
Eg – a Meta-Model and Editor

for Unit Tests

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Rafael Wampfler

2006

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik

The address of the author:

Rafael Wampfler
Im Holz 3
3309 Kernenried
Switzerland
wampfler@gmail.com

ii

mailto:wampfler@gmail.com

Abstract

In our life we often use examples to explain difficult topics. Examples help us to com-
prehend the problem. An example is easier to understand than an abstract description
of the problem.

In software design the problems are complex and abstract. But examples are rarely used
to explain a complicated situation.

We are using examples to document and explain software. Examples demonstrate the
creation and behavior of an instance. They can be reused to compose new examples.
Examples can be extended with assertions and become unit tests.

Because the link between test and method under test is often missing, we created a
meta-model for tests. Our meta-model stores the objects, methods and parameters used
for the tests. It can generate the source code of its tests which is human readable. First
studies shows that most unit tests are method tests concerning only a single method
call. The other tests can be refactored to method tests.

We built an editor for the meta-model to create examples and tests. The editor is
integrated in the environment and lets the developer create new tests with a minimal
effort.

iii

iv

Acknowledgments

First of all I want to thank Prof. Dr. Oscar Nierstrasz, head of the Software Composition
Group, for giving me the possibility to do my master’s thesis in his group. It was an
interesting year and I learned a lot during this time.

Thanks also to Markus Gälli for supervising my work. We had many exciting discussions
and he had plenty of good ideas for my thesis.

Then I thank all members of the SCG group, specially those who had time to participate
in our usability experiment. And Michael Meyer for the encouragement during the work
in the SCG student pool.

Many thanks also to my friends chrigu, höf, mike, möiri, plo, sam, ste and all I have
forgotten for playing games, doing sportive activities or going on holidays.

Last I want to thank my family. They always supported me in my study. I know it was
not an easy time, but this era will end now.

Rafael Wampfler,
November 2006

v

vi

Contents

1. Introduction 1
1.1. Documentation . 1
1.2. Understanding . 2
1.3. Testing . 2
1.4. Our Approach . 4
1.5. Structure of the Thesis . 4

2. State of the Art 7
2.1. XUnit . 7

2.1.1. SUnit . 7
2.1.2. JUnit 4 . 11
2.1.3. TestNG . 12
2.1.4. JTiger . 14

2.2. Problems . 15

3. Meta-Model 17
3.1. Commands . 17
3.2. Persistence of Commands . 18
3.3. Method Commands . 19

3.3.1. Method Examples . 20
3.3.2. Method Tests . 20
3.3.3. Pessimistic Examples . 21
3.3.4. Cascaded Commands . 22

3.4. Multiple Method Commands . 23
3.4.1. Independent Suites . 24
3.4.2. Multi Facet Command Suites . 24
3.4.3. Method Command Suites . 24
3.4.4. Inverse Tests . 25

3.5. Emerged Meta-Model . 26
3.6. Prepared Method Implementation . 27
3.7. Prepared Class Implementation . 28

4. User Interface 29
4.1. Problem . 29
4.2. Interface Requirements . 29

4.2.1. Star Browser . 30

vii

4.3. EgBrowser . 30
4.4. Video Store – an Example Application . 32

4.4.1. Creating Examples . 33
4.4.2. Method Suite View . 37
4.4.3. Coverage View . 37
4.4.4. Suite Editor . 39

4.5. Importing SUnit tests . 39

5. Validation 43
5.1. GOMS . 44

5.1.1. KLM-GOMS . 44
5.1.2. CMN-GOMS . 45
5.1.3. NGOMSL . 46
5.1.4. CPM-GOMS . 47

5.2. Validation of the EgBrowser . 47
5.2.1. Creating a test for an existing method 48
5.2.2. Creating a test for a new method 48
5.2.3. Browsing between test and implementation 48

5.3. Usability Experiment . 49
5.3.1. Test Setup . 49
5.3.2. Tasks . 49
5.3.3. Questionnaire . 50
5.3.4. Questionnaire Analysis . 50
5.3.5. Video Analysis . 52
5.3.6. Conclusion . 56

5.4. Case Study: Manually Converting SUnit Tests to Eg 56

6. Conclusion 59
6.1. Future Work . 60
6.2. Further Validations . 61

A. GOMS Steps 63
A.1. Creating a test for an existing method . 63
A.2. Creating a test for a new method . 65
A.3. Browsing between test and implementation 67

B. Experiment Solution 69
B.1. SUnit . 69
B.2. EgBrowser . 70

Bibliography 73

viii

1. Introduction

Today’s software projects are big with many developers working on them. It is nearly
impossible for a single developer to understand a whole project. Therefore documenting
code is an important part in object-oriented software design. The documentation helps
other developers to maintain and extend the code. But it also helps developers to
understand their own code better.

The different aspects of code need different documentation. We focus on object-oriented
languages, where the source code offers comments and is divided in classes and methods.
The following documentation techniques are available in most languages.

1.1. Documentation

Comments Methods are often documented with comments. The comments are written
in the source code with a special comment syntax. Comments are written for humans
and are ignored by the compiler. There is no improvement of the binary code by adding
comments, but comments improve the readability of the code.

Classes are written in source code and can be documented like methods. The instance
variables of the class should also be commented. The comment of a variable documents
its role in the class. This is important for dynamic languages like Smalltalk.

Most developers are lazy. They write bad comments or none at all. Some developers
believe that good code does not need any documentation.

But comments are an important part of software documentation. Some algorithms are
hard to understand and it is difficult to follow the developer’s thoughts without any
comment.

Only a few tools encourage the developers in documenting their code. Different Java
development environments can generate the skeleton for Javadoc comments with prede-
fined parameter statements.

Examples Instances of classes are objects living in memory while executing an appli-
cation. Objects can serve as an example instance of a class. An example object shows
the instantiation of a class. Classes can have different ways to instantiate an object, but
not all ways are meaningful in a given context. A living example object holds a set of

1

1. Introduction

valid instance variables. This is interesting in a dynamic language where the type of a
variable is not defined in the code but rather while executing it. Inspecting an example
shows the type and value of the variables. Classes depends on other classes and are not
self-contained. An example scenario is an example with multiple classes involved. An
example scenario also shows the context in which the different classes and objects can
interact.

Examples are rare. Some examples are written in the comments of classes and methods
and can be executed from there. A developer can only detect these examples by browsing
the source code of a class.

Some classes have methods that can be used as examples. For example executing Date
today in Smalltalk returns an example instance of a date. In fact all class methods with-
out parameters returning an instance of the class return an example for this class.

1.2. Understanding

Reading code If no documentation is available for the code the only way to understand
it is by reading the source code. But reading source code of an object-oriented program
can be difficult because the code is scattered into classes, extensions and packages. It is
easier to understand a problem by examining an example of it.

Software visualization It is difficult to obtain an overview of a big software project
in a limited time. Even if the developer reads all source code he does not necessarily
understand the design of the system.

In this situation visualizations help. A picture is easier to understand than hundred
pages of source code. In software visualization the information extracted from the code
is bundled and displayed in different graphics. CodeCrawer [Lan] is a tool that can
visualize software in various diagrams.

1.3. Testing

Unit testing Another way of documenting code is to write unit tests. Unit tests are
small, automated software tests that can be run at any time. Tests assure that the code
is working without problems in any stage of the development. Unit tests make use of
examples. They can document how the application works, because the tests are running
on real objects.

Because user testing is too time-consuming the developers are using a testing framework
for automated unit testing. Some methods are tested with a testing framework. But most
software is not 100% covered by tests. Writing unit tests is an exhausting work. With

2

1.3. Testing

test-driven design developers should first write the tests and later the implementation.
In reality most developers test their code after implementing it.

Navigation between test and implementation Most tests are written as source code.
The method under test can be found in the test, but is not denoted as such. Often the
interesting method is not the method that is directly called, but rather called somewhere
in the call tree. There is no control if executing a test calls the methods that should be
tested. To link the test and the method under test dynamic analysis is needed. Dynamic
analysis is more time expensive because the execution of the code is modified. With both
ways it is difficult to determine which method is tested rather than used to set up a test
scenario.

Creating tests A unit test is created by writing down its source code. The syntax of the
testing frameworks are loose and permit the developer to assemble different unit tests.
But the developer is not supported by the tools. He can write any test for a method.
But not all tests have useful assertions checking the needed functionality.

Test reuse The tests are not reused. The tests cannot be reused because they do not
have a return value. But most methods return a meaningful object. This object can
serve as an example instance or can be reused for another test.

User interface Good user interfaces for unit tests are rare. There are interfaces for
running and debugging tests, but not to create them! The interfaces cannot display
the connection between the method and their tests. Having no good tools limits the
developer’s workflow [Csi91].

User interface testing Testing user interfaces is a hard task. Unit testing is not possible
because the interface needs user interaction with a mouse and keyboard. There are tools
that can simulate the mouse motion and clicks of a user. Abbot1 is an open source
testing framework for Java user interfaces.

In reality user interfaces are tested by clicking through them. A developer knows how
to use the interface and where he can click. But an unfamiliar user clicks everywhere
he wants and that can be wrong in some contexts. Hence the best tests are done with
real users who do not understand the application. This means user interface testing is a
time-consuming task if it is done professionally.

1http://abbot.sourceforge.net

3

http://abbot.sourceforge.net

1. Introduction

1.4. Our Approach

Our goal is to test and understand software. Examples are our metaphor. We want
running examples that are changeable. Tests need to be flexible because requirements
can change late in the development process. We use examples to demonstrate and
document source code. An example of a class is a parameterless class method returning
an example instance of the class. Examples return a value and can be reused to compose
other examples.

Benefits of examples include:

• An example shows the way to initiate its class.

• It is an example instance of its class.

• It is a real object we can modify and play with.

• It can run at any time.

• It returns a reusable example object. The return value can be reused to compose
another example.

• It can be extended by assertions becoming a unit test.

Because test and method under test are not linked, we implemented a meta-model for
examples and tests. The model knows the connection between a method and its test. The
meta-model can run the examples and supports return values. Therefore the examples
can be reused to compose new examples. The meta-model has different types and can
cover a large section of unit testing. The model can export the examples as human
readable source code.

Examples do not substitute other documentations like comments, examples are just an
additional way to document code. Examples are more valuable than comments because
they also assure that the code is running.

1.5. Structure of the Thesis

Chapter 2 (p.7) gives an overview of unit testing frameworks available today. All frame-
works have some limitations that are discussed here. We try to solve the problems
stated in this chapter with our meta-model.

Chapter 3 (p.17) describes the first part of our solution for documenting and testing
code. We implemented a meta-model for commands in Smalltalk. The chapter
explains the different types of commands and how they work together. This chapter
includes technical details about the implementation of the model.

4

1.5. Structure of the Thesis

Chapter 4 (p.29) is about the second part of our solution, the test editor. The editor is
built for the meta-model from chapter 3 (p.17). An example application of a video
store demonstrates the usage of the editor.

Chapter 5 (p.43) compares our solution with some tools from chapter 2 (p.7). The tools
are compared with a metric for measuring user interfaces. We also arranged a
small usability study where we compared the time to accomplish different testing
tasks and the learning process with the editor.

Chapter 6 (p.59) discusses the conclusion of our solution. Finally we list the future
work and some ideas to improve the meta-model and test editor.

5

1. Introduction

6

2. State of the Art

This chapter describes the most often used frameworks and techniques for testing object-
oriented software. We focus on tools implemented in Smalltalk and Java.

There are many approaches for unit testing, but none solves all problems from chapter 1
(p.1). All frameworks have some limitations. We focus on unit testing, thus we evaluate
XUnit, a common testing framework.

2.1. XUnit

Unit tests are very popular in software design. XUnit is a widely used testing framework.
The XUnit framework has been adopted to many programming languages. The tests
can be re-run at any time without user interaction. The tests are repeatable.

XUnit tests are built with conventions. XUnit tests need to be in a test class inheriting
from a test superclass. The test method name starts with test. This convention is used
by the test runner for gathering all tests.

Modern implementations of a testing framework use annotations instead of naming con-
ventions. Thus the framework permits more flexibility for testing. The class does not
need to extend a test superclass and a real test hierarchy can be realized.

2.1.1. SUnit

SUnit1 is the “mother of unit test frameworks” [Bec]. SUnit is suitable for all kind of
applications. But SUnit can be slow on big test suites because every test case needs to
create a test scenario to run. There is no reuse of the test objects, because a test does
not return a result value.

The syntax of a test is rather free. It is not always clear what the purpose of the test
is and which methods should be tested. Often the methods are called in the assertions.
Multiple assertions can test more than one method, so a test does not focus on a single
method. Therefore the test case is rather a test suite for different methods.

1http://sunit.sourceforge.net

7

http://sunit.sourceforge.net

2. State of the Art

Figure 2.1 (p.8) shows the test runner of SUnit in VisualWorks2. The interface is limited,
the test runner can only run and debug tests. The interface cannot display the source
of the test or the methods accessed by the test.

Figure 2.1.: Test runner of SUnit

SUnit example

The following code written in Smalltalk defines a test class using SUnit. The test class
extends TestCase and has an instance variable named account.

Smalltalk defineClass: #BankTest
superclass: #{XProgramming.SUnit.TestCase}
indexedType: #none
private: false
instanceVariableNames: ’account ’
classInstanceVariableNames: ’’
imports: ’’
category: ’Eg-Bank’

A setup method can be used to create a test scenario. The setup method is used for
every test method and is called before each test case run. SUnit also supports a tear
down method.

In this example the setup defines the instance variable of the class. Because we use the
variable only in one test, we could initialize the variable there and do not necessarily
need a setup method.

BankTest � setUp
account := Account new

2http://smalltalk.cincom.com

8

http://smalltalk.cincom.com

2.1. XUnit

The fundamental test is in the test case. Any name starting with test can be used as
method name. To highlight the selector #deposit:, we choose testDeposit as the test’s
name.

The test is adding an amount of money to the empty account. The assertion ensures
that the balance has increased. Each test case usually has at least one assertion.

BankTest � testDeposit
|balanceBefore|
balanceBefore := account balance.
account deposit: 100.
self assert: account balance = (balanceBefore + 100)

A tear down method is not needed in this example, the account gets garbage collected.
A tear down method is executed after the tests, for example to close a database connec-
tion.

A test runner collects all test methods and checks the assertions by running them. A
test passes if all assertions hold. If at least one assertion is wrong the test fails. It can
also raise an error if a syntax error happens.

Refactoring Browser SUnit Extensions

Refactoring Browser SUnit Extensions3 add a small test runner on the bottom of the
browser when browsing a subclass of TestCase. The test runner looks similar to figure 2.2
(p.10), except the button order is different. The test runner can run SUnit tests without
opening a test runner and selecting the test. It simplifies running a test while browsing,
instead of opening an extra test runner window. The connection between test and
implementation is still not visible.

SUnitToo

SUnitToo4 started as a patch for SUnit because of a memory problem with a large test.
Today SUnitToo is a forked version of SUnit. It has a simpler design and performance
improvements over SUnit. SUnitToo has its own model, but uses the same syntax and
interfaces like SUnit.

The test runner of SUnitToo is an adaption of the Refactoring Browser SUnit Extensions
and is integrated in the browser. Figure 2.2 (p.10) shows the different visual feedbacks
of the test result: The big status bar on the bottom left turned green, the test tube
before the class is filled green and the test method is ticked green. The test runner also
supports profiling and debugging.

3http://www.cincomsmalltalk.com/publicRepository/RBSUnitExtensions.html
4http://www.cincomsmalltalk.com/userblogs/travis/blogView?entry=3278236086

9

http://www.cincomsmalltalk.com/publicRepository/RBSUnitExtensions.html
http://www.cincomsmalltalk.com/userblogs/travis/blogView?entry=3278236086

2. State of the Art

Figure 2.2.: Test runner of SUnitToo

BrowseUnit

BrowseUnit by Romain Robbes [Rob04] provides integration for SUnit and SLint in
the various browsers, including the Star Browser and the Refactoring Browser. It is
implemented in Squeak5.

BrowseUnit can generate the test class, the method under test, the setup and tear down
methods and the test method for SUnit. BrowseUnit allows you to browse between
the implementing method and the test. To browse the tests of a method, BrowseUnit
examines all compiled tests and collects the calls of the method. Likewise to browse all
methods of a test, BrowseUnit collects the method sends by the test.

Figure 2.3 (p.11) shows the menu of BrowseUnit.

5http://squeak.org

10

http://squeak.org

2.1. XUnit

Figure 2.3.: BrowseUnit

2.1.2. JUnit 4

JUnit6 is a rewrite of SUnit in Java by Erich Gamma and Kent Beck, the inventor of
SUnit. It is the de facto standard for unit testing in Java.

JUnit 4 has some new features. The tests are no longer denoted by a naming convention,
but are denoted with annotations. Annotations are supported in Java since J2SE 5.0
(Java 1.5)7.

The same bank example implemented in SUnit above has the following form in JU-
nit 4:

package egBank;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import org.junit.Before;
import org.junit.Test;

public class BankTestJUnit4 {
Account account;

@Before
public void setUp() throws Exception {

6http://www.junit.org
7http://java.sun.com/j2se/1.5.0/

11

http://www.junit.org
http://java.sun.com/j2se/1.5.0/

2. State of the Art

account = new Account();
}

@Test
public void testDeposit() {

int balanceBefore = account.getBalance();
account.deposit(100);
assertEquals(account.getBalance(), balanceBefore + 100);

}

@Test(expected = NotEnoughMoneyException.class)
public void testWithdraw() {

account.deposit(100);
account.withdraw(150);
assertTrue(account.getBalance() > 0);

}
}

The static import is needed because Java does not allow you to extend the class Object
with new methods. With the static import, assertTrue can be used as if it had been in-
cluded in Object. The test method is denoted with the @Test annotation. Any name can
be chosen as test method name. The setup method is denoted by the annotation @Before
and not by its name. An @After method defines a tear down method [Wes05].

With JUnit 4 any method can act as a test and the test class does not need to extend a
test case class. But a test method still cannot return a value. Exceptions can be passed
as parameters to the annotation: @Test(expected = Error.class). A time consuming test
can have a time limit with @Test(timeout = 100). A test suite is no longer required. The
test runner is text based only. The developer environments are responsible for graphical
test runner. JUnit 4 is well integrated in Eclipse8.

2.1.3. TestNG

TestNG9 is another unit testing framework for Java. TestNG uses annotations, but
was developed before JUnit 4. It can also denote the tests with Javadoc instead of
annotations for Java 1.4 compatibility.

JUnit tries to isolate the tests so they can be run individually. TestNG has the approach
of dependency testing. A test can depend on a method or a group of other tests. If
a required method fails, the test is skipped and is not marked as failure. TestNG can
re-run the skipped and failed tests only if desired.

8http://www.eclipse.org/jdt/
9http://testng.org

12

http://www.eclipse.org/jdt/
http://testng.org

2.1. XUnit

Another feature missing in JUnit is parametric testing. The test method can take
parameters. The same test method can be reused with different data. The parameters
are taken from an XML file or a data provider class. In JUnit we would need to write
the tests for each data set. TestNG can group tests in categories.

TestNG is more flexible and suitable for large projects. It uses Ant10 with an XML con-
figuration file. But there is also a nice Eclipse plugin with a graphical test runner.

The following test is implemented in TestNG. It has the same test cases as the SUnit and
JUnit implementation. The code looks similar to the JUnit code. The @Test annotation
takes different parameters than the JUnit version.

package egBank;

import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertTrue;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class BankTestTestNG {

Account account;

@BeforeClass
public void setUp() {

account = new Account();
}

@Test(groups = {"Bank"})
public void testDeposit() {

int balanceBefore = account.getBalance();
account.deposit(100);
assertEquals(account.getBalance(), balanceBefore + 100);

}

@Test(groups = {"Bank"}, expectedExceptions = NotEnoughMoneyException.class)
public void testWithdraw() {

account.deposit(100);
account.withdraw(150);
assertTrue(account.getBalance() > 0);

}
}

10http://ant.apache.org

13

http://ant.apache.org

2. State of the Art

2.1.4. JTiger

JTiger11 is yet another testing framework for Java. It uses annotations similar to JUnit 4.
Like TestNG it is suitable for large test scenarios and uses Ant as its test runner. JTiger
does not have a user interface to run the tests. JTiger can report the test results in plain
text, HTML or XML. A test method can have six different exit states:

• Success

• Ignored (Annotated)

• Ignored (Cannot Invoke)

• Failure (Set Up)

• Failure

• Failure (Tear Down)

JTiger is the only framework that supports return values in tests. Because JTiger tests
can have a return value, the withdraw test is implemented twice. The first is done like
the other frameworks without reusing a test. The second implementation reuses the
result from the deposit test.

package egBank;

import static org.jtiger.assertion.Basic.assertTrue;
import static org.jtiger.assertion.Basic.assertEqual;
import org.jtiger.framework.Category;
import org.jtiger.framework.ExpectException;
import org.jtiger.framework.SetUp;
import org.jtiger.framework.Test;

public class BankTestJTiger {
Account account;

@SetUp
public void setUp() {

account = new Account();
}

@Test
@Category("Bank")
public Account testDeposit() {

int balanceBefore = account.getBalance();
account.deposit(100);

11http://jtiger.org

14

http://jtiger.org

2.2. Problems

assertEqual(account.getBalance(), balanceBefore + 100);
return account;

}

@Test
@Category("Bank")
@ExpectException(NotEnoughMoneyException.class)
public void testWithdraw() {

account.deposit(100);
account.withdraw(150);
assertTrue(account.getBalance() > 0);

}

@Test
@Category("Bank")
@ExpectException(NotEnoughMoneyException.class)
public void testWithdrawReuse() {

Account fullAccount = this.testDeposit();
fullAccount.withdraw(150);
assertTrue(account.getBalance() > 0);

}
}

2.2. Problems

The main problem with testing frameworks is that the test does not know its method
under test. And a method does not know which test is accessing it. Because the link
between test and method is inexistent they never know exactly about each other. The
information can be obtained by searching the senders and implementors (static analysis)
or by tracing the test on run-time (dynamic analysis). Static analysis can be inaccurate,
dynamic analysis can be slow.

Another problem is that a test has no return value. Current test scenarios have a flat
hierarchy. Each test can run stand-alone. But most test methods could return a useful
value that can be reused to compose another tests and test scenarios.

The testing frameworks have most features that are needed, but the user interfaces are
limited. There are not many tools beside the test runners. The user has to type in the
code of a test and is not supported by a tool.

15

2. State of the Art

16

3. Meta-Model

This chapter describes the meta-model we implemented in Smalltalk. The meta-model
is based on commands and has different command types. The model is processable by
a programming language and is also human readable.

There are three main problems with unit testing:

• Methods do not know their tests and vice versa. It is not evident which method
is tested by which test.

• Tests are not reused.

• The user interfaces do not support a developer in writing unit tests.

The first two problems we solve with our meta-model. The meta-model holds an abstract
description of the test. It helps to connect the methods and their tests. The meta-model
of a unit test knows exactly which method is tested by this test [GND04]. Each test has
a return value, so the tests are reusable [GGN05].

Our user interface encourages the developer in writing tests. The process of creating a
test is simplified. The developer should type as few as possible. Existing tests can be
reused in new tests and composed with drag and drop. The navigation between test and
implementation can be improved in both directions.

3.1. Commands

We built a meta-model with the concept of commands [GLN05]. A command is an
object that understand the message run. A command has a result. By running the
command, the return value of the method is stored in the result temporary variable.
Because commands have a return value, they can be used to compose other commands.
Commands belong to a package and have a name.

The commands can be divided into two groups: method commands and multiple method
commands. Method commands are using a single method, multiple method commands
are using more than one method. The most important classes are shown in figure 3.1
(p.18).

17

3. Meta-Model

MethodCommand
value()
storeString()

Command
result
testResult
run()

MethodTest
assertions

MethodExample

ExemplifiedPackage
runCovered()

commands *

MultipleMethod
Command

Independent
Suite

MethodSuite

InverseTest

PessimisticExample

1..*

Figure 3.1.: Meta-model command types

3.2. Persistence of Commands

There are two approaches to write a command. Commands can be created with the
meta-model’s factory methods or by typing the source code of a command. The meta-
model code is suitable for business methods, scripts and the user interface. But humans
can comprehend a command faster if it is written as source code. It is possible to write a
command in source code if the correct syntax is used. The commands also need a source
representation if a versioning system is used. All changes are stored as source code in
the image.

Commands are stored as source code. The meta-model can generate the source code of
a command. This code is compiled as a class method of the result without parameters.
The example methods can be run at any time because they do not have any parameters.
Since the command is stored on the class side, the name of the command needs to be
unique for the result class. The compiled method is an example of the implementing
class.

The code is annotated with the <egClass:method:> pragma. The pragma holds the com-
mand type and the method under test. The command type is used to parse the command

18

3.3. Method Commands

to the meta-model. Guessing the type from the code is ambiguous. The method under
test is annotated for better comprehension. It is not used by Eg because we assume
that the last method call is the method under test. The compiled example methods can
be used with another tool; the code does not have any Eg specific syntax.

3.3. Method Commands

A method command focuses on a single method call [GND04]. A method call is a selector
and its parameters sent to a receiver object. A method command knows the receiver,
selector and parameters. The receiver is the object under test. The message is composed
of a selector and parameters and is sent to the receiver. The result is the return value
of the message.

First studies [GLN05] indicate that method commands are the most used form of com-
mands or are decomposable into method commands. Most large test scenarios can be
decomposed to method commands. A scenario is a sequence of method calls. Each
method call can be transformed to a method command.

Persistence of meta-model variable values Figure 3.2 (p.19) shows the meta-model of a
method command. All objects used as receiver or parameters need to have a source code
representation because the command is stored as code. The message storeString is sent to
the object to get the source code. The receiver is modeled as a block. Because commands
are composable, method commands can also be used as input for other commands. The
commands are cascaded like a pipe in Unix.

MethodCommand
value()
storeString()

1
receiver

ObjectFactory
value()
storeString()

String

parameters *

LambdaBlock

Collection

Number

Figure 3.2.: Meta-model of method commands

19

3. Meta-Model

3.3.1. Method Examples

A method example is the simplest form of a method command. A method example shows
the usage of a selector. The result is also an example instance of the result class.

There are two ways to create a method example. A method example can be built with
the factory methods of the meta-model:

Eg.MethodExample new
forPackage: ’Eg-Bank’
receiver: [Account new]
selector: #deposit:
parameters: (OrderedCollection with: 100)

The selector #deposit: needs one parameter.

The second possibility is to write the source code directly:

Account class � exampleDeposit
<egClass: #’Eg.MethodExample’ method: #deposit: >
| aReceiver aResult |
aReceiver := Account new.
aResult := aReceiver deposit: 100.
ˆaResult

The result of this method example is the account. Hence the method example is stored
on Account class as example of an object returning an account. If no example name is
provided, the name is composed from an example prefix and the selector.

Method examples can also act as unit tests. The simplest form of a test is a checked
method example. A checked method is a method that has a postcondition. The post-
condition assures that the method is working for every use of it. Hence all calls of a
checked method are tests. A method example calling a checked method is a test with-
out an assertion, because the test logic is done in the implementation of the method
already.

3.3.2. Method Tests

A method example can be extended with one or more assertions and becomes a method
test. Method tests can be used as unit tests. The assertions are blocks expecting a
boolean value. The assertion can be used to define a postcondition. If an assertion fails
on running the test, it raises an exception.

Eg.MethodTest new
forPackage: ’Eg-Bank’
receiver: [Account new]

20

3.3. Method Commands

selector: #deposit:
parameters: (OrderedCollection with: 100)
assertions: (OrderedCollection with: [aResult balance = 100])

is equal to

Account class � exampleDeposit
<egClass: #’Eg.MethodTest’ method: #deposit: >
| aReceiver aResult |
aReceiver := Account new.
aResult := aReceiver deposit: 100.
self assert: aResult balance = 100.
ˆaResult

Persistence of assertions Assertions can access the temporary variables aReceiver,
someParameters and aResult. Assertions written as strings can use all variables. An asser-
tion with two variables can look like this: ’(aReceiver includes: (someParameters
at: 1))’. Simple assertions can be modeled also with blocks. Because the VisualWorks1

block decompiler loses the variable names, using different variables is ambiguous. Blocks
with one variable replaces the name with aResult, because this is the most used vari-
able.

3.3.3. Pessimistic Examples

A pessimistic example is a command that should raise an exception. If no exception
is caught, it raises a new exception. A pessimistic example shows what happens in
case of a misuse of the selector or an invalid receiver. A method under test fails if the
preconditions do not hold. There is no result because the message should fail and does
not have a return value. The example is compiled to the receiver because the result is
not an example for this test. A pessimistic example does not have assertions.

Because the bank does not give credits on the accounts, the following example is a
pessimistic example:

Eg.PessimisticExample new
forPackage: ’Eg-Bank’
receiver: [Account withBalance: 50]
selector: #withdraw:
parameters: (OrderedCollection with: 100)

is equal to

1http://smalltalk.cincom.com

21

http://smalltalk.cincom.com

3. Meta-Model

Account class � exampleWithdraw
<egClass: #’Eg.PessimisticExample’ method: #withdraw: >
| aReceiver aResult |
aReceiver := Account withBalance: 50.
aResult := [aReceiver withdraw: 100] shouldFail.
ˆaReceiver

The pessimistic message is inside a block that should fail. The withdraw: message raises
an exception if the amount is negative. This exception is caught by the shouldFail
message.

BlockClosure � shouldFail
[self value] on: Error do: [:err | ˆtrue].
self halt.
ˆfalse

3.3.4. Cascaded Commands

A method command with another command as receiver or parameter is a cascaded
command. Additionally to the features of a method command a cascaded command can
build the expanded source code.

If a cascaded command uses commands as receiver or parameters, the source code of
these commands gets inlined in the expanded source code. The expanded code is not
compiled as example because there is no use for this and the duplicated code is redundant.
Parsing an expanded code would be much more complicated.

The expanded code is used for a better understanding of a command because the cas-
caded command is visible and does not need to be browsed in another window.

The following example has a command as receiver. The receiver command can also be
a block. The command is expanded in the source code.

Eg.MethodTest new
forPackage: ’Eg-Bank’
receiver: [Account exampleDeposit]
selector: #withdraw:
parameters: (OrderedCollection with: 20)
assertions: (OrderedCollection with: [aResult balance = 80])

The command used as receiver has the following code:

Account class � exampleDeposit
<egClass: #’Eg.MethodTest’ method: #deposit: >
| aReceiver aResult |
aReceiver := Account new.

22

3.4. Multiple Method Commands

aResult := aReceiver deposit: 100.
self assert: aResult balance = 100.
ˆaReceiver

The default source code that is compiled as example is

Account class � exampleWithdraw
<egClass: #’Eg.MethodTest’ method: #withdraw: >
| aReceiver aResult |
aReceiver := Account exampleDeposit.
aResult := aReceiver withdraw: 20.
self assert: aResult balance = 80.
ˆaReceiver

The expanded source code that can be displayed in the browser is

Account class � exampleWithdraw
<egClass: #’Eg.MethodTest’ method: #withdraw: >
| aReceiver2 aResult aResult2 |
aReceiver2 := Account new.
aResult2 := aReceiver2 deposit: 100.
self assert: aResult2 balance = 100.
aResult := aResult2 withdraw: 20.
self assert: aResult balance = 80.
ˆaReceiver

All temporary variable names are replaced to use the values from the cascaded command.
The variable aResult2 is the result of the first command. The value is reused as receiver
of the second command. Note that the result of the first command needs to be the
same type as the receiver of the second command, else the method under test is not
defined.

3.4. Multiple Method Commands

Multiple method commands are collections of one or more commands. Multiple method
commands have a result, but they are rarely used. Some multiple method commands re-
turn the result of the last command or a boolean. Not all multiple method commands can
generate their source code, because the meta-model constructor code is already human
readable. Generating another source code representation does not clarify the command.
The example of section 3.4.1 (p.24) has only a single source code representation.

23

3. Meta-Model

3.4.1. Independent Suites

An independent suite is a collection of independent commands. A suite can run all
including commands. It returns the last command as result, therefore it is not adept to
use it for another test. An independent suite is equivalent to a test suite in SUnit. A
suite has the following source code representation.

Eg.IndependentSuite class � exampleBankSuite
| suite |
suite := Eg.IndependentSuite new.
suite packageName: ’Eg-Bank’.
suite

addCommand: Eg.MethodTest testAccountDeposit;
addCommand: Eg.MethodExample exampleAccountDeposit.

ˆsuite

3.4.2. Multi Facet Command Suites

A multi facet command suite consists of different commands that share the same setup
method. In our meta-model the receiver can be another command instead of using a
setup method. Therefore a multi facet command suite consists of individual commands
that can reuse the same receiver as setup method.

3.4.3. Method Command Suites

A method command suite consists of different commands focusing on the same selector.
The method command suite collects all available commands in the system with the given
selector. The method command suite is a generated view. Therefore it does not have a
source code representation and is not compiled as an example. A method command suite
is used to compare the different receivers and parameters of a selector. The following
method return the values from table 3.1 (p.24):

Eg.MethodCommandSuite new forPackage: ’Eg-Bank’ class: Account selector: #deposit:

Table 3.1.: Method command suite of Account � deposit:
Name Receiver Selector Parameters Result
exampleDeposit Account new #deposit: 100 Account with 100
exampleDeposit2 Account with 100 #deposit: 200 Account with 300

24

3.4. Multiple Method Commands

3.4.4. Inverse Tests

An inverse test is similar to a method test, except it has a second selector which is the
inverse selector of the first one. Inverse tests can be used to test two inverse functions.
Mathematically: f−1(f(x)) = x, where f−1 is the inverse function of f . By running the
inverse test the first selector is sent to the receiver. The inverse selector then is sent
to the result of the first selector. The inverse selector accepts the same parameters as
the selector. Finally a predefined assertion checks if the result is equal to the receiver.
The receiver objects needs to implement the equal operator (object = anotherObject),
because it is used in the assertion.

The following inverse test deposits an amount on an account and withdraws it again:

Eg.InverseTest new
forPackage: ’Eg-Bank’
receiver: [Account new]
selector: #deposit:
parameter: 20
inverseSelector: #withdraw:

is equal to

Account class � exampleDepositWithdraw
<egClass: #’Eg.InverseTest’ method: #deposit: >
| aReceiver aResult aFinalResult |
aReceiver := Account new.
aResult := aReceiver deposit: 20.
aFinalResult := aResult withdraw: 20.
self assert: [aReceiver = aFinalResult].
ˆaFinalResult

We can also use inverse tests to test Eg itself. The example in figure 3.3 (p.26) shows an
inverse test with the inverse selectors parse and buildCode.

This tests the compiler and code generator. The receiver is a source string. The gener-
ated source code is equal to the starting code.

Eg.InverseTest new
forPackage: ’Eg-Examples’
receiver:

’exampleAdd
<egClass: #’Eg.MethodTest’ method: #add: >
| aReceiver aResult |
aReceiver := Set new.
aResult := aReceiver add: 10.
self assert: [aResult = 10].

25

3. Meta-Model

self assert: [aReceiver includes: 10].
^aResult’

selector: #parse
inverseSelector: #buildCode

is equal to

ByteString class � exampleParseBuildcode
<egClass: #’Eg.InverseTest’ method: #parse >
| aReceiver aResult aFinalResult |
aReceiver := ’exampleAdd

<egClass: #’Eg.MethodTest’ method: #add: >
| aReceiver aResult |
aReceiver := Set new.
aResult := aReceiver add: 10.
self assert: [aResult = 10].
self assert: [aReceiver includes: 10].
^aResult’.

aResult := aReceiver parse.
aFinalResult := aResult buildCode.
self assert: [aReceiver = aFinalResult].
ˆaFinalResult

parse

buildCode

Source Code
Account class >> exampleDeposit
 <egClass: #'Eg.MethodExample'
 method: #deposit: >
 | aReceiver aResult |
 aReceiver := Account new.
 aResult := aReceiver deposit: 100.
 ^aResult

Meta-Model
name: #exampleDeposit
packageName: 'Eg-Examples'
receiver: an Account
selector: #deposit:
parameters: OrderedCollection (100)
returnValue: #aResult

Figure 3.3.: Inverse test

3.5. Emerged Meta-Model

The meta-model is displayed in figure 3.4 (p.27). The model consists of the different
command classes, the object factory and the runtime informations. The object fac-
tory interface ensures that the meta-model variable values can be compiled as source
code.

26

3.6. Prepared Method Implementation

During the execution of a command, additional information can be gathered. A method
command calls one method. So the method command is an example for this method.
The receiver and parameters are exemplified values for the method. A coverage on the
method calls displays all executed messages with the command. These methods are not
identifiable in the command source.

The meta-model is built with pure Smalltalk syntax and does not need any external
libraries. The generated commands can be used without the meta-model or with other
implementations.

MethodCommand
value()
storeString()

ExecutedMethod
receiver
parameters
result

1
*
coveredMethods

command

1
receiver

ObjectFactory
value()
storeString()

String

ExemplifiedMethod
class
selector

Command
result
testResult
run()

exemplifiedMethod1

dedicatedCommands
*

MethodTest
assertions

MethodExample

ExemplifiedPackage
runCovered()

exemplifiedMethods
*

commands *

parameters *

MultipleMethod
Command

LambdaBlock

Collection

Independent
Suite

MethodSuite

InverseTest

PessimisticExample

Cascaded
Command

Number

1..*

2..*

Figure 3.4.: Meta-model of commands

3.6. Prepared Method Implementation

Method commands can generate the method implementation of their selector. If the
selector is missing, this code is compiled to the class of the receiver object. The vari-

27

3. Meta-Model

able names are suggested from the type of the parameter given by the command. The
variable names reflect the type of the parameters and should be a hint for the devel-
oper. The developer is encouraged to change the names according to the role of the
parameters.

With this automatic implementation, example-driven design is possible: A developer
can do a test for a yet missing selector. During the creation of a method command the
meta-model checks if the selector is present. If the selector is missing, it is compiled to
the class of the command receiver. Creating a command runs it, so a debugger opens
on the new method. The developer has to implement the body of the method and can
resume the command.

The following example code is generated if a command uses the selector #withdraw: with
the parameter 50.

Account � withdraw: aSmallInteger
self halt.

3.7. Prepared Class Implementation

When developing in a genuine test-driven design, the test is created before the class
under test even exists. In the meta-model this means the command is built before the
class. The receiver of a command is referencing the not yet existing class.

The meta-model can generate the class skeleton for the referenced class under test. The
new class does not have any instance variables or methods.

28

4. User Interface

A good user interface is important for the acceptance of a software project. But it
is difficult to build a fully functional user interface that is easy to use. Some users
prefer rich interfaces with menus, buttons and a lot of mouse work. Others favor slim,
text-based interfaces. A tradeoff is needed to satisfy a large user group.

This chapter shows how to use the test interface we built for the meta-model. The meta-
model is modular and can also be used without interface or with another interface.

4.1. Problem

There are only few user interfaces for unit tests available today. SUnit comes with a
simple test runner as seen in figure 2.1 (p.8). The developer has to open an extra test
runner window. This is a context switch and slows down the workflow. Other tools are
trying to integrate a testing environment into the class browser. But most tools (e.g.,
XUnit) cannot browse from a method to its test and vice versa, because a meta-model
is missing. The developer has no overview which methods are tested and which tests are
covering a method.

Some tools can run and debug tests, but none can create tests. Unit tests are written
as source code and the developer has to know the correct syntax of a test. Beginners
cannot use the full functionality of the testing framework, because they do not know the
syntax.

4.2. Interface Requirements

A new test editor should achieve the following requirements:

• Easy to use

• Minimal mouse movement and keyboard typing

• Support for drag & drop

• Interface should propose valid input values

• Should generate source code

29

4. User Interface

• Support for reusable examples and tests

• Link method implementation and test without context switch

• Graphical feedback of covered methods

• Integrated test runner

Our test browser aims to improve the process of creating a test. The interface can propose
useful values for the input fields. Because tests have a result, they can be reused. New
tests can be composed by drag and drop. The browser also shows which method is
covered by a test. The meta-model knows exactly which methods are called by a certain
test. But the meta-model still has a source representation of the test. The source code
is human readable and can be reified into objects according to the meta-model.

4.2.1. Star Browser

Star Browser1 by Roel Wuyts [WD03] is a Smalltalk class browser. The goal of Star
Browser is the ability to classify anything while browsing the system. Figure 4.1 (p.31)

shows a Star Browser while browsing a class.

The classified items are arranged in a tree view widget. Items can have children. New
items can be added by drag and drop. The underlying classification model can collect
all objects matching a given pattern. Each item has a context menu and can have a
different browser view opened in the right pane when it is selected.

4.3. EgBrowser

The EgBrowser is a modification of the Star Browser. We choose Star Browser for its
tree view and drag and drop support. The classification tree view from Star Browser is
used to classify and display the various commands of the meta-model. The visitor model
of Star Browser is extended to handle commands from the meta-model.

Figure 4.2 (p.32) shows the EgBrowser in action. The root item in EgBrowser holds
the packages. Each package includes commands and can run them from the context
menu. The package icon turns green if all commands run without failures or else red.
Clicking on the package icon opens an inspector.

Inside the package the method commands are grouped by the method under test.
Selecting a method reference icon opens the browser on the implementation of this
method.

Inside the method reference are the commands that focus on this method. Commands
are displayed as items with their variables as sub-items. While a command runs, the

1http://homepages.ulb.ac.be/∼rowuyts/StarBrowser/

30

http://homepages.ulb.ac.be/~rowuyts/StarBrowser/

4.3. EgBrowser

Figure 4.1.: Star Browser

icon color can change: Green means the command runs without problems, else the icon
becomes red.

The icon letter reflects the command type. The following icons are available:

• E: Method Example

• T: Method Test

• I: Inverse Test

• S: Suite, any other multiple method command

Clicking on a command opens the browser on the compiled command source. The
variables in the sub-items can be changed by drag and drop. The command is recompiled
if a change occurs.

If a command is available for a visible selector in the class browser, its type icon is
displayed before the selector name. If multiple commands exists for a selector, the icon
shows a M.

31

4. User Interface

Figure 4.2.: EgBrowser

4.4. Video Store – an Example Application

The video store is a simple application that demonstrates the use of the EgBrowser.
The application is built test-driven. A test scenario is created simultaneously. This
means by creating examples and tests, the application is implemented and tested along
the way.

The video store application consists of the classes Customer, DVD, VideoCategory and
Videostore. A customer has a name and an address. The name is the primary key used
by the video store. The DVD has a title, date and description. A video category has a
name and a collection of DVDs. The video store holds all together. It has a collection
of customers and a collection of video categories. The video store can lend a DVD to a
customer. Items and customers can be searched by name. The video store has various
business methods.

32

4.4. Video Store – an Example Application

4.4.1. Creating Examples

The classes Customer, DVD, VideoCategory and Videostore are created with the wizard
from the class browser or the traditional way by typing the source code into the class
browser.

Another way is to let the Eg meta-model generate the class. If the receiver of a command
is an unknown class, this class is generated. The class does not have any instance vari-
ables or methods, probably the command fails until the methods are implemented.

After creating the classes, we can create examples. A simple DVD instance holds the
instance variables. Testing getter and setter methods is not worthwhile, therefore an
example is adequate. An empty EgBrowser can browse the classes by clicking on the
root item in the command tree.

Command editor Selecting the examples tab opens the command editor as seen in
figure 4.3 (p.34). We built the command editor as an additional code tool for the Refac-
toring Browser2. The editor is a stand-alone tool and can be used without the Eg-
Browser.

The content of the editor is depending on the selection in the code browser above. If a
class is selected without any selector, it displays a command editor for a new method
command. If a selector is chosen it searches all commands of this selector in the system
and loads the first command into the editor. The commands can be switched with the
drop down menu on top of the editor.

New commands New commands can be created using the command editor. The input
fields for name and selector are suggested if a selector is selected. The receiver has a
drop down list of possible statements of existing tests. The list displays all commands
where the class of the command result is the current selected class. The number of
parameter input fields is adjusted to the selector.

If no selector is selected, the missing selector is generated as seen in section 3.6 (p.27).
This is called test-driven design, because the test is created before the method implemen-
tation. A debugger will open, because the method body needs to be implemented.

If an assertion is given, the editor builds a method test (section 3.3.2 (p.20)), else it builds
a method example (section 3.3.1 (p.20)). A check box transforms the command to a pes-
simistic example (section 3.3.3 (p.21)). The assertions field is invisible in examples.

The return value of the command can be either the receiver or the result of the command.
The input fields expect valid Smalltalk code, strings have to be quoted. The assertion
text field expects blocks or strings. The assertions are separated by a dot. Assertion

2http://www.refactory.com/RefactoringBrowser/RefactoringBrowser.html

33

http://www.refactory.com/RefactoringBrowser/RefactoringBrowser.html

4. User Interface

blocks can use one variable, which is replaced to aResult. Assertion strings can access
the variables aReceiver, someParameters and aResult.

The receiver and parameters accept drag and drop from other commands of the tree
view. If the shift key is held down it prevents a context switch while dragging.

The editor can also be used to view or modify existing commands in the system.

Figure 4.3.: Command editor for a method test

Video store examples With commands we can build up an example video store that is
also a test scenario. A DVD example can be modeled with the parameters exampleDVD1
as example name and DVD new from the drop down list as receiver. The selector is title:
with the parameter ’Star Wars’. As return value we need the receiver which is the
created object. This example does not need an assertion, thus the assertion field can be
left empty. The action button creates the command and runs it. The button changes
its color to green if the command is successful.

Figure 4.4 (p.35) shows the command editor while editing a method example.

Multiple DVD examples can be collected in a category example with the receiver Category

34

4.4. Video Store – an Example Application

Figure 4.4.: Command editor for a method example

new, selector #addDVD: and (Set with: DVD exampleDVD1 with: DVD exampleDVD2
with: DVD exampleDVD3) as parameter.

In the same manner categories can be added to a video store. At the end there is a video
store object with different categories, each category has different DVDs.

VideoStore class � exampleStore
<egClass: #’Eg.MethodExample’ method: #categories:customers: >
| aReceiver aResult |
aReceiver := VideoStore new.
aResult := aReceiver

categories: (Set with: VideoCategory exampleAddAll)
customers: (Set with: Customer exampleCustomer1

with: Customer exampleCustomer2).
ˆaReceiver

Now business methods can be defined, which use this example store as data for their
tests. An example of a loan looks like the following:

VideoStore class � exampleLend

35

4. User Interface

<egClass: #’Eg.MethodExample’ method: #customer:lend: >
| aReceiver aResult |
aReceiver := VideoStore exampleStore.
aResult := aReceiver customer: VideoStore exampleSearchCustomer lend: VideoStore

exampleSearchDVD.
ˆaResult

Figure 4.5 (p.36) shows how drag and drop can be used to create a new command. Both
the receiver and parameter are dragged from the tree view.

Figure 4.5.: Drag and drop commands to compose a new command

The parameters of the selector #customer:lend: need to be the result of the search com-
mands. Because Customer exampleCustomer1 returns a new object with a different hash,
it cannot be used as parameter value. The example VideoStore exampleSearchCustomer
returns the customer instance created in the exampleStore command.

36

4.4. Video Store – an Example Application

4.4.2. Method Suite View

A method suite is a command suite focusing on the same selector. The full description
of a method suite is in section 3.4.3 (p.24). All commands in the system with the selected
selector are collected to a method suite and displayed in a table. The table shows the
commands name, receiver, selector, parameters and result. All listed commands have
the same selector, because they belong to the same method suite. The interesting fields
are the receiver, parameters and result. They show the used values of the different
commands. Figure 4.6 (p.37) shows the table of the method suite with #title: as selector.
The table is read only and cannot be edited.

Figure 4.6.: Method suite view

4.4.3. Coverage View

The coverage view lists all methods called by the current selected command. Method
wrappers3 are installed on all selectors of the package containing the command [Duc99,
BFJR98]. After running the command, all wrappers are uninstalled. Installing wrappers

3http://www.refactory.com/Software/MethodWrappers/

37

http://www.refactory.com/Software/MethodWrappers/

4. User Interface

on a package slows down the application execution, because all wrapped methods are
logging their access.

The coverage view can display the coverage of a command. This coverage displays all
access of a command from other commands. But because the meta-model knows the
methods of cascaded commands, this is not essential.

The coverage view from figure 4.7 (p.38) shows all classes and selectors called by the
exampleLend command. The entries in the table are chronological, the first call is on
top. Duplicated entries are removed from the table, the entry is at the first occurrence
of a call. The table cannot be modified.

Another approach to display the coverage would be to add a 5th pane to the class
browser. The additional pane could display all tests called by the current selected
method. The pane could also display the implementing method if a test is selected in
the 4th pane. We choose to implement the coverage view as tab instead of an additional
pane because it is simpler to implement and the browser remains modular.

Figure 4.7.: Coverage view

38

4.5. Importing SUnit tests

4.4.4. Suite Editor

Commands can be collected to an independent command suite as described in sec-
tion 3.4.1 (p.24). For example all commands of a package can be bundled to an indepen-
dent command suite.

Figure 4.8 (p.39) shows a suite editor composing different commands to a suite. The left
list displays all commands of the system, the right list displays the commands in the
suite. The right arrow button adds the selected command to the suite. The command
is removed from the left list. The left arrow button removes the selected command in
the right list and adds it to the left list again. The accept button adds the suite to the
command tree of the browser.

Figure 4.8.: Command suite view

4.5. Importing SUnit tests

Most of the existing Smalltalk unit tests are written with SUnit. These tests are difficult
to convert to the meta-model. SUnit does not denote which method is under test, so it

39

4. User Interface

is hard to recognize and classify the tests automatically [Mar05, GLN05]. SUnit tests
are scattered, they can use a setup method and inherit functionality from their parent
classes. Multiple methods under test can exist in the same test case and assertions can
be placed anywhere. A method under test can even be called in an assertion.

To convert a SUnit test to an Eg test, the user has to select the method under test with
the mouse. Figure 4.9 (p.40) shows the context menu in the browser, where the selected
code can be converted to a command. The code needs to be a simple statement. Multiple
methods under test cannot be split into multiple method tests automatically.

The converter tries to gather all informations needed from the SUnit test. The setup
method is inlined and the parameters are expanded. All assertions before the selected
method are ignored in the current implementation, because Eg does not have precondi-
tions. The assertions after the method are adopted.

Figure 4.9.: Import a SUnit test to Eg

This is the code of a simple SUnit test. The test message is account deposit: 100. The test
uses a setup method. All assertions are separated and no statements are nested.

BankTest � testDeposit
account deposit: 100.

40

4.5. Importing SUnit tests

self assert: account balance > 0

The converter creates the following Eg method test. The receiver value is taken from the
setup method of the SUnit test. The variable in the test message and assertion changes
to aReceiver.

Account class � exampleDeposit
<egClass: #’Eg.MethodTest’ method: #deposit:>
| aReceiver aResult |
aReceiver := (Account new).
aResult := aReceiver deposit: 100.
self assert: aReceiver balance > 0.
ˆaReceiver

41

4. User Interface

42

5. Validation

We introduced some testing tools in chapter 2 (p.7) and our tool in chapter 4 (p.29). But
can we compare the different tools? Is the EgBrowser more efficient or does the user
prefer the existing tools?

This chapter tries to measure the different tools. We compared different features with
different techniques.

Software validation is an important part of building an application. Especially the user
interface needs a lot of validation because this is the connection to the end user. The
user does not care about the underlying code structure or model, he wants a simple and
functional user interface!

The validation helps to match the user’s requirements and detects misunderstandings
and defects. The evaluation process should be done while developing the application. It
is too late to evaluate a final product.

Dix et al. [AD04] state three main goals of evaluation:

• Assess accessibility of the system’s functions

• Assess user’s experience of interaction

• Identify any problems

Metrics A metric is a set of numerical parameters that can be measured. The pa-
rameters have a unit and can be compared. Metrics can compare the performance of a
process.

Software metrics are popular in software design. These metrics can assess code quality
by counting the size of the code, number of methods, coherence of classes and a lot of
other metrics. But evaluating code quality with metrics is dangerous because not all
metrics are meaningful and accurate.

The interface look and behavior is significant for the user of an application. Hence it
is important to validate the user interface. Ivory et al. [IH01] say it is difficult to find
good parameters for a user interface metric. Counting the number of clicks or keyboard
inputs is a simple metric, but it does not state something about the usability of a system.
Measuring the time a user needs to fulfill a certain process can benchmark the usability,

43

5. Validation

but this depends on how fast the user can interact with the system. Interviews are useful
to assess the interface, but they need an analysis and cannot be compared.

The main problem is that a user interface always needs some user interaction. The user
interaction cannot be simulated by an application, it requires a real person. The test
person has consequences to the evaluation results. The results are not the same if they
are done with a novice user or an expert.

5.1. GOMS

GOMS stands for Goals, Operators, Methods, and Selection rules. GOMS was devel-
oped in 1983 by Card, Moran and Newell [CNM83]. They conducted research in human
computer interaction and psychology. Today GOMS is the best known theoretical con-
cept of human computer interaction. It is used to measure user interaction in software
development [JK94, JK96, AD04]. There are four different variations of GOMS. They
are different in the level of detail and complexity.

A goal is what the user has to accomplish. A goal can be divided into sub-goals. An
operator is a single step to reach a goal, for example a mouse click or key-stroke. A
method is a sequence of operators. If more than one method for a goal exists, the
selection rule is applied.

GOMS is a model-based evaluation and does not need a user to participate. The GOMS
evaluation is done by an expert. The expert knows how to interact with the system. He
does not have the same problems than a novice user.

5.1.1. KLM-GOMS

The Keystroke-Level Model is the simplest GOMS variant. It is a simplified version of
CMN-GOMS. It eliminates the goals, methods, and selection rules. Only the operators
are measured. To estimate the time spent for a task, the execution time of the operations
is summed.

KLM has five different operators, listed in table 5.1 (p.45). Each operator has an exe-
cution time that is a mean value for an average user. K is the time needed to press
a key or mouse button. The time for performing a keystroke can vary from 0.12
(good typist) to 1.2 seconds (non-typist). P is to point the mouse to an object on
the screen. If this time needs to be more accurate, Fitts’ law [Fit54] can be applied:
t = 0.1 ∗ log2(Distance/Size+0.5). The time needed for pointing on an object depends
on the object’s size and the distance. H is the time needed to home the hands on the
keyboard or mouse. A lot of homing actions can be annoying. M is the mental prepara-
tion the user needs before executing an action. Mental preparation is used before each
P and K if it is not part of a string. R is the time the system needs to react on the

44

5.1. GOMS

user’s input. This time is task dependent and is negligible in most cases because today’s
computers are fast enough.

Table 5.1.: KLM-GOMS model
Operator Time Description

K 0.2 sec Keying: Perform a keystroke or mouse click
P 1.1 sec Pointing: Position the mouse pointer
H 0.4 sec Homing: Move hands from keyboard to mouse
M 1.3 sec Mental: Prepare for the next step
R ? Responding: Computer responds to the user’s input

To demonstrate the different variants of GOMS we use a small example. The goal is to
save a document under a certain name in a common text editor. Table 5.2 (p.45) shows
the KLM-GOMS steps. This table is not in a consistent form because KLM-GOMS does
not define a syntax.

Table 5.2.: KLM-GOMS example
Description Operator Time (sec)
Mental preparation M 1.3
Hit ctrl, shift and s to open save dialog 3*K 0.6
Find a name M 1.3
Enter the name 10*K 2
Prepare to close dialog M 1.3
Hit enter K 0.2
Total predicted time 6.7

5.1.2. CMN-GOMS

CMN-GOMS is the original GOMS proposed by Card, Moran and Newell. It has a strict
goal hierarchy and considers also the selection rules. Thus it is more flexible and more
complex. The depth of the goal hierarchy can be used to estimate the memory usage.
CMN-GOMS does also predict the operator sequence.

The CMN-GOMS code is in program form and uses a pseudo code language. It does
not define the syntax, but provides a guide for the selection rules.

Table 5.3 (p.46) is the same example from above. The syntax is not defined, but this
notation is mostly used in publications. The hierarchy is indented with dots.

45

5. Validation

Table 5.3.: CMN-GOMS example
Description Time (sec)
Goal: save file
. Goal: open save dialog
. . Mental preparation 1.3
. . Hit ctrl, shift and s to open save dialog 0.6
. . Find a name 1.3
. . Enter the name 2
. . Prepare to close dialog 1.3
. . Hit enter 0.2
Total predicted time 6.7

5.1.3. NGOMSL

Natural GOMS Language is like CMN-GOMS, but has a high level syntax. Therefore
it is easy to use like KLM-GOMS, but has the power of CMN-GOMS. NGOMSL uses
the cognitive complexity theory (CCT). CCT assumes that the actions are serial and
the memory triggers the production rule at a fixed rate [JK96]. The mental prepara-
tion operator is different from the previous GOMS variants and is used before every
step.

NGOMSL can also predict the learning time of an individual task. The time is computed
with heuristics and the number of subtasks and bases on CCT [JK96]. The execution
time prediction is similar to the previous GOMS variants.

Table 5.4 (p.46) shows the example in the natural GOMS language. It assumes that the
mental preparation time in CCT is the same as with KLM-GOMS.

Table 5.4.: NGOMSL example
Description Executions Time (sec)
Method for goal: save file

Step 1: Mental preparation 1 1.3
Step 2: Hit ctrl, shift and s to open save dialog 1 0.6
Step 3: Find a name 1 1.3
Step 4: Enter the name 1 2
Step 5: Prepare to close dialog 1 1.3
Step 6: Hit enter 1 0.2

Total predicted time 6.7

46

5.2. Validation of the EgBrowser

5.1.4. CPM-GOMS

CPM stand for Cognitive-Perceptual-Motor and Critical Path Method. Critical Path
Method is a mathematical algorithm for scheduling a set of project activities. The
critical path predict the task time. CPM-GOMS can also make time predictions, but
assumes that the tasks can be executed in parallel. The CPM-GOMS model is based
directly on the Model Human Processor (MHP) and is much more detailed. To compute
a simple read from screen task, even the eye movement time is considered.

5.2. Validation of the EgBrowser

The GOMS model can predict execution times. We use GOMS to compare the Eg-
Browser with SUnit with Refactoring Browser Extensions support. SUnit is the most
used testing tool in Smalltalk and has enough features for a comparison. The other
tools mentioned in chapter 2 (p.7) are similar to SUnit and would get a likewise time
prediction.

Creating a test is a rather long task for a GOMS validation. Thus we choose the simplest
variant, the KLM-GOMS. It is accurate enough to assess the tools, but the disadvantage
is that the learning time cannot be predicted. All further mentions of GOMS refer to
KLM-GOMS.

We use the GOMS execution time prediction as a metric; less time means better values.
Three typical tasks of the EgBrowser are selected and compared to SUnit. Eg uses a
meta-model and SUnit inheritance. The tools are not built for the same tasks. Therefore
SUnit will have problems with tasks that Eg is specialized on. Where a feature is missing
in SUnit we use the simplest way to get a similar result.

The GOMS results of the comparison are in table 5.5 (p.47), the different steps are in
appendix A (p.63).

Table 5.5.: GOMS results
Task Tool K P H M Time
5.2.1 SUnit 134 11 12 21 71 sec

Eg 32 6 4 8 25 sec
5.2.2 SUnit 125 10 4 17 60 sec

Eg 91 11 10 15 54 sec
5.2.3 SUnit 3 2 0 3 7 sec

Eg 3 3 0 2 7 sec

47

5. Validation

5.2.1. Creating a test for an existing method

The initial situation of Eg and SUnit is the same: a browser opened on the selector
of the new test. The test uses the bank account example. The test should deposit an
amount of money on a new account and assure that the balance is greater than zero.
GOMS is used to measure the time spent to implement and run the test. The several
steps are in appendix A.1 (p.63).

SUnit used 178 steps in 71 seconds. A lot of mental work and typing is needed with
SUnit. A person would have longer to create this test because the mental work assumes
the person knows exactly what to. But coding is rarely straight forward, often the
formulation changes during development.

The class and the setup method can be shared by different SUnit tests. If they are
already built for another test, the time to create a new SUnit test reduces from 71
seconds in 178 steps to 43 seconds in 122 steps.

Eg used 50 steps in 25 seconds. The main advantage of Eg over SUnit is that more
code is generated and the user needs to type less. Because the EgBrowser leads
the developer in writing tests it uses less mental work than in a free text field like
SUnit.

5.2.2. Creating a test for a new method

The same scenario as in section 5.2.1 (p.48), except that the method #withdraw: is not
yet implemented. The browser has the bank test class selected. The test class and
setup method of SUnit can be reused from the first comparison. The several steps are
in appendix A.2 (p.65).

SUnit used 156 steps in 60 seconds. A lot of steps are reused from section 5.2.1 (p.48) as
a new test class and setup method is not needed.

Eg used 127 steps in 54 seconds. The steps used in the debugger for defining the method
are the same as with SUnit, but the debugger is opened automatically when a test runs
the first time.

5.2.3. Browsing between test and implementation

The starting point is a newly created test similar to the end position of section 5.2.1
(p.48). The several steps are in appendix A.3 (p.67).

Eg can use the meta-model to determine which method is tested. The model information
can be accessed through the command tree view.

48

5.3. Usability Experiment

SUnit does not have a meta-model and therefore the method under test is not denoted in
the test code. The user has to find the method manually by reading the code. If he finds
the method under test he can browse the implementors to see the method source.

5.3. Usability Experiment

The best usability tests are done with real users. We built a tool for unit testing, so
developers are our users.

The experiment is done with real user participation under laboratory conditions. Labo-
ratory conditions mean the user tests the tool in a prepared setup and not in daily work
(field study). This conditions and the experiment in general can affect the results.

5.3.1. Test Setup

Participants The test users are developers from our research group. They all have at
least a basic knowledge about unit testing.

Hypothesis

• The EgBrowser is easier to use than SUnit.

• It is faster to accomplish the tasks.

• The EgBrowser is easy to use without previous knowledge.

Techniques We did the experiment with pair programming. Pair programming is a
common way to develop software. Two developers are drawn by lot, resulting in five
teams. We used think-aloud as an observation technique as Dix et al. [AD04] propose.
Holzinger [Hol05] mentions that think-aloud is easier to arrange with pair program-
ming. The users should describe and explain their thoughts while interacting with the
system.

To analyze the record later, the process is filmed with a video camera. The camera
records the conversation of the think-aloud, but also the screen where the interaction
with the system happened. The screen is recorded with a screen capture application, too.
Additionally the participants answer a short questionnaire after the experiment.

5.3.2. Tasks

The team has to write some tests with SUnit and the same with EgBrowser. The tool
to start is chosen randomly to not bias the results.

49

5. Validation

1. Write an account class.

2. Write a test to create an empty account. Assure that the balance is zero.

3. Write a test to deposit an amount of money on the account. Assure that the
account has the right balance.

4. Write a test to withdraw an amount of money from a not empty account. Assure
that the balance is greater than zero.

5. Write a test to withdraw a too big amount of money from an account. The method
should fail.

6. Browse between the withdraw test and the withdraw method.

The solutions using both tools are in appendix B (p.69).

5.3.3. Questionnaire

These questions are answered by the participants after doing the experiment. Each
question is answered for SUnit and the EgBrowser using a scale from 1 (disagree) to
5 (agree). The participants are the 10 developers from the usability experiment.

1. The system is easy to use

2. It is easy to learn

3. It supports the developer’s workflow

4. It tells me what to do at every point

5. It is easy to recover from mistakes

6. It is easy to get help when needed

7. I always know what the system is doing

5.3.4. Questionnaire Analysis

The answers of the questionnaire are shown on figure 5.1 (p.51). The results are biased
because most participants are SUnit experts and use SUnit every day. Another caveat is
that SUnit is a well proven tool. The EgBrowser is in early testing stage and therefore
has some bugs.

1. The system is easy to use

∅ SUnit: 4, ∅ EgBrowser: 3.1

Because most participants are SUnit users, it is unambiguous they prefer SUnit
and believe it is easier to use. Some users like the idea of tests and examples as

50

5.3. Usability Experiment

●

●

●

● ●

●●

●

●

●

● ●

●●

SU1 SU2 SU3 SU4 SU5 SU6 SU7

1
2

3
4

5

Question

A
cc

or
da

nc
e

●

●

●●

●

Eg1 Eg2 Eg3 Eg4 Eg5 Eg6 Eg7

1
2

3
4

5

Figure 5.1.: Results of the questionnaire displayed as box plots

reusable commands. The limiting factor was mainly the user interface, because this
was the first test they implemented with the EgBrowser and the user interface
was not intuitive.

2. It is easy to learn

∅ SUnit: 4.1, ∅ EgBrowser: 3.6

Again higher votes for SUnit, but some participants cannot remember how hard it
was to learn SUnit.

3. It supports the developer’s workflow

∅ SUnit: 3.3, ∅ EgBrowser: 3.9

The participants believe that the EgBrowser supports the workflow. Some de-
velopers are really fast in writing SUnit tests, other needs to browse the SUnit
source code first.

4. It tells me what to do at every point

∅ SUnit: 2, ∅ EgBrowser: 3.1

EgBrowser has a defined number of input fields. If all fields are filled, the test

51

5. Validation

should work. SUnit does not provide any steps, the user may be lost in an empty
editor.

5. It is easy to recover from mistakes

∅ SUnit: 3.8, ∅ EgBrowser: 2

Support for recovering from mistakes was limited in the used test version of Eg-
Browser, therefore again good results for SUnit where the debugger opens on the
right context.

6. It is easy to get help when needed

∅ SUnit: 2, ∅ EgBrowser: 2.8

Surprisingly the users think they get more help from EgBrowser than SUnit,
but neither tool provides a help system. In SUnit a lot of help can be obtained
by reading the source code. The EgBrowser leads the user and there are fewer
situation where a user needs help. The EgBrowser offers tooltips when hovering
over an input field.

7. I always know what the system is doing

∅ SUnit: 4.1, ∅ EgBrowser: 2.7

Another problem with the EgBrowser was the missing feedback to the user
through the user interface. The users did not know what the underlying meta-
model was doing. And the participant knew what SUnit was doing in the back-
ground.

The goal of the EgBrowser is to support the developer in writing tests. In both
questions concerning the workflow and user support (questions 3 and 4) the EgBrowser
scored higher than SUnit.

5.3.5. Video Analysis

The same tasks were performed with two different tools. SUnit is an approved tool. The
EgBrowser is a prototype able to handle the underlying meta-model. The version of
the EgBrowser used for the experiment had the following bugs:

• The interface was not always updated correctly. The EgBrowser needed a man-
ual reload to create a new command or modifying existing commands.

• The EgBrowser did not warn the user if the example was compiled to another
class than the receiver of the command. The default return value was the result
and not the receiver.

• The commands were running in an anonymous context, so the debugger stack could
not be used to fix mistakes.

52

5.3. Usability Experiment

• If a command failed and the EgBrowser was closed the command was not saved
and the user had to rewrite it.

• Bad examples did not report a success after running and were displayed as failure
in the interface.

Therefore the situation cannot be compared directly. The user had more problems with
the EgBrowser interface bugs than expected.

To compare the EgBrowser with SUnit, the time spent with bugs is subtracted from
the EgBrowser time. The estimation of the bug time is ambiguous and might be too
optimistic in same cases. Sometimes it is the time spent to implement the command for
the third time. The developers already knew what to enter and were accordingly fast.
This corrected time is displayed in the diagrams as EgBrowser real.

Task 1: Write an account class

The EgBrowser did not yet supported generating classes. The process of creating the
class was the same as with SUnit. Because the task was done twice, it was implemented
faster with the second tool.

Team 1, 3 and 5 started with Eg, team 2 and 4 with SUnit.

Team 1 wanted to implement the test first and the class after until they realized it is
not possible.

Team 4 had problems defining a class because neither team member was familiar with
the VisualWorks environment.

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 50 100 150

Write an account class

Figure 5.2.: Analysis of task 1

53

5. Validation

Task 2: Write a test to create an empty account

Team 2 and 3 implemented the test with Eg as fast as in SUnit.

The other Teams had more problems. Because the EgBrowser crash-course was a bit
short, team 1 and 4 did not remember how to open the right browser and noticed it after
creating the test. Both teams returned the result instead of the receiver, therefore the
command was compiled to the integer class. This command was not reusable for other
commands. They deleted the wrong command and needed to re-implement the test with
the right return value.

Team 5 had difficulties formulating the required test as a method command. They did
not comprehend that a message can be sent to an assertion variable. So they wrote
an example and another test to check if the example was right. This was not working
because the meta-model compiled the example to the wrong class.

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 100 200 300 400

Write a test to create an empty account

Figure 5.3.: Analysis of task 2

Task 3: Write a test to deposit an amount of money on the account

Overall this task was done faster than the previous because most teams comprehended
the functionality of the EgBrowser.

Team 3, 4 and 5 had the first problems with refreshing the interface. Team 3 and 4 com-
piled the command to the integer class. They needed to re-implement the tests.

Team 5 wanted to reuse the command of task 2 in a unsupported way. Because the task
2 returned the wrong value, it did not work at all. Finally the model was out of sync
and the team got confused about the functionality of Eg.

54

5.3. Usability Experiment

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 100 200 300 400 500

Write a test to deposit an amount of money on the account

Figure 5.4.: Analysis of task 3

Task 4: Write a test to withdraw an amount of money from a not empty account

The main goal of this task was to reuse the command from the previous task. The
difference between SUnit and Eg is smaller than in the tasks before.

Team 4 again had to redo the command because the interface did not update correctly.

Task 5: Write a test to withdraw a too big amount of money from an account

Most teams did not remember how to raise an exception and how to catch it with a
SUnit test.

Team 2 needed to browse the SUnit class to look up the syntax for the failed test.

Team 3 needed much time to implement a working withdraw method. They had to re-
implement the command because it was not saved while fixing the method. Finally they
overwrote the command from task 4 because they had chosen the same name.

Team 5 needed to redo the command because of the interface problems.

Task 6: Browse between the withdraw test and the withdraw method

This was not a real task. It was to demonstrate the features of Eg where you can
browse between tests and implementations with the meta-model. SUnit does not have
this feature and thus is not comparable.

55

5. Validation

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 50 100 150 200 250 300

Write a test to withdraw an amount of money from a not empty account

Figure 5.5.: Analysis of task 4

5.3.6. Conclusion

Most teams chose a test-driven approach: they implemented the first test before the
class and the method body in the debugger.

If the duration for the tasks of SUnit and the EgBrowser is compared, they are more
or less equal. Most participants are fast with SUnit. They use SUnit every day and
know how to create a test without mistakes.

The participants learned the usage of the EgBrowser quickly. With the EgBrowser
the time to create a test is reduced, so the inexperienced user took approximately as
long as with SUnit.

Most teams were confused when creating a command with Eg. The interface did not
provide enough feedback. They were not sure if the model is compiling the right thing
in the background. A solution could be to explain first how to write a test manually as
source code.

5.4. Case Study: Manually Converting SUnit Tests to Eg

To prove the usability of our meta-model we tried to convert some existing SUnit tests
to the meta-model. The application to convert should not have too simple tests, but
needs to be well tested. The tests should not be too complicated, else it is difficult to
understand the content in a small amount of time.

We chose Mondrian as application for the case study. Mondrian is a scriptable, dynamic

56

5.4. Case Study: Manually Converting SUnit Tests to Eg

5
4

3
2

1 EgBrowser real
EgBrowser
SUnit

seconds

T
ea

m

0 50 100 150 200

Write a test to withdraw a too big amount of money from an account

Figure 5.6.: Analysis of task 5

visualization framework developed by Meyer et al. [MGL06]. Mondrian can handle all
sorts of data and supports different charts as output. Currently Mondrian has about
190 SUnitToo tests. We selected a sample of 35 tests to categorize to the meta-model.
Figure 5.7 (p.58) shows an overview of the resulting test types.

A majority of 18 test cases can be converted to method tests. The problem is that the
method under test is sometimes ambiguous. Often the method under test is the #open
method that opens the graphics window. In this method the points and bounds of the
figures are calculated. The assertions checks some value of them. This is rather black
box testing because the really interesting methods are not visible in the test case. It is
even hard to find the real method with a debugger.

Another 9 test cases we categorized into two method tests. These tests can be clearly
separated into two tests because there are two different setup procedures with corre-
sponding assertions. They are bundled together because they test the same selector
with different data. In our model we can combine them as a method suite.

We had problems with 5 test cases. The main problem was that the assertions use a
variable that is neither the receiver nor the result nor a parameter. The meta-model
cannot handle assertions with unknown instances. A solution could be to rewrite the
implementation of the method under test so that the receiver has a reference of the
missing variable. Then the receiver could be used in the assertions.

Three test cases are simple. The test logic can be formulated as postcondition in the
method. Therefore we converted the test cases to method examples with a checked
method, which means the method has a postcondition.

57

5. Validation

1 Method Test

2 Method Tests

2 Method Examples

Problems

Figure 5.7.: Converted test types of Mondrian

58

6. Conclusion

As stated in chapter 1 (p.1), the main problems of unit testing are the missing link
between test and implementation, the flat test hierarchy and the missing user inter-
faces.

The tests cannot be reused with existing frameworks, the resulting test hierarchy is flat.
Often code is duplicated to achieve an identical setup in different tests. But duplicating
code leads to an unmaintainable project.

The test hierarchy is flat because the frameworks do not allow one to build a test
scenario. On the other hand the developers are used writing flat test scenarios. It is
doubtful if the developers create the better test scenarios if a better test hierarchy is
possible. The hierarchy brings more order to the tests, but leads to a more abstract test
environment.

In this thesis we introduced our meta-model for commands. The meta-model holds the
link between test and implementation. The tests from the model have return values,
therefore the commands can be cascaded to test scenarios.

Our experiments show that most tests can be transformed according to our meta-model.
Because a test often tests a single method only, it can be formulated as a method test.
More complex tests can be transformed to method commands or cascaded method com-
mand scenarios, but the resulting method command can be much longer or complicated
than the original test.

We built a test editor based on the meta-model. The editor supports the developer by
providing useful input values in the text fields. The developer can compose commands
by drag and drop, therefore the workflow is improved.

The test editor has proven to work for inexperienced users. The users in our experiments
have learned the functionality quickly and were able to implement the tests with it as
quickly as with SUnit. But some developers have mentioned that a text based editor is
more powerful for the advanced user.

59

6. Conclusion

6.1. Future Work

A lot of additional features could be implemented in the editor.

Currently there is no debugger support. In the debugger the instance variable values
can be seen and modified. If the object in the debugger is a good example of this class,
the user should be able to generate the command out of the debugger.

The meta-model encourages the reuse of commands. The test hierarchy becomes a
tree. The command tree can be visualized with Mondrian [MGL06]. The test runner
then should be able to execute a subtree only if the required commands run without
error.

Because most existing tests are written in SUnit, an importer to Eg is important. SUnit
tests can be complicated and it is difficult to write an automated SUnit importer. The
importer would use a lot of artificial intelligence to detect the method under test, because
it can be in an assertion or nested in another method. The current importer can convert
well formed tests. User interaction is needed to identify the test statement.

The Smalltalk class browser has 4 columns: package, class, protocol and selector. We
can add a 5th column for the tests. This column shows all tests of the selector of the
4th pane. If the 4th pane shows a test method, the 5th pane shows the selectors tested
by this test. Figure 6.1 (p.60) shows an implementation of this browser in Squeak. The
last column displays the command Account class � withdrawOkFrom123. It is a test for
the #withdraw: method in column 4.

Figure 6.1.: 5th pane Browser

60

6.2. Further Validations

6.2. Further Validations

In our first usability study (section 5.3 (p.49)) we received good feedbacks from the
participants. After implementing the new ideas, the next step would be to do another
usability study.

We would do this further usability study again with pair programming under labora-
tory conditions. This setup has proved to be efficient. But we would give a longer
EgBrowser crash-course or distribute the application before the study so that the de-
velopers could already play around and get used to it. This could decrease the knowledge
difference between the EgBrowser and SUnit. In the questionnaire we would focus
more on usability, work flow and user guidance.

As the EgBrowser is more evolved now, we could try a field study to detect if the
EgBrowser is usable for daily work.

61

6. Conclusion

62

A. GOMS Steps

A.1. Creating a test for an existing method

SUnit

1. M: Think how to create a new test class

2. P: Point the mouse to the classes in the
browser pane

3. K: Right click to open the context menu

4. M: Find the right entry

5. P: Point to New Class...

6. K: Click. The new class wizard opens

7. M: Find a name for the test class

8. H: Hands to the keyboard

9. 8*K: Enter the name on the keyboard.
BankTest has 8 characters

10. M: Think about a superclass. We need
TestCase as superclass

11. H: Hand to the mouse

12. P: Point to the 3 dots button right to the
superclass input field

13. K: Click. A class selection tool with a
search box opens

14. M: Figure out how this works

15. H: Hands to the keyboard

16. 4*K: Enter test in the input field

17. M: Find right entry

18. H: Hand to the mouse

19. P: Point to TestCase

20. K: Doubleclick on it

21. M: We need an account as instance vari-
able

22. P: Point to the instance variable input
field

23. K: Click

24. H: Hands to the keyboard

25. 7*K: Enter account

26. M: Think how to finish this wizard

27. H: Hand to the mouse

28. P: Point to the OK button

29. K: Click. The wizard closes

30. M: We need a setup method for the ac-
count instance variable.

31. P: Point to the protocols

32. K: Right click to open the context menu

33. M: Find the New.. entry

34. P: Point to it

35. K: Click

36. M: Find a name

37. H: Hands to the keyboard

38. 7*K: Enter testing

39. K: Hit enter

40. M: Think what to do next

41. H: Hand to the mouse

42. P: Select the code from the method stub

43. M: Remember the selector

44. H: Hands to the keyboard

63

A. GOMS Steps

45. 6*K: Enter setUp and return

46. M: Think about the code we need

47. 22*K: Enter account := Account new

48. M: Compile the code

49. 2*K: Hit ctrl-s

50. M: Now create the test method

51. H: Hand to the mouse

52. P: Select the code from the setup method
and overwrite it with the method code

53. M: Find a valid test selector

54. H: Hands to the keyboard

55. 12*K: Enter testDeposit and enter

56. M: Add money to the instance variable
initialized in the setup method

57. 22*K: Enter account deposit: 100. and re-
turn

58. M: Write an assertion

59. 32*K: Enter self assert: account balance >

0

60. M: Compile the code

61. 2*K: Hit ctrl-s

62. M: Figure out how to run the test

63. H: Hand to the mouse

64. P: Point to the run button on the bottom
of the browser

65. K: Click the button. The test should run
without an error

EgBrowser

1. M: Think how to use the EgBrowser

2. P: Point to the Examples tab

3. K: Click. The command editor opens on
a new command

4. M: We agree with the recommended
name exampleDeposit

5. M: Think about the receiver

6. P: Point to the triangle left to the re-
ceiver input field

7. K: Click to open the menu

8. M: Find the right entry (only one is avail-
able)

9. P: Point to Account new

10. K: Click to accept

11. M: The selector has a parameter

12. P: Point to the parameter input field

13. K: Click

14. H: Hands to the keyboard

15. 3*K: Enter 100

16. M: We need an assertion

17. H: Hand to the mouse

18. P: Point to the assertions input field

19. K: Click into it

20. M: Remember how to formulate an as-
sertion

21. H: Hands to the keyboard

22. 23*K: Enter ’aReceiver balance > 0’

23. M: Figure out how to finish the command

24. H: Hand to the mouse

25. P: Point to the run button

26. K: Click the accept button

64

A.2. Creating a test for a new method

A.2. Creating a test for a new method

SUnit

1. M: Create a new test for a not yet defined
method

2. P: Point to the testing category

3. K: Click

4. P: Select the code stub

5. M: Find a valid test selector

6. H: Hands to the keyboard

7. 13*K: Enter testWithdraw and enter

8. M: Remove money from the instance
variable initialized in the setup method

9. 23*K: Enter account withdraw: 100. and
return

10. M: Write an assertion

11. 32*K: Enter self assert: account balance <

0

12. M: Compile the code

13. 2*K: Hit ctrl-s

14. M: An error pops up because the method
#withdraw: is not yet known

15. K: Hit enter

16. M: Figure out how to run the test

17. H: Hand to the mouse

18. P: Point to the run button on the bottom
of the browser

19. K: Click the button. The test fails

20. M: Think how to debug the test

21. P: Point to the debug button

22. K: Click

23. M: The debugger opens on Account �
doesNotUnderstand:. We need to fix this
bug

24. P: Point to the selected message

25. K: Right click. The context menu opens

26. M: Find the entry Define Method

27. P: Point to the entry

28. K: Click

29. M: The debugger opens on Account �
halt. We need to select the message be-
fore

30. P: Point to the message before the halt

31. K: Click

32. M: The method stub for the withdraw:

arg1 opens

33. P: Select the argument, comment and
halt statement

34. H: Hands to keyboard

35. 7*K: Enter amount as argument for the
method. Enter

36. M: Find the code for the method body

37. 29*K: Enter balance := balance − amount.

and enter

38. M: Write also a return statement

39. 8*K: Enter ˆbalance

40. M: Compile the code

41. 2*K: Hit ctrl-s

42. M: Resume the test

43. H: Hand to the mouse

44. P: Point to the run button (big right tri-
angle)

45. K: Click

46. M: Run the test again

47. P: Point to the run button on the bottom
of the browser

48. K: Click the button. The test passes

65

A. GOMS Steps

EgBrowser

1. M: Think how to use the EgBrowser

2. P: Point to the Examples tab

3. K: Click. The command editor opens on
a new command

4. M: Find a name for the test

5. P: Point to the name field

6. K: Click

7. H: Hands to the keyboard

8. 8*K: Append Withdraw

9. M: Think about the receiver

10. H: Hand to the mouse

11. P: Point to the triangle left to the re-
ceiver input field

12. K: Click to open the menu

13. M: Find the right entry

14. P: Point to Account new

15. K: Click to accept

16. M: The selector field is empty

17. P: Point to the selector field

18. K: Click

19. H: Hands to the keyboard

20. K: Enter withdraw:

21. M: The selector has a parameter

22. H: Hand to the mouse

23. P: Point to the parameter input field

24. K: Click

25. H: Hands to the keyboard

26. 3*K: Enter 100

27. M: We need an assertion

28. H: Hand to the mouse

29. P: Point to the assertions input field

30. K: Click into it

31. M: Remember how to formulate an as-
sertion

32. H: Hands to the keyboard

33. 23*K: Enter ’aReceiver balance < 0’

34. M: Figure out how to finish the command

35. H: Hand to the mouse

36. P: Point to the run button

37. K: Click the accept button

38. M: The debugger opens on Account �
halt. We need to select the message be-
fore

39. P: Point to the message before the halt

40. K: Click

41. M: The method stub for the withdraw:

anInteger opens

42. P: Select the argument, comment and
halt statement

43. H: Hands to keyboard

44. 7*K: Enter amount as argument for the
method. Enter

45. M: Find the code for the method body

46. 29*K: Enter balance := balance − amount.

and enter

47. M: Write also a return statement

48. 8*K: Enter ˆbalance

49. M: Compile the code

50. 2*K: Hit ctrl-s

51. M: Resume the test

52. H: Hand to the mouse

53. P: Point to the run button (big right tri-
angle)

54. K: Click. The test runs without an error

66

A.3. Browsing between test and implementation

A.3. Browsing between test and implementation

SUnit

1. M: Think how to browse the method un-
der test

2. M: Look for the method under test in the
test code

3. P: Point to the method #deposit:

4. K: Select the method name

5. K: Right click to open the context menu

6. M: Find the Browse Implementors of

Selector entry

7. P: Point to the right class

8. K: Click. The source code is displayed in
the window

EgBrowser

1. M: Think how to browse the method un-
der test

2. P: Point to the package icon in the tree
view

3. K: Click to open the subtree

4. M: Find the right method reference

5. P: Point to the method

6. K: Click to open the subtree

7. P: Point to the method or command to
browse

8. K: Click to open the source code in the
editor

67

A. GOMS Steps

68

B. Experiment Solution

B.1. SUnit

1. Account class:
Smalltalk defineClass: #Account

superclass: #{Core.Object}
indexedType: #none
private: false
instanceVariableNames: ’balance ’

classInstanceVariableNames: ’’
imports: ’’
category: ’Eg-Bank’

Accessor:
Account � balance

ˆbalance

Initialize method:
Account � initialize

balance := 0

Finally overwrite the new method:
Account class � new

ˆsuper new initialize

As an alternative solution the wizard
from the Refactoring Browser can be
used.

2. SUnit test class:
Smalltalk defineClass: #BankTest

superclass: #{XProgramming.SUnit.
TestCase}

indexedType: #none
private: false
instanceVariableNames: ’’
classInstanceVariableNames: ’’
imports: ’’
category: ’Eg-Bank’

Test method for empty account:
BankTest � testEmpty

| account |
account := Account new.
self assert: account balance = 0

3. Deposit test with test-driven design.
Create test first:

BankTest � testDeposit
| account |
account := Account new.
account deposit: 100.
self assert: account balance = 100

Create method in debugger:

Account � deposit: amount
balance := balance + amount

4. Withdraw test:

BankTest � testWithdraw
| account |
account := Account new.
account deposit: 100.
account withdraw: 80.
self assert: account balance > 0

Again define method in debugger:

Account � withdraw: amount
balance >= amount

ifTrue: [balance := balance −
amount]

ifFalse: [RangeError raiseSignal]

5. Withdraw too much to raise error:

BankTest � testWithdrawTooMuch
| account |
account := Account new.
account deposit: 100.
self should: [account withdraw: 120]

raise: Error

6. Manually browse to the method.

69

B. Experiment Solution

B.2. EgBrowser

1. Same steps as in appendix B.1 (p.69).

2. Create a new method test:
Name: exampleEmptyAccount

Receiver: Account new

Selector: balance

Assertion: aResult = 0

3. Create a new method test:
Name: exampleDeposit

Receiver: Account exampleEmptyAccount

Selector: deposit:

Parameter: 100

Assertion: aResult balance = 100

Create method in debugger:

Account � deposit: amount
balance := balance + amount

4. Create a new method test:
Name: exampleWithdraw

Receiver: Account exampleDeposit

Selector: withdraw:

Parameter: 80

Assertion: aResult balance > 0

Again define method in debugger:

Account � withdraw: amount
balance >= amount

ifTrue: [balance := balance −
amount]

ifFalse: [RangeError raiseSignal]

5. Create a pessimistic example:
Name: exampleWithdrawTooMuch

Receiver: Account exampleDeposit

Selector: withdraw:

Parameter: 120

Check the pessimistic example box

6. Use the tree to browse to the method of
a command. The method is the parent
of the command.

70

List of Tables

3.1. Method command suite of Account � deposit: 24

5.1. KLM-GOMS model . 45
5.2. KLM-GOMS example . 45
5.3. CMN-GOMS example . 46
5.4. NGOMSL example . 46
5.5. GOMS results . 47

71

72

List of Figures

2.1. Test runner of SUnit . 8
2.2. Test runner of SUnitToo . 10
2.3. BrowseUnit . 11

3.1. Meta-model command types . 18
3.2. Meta-model of method commands . 19
3.3. Inverse test . 26
3.4. Meta-model of commands . 27

4.1. Star Browser . 31
4.2. EgBrowser . 32
4.3. Command editor for a method test . 34
4.4. Command editor for a method example 35
4.5. Drag and drop commands to compose a new command 36
4.6. Method suite view . 37
4.7. Coverage view . 38
4.8. Command suite view . 39
4.9. Import a SUnit test to Eg . 40

5.1. Results of the questionnaire displayed as box plots 51
5.2. Analysis of task 1 . 53
5.3. Analysis of task 2 . 54
5.4. Analysis of task 3 . 55
5.5. Analysis of task 4 . 56
5.6. Analysis of task 5 . 57
5.7. Converted test types of Mondrian . 58

6.1. 5th pane Browser . 60

73

74

Bibliography

[AD04] Gregory D. Abowd Alan Dix, Janet E. Finlay. Human-Computer Interaction
(3rd Edition). Prentice Hall, 2004.

[Bec] Kent Beck. Simple Smalltalk testing: With patterns. http://www.
xprogramming.com/testfram.htm.

[BFJR98] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrappers to the
rescue. In Proceedings European Conference on Object Oriented Programming
(ECOOP 1998), volume 1445 of LNCS, pages 396–417. Springer-Verlag, 1998.

[CNM83] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, Inc., Mahwah,
NJ, USA, 1983.

[Csi91] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper Perennial, March 1991.

[Duc99] Stéphane Ducasse. Evaluating message passing control techniques in
Smalltalk. Journal of Object-Oriented Programming (JOOP), 12(6):39–44,
June 1999.

[Fit54] Paul M. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Experimental Psychology,
47(6):381–391, 1954.

[GGN05] Markus Gaelli, Orla Greevy, and Oscar Nierstrasz. Composing unit tests. In
Proceedings of SPLiT 2006 (2nd International Workshop on Software Product
Line Testing), September 2005.

[GLN05] Markus Gaelli, Michele Lanza, and Oscar Nierstrasz. Towards a taxonomy
of SUnit tests. In Proceedings of ESUG 2005 (13th International Smalltalk
Conference), September 2005.

[GND04] Markus Gaelli, Oscar Nierstrasz, and Stéphane Ducasse. One-method com-
mands: Linking methods and their tests. In OOPSLA Workshop on Revival
of Dynamic Languages, October 2004.

[Hol05] Andreas Holzinger. Usability engineering methods for software developers.
Commun. ACM, 48(1):71–74, 2005.

75

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

[IH01] Melody Y. Ivory and Marti A. Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516,
December 2001.

[JK94] Bonnie E. John and David E. Kieras. The GOMS family of analysis tech-
niques: tools for design and evaluation. Technical Report CMU-CS-94-181,
Carnegie Mellon University School of Computer Science, August 1994.

[JK96] Bonnie E. John and David E. Kieras. The GOMS family of user interface anal-
ysis techniques: comparison and contrast. ACM Transactions on Computer-
Human Interaction, 3(4):320–351, 1996.

[Lan] Michele Lanza. Codecrawler. http://www.iam.unibe.ch/∼scg/Research/
CodeCrawler/.

[Mar05] Philippe Marschall. Detecting the methods under test in Java. Informatikpro-
jekt, University of Bern, April 2005.

[MGL06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile visu-
alization framework. In ACM Symposium on Software Visualization (SoftVis
2006), pages 135–144, New York, NY, USA, 2006. ACM Press.

[Rob04] Romain Robbes. Browse Unit: Integrating SUnit into the Smalltalk Browser,
2004. http://minnow.cc.gatech.edu/squeak/3113.

[WD03] Roel Wuyts and Stéphane Ducasse. Unanticipated integration of develop-
ment tools using the classification model. Computer Languages, Systems &
Structures, 30:63–77, 2003.

[Wes05] Frank Westphal. Junit 4.0, July 2005. http://www.frankwestphal.de/
JUnit4.0.html.

76

http://www.iam.unibe.ch/~scg/Research/CodeCrawler/
http://www.iam.unibe.ch/~scg/Research/CodeCrawler/
http://www.frankwestphal.de/JUnit4.0.html
http://www.frankwestphal.de/JUnit4.0.html

	Introduction
	Documentation
	Understanding
	Testing
	Our Approach
	Structure of the Thesis

	State of the Art
	XUnit
	SUnit
	JUnit 4
	TestNG
	JTiger

	Problems

	Meta-Model
	Commands
	Persistence of Commands
	Method Commands
	Method Examples
	Method Tests
	Pessimistic Examples
	Cascaded Commands

	Multiple Method Commands
	Independent Suites
	Multi Facet Command Suites
	Method Command Suites
	Inverse Tests

	Emerged Meta-Model
	Prepared Method Implementation
	Prepared Class Implementation

	User Interface
	Problem
	Interface Requirements
	Star Browser

	EgBrowser
	Video Store -- an Example Application
	Creating Examples
	Method Suite View
	Coverage View
	Suite Editor

	Importing SUnit tests

	Validation
	GOMS
	KLM-GOMS
	CMN-GOMS
	NGOMSL
	CPM-GOMS

	Validation of the EgBrowser
	Creating a test for an existing method
	Creating a test for a new method
	Browsing between test and implementation

	Usability Experiment
	Test Setup
	Tasks
	Questionnaire
	Questionnaire Analysis
	Video Analysis
	Conclusion

	Case Study: Manually Converting SUnit Tests to Eg

	Conclusion
	Future Work
	Further Validations

	GOMS Steps
	Creating a test for an existing method
	Creating a test for a new method
	Browsing between test and implementation

	Experiment Solution
	SUnit
	EgBrowser

	Bibliography

