The skeleton tab can help to gain insights into the specific stability issues.
The what-if tab visually displays the impact of potential changes.

Navigation in Graphs: A variety of views provide graphical representations of
groups of elements, connected by relations. In the explorer and in the what-if tab,
classes are shown and connected by various kinds of dependencies.

Navigation in Object-Oriented Models: Small Worlds basically supports navi-
gation along classes, dependent classes, interfaces, packages, groups, components
and APIs. It shows the classes’ method signatures, but not the source. Neither nav-
igation was possible on method level, though the information must be there, since
it is used by the tool to make the impact analysis.

Efficiency: In the detail tab presented at the bottom of the central area, detailed
information about the currently selected elements can automatically be displayed.
Most of the views can directly be saved as images. The predefined charts and statis-
tics provide a step towards a structured reverse engineering process. Additional
tools can help you to automate your tasks.Diff is used to compare old and new
snapshots of your applications.Intelli-Changedetermines the best change order
and parallel step changes when you need to modify components in your system in
the fastest possible way.Pathslets you determine from two particular components
whether they are connected or not.

Feedback: Small Worlds is a read only analysis instrument, without the possi-
bility to enter any additional information.

Classification: A concept of dependency is used to determine the impact of
changes which is quantified by itsweight. The lists of dependent components can
be sorted according to theirtype, name or weight. Types includeUses, Belongs To
Group, andExtends, thus the traditional relations between object-oriented source
code artifacts.

Complexity Reduction: In the explorer view theDegrees of Separationcan be
set. This defines the level of detail of the current consideration and the depth for
searching dependencies. Different types of components and relations have different
colors and shapes. Like that they are easily recognizable. Predefined charts like the
Distribution of Local Dependentshelp to identify further anomalies in components.

C.2. TOOLS 121

Predefined reports lead to complexity-reduced statements like “The overall stability
of the system is 90%”. We believe that such statements are meant to be considered
as a relative value to be compared to other systems measured by the same tool,
or the same system in another version to analyze the evolution. The menu entry
Reportprovides additional short-cuts to several predefined dependency analysis
reports. Finally, theGroup Analysiscan help in understanding the logical and
physical organization of components.

Consistency: Before a change is made it can be simulated by the what-if tool.
The results of the impact analysis is visually represented. Additionally lists of
dependent components are created which can be exported in HTML format. A
small Navigatorchild window is available for the explorer, skeleton, and what-if
tabs. This navigator child window shows a tiny overview of the closure of the
graph displayed in the center area.

Memory: A history of selected components is kept. Navigation along this list is
possible. A list of recent projects is kept.

Storage: Charts, Statistics, andSummaryare tabs that can be saved in HTML
format. The statistics include numbers or percentages likeNumber of Components,
or Clustering. The summary is a detailed report about the system and its character-
istics. All the views can directly be saved as pictures. The data sets in form of table
in the tabsGlobal Dependencies, andLocal Dependenciescan be saved in HTML
format.

Extensibility: Controls and tabs can be hidden or shown. The subareas of the
application can be masked.

122 APPENDIX C. STATE-OF-THE-ART TOOLS

C.2.6 TheBrain

Application: TheBrain is a commercial tool for managing information by visu-
ally organizing resources and relations. It is developed by The Brain Technologies.

Figure C.6: Screen Capture of PersonalBrain.

Description: The visible area of abrain is called theplex, a collection of closely
relatedthoughts. In the topic map terminology, a thought is a topic. Theactive
thoughtis positioned at the center of the plex. Thoughts are connected byrelations.
Relations are equivalent to the topic map concept of associations. Related thoughts
are linked visually through edges that end in one of the three circles around the
active thought, calledgates. Zonesare areas in the plex devoted to specific rela-
tionships of the active thought. There are four zones: theparent zoneabove the
active thought, thechild zonebelow it, thejump zoneto its left, and thesibling zone
to its right. To activate a thought, a mouse click on the thought is needed. Thoughts
can have occurrences in form of links to documents, to web sites, or to any other
piece of resource. Such occurrences are called thecontentof a thought. The Brain

C.2. TOOLS 123

is available in different editions:BrainEKP is an enterprise knowledge platform
for connecting and navigating multiple information systems across departments.
PersonalBrainis the edition we tested, running on Microsoft Windows platforms.
SiteBrainis a Java applet with theplex user interface paradigm of PersonalBrain
for web site navigation.

http://www.thebrain.com/

Relations: WebBrainis a web site that lets you search the web visually. The
information pool behindWebBrainis the Resource Description Framework (RDF)
directory, maintained by theOpen Directory Project8.

BrainSDKis the Software Developer Kit (SDK) based on Java version 1.1 that
enables partners to embed TheBrain interface and visualization capabilities in other
applications. With this SDK, also bridges can be built to standard topic maps (Sec-
tion 2.1) and repositories in other meta data formats.

Low Entry Barriers: TheBrain provides a simple and intuitive user interface.
When visiting the product web site, you already useSiteBrainwhen navigating the
site. Five online tutorials demonstrate the key features in action. A glossary is
presented in case of confusion about the names and concepts. Alternatively to the
Flash tutorials, a user guide in PDF can be downloaded. After the simple installa-
tion also a integrated help is available.Hints and aTip of the Day...further help to
learn more about the tool. AGetting Started Wizardguides you to define your own
brain, collecting information about your family, friends, hobbies et cetera. Once
you have created such a brain about a domain which you know very well, you
quickly learn how to use the tool.

Completeness: TheBrain is primarily a user interface, a navigation tool for many
different kinds of models. Among the models is the World Wide Web /WWW), the
file structure of your hard disk, or other models of knowledge that evolve when
you create your thoughts and relations. The features for navigation are concise and
clear.

Simplicity: After having seen the tutorial, it is easy to work with the tool. The
concepts for operating the tool are intuitive, and the representation of information
is simple and consistent. The four types of relationships are easy to understand and
remember. Searching thoughts in an alphabetical list or in the history list works
like users are used to.

8http://dmoz.org/

http://www.thebrain.com/
http://dmoz.org/

124 APPENDIX C. STATE-OF-THE-ART TOOLS

Navigation between Tool States: A tool state in TheBrain is characterized by the
currently active thought. Navigation along the history of active thoughts is possible
in two ways. First, goingHome, BackandForward in the list. Second, by selecting
a past active thought in theHistory. UndoandRedoof most actions like rename,
or forget a thought is possible. Another feature of TheBrain isWanderwhich plays
a filmstrip of wandering along the path of previously activated thoughts.

Navigation in Graphs: The plex of TheBrain always displays an active thought,
and related thoughts connected by relations. Since the relations are grouped and
arranged according to the type of relation to the active thought, navigation is pri-
marily done by series of activating thoughts and related thoughts.

Navigation in Object-Oriented Models: We prototypically created a brain with
some example thoughts representing source code artifacts. At the first sight it
seemed to be possible to represent a whole reverse engineered system in TheBrain.
The mapping from the object space to TheBrain’s data model which is a propri-
etary form of topic maps (Section2.1). However, effort would be needed to write a
bridge from a specific meta model to TheBrain. As far as we could see, one thought
can only have a maximum of one occurrence. This would set certain limits, espe-
cially in the context of meta meta modeling. Another form of navigation that goes
beyond the scope of TheBrain is the featureSearch Web...which takes the name
of the active thought as the search term for a directory or search engine within a
configurable set. Although, the results of such a search are presented in the web
browser. By dragging the mouse from a thought to the web browser, a relation is
created that links to the specific Uniform Resource Locator (URL).

Efficiency: TheBrain can be configured for different ways of arranging its child
windowsNotes, Search, History, andProperties. These windows can be docked,
or floating. They can be attached to each other, or divided. Depending on your
preferences you can display detailed information about the active thought in the
corresponding child windows. If you find the way from one thought to another
to be too long, you can get an abbreviation by creating a direct relation between
two thoughts. Several utilities help for example in the case when you want to
publish a local brain on the Internet. Among them areConvert Files into Shortcuts,
Convert Shortcuts into URLs, Convert URLs into Shortcuts, andConvert Search
and Replace URLs. Folders and files can be imported automatically in form of
links to the corresponding items. A parser forNetscapebookmark files is also
provided.

Feedback: TheBrain automatically tracks and logs the activations of thoughts.
Thoughts can be annotated and renamed. By connecting thoughts to resources,
their content type is made explicit. Thoughts can be classified to certain criteria, as
described in the next item.

C.2. TOOLS 125

Classification: The content typeof a thought is the type of resource of its oc-
currence. There are predefined types, e.g., the file types of your operating system,
but also folders and URLs. Relations are classified in the four typesParent, Child,
Jump,andSibling. In the history list, thoughts are sorted according therelative
length of time they were active. This value is illustrated by a bar chart. Thisin-
tensityis used as a measure for sorting the thoughts according to their speculated
importance. Thoughts can be keptprivateor public. Additionally this scope can
be made variable by rules takingbefore, or after, and a certaindateas arguments.
Before thoughts are deleted, they can be set toforgotten.

Complexity Reduction: Forgotten thoughts can be hidden or shown. In the
search field, auto completion helps you in pre-selecting lists of pattern matching
thoughts. An advanced search tool allows searching for strings in names, key-
words, notes and content. Alternatively the alphabetical list of all thoughts can
be considered, or filtered by type of content and some predefined more complex
types. Among the latter areRelated Thoughts, taking the number of generations
as argument;Parentless Thoughts, Forgotten Thoughts, or Invalid Web Links. The
history can be filtered by time of lastModification, Creation,or Activation.

Consistency: The layout for thoughts is consistent according to their type to the
active thought. The history remembers where you are, and lets you find back. Undo
mechanisms provide a way to reject actions with unintended effects.

Memory: Pinsare bookmarks that can be put at the upper area of the plex. The
list of the most recent thoughts, calledPast Thought List, is presented at the bottom
area of the plex. Additionally you can switch the whole context by selecting an item
in the list of Recentbrains. As mentioned before, a history of actions and active
thoughts is kept.

Storage: One particular brain consists of a project file plus a folder with the
corresponding resources. A plex can be printed. Brains can be published to the
Internet, and thus shared with other people. Conversely brains of other people can
be imported to increase your knowledge pool.

Extensibility: Content types can be added and self-defined. The animation of
the user interface can be customized by several parameters. The effect for double-
clicks with the mouse can be changed. Additional third party directories and search
engines can be accessed via theSearch Web...feature. Advanced extensions need
the SDK to be used.

126 APPENDIX C. STATE-OF-THE-ART TOOLS

C.2.7 Together

Application: Together ControlCenter is a class modeling and programming en-
vironment, keeping source and model diagrams in sync. It is a commercial product
developed by TogetherSoft.

Figure C.7: Screen Capture of Together ControlCenter.

Description: Together is a communication link among analysts, designers, de-
velopers, and programmers. The design can visually be modeled in the Unified
Modeling Language (UML). Together includes a complete IDE, a graphical user
interface builder, a testing framework module, and a debugger. The work is or-
ganized inprojects. Each project can be viewed by severalworkspaceswhich are
pre-definitions for arranging the variouspanes. The main five panes areExplorer
pane, Designer pane, Inspector pane, Editor pane, andMessage pane. Together
supports four basicroles: Business Modeler– diagram editor central; minimal

C.2. TOOLS 127

menus for simplicity’s sake.Designer– diagram and text editor central; every-
thing up to the point of compilation.Developer– diagram and text editor central;
compile, debug, assemble, deploy, and run.Programmer– text editor central; com-
pile, debug, assemble, deploy, and run. The supported programming languages are
Java, C++, IDL, Visual Basic, and C#. Versions are available for many platforms
like Microsoft Windows, Sun Solaris, Linux, Hewlett-Packard HP-UX, and Com-
paq Tru64 UNIX.

http://www.togethersoft.com/

Relations: The Together Communityis a virtual gathering place for Together
users to post a question, read other users’ postings, search for useful information,
and make your owncontribution. The contributions are downloadable from cat-
egories likePatterns, Modules/Plugins, or Configs. Special interest forums exist,
e.g., for UML, OO Design, WebServices or Java.

Together supportsCVS and ClearCaseas Version Control Systems (VCS).
Other generic VCSs can be configured.

Low Entry Barriers: While downloading the 70 MB installation files, there is
time to visit thePractical Guide to Getting Started with Together ControlCenter
which is an online tutorial, concisely guiding through the concepts and features
of the application. After the installation, the tool starts up with aTip of the Day
window. A wizard is provided to setup e.g., the initial role, to select an example
project, or to create a new one. Additional information is accessible in theUser
Guide in PDF, or by theContext Helpavailable from an entry in the applications
help menu.

Completeness: Together is a tool that supports tasks from modeling to deploy-
ment. With the integrated designer you create UML diagrams. The design is im-
plemented, test-run and debugged by the IDE which also supports twelve standard
refactorings. The code is tested by the testing framework, and finally deployed -
all from within one application. AJavadoc-like (SectionC.2.2) HTML documen-
tation can be generated in addition to the verbose design reports in PDF. There is
automation support for various audits. More than fifty different metrics can be run
over the project. A query-based search with regular expressions helps you to find
diagrams and artifacts. The deployment of projects as Enterprise Java Beans (EJB)
or as WebServices is possible. To setup and configure a database, theDBMS Server
Connectionadmin tool is available.

http://www.togethersoft.com/

128 APPENDIX C. STATE-OF-THE-ART TOOLS

Simplicity: Since the model and code are always in sync, no tedious and error
prone tracking of changes is necessary. For the different roles of project members,
different predefined workspaces are provided, hiding less important information,
and showing what is important to that specific role.

Navigation between Tool States: Selecting a certain workspace is the short-
est way to a configuration for arranging panes on a desktop. The predefined
workspaces areCodingWorkspace, DesignWorkspace, andDebugWorkspace. In
the designer pane zooming is possible. A history is kept for being able to jump
back and forward in the list of previously selected artifacts. Bookmarks can be set
in the source code.UndoandRedoof changes is supported.

Navigation in Graphs: In the designer pane, navigation along arrows of UML
diagrams is possible, which stand forGeneralizations, Implementations, general
Associations, stateTransitionset cetera ([FOWL 97]). Selecting an element in the
explorer pane shows its diagram and source in the designer and editor panes. Con-
versely, when you create a new file in your project (source code or diagram), it
shows up in the explorer pane. Additionally navigation from a diagram to its par-
ent diagram is possible.

Navigation in Object-Oriented Models: Besides the graphical navigation in the
diagrams and the ability of selecting artifacts from within the tree view in the ex-
plorer pane, the featureBrowse Symbolsearches for all occurrences of a given
symbol in the system. With the current focus on a method, navigation to the super
method is possible. Often used blocks of source code can be declared assnip-
pets. There are several default snippets for common constructs in each supported
language:if, for, while, et cetera. Jumping from one snippet to the next is pos-
sible. The menu entryOverride/Implement Methodopens a wizard for creating a
new method in another class.Show AncestorsandShow Descendants, performed
on a class displays the hierarchy of the current class with its superclasses, or sub-
classes respectively. the same menu entries, performed on a method show overrid-
den methods, or extenders. Additionally, theImplementing Classescan be found
for a certain method. The explorer pane shows the project and its elements. The
provided tabs areDirectory, Model, Servers, Favorites, Diagram, Components,
Modules, Xplorer, UIBuilder,andTesting. By selecting elements in the naviga-
tion pane, the diagram pane shows the corresponding diagrams, and vice versa. In
the editor pane, code artifacts can be selected. TheSelect in Diagramcommand
searches for an appropriate UML diagram, where it automatically selects the given
artifact. Conversely by selecting methods or classes in a UML diagram shows
the corresponding source in the editor pane.Search for Usagesprovides another
mechanism for navigating along related artifacts. In hyper linking to internal or
external artifacts and information, linking any diagram or element to any external
document, Uniform Resource Locator (URL), or any other element in the project

C.2. TOOLS 129

is possible. Hyperlinks are automatically generated from diagrams or elements to
the HTML documentation.

Efficiency: While modeling a system in UML, the structural code for the corre-
sponding classes, methods, and attributes is automatically generated. Bookmarks,
auto completion, syntax highlighting, tool tips for method signatures and parameter
types, as well as automatic source code formatting further increase the productivity
in writing programs.Surround With... [a certain snippet])saves time of writing
and minimizes misspelled words and other syntax errors in the source code.Com-
ment and Uncommentof passages in the source code is possible.

Feedback: The continuous feedback of changes in the source to update diagrams
and vice versa is performed in the background. While changing the code, the sys-
tem automatically parses the new source and displays warnings or errors. Book-
marks can be defined, and managed globally.

Classification: A first classification of what the user sees and what is hidden is
to specify the role of the current user. Additionally the various workspaces are an
instrument to switch between configurations for arranging the panes according to a
specific task. In the designer pane, types (class, method) and kinds (public, private)
of artifacts can be shown or hidden. In the editor, a number of lines, a method’s
implementation, or comments can be collapsed or expanded.

Complexity Reduction: Depending on the current task information can be hid-
den or emphasized. Switching between diagram and source mode can help to have
the currently appropriate style of displaying information in a way that it is easier
to understand.

Consistency: The model and source code are always in sync. After changing the
focus from one class to another, the source is compiled and saved. Soon, the use
of a VCS can be an advantage, to be able to undo unwanted changes, since there
is no extra action necessary to save a new version of a Java class. TheDiagram
Overviewshows a small window with all the current diagrams in the designer and
displays a black shadow for the visible area.

Memory: Workspaces save the current positions of panes on your desktop. On
closing Together the current workspace is memorized and opened again on the next
start up. The system keeps lists ofRecent Files, andRecent Projects. A history
remembers the visited artifacts in a system.

Storage: A project can be exported to XML Metadata Interchange (XMI) files.
The whole design can be printed as a design report including thePackage Require-
ments, Activity Diagrams, Use Case Diagramswith notes and hyperlinks, orState

130 APPENDIX C. STATE-OF-THE-ART TOOLS

Diagrams. The source can be documented in HTML. Single diagrams can be saved
as images, or printed. All reports can alternatively be printed to a file in PDF.

Extensibility: Import Model from XMI File, Import J2EE Archive, and Import
Database Schemaare predefined automation features for importing external data.
Besides of customizing the reports, many feature of the panes and tools can be cus-
tomized. For further extensions and adaptations to third party tools the Application
Programming Interface (API) of Together has to be used. It is fully described in a
HTML documentation.

C.2. TOOLS 131

C.2.8 Additional Features

Since we could not discuss all the interesting tools we know or had a look at, we
present here some additional outstanding features separately.

• 3D Views.For creating multi-purpose 3D views, we suggest usingVisualize
it! . It produces the nicest and most colorful visualizations.

• 3D Animation. The only tool we have seen that generates animated 3D
views isImagix.

• Refactoring. In the category of IDEs and round trip engineering tools the
number of supported refactorings increases steadily. An outstanding big
number of refactorings is provided byIntelliJ IDEA .

132 APPENDIX C. STATE-OF-THE-ART TOOLS

C.3 Summary

The simplest navigation features areBack, Forward, and a concept for hyperlinks.
These features are available in every Internet browsers and finally begin to get also
a matter of course in source code and graph browsing tools.Undo andRedoof
actions is important for the consistency in a tool, however it is first often complex
to reason about what exactly the original action was, and second it is hard to find
the reversal of many actions. All of the tools help in reducing the complexity. Still,
navigation along semantically related artifacts is often complicated.

In the category of IDEs we observe a trend towards broad refactoring support.
A prerequisite to refactorings is to gather the structural information, and building
up a complete parse tree. This has first be done in the VisualWorks Refactoring
Browser developed by Brant from the University of Illinois at Urbana-Champaign,
USA. The features are now adapted by major IDE manufacturers, fortunately they
are becoming a matter of course. The implication of refactoring support is, that all
the necessary structural information is available also for navigation along.

UML modelers and round trip engineering tools provide ways of generating
source code from graphical representations and vice versa. With the latter they
also provide some sort of reverse engineering features. We conclude that more and
more reverse engineering features are integrated into forward engineering tools.
The categories slowly melt. Good development environments of the future support
the complete software lifecycle of reengineering / maintenance - forward and re-
verse engineering.

We present an overview of the discussed tools and their features in TableC.7.

Legend for TableC.7
	 Not supported / missing - Insufficient
∼ Supported with reservations - Sufficient√

Satisfactorily supported, implemented, available - Good
N/A Not Applicable or Unknown

C.3. SUMMARY 133

C
on

ce
rn

Paradigm E
cl

ip
se

Ja
va

do
c

R
ig

i

S
H

riM
P

S
m

al
lW

or
ld

s

T
he

B
ra

in

To
ge

th
er

1. Clear Benefit
√ √ √ √ √ √ √

Installation Support
√ √ √ √ √ √ √

Habitual Look & Feel
√ √

∼ ∼
√ √ √

Demo 	 	
√ √ √ √

	
Assistants & Wizards

√
N/A N/A N/A 	

√ √

Help
√ √ √ √ √ √ √

Safety
√ √ √ √ √ √

∼
2. Complete Model

√
∼ ∼ ∼ ∼ ∼

√

Appropriate Features ∼ ∼ ∼ ∼ ∼ ∼ ∼
3. Simple Operation 	

√
∼ ∼ 	

√
	

Simple Views 	 	
√ √

∼
√

	
4. Tool State History

√
∼

√ √ √ √
∼

Manipulate Tool States
√ √ √ √ √ √ √

Actions History
√

	 	 	 	
√ √

5. Neighborhood 	 	
√ √ √ √ √

Hyperlinks ∼
√ √ √

∼
√ √

Graph Layouts 	 	
√ √

∼
√

∼
6. Semantic Navigation

√ √ √ √ √ √ √

Affinity 	 ∼
√ √ √ √

∼
7. Pushing Information

√ √
	 	

√ √ √

Pulling Information
√

	
√ √ √

∼
√

Near Features ∼ ∼ ∼ ∼ ∼ ∼ ∼
Automation

√
	

√
∼ 	 	

√

8. Manual Feedback
√

	 ∼ ∼ ∼ ∼
√

Automatic Feedback
√

	 	 	 	 	
√

Round Trip Engineering 	 	 	 	 	 	
√

9. Explicit Classification
√

	
√ √ √ √ √

Implicit Classification 	 	 ∼ ∼ ∼ 	 	
10. Meaningful Representations ∼ ∼

√ √ √ √ √

Reducing Volume ∼ 	
√ √ √ √ √

11. Geographical Consistency N/A N/A
√ √ √ √ √

Overview N/A N/A
√ √ √

	
√

Consistent User Interface
√ √

∼ ∼ ∼
√ √

Consistent Content and State
√ √ √ √ √ √

∼
12. Recovery

√ √ √ √ √ √ √

Model Enrichment
√

	
√ √

	
√ √

Team Support
√ √

N/A N/A N/A
√ √

13. Safety
√

N/A
√ √

	
√ √

Exchangeability
√

N/A
√ √

	 ∼
√

Reports
√

N/A 	 ∼
√

	
√

14. Extend Model
√

	
√ √

	 	 	
Extend Tool

√
	 ∼ ∼ 	 	 	

New Concerns
√

	 ∼ ∼ 	 	 	
Customizable Export

√
	 	 	 	 	 ∼

Table C.7: State-of-the-Art Features Overview.

Appendix D

MooseNavigator Implementation

We introduced the features ofMooseNavigatorin Section5.2. This appendix is
about the implementation details.

MooseNavigatoris written in Smalltalk using the VisualWorks 3.0 / ENVY
4.0. Subclassing, extending and overriding the base classes ofCodeCrawleris a
flexible customizing procedure for creating prototypes, without embellishing the
core application or endanger the core to harm in any form. This is what we did
in the development ofMooseNavigator. See AppendixA for more details about
Moose, andCodeCrawler.

The multiple windows interface follows the Model-View-Controller (MVC)
paradigm, where the sub windows register themselves in the dependents list of the
parent application. Doing this they automatically become receiver of update noti-
fications.

A description of some important classes of the application follows:

CodeCrawler subclass: #MooseNavigator
instanceVariableNames: ’toolBar systemOverviewer

descriptionViewer previouslyVisitedNode previouslyVisitedEdge
sessionViewer logProcess’

MooseNavigatoris the main window and central class of the system. Technically
it is a subclass ofCodeCrawler. toolBar holds the button pane, where actions to
the session are passed down to the model, and filtering and zooming actions are
directly performed on the current view. Search is in fact diving to the model sub-
set which conforms to a given block, printing creates a postscript file of the cur-
rent view. systemOverviewer, descriptionViewer, and sessionViewerhold the sub
windows. previouslyVisitedNode and previouslyVisitedEdgehelp for remember-
ing the focus and when it changes. InlogProcesswe keep a separate process that

134

135

writes navigation logs to the hard disk after a certain amount of time. One of the
most important methods ofMooseNavigatoris #nextPutViewWithConfiguration:
aConfiguration onModelSubset: aModelSubset selectEntities: aCollectionOfEnti-
ties which creates a new view, puts it in a new session state, adds this one to the
current session, and finally displays the new view. The application is started by
sending#opento the MooseNavigator class.

Object subclass: #MNUtility
classInstanceVariableNames: ’standardFilterLibrary’

MNUtility is the container for constants and functions that must be globally avail-
able. It is not instantiated. We use the meta class only. It holds the centralstan-
dardFilterLibrary. It is further used to compose description texts following a cer-
tain policy, which are then displayed in the description viewer and other places.

CCDrawing subclass: MNDrawing

MNDrawing is kept in the main application as value of the attributedrawing, the
model ofdrawingin turn is the main application itself. MNDrawing fetches mouse
clicks on figures and on the drawing - to track navigation, and pops up a dynamic
context menu when the users performs a right mouse click on a figure.

ApplicationModel subclass: MNSessionViewer
instanceVariableNames: ’parentApplication session

sessionTreeList selectionInSessionTreeList’

MNSessionVieweradds itself to the dependents list of itsparentApplicationas
well as on that from its model, thesession. Its sessionTreeListandselectionInSes-
sionTreeListhandle the tree widget and the current selection.

CCAbstractSubcanvas subclass: #MNDescriptionViewer
instanceVariableNames: ’text’

MNDescriptionViewer adds itself to the dependents list of itsparentApplication
which it inherits as a subclass of CCAbstractSubcanvas. It holds only one extra
attributetext, which keeps the description to show.

DrawingEditor subclass: #MNSystemOverviewer
instanceVariableNames: ’parentApplication’

136 APPENDIX D. MOOSENAVIGATOR IMPLEMENTATION

MNSystemOverviewer is a subclass of DrawingEditor - a class which belongs
to the graphical framework HotDraw [BRAN 95]. Its only instance variable is
parentApplicationwhich stores the information to which main window the tool
belongs.

ReadWriteStream subclass: #MNSession
instanceVariableNames: ’name timestamp actions wrappers’

MNSessionis as a subclass of ReadWriteStream and stores the behavior of a user.
In its collection(the attribute is inherited from PositionableStream) it puts all the
states of the tool (MNSessionState). MNSession stores also theactionswhich lead
to specific states. Inwrappersit holds the current set of MethodWrappers that is
used to track these actions in detail. A MNSession further has anameand atimes-
tamp. MNSession is also responsible for reporting - it can for example be asked
for #streamWithActionsAndStates, which generates a report as seen some sections
above. Sessions are kept in the model.

Model subclass: #MNAction
instanceVariableNames: ’name session receiver message timestamp’

MNAction is a subclass of Model. The instance variables arename, timestamp,
session, receiverandmessage. Thesessionobject stores the information to what
session the action belongs. Themessageis a ByteSymbol with the name of the
message that was sent for this action (e.g.#crawlSystemComplexity). Thereceiver
is the object that received this message (e.g.MooseNavigator).

MethodWrapper variableSubclass: #MNMethodWrapper
instanceVariableNames: ’session’

MNMethodWrapper is a subclass of MethodWrapper [BRAN 98]. Aside from
the introduced instance variablesessionthe only implemented method is#after-
Method. The MethodWrapper concept is the following: MethodWrappers are in-
stalled with:#on: selector inClass: class, which puts the wrapper at the position of
the selector in the system’s method dictionary. The wrapper provides two abstract
methods:#beforeMethodand an#afterMethod. In our case, we cause the wrapper,
after invoking the method itself, to add a MNAction to the wrapperssession, con-
taining the specification of the called method. All the wrappers in the system are
removed on closingMooseNavigatorand again installed on launching. Editing the
source of wrapped methods may cause problems with consistency.

137

Model subclass: #MNSessionState
instanceVariableNames: ’name session timestamp modelSubset view

filters selections annotation’

MNSessionStateis a subclass of Model. Apart from the instance variablesname,
timestampandsession, MNSessionState covers the relevant information for repro-
ducing a certain state of the tool. In themodelSubsetthe current subset of the
model of entities is stored. The variableview keeps the complete view in mem-
ory, for performance reasons. When closing theMooseNavigatorapplication, the
views must be de-coupled, otherwise the garbage collector can not work prop-
erly. MNSessionState also stores the set of currently applied filters (filters) and the
set of currently selected elements on the drawing (selections). Finally a MNSes-
sionState can be renamed, annotated, or deleted. MNSessionStates are created by
the constructor#withModelSubset: aModelSubset andView: aView andSelections:
aCollectionOrNil.

Object subclass: #MSEFilter
instanceVariableNames: ’name block body scope enabled’

MSEFilter is created with aname, abody, and ascope. Thebodyis the instruction
to build a Smalltalk block, whereeachis playing the role of the entity to which a
filter is applied. A filter can be active or not - the switch for that is the boolean
enabled. Applied filters are stored in the corresponding session state. If a block
throws aMessageNotUnderstood-exception the execution proceeds - the filter eval-
uates tofalse. With the example body ’each isPrivate’ a Smalltalk block[:each
| each isPrivate]is created. Also nested bodies like(each isClass) and: [each
isAbstract]can be processed. To evaluate a filter call#isFalseFor: anEntity, or
#isTrueFor: anEntity

Object subclass: #MSEFilterLibrary
instanceVariableNames: ’filters’

MSEFilterLibrary is the central repository for filters. The library is kept in MNU-
tility class, where all objects can access it. The collection offilterscan be read from
and wrote to streams, and like that also from an to the hard disk.

CCModelSubset subclass: #MNModelSubset

MNModelSubsetcontains the current set of entities, like the CCModelSubset. Ad-
ditionally it allows the user to enumerate or count the entities of certain types. A
filter can be applied#applyFilter: aMSEFilterwhich removes all entities for which
the filter evaluates totrue. MNModelSubset provides also a constructor for directly

138 APPENDIX D. MOOSENAVIGATOR IMPLEMENTATION

hiding certain aspects:#newWithFilter: aMSEFilter.

As a last category of classes we finally describe the implementation of the layouts.
Here is the overview of the class hierarchy, the specific descriptions follow:

CCCircleLayout
MNCircleLayout

MNFixedSizeCircleLayout
MNDoubleCircleLayout

MNCircleLayout is the base circle layout. The most generic routine to arrange
nodes around a center is#layoutNodes: aCollectionOfNodes at: circleCenter with-
Radius: radius. The default radius is computed as the maximal drawing pane di-
mension divided by 2.5

MNDoubleCircleLayout performs above methods twice, using a small radius for
the attributes, and a bigger radius for the methods. The bigger radius has the de-
fault size, the smaller one is the default radius divided by two.

MNFixedSizeCircleLayout does the same as above, with the difference that it
uses a radius not based on the current window size, but based on the number of
entities to display. This is to avoid overlapping nodes. The formula is based on
heuristics.

Bibliography

[Dem 02] S. Demeyer, S. Ducasse, and O. Nierstrasz, editors. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.(pp 1, 4)

[Duc 99] S. Ducasse and S. Demeyer, editors. The FAMOOS Object-Oriented
Reengineering Handbook. University of Berne, October 1999.(pp 1,
75)

[ISO 99] ISO/IEC 13250 Topic Maps. Industry standard, International Organi-
zation for Standardization (ISO), Geneva, December 1999.(p 14)

[OTI 01] Eclipse Platform Technical Overview. Research report, Object Tech-
nology International, Inc., July 2001.(p 100)

[A LPE 98] S. R. Alpert, K. Brown, and B. Woolf. The Design Patterns Smalltalk
Companion. Addison Wesley, 1998.(p 4)

[A NTO 99] C. H. Antoni and T. Sommerlatte. Report Wissensmanagement. Sym-
posion Publishing, 1999. (pp 10, 11)

[BECK 97] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.(p 4)

[BECK 00] K. Beck. Extreme Programming Explained: Embrace Change. Addi-
son Wesley, 2000. (p 1)

[BECK 01] K. Beck and M. Fowler. Planning Extreme Programming. Addison
Wesley, 2001. (p 33)

[BEDE 00] B. Bederson, J. Meyer, and L. Good.Jazz: An Extensible Zoomable
User Interface Graphics ToolKit in Java. In UIST 2000, New York,
Mai 2000. ACM. (p 114)

[BERN 99] T. Berners-Lee and M. Fischetti. Weaving the Web : The Original
Design and Ultimate Destiny of the World Wide Web by its Inventor.
Harper, San Francisco, 1999.(p 13)

[BRAN 95] J. Brant. HotDraw. Master’s thesis, University of Illinois at Urbana-
Chanpaign, 1995. (p 136)

139

140 BIBLIOGRAPHY

[BRAN 98] J. Brant, B. Foote, R. Johnson, and D. Roberts.Wrappers to the Res-
cue. In Proceedings ECOOP’98, volume 1445 ofLNCS, pages 396–
417. Springer-Verlag, 1998. (p 136)

[BROW 98] W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mow-
bray. AntiPatterns, 1998. (pp 29, 71)

[CHIK 90] E. J. Chikofsky and J. H. Cross, II.Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software, pages 13–17, January 1990.
(p 2)

[CINC 02] Cincom. VisualWorks - Application Developer’s Guide,
http://www.cincom.com/. 1993-2002.(p 69)

[CONK 87] J. Conklin. Hypertext: An introduction and survey. IEEE Computer,
vol. 20, no. 9, pages 17–41, 1987.(p 4)

[COOP95] A. Cooper. About Face - The Essentials of User Interface Design.
Hungry Minds, 1995. (p 4)

[DAVE 98] T. H. Davenport and L. Prusak. Working Knowledge - How Organisa-
tions manage what they know. Harvard Business School Press, 1998.
(pp 6, 8, 10)

[DEME 99] S. Demeyer, S. Ducasse, and M. Lanza.A Hybrid Reverse Engi-
neering Platform Combining Metrics and Program Visualization. In
F. Balmas, M. Blaha, and S. Rugaber, editors, Proceedings WCRE’99
(6th Working Conference on Reverse Engineering). IEEE, October
1999. (pp 28, 77)

[DEME 01] S. Demeyer, S. Tichelaar, and S. Ducasse.FAMIX 2.1 - The FAMOOS
Information Exchange Model. Research report, University of Berne,
2001. (pp 19, 76)

[DUCA 00a] S. Ducasse, M. Lanza, and S. Tichelaar.Moose: an Extensi-
ble Language-Independent Environment for Reengineering Object-
Oriented Systems. In Proceedings of the Second International Sym-
posium on Constructing Software Engineering Tools (CoSET 2000),
June 2000. (pp 50, 76, 77)

[DUCA 00b] S. Ducasse, M. Lanza, and L. Steiger.A Query-Based Approach to
Support Software Evolution. In ECOOP’2000 International Workshop
of Architecture Evolution, 2000. (p 78)

[DUCA 01a] S. Ducasse and M. Lanza.Towards a Methodology for the Under-
standing of Object-Oriented Systems. Technique et science informa-
tiques, vol. 20, no. 4, pages 539–566, 2001.(pp 4, 33)

BIBLIOGRAPHY 141

[DUCA 01b] S. Ducasse, M. Lanza, and S. Tichelaar.The Moose Reengineering
Environment. Smalltalk Chronicles, August 2001.(pp 50, 76)

[FAVR 01] J.-M. Favre.GSEE: a Generic Software Exploration Environment. In
Proceedings of the 9th International Workshop on Program Compre-
hension, pages 233–244. IEEE, Mai 2001.(pp 50, 59)

[FIND 79] N. Findler. Associative Networks: Representation and Use of Know-
ledge by Computer, 1979. (p 13)

[FOWL 97] M. Fowler. UML Distilled. Addison Wesley, 1997. (p 128)

[FOWL 99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison Wesley, 1999.
(p 3)

[FURN 86] G. Furnas. Generalized fisheye views. In In Proceedings of ACM
CHI’86, pages 16–23, Boston, MA, April 1986.(p 115)

[GAMM 95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison Wesley, Reading, Mass., 1995.(p 4)

[GIUS 99] R. T. Giuseppe Di Battista, Peter Eades and I. G. Tolls. Graph Draw-
ing - Algorithms for the visualization of graphs. Prentice-Hall, 1999.
(pp 31, 111, 116)

[GRIF 82] R. L. Griffith. Three Principles of Representation for Semantic Net-
works. In ACM Transactions on Database Systems, 1982.(p 13)

[GRIS 92] R. Grishman, C. Macleod, and J. Sterling.New York University: De-
scription of the proteus system as used for muc-4. In Proceedings of
the Fourth Message Understanding Conference (MUC-4), pages 233–
241, June 1992. (p 5)

[JEFF 01] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming
Installed. Addison Wesley, 2001.(p 1)

[K ICZ 96] G. Kiczales. Beyond the Black Box: Open Implementation. IEEE
Software, January 1996.(p 5)

[K ITC 97] R. Kitchin, M. Blades, and R. Golledge.Relations between psychol-
ogy and geography. Environment and Behavior, vol. 29, no. 4, pages
554–573, 1997. (pp 23, 45)

[K SIE 00] R. Ksiezyk. Answer is just a question [of matching Topic Maps]. In
XML Europe 2000, 2000. (p 16)

[L ANZ 99] M. Lanza. Combining Metrics and Graphs for Object Oriented Re-
verse Engineering. Diploma thesis, University of Bern, October 1999.
(pp 20, 28, 29, 49, 50, 67, 77)

142 BIBLIOGRAPHY

[L ANZ 01a] M. Lanza and S. Ducasse.A Categorization of Classes based on
the Visualization of their Internal Structure: the Class Blueprint. In
Proceedings of OOPSLA 2001, pages 300–311, 2001.(p 49)

[L ANZ 01b] M. Lanza, S. Ducasse, and L. Steiger.Understanding Software Evo-
lution using a Flexible Query Engine. In Proceedings of the Workshop
on Formal Foundations of Software Evolution, 2001.(p 78)

[L EHM 92] F. Lehmann and E. Y. Rodin. Semantic Networks in Artificial Intelli-
gence. Pergamon Press, 1992.(p 13)

[L EHM 96] M. M. Lehman. Laws of Software Evolution Revisited. In European
Workshop on Software Process Technology, pages 108–124, 1996.
(p 1)

[M CKN 91] C. McKnight, A. Dillon, and J. Richardson. Hypertext in Context.
Cambridge University Press, 1991.(p 4)

[M ÜLL 86] H. Müller. Rigi - A Model for Software System Construction, Integra-
tion, and Evaluation based on Module Interface Specifications. PhD
thesis, Rice University, 1986. (p 109)

[NGUY 00] S.-T. Nguyen. Environnements d Exploration de Grands Logiciels.
Research report, University Joseph Fourier, Grenoble, 2000.(p 98)

[N IEL 90] J. Nielsen. Hypertext and hypermedia. Academic Press, 1990.(p 4)

[NOY 00] N. F. Noy, R. W. Fergerson, and M. A. Musen.The knowledge model
of Prot́eǵe-2000: Combining interoperability and flexibility. In 2nd
International Conference on Knowledge Engineering and Knowledge
Management (EKAW’2000), Juan-les-Pins, France, Berlin, 2000.
Springer-Verlag. (p 114)

[NOY 01] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W. Fergerson, and
M. A. Musen. Creating Semantic Web Contents with Protege-2000.
IEEE Intelligent Systems, vol. 16, no. 2, pages 60–71, 2001.(p 114)

[PINT 95] X. Pintado.The Affinity Browser. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition, pages 245–272.
Prentice-Hall, 1995. (p 18)

[PROB 99] G. Probst. Wissen Managen: Wie Unternehmen ihre wertvollse
Ressource optimal nutzen. Frankfurter Allgemeine Zeitung; Gabler,
1999. (pp 8, 10, 12, 72)

[RASK 00] J. Raskin. The Humane Interface. Addison Wesley, 2000.(pp 4, 18,
21, 22, 23, 42, 45, 48)

BIBLIOGRAPHY 143

[RATH 99] H. H. Rath and S. Pepper.Topic Maps: Introduction and Allegro. In
XML Europe ’99, 1999. (p 14)

[RATH 00] H. H. Rath.Making topic maps more colourful. In XML Europe 2000,
2000. (p 16)

[RAYS 01] D. Rayside, M. Litiou, M.-A. D. Storey, and C. Best.Integrat-
ing SHriMP with the IBM WebSphere Studio Workbench. In CAS-
CON’2001, Toronto, Canada, 2001.(p 114)

[RHEI 85] H. Rheingold. Tools for Thought. The MIT Press, 1985.(p 9)

[RIEL 96] A. J. Riel. Object-Oriented Design Heuristics. Addison Wesley, 1996.
(p 3)

[STEI 01] L. Steiger. Recovering the Evolution of Object Oriented Software
Systems Using a Flexible Query Engine. Diploma thesis, University
of Bern, June 2001. (p 78)

[STOR 95a] M.-A. D. Storey and H. A. M̈uller. Graph layout adjustment strate-
gies. In Proceedings of Graph Drawing 1995, Passau, Germany, pages
487–499. Springer Verlag, September 1995.(p 111)

[STOR 95b] M.-A. D. Storey and H. A. M̈uller. Manipulating and documenting
software structures using SHriMP views. In Proceedings of the 1995
International Conference on Software Maintenance, 1995.(p 113)

[STOR 96] M.-A. D. Storey, K. Wong, D. Hooper, K. Hopkins, and H. Müller.
On Designing an Experiment to Evaluate a Reverse Engineering Tool.
In Proceedings of the WCRE’96, Monterey, California, USA, 1996.
(pp 110, 115)

[STOR 97] M.-A. D. Storey, K. Wong, and H. A. M̈uller. How Do Program Un-
derstanding Tools Affect How Programmers Understand Programs?
In I. Baxter, A. Quilici, and C. Verhoef, editors, Proceedings Fourth
Working Conference on Reverse Engineering, pages 12–21. IEEE
Computer Society, 1997. (p 4)

[SUGI 81] K. Sugiyama, S. Tagawa, and M. Toda.Methods for Visual Under-
standing of Hierarchical System Structures. IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-11, no. 2, February 1981.
(pp 111, 116)

[SVEI 97] K.-E. Sveiby. The New Organizational Wealth: Managing and Mea-
suring Knowledge-Based Assets. Berret-Koehler Publishers, San
Francisco, 1997. (p 10)

144 BIBLIOGRAPHY

[T ICH 01] S. Tichelaar. Modeling Object-Oriented Software for Reverse En-
gineering and Refactoring. PhD thesis, University of Bern, 2001.
(pp 19, 50, 76)

[WARE 00] C. Ware. Information Visualization. Morgan Kaufmann, 2000.(pp 4,
21)

[W INT 01] A. Winter. Exchanging Graphs with GXL. In P. Mutzel, editor, Graph
Drawing - 9th Interational Symposium, GD 2001, Vienna. Springer
Verlag, September 2001.(pp 19, 82, 110)

[WONG 98] K. Wong. Rigi Users’s Manual. Research report, University of Vic-
toria, 1998. (pp 19, 109)

[YANG 93] G. Yang and J. Oh.Knowledge Acquisition and Retrieval Based on
Conceptual Graphs. In Symposium on Applied Computing. ACM,
1993. (p 13)

	Abstract
	Introduction
	Friction in Reverse Engineering
	Reducing Friction with Navigation
	The Structure of this Document

	Background
	Knowledge Management
	Managing Information
	Topic Maps
	Navigating Information

	The Famix Reverse Engineering Model
	Usability
	Concerns Identified

	Context & Requirements
	Moose & CodeCrawler
	The SORTIE Experience
	Experience
	Results

	Tool Requirements

	Classifying Navigation
	Navigation Steps between Tool States
	Semantic Navigation Steps
	The Dimensions of Navigation
	State-of-the-Art Navigation

	Navigation for Reverse Engineering Tools
	Perceptions
	A Prototype - MooseNavigator
	Conception
	User Interface
	Metrics
	Layouts & Views
	Reports

	Experiments
	Automatic Navigation Support
	Experiment with Students
	Observations
	Experience
	Results

	Experiment with an Expert
	Observations
	Experience
	Results

	Summary

	Conclusion
	Summary
	Main Contribution
	Outlook & Future Work

	Moose
	Meta Model
	CodeCrawler
	MooseExplorer
	MooseFinder

	SORTIE Report
	Project Background
	Project Success
	SCG Report

	State-of-the-Art Tools
	Introduction
	Selection
	Scope
	Template

	Tools
	Eclipse
	Javadoc
	Rigi
	SHriMP
	Small Worlds
	TheBrain
	Together
	Additional Features

	Summary

	MooseNavigator Implementation

