
Changeboxes
Modeling Change as a First-Class Entity

Masterarbeit

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Pascal Zumkehr

2007

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz
Institut für Informatik und angewandte Mathematik

ii

The address of the author:

Pascal Zumkehr
Viktoriarain 6
CH-3013 Bern
zumkehr@students.unibe.ch

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://www.iam.unibe.ch/∼scg/

mailto:zumkehr@students.unibe.ch
http://www.iam.unibe.ch/~scg/

Abstract

Software systems undergo continual change if they want to remain useful
over time. However, only limited support for change is offered by current
programming languages and development environments. Although various
existing efforts try to cope with change and exploit it for different applica-
tions, a unifying approach to support software change is missing.

We propose Changeboxes as a generic metamodel to represent change as a
first-class entity. Changeboxes encapsulate the semantics of a change pro-
cess as well as its effects and model the entire change history of a software
system. Changeboxes capture changes at the level of the runtime system and
the integrated development environment. They are able to record low-level
changes as well as complex transformations like refactorings. Each Change-
box provides a scope for dynamic execution, whereas several ones can be
concurrently active and thus enable different views of the same software
artifact within a single running system. Changeboxes can be arbitrarily
extended, which enables one to explore several development trails simulta-
neously. Multiple Changeboxes may be merged in order to combine their
changes depending on a customizable conflict resolution strategy.

Our proof-of-concept implementation showed to have an acceptable perfor-
mance and was used to demonstrate the impact of Changeboxes on various
domains. We discuss the advantages that Changeboxes entail for evolving
software systems and propose selected topics for further research.

iii

iv ABSTRACT

Acknowledgements

I wish to thank my supervisor Adrian Lienhard for his support and guidance
during the months this thesis evolved. The numerous discussions helped a
lot to sort my mind and to recognize the aimed model. I thank him for the
permanent review of my work.

I greatly appreciated the opportunity to write the paper “Encapsulating and
Exploiting Change with Changeboxes” (submitted) with Markus Denker,
Dr. Tudor Gı̂rba, Adrian Lienhard, Prof. Dr. Oscar Nierstrasz and Lukas
Renggli. The various discussions led to many valuable inputs for this work
and my skills in scientific writing could profit highly. A special mention goes
to Dr. Tudor Gı̂rba for the stimulating debates on the Changebox model
and for the valuable feedback on this thesis.

I thank Prof. Dr. Oscar Nierstrasz, head of the Software Composition
Group, for giving me the opportunity to work in his group and introducing
me to the field of software evolution. I especially wish to thank him for
revising this master thesis. Many thanks also go to Dr. Alexandre Bergel
for his comments and explanations on classboxes.

The year in the student pool would not have passed so fast without the
company of Reto Kohlas, Flo Thalmann, Michael Meyer, Rafael Wampfler,
Adrian Kuhn, Orla Greevy, Laura Ponisio, Michael Wachter and Jacek Jon-
czy. Thank you all very much for the help on debugging our router and the
Incanto Rondo.

I am deeply grateful to my parents and my sister for all the support and
belief they put in me over the past years and for their appreciation for what
I do. Last but not least, I would like to express my gratitude to my girlfriend
Andreina Badertscher for sharing countless wonderful moments during this
year.

Pascal Zumkehr
February 2007

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 Our Approach in a Nutshell 2
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Managing Software Change 7
2.1 Problems of a Static World 8
2.2 Current Attempts to Cope with Change 9

2.2.1 Language Constructs 9
2.2.2 Supportive Tools . 12
2.2.3 Merging Algorithms 14
2.2.4 Engineering and Analysis Techniques 15
2.2.5 Summary . 16

2.3 Modeling Change as a First-Class Entity 16
2.4 Motivating Example . 17

3 Changeboxes 21
3.1 Overview . 21
3.2 The Changebox Metamodel 23

3.2.1 Variants: Instances of Runnable Meta-Objects 24
3.2.2 Elements . 25
3.2.3 Change Specifications 30

3.3 Capturing Changes . 32
3.3.1 Work Sessions . 33
3.3.2 Capturing Simple Changes 34
3.3.3 Recording Refactorings 36

vii

viii CONTENTS

3.4 Scoping Execution . 38
3.4.1 Specifying the Execution Scope 40
3.4.2 The Changebox Lookup Mechanism 41
3.4.3 Dispatching Message Sends 43
3.4.4 Dispatching Class References 45

3.5 Merging Changeboxes . 46
3.5.1 Pre-Processing Change Specifications 47
3.5.2 Merge Strategies . 48
3.5.3 Change Specification Dependencies 50

3.6 Tool Support . 51
3.6.1 Work Session Browser 51
3.6.2 Developing: OmniBrowser 53
3.6.3 Source Control: Monticello 54
3.6.4 Testing: Test Runner & Debugger 54

4 Evaluation 57
4.1 Benchmarks . 57

4.1.1 Real World Applications 58
4.1.2 Micro Benchmarks . 60

4.2 Modeling Classboxes . 63
4.2.1 The Classbox Model 63
4.2.2 Using Changeboxes to Express Classboxes 65
4.2.3 Discussion . 68

4.3 Evolution Analysis with Changeboxes 70

5 Conclusions 75
5.1 Discussion . 75
5.2 Open Issues . 78

5.2.1 Migrating Instances between Different Scopes 78
5.2.2 Changeboxes for System Components 79
5.2.3 Fixed Class References 80

5.3 Contributions . 80
5.4 Future Work . 81

5.4.1 Performance Enhancements 82
5.4.2 Finer-grained Change Information 82

A Short Guide to Our Implementation 85
A.1 Installing Changeboxes . 85

A.1.1 Source Installation . 85
A.2 Getting Started . 86

B An Introduction to Squeak 91

Index 93

CONTENTS ix

List of Figures 95

List of Tables 97

Bibliography 99

x CONTENTS

Chapter 1

Introduction

“Nothing endures but change.”
Heraclitus

1.1 Motivation

Software systems undergo permanent change during their life-cycle. Even
after the actual development phase, when a system is in productive use, new
features and bug-fixes are constantly requested.

Software change occurs in various forms, the most common one being the
simple manual edition of program code. But also fully automated, well-
defined operations that affect various parts of a system define a change.
Generally, we consider a change to be an operation that modifies the struc-
ture or behavior of a software system. The possible semantics being inherent
in software change may be manifold. It may denote, for example, bug fixes,
adding new features, refactoring or merge operations [Nier04].

While additional features usually can wait for a forthcoming release, changes
like bug fixes should be integrated into the running system as soon as pos-
sible. Tracking the changes made to different versions of a system and
controlling their impact can be a cumbersome task. The modification of
running systems is barely possible.

Most programming languages or development environments do not provide
any means to cope with change [Nier05]. They imply a closed world view
where names for software artifacts like classes, methods or variables are
assumed to have a globally consistent meaning in a software system. It is
not possible for different versions of the same artifact to be simultaneously
active.

1

2 CHAPTER 1. INTRODUCTION

To understand the evolution of a software system, its change history and the
corresponding semantics are essential [Girb05a]. Conventional programming
models are file-based and change is only determinable by comparing different
versions of a file. This provides a coarse-grained view without any semantic
information, changes that affect the entire system are unseizable. Hence,
further development and reengineering efforts have to build on a rather
weak foundation.

Change is limited by these aspects of programming systems. By providing
only a single view of a system (i.e., the most recent one) without any notion
of preceding change processes, a static world is pretended. The existence of
change is widely disregarded in this world and very little support for change
is offered. This makes it difficult to reason about change, to control its
impact or even exploit change in diverse ways.

Problem Statement:

Most of today’s programming languages and development en-
vironments provide a closed world view that does not provide
explicit support for change.

Various efforts exist to overcome these shortcomings, like versioning tools
[Mens02], configuration management systems [Nguy05] or techniques for
scoping extensions [Berg05b]. Although they offer solutions to manage
change, each of these do so from their own perspective. What is missing
is some basic infrastructure that unifies the above concerns and actively
supports change.

Research Question:

How can change be supported and represented in a general-
purpose way to meet the demands of evolving software systems?

1.2 Our Approach in a Nutshell

Thesis:

To actively support software change, we need to recognize change
as a primary factor of software development and model it as a
first-class entity.

Our solution is embodied in Changeboxes, a general-purpose mechanism for
modeling change as a first-class entity.

1.2. OUR APPROACH IN A NUTSHELL 3

1

1.a.1 1.b.1

1.b.2

2

ElementChange
Specification 1*

*

1

ancestor

Changebox Merge
Strategy

1 0..1

1.a.2

Figure 1.1: The evolution of a system modeled with Changeboxes.

Changeboxes encapsulate single changes to a software system which result
in new snapshots of that system. The snapshot a change is based on is
referenced as the ancestor of the encapsulating Changebox. In the example
shown on the left of Figure 1.1, Changebox 1.a.1 encapsulates a change that
was performed on the system as defined by Changebox 1. A Changebox
represents the structural state of a software system, a new state is attained
for every change that is performed.

A Changebox captures both the semantics and the runnable entities that
provide the execution behavior of a software system resulting from a change
operation. Every change acts on a certain software artifact, an element, and
can be completely described by a change specification. Change specifications
hold all the information about a change process that are needed to apply it to
a running software system. They can encapsulate both simple changes and
more complex refactorings. Change specifications preserve the semantics of
change. With this metamodel, shown on the right hand side of Figure 1.1,
different kinds of changes can be described in a unified way.

Because runnable entities are directly encapsulated in Changeboxes, it is
possible to run a system in different execution scopes, which are based on
arbitrary Changeboxes. A scope defines the runnable entities that are con-
sidered when executing a system. The scope of Changebox 1.a.2, for exam-
ple, contains all entities modified in 1.a.2, 1.a.1 and 1 and is isolated from the
other Changeboxes. Different execution scopes may be concurrently active
in a running system.

Our proof-of-concept implementation is written in Squeak [Inga97], an open-
source dialect based on Smalltalk-80 [Gold83]. The approach of Change-
boxes builds directly on the level of the runtime system and the integrated

4 CHAPTER 1. INTRODUCTION

development environment (IDE). Changes to a software system are captured
in Changeboxes directly when they occur.

The availability of semantic change information enables fine-grained con-
trol over the merge process of several Changeboxes. Many conflicts can be
resolved automatically by using the semantic information, especially when
refactorings with complex modifications were applied to a system. A merge
operation is illustrated in Figure 1.1 where Changebox 2 merges Change-
boxes 1.a.1 and 1.b.2. Furthermore, we also offer the possibility to control
the semantics of merges, which do not necessarily have to correspond to con-
ventional revision control approaches. For this purpose, customizable merge
strategies were introduced to control the resolution of conflicts.

Changeboxes can model both temporal and spatial dimensions of software
change. Changes captured with Changeboxes remain available throughout
the entire evolution of a software system. The history can be replayed and
analyzed, whereby every single snapshot is runnable. Several Changeboxes
denoting an execution scope may be simultaneously active, which makes it
possible to support multiple, concurrent views of the same software arti-
fact.

Another rationale of our implementation was the generic applicability of
the Changebox metamodel. The design should be open for new, arbitrary
elements (acting as change subjects) and any possible change operations
working on them. In general, Changeboxes are not tied to encapsulating
changes of software artifacts, but they are open to any system with change-
able elements.

1.3 Contributions

This thesis presents a novel metamodel for representing software change. It
discusses the considerations that led to the design of this model and the
accomplished modifications of the Squeak runtime system that allowed us
to implement it.

We propose a metamodel to represent change in software systems. Only
with an appropriate model that covers the semantics of change it is possible
to fully exploit and reason about change. Our model encapsulates change
processes as well as their effects.

We developed a mechanism that automatically captures changes on the level
of the runtime system. This asserts that all information about the evolution
of a system is made available. Every modification of a software artifact is
recorded and encapsulated in a Changebox and is available, including its
semantic information, for further analyses. As this happens on the level

1.4. THESIS OUTLINE 5

of the runtime system, the mechanism is basically independent of where
changes originate (IDE, tools, . . .) and is always able to capture them.

We provide the ability to create systems with multiple runnable versions.
While conventional software systems only support one compiled and directly
runnable version, every snapshot captured by Changeboxes is runnable with-
out the need for any preceding actions. With the notion of execution scopes,
different versions of the same software artifact can run concurrently. This
opens up new possibilities for many applications, as for example for person-
alized versions of the same running system.

To facilitate the work of a programmer we integrated Changeboxes into the
development environment. Various standard tools were adapted to be aware
of Changeboxes. Every captured snapshot can be viewed or executed in
the appropriate tools, while the opened windows do not all have to provide
the same view of the system. A new browser for managing Changeboxes
was introduced to act as a central instance when developing within different
trails. This allows a programmer to follow his/her conventional development
style when using Changeboxes.

1.4 Thesis Outline

Chapter 2 reviews the current state of the field of research on software
change. The importance of change and current attempts to cope with it are
discussed. We expose the shortcomings of present approaches and identify
the basic points to be tackled to overcome them. The advantages of a unify-
ing model for software change are illustrated on a real world scenario.

Chapter 3 proposes Changeboxes as a uniform approach for modeling change
and details on the various parts that constitute Changeboxes. Changes are
encapsulated as change specifications that work on elements. Mechanisms
to capture changes in the system and to provide different active execution
scopes are described. The rationales behind merging several Changeboxes
are elucidated and Changebox-aware development tools are presented.

Chapter 4 reveals the benchmarks for the execution time complexity of dif-
ferent applications using Changeboxes. We illustrate the ability of Change-
boxes to model both spatial and temporal dimensions of change. The former
is shown by using Changeboxes to express classboxes, a dynamic module
system supporting local rebinding. For the latter, we perform an evolution
analysis based on different runnable snapshots of a software project.

Chapter 5 completes this thesis with a discussion about the decisions taken
while designing Changeboxes. We mention the issues not covered yet by
our model and expose the major contributions of Changeboxes to the field

6 CHAPTER 1. INTRODUCTION

of software change. To conclude, we suggest future work to advance the
Changebox implementation and model.

Appendix A provides a reference for the initial installation of Changeboxes
into a Squeak image and contains a short guide to get started with Changebox-
aware programming.

Appendix B gives an introduction to Squeak, the Smalltalk dialect used to
create our proof-of-concept implementation of Changeboxes. Many essential
concepts were feasible in a straight forward way by using Squeak.

Chapter 2

Managing Software
Change

Software systems embedded in their operational environment, so-called E-
type systems [Lehm80], must permanently be adapted to reflect changing
requirements, advancing concepts and improved technology. The acceptance
of a system depends on whether it can satisfy the latest needs of its users,
otherwise it will no longer be useful over time [Lehm85, Lehm96]. Hence, a
system should evolve continuously.

Disregarding this essential requirement, most programming languages and
development environments provide a rather static approach that constricts
change more than it enables change [Nier04, Nier05, Nier06a]. Systems
are regarded as solid entities with a well-specified behavior, which leads to
several misconceptions for their development. The problems that arise from
these static assumptions are named in Section 2.1.

Various existing attempts address the importance of change and try to cope
with it. These technologies provide specific solutions for managing software
change, which are discussed in Section 2.2. However, they all act from their
own perspective and do not build on a common foundation.

To achieve a unifying model where others could build on we argue to model
change as a first-class entity. The fundamental concepts involved in man-
aging software change that such an approach should cover are exposed in
Section 2.3.

To illustrate the benefits of first-class changes, we present a motivating sce-
nario in Section 2.4. Various advantages for the development of real world
applications emerge from a corresponding model for software change.

7

8 CHAPTER 2. MANAGING SOFTWARE CHANGE

2.1 Problems of a Static World

Many programming environments constrict the view of a system to that of a
static world where everything is stable and will not change. Objects perform
well-defined functions and exhibit a consistent state. Their need to change
over time is largely ignored.

The static views of many programming languages prevent change in several
cases. Some typical symptoms of this phenomenon include:

Closed-world assumption. Software artifacts, such as types, methods or
modules, are generally considered to have a globally valid meaning within a
single running system [Nier05]. This meaning is constant and independent
of other aspects like a runtime context or the user (be it a human or an ob-
ject) of such an artifact. The possibility for different, simultaneously active
versions of the same software artifact is not given [Smit96, Cost05].

Immutable running systems. Changes usually have to be made at com-
pile time and are only propagated with a redeployment of a system. This
often entails a stop and restart which is highly inconvenient for applications
that should be permanently running [Sato04, Hick05]. Whenever the form
of persistent data changes as well, some ad hoc way to migrate it has to be
found by the developer [Nier05].

Backwards compatibility. Whenever an artifact evolves, this must be
done in such a way that existing clients are not adversely affected. This leads
to an increasing growth of interfaces in many cases [Lehm85]. Although they
may be deprecated, it can be hard or impossible to definitely remove them
[Dig05a, Dig06]. The understandability of a system suffers a lot from this
growing complexity.

Reluctance to refactor. Many frameworks provide not only black-box
interfaces for passive interaction but also components that can be customized
through extension (i.e., subclassing). Refactoring such components may pre-
serve their public interface while breaking implicit contracts visible only to
subclasses in client systems [Stey96]. As a consequence, developers can be
reluctant to modify framework components that may break client applica-
tion code [Henk05].

2.2. CURRENT ATTEMPTS TO COPE WITH CHANGE 9

Complex version switching. Systems developed concurrently by mul-
tiple programmers require frequent synchronization. This process often in-
cludes the handling of file-based snapshots that lack semantic information
about the performed changes [Mens02]. Resolving conflicts may involve dif-
ficult and unclear decisions. Furthermore, switching between different ver-
sions of a system entails a cumbersome update-merge-commit cycle [Robb05]
that can be prone to user error.

2.2 Current Attempts to Cope with Change

A wide range of tools and techniques has been developed over the years to
cover the evolutionary issues left open by current programming languages.
Different attempts address different aspects of software change and help
one to manage it appropriately. The following overview reviews various ap-
proaches in the field of software evolution. We categorized these attempts
into four groups: language constructs (Section 2.2.1), supportive tools (Sec-
tion 2.2.2), merging algorithms (Section 2.2.3) and engineering and analysis
techniques (Section 2.2.4).

2.2.1 Language Constructs

The attempts described in this section all operate at the level of the language
or the runtime system. By instrumenting certain code constructs, one can
achieve a more flexible system in which software artifacts may have different
meanings.

Context Aware Systems

Various systems provide multiple different views of their objects depending
on the current execution context. They make allowance for the fact that
objects in the real world have not only a single perspective, but may exhibit
different behavior in certain circumstances [Cost05].

Piccola. Piccola [Ache01b, Ache01a] is a language for specifying appli-
cations as compositions of software components. The key mechanism in
Piccola is the notion of a first-class namespace (or form) which is used to
encapsulate the services of a component [Ache00]. Forms also serve as the
execution context for scripts. In particular, within a single running applica-
tion, different execution contexts can be simultaneously active. Piccola does
not provide any special support for encapsulating or merging changes.

10 CHAPTER 2. MANAGING SOFTWARE CHANGE

PIE. PIE [Bobr80, Gold80a, Gold80b, Gold80c] was an experiment to ex-
tend the Smalltalk object model with the notion of views. PIE is imple-
mented in itself. The source code therefore does not consist of regular
Smalltalk classes but rather as PIE nodes and provides multiple views of
itself. Design decisions are represented from the perspectives of different
developers. PIE does not support the possibility of multiple views to be si-
multaneously active. Before execution, code is flattened to regular Smalltalk
classes.

Context-Oriented Programming. ContextL [Cost05] is a language to
support Context-Oriented Programming (COP) [Gass98, Keay03]. The lan-
guage provides a notion of layers, which package context-dependent behav-
ioral variations. In practice, the variations consist of method definitions,
mixins and before and after specifications. Layers are dynamically enabled
or disabled based on the current execution context. The semantics of layer-
composition is fixed. ContextL does not support a notion to express high-
level changes like refactorings.

Us. Us [Smit96] is a system based on Self that supports subjective pro-
gramming. Message lookup depends not only on the receiver of a message,
but also on a second object, called the perspective. The perspective allows
for layer activation similar to ContextL, but does not provide a first-class
representation of change.

Aspect-Oriented Programming. Aspect-oriented programming (AOP)
[Kicz97, Kend99, Bric05, Char06] provides a general model for modularizing
cross cutting concerns. Joinpoints define points in the control flow of a
program that trigger the execution of additional cross-cutting code called
advice. Joinpoints can be defined on the runtime model (i.e., dependent on
control flow). Although AOP is used to effect changes on software systems,
the focus is on cross-cutting concerns, rather than on software changes in
general. The availability of control flow based pointcuts enables different
executions to run different code, but this is normally not used to express
versioning.

The named approaches allow for context dependent views of objects and
respect the ambiguities of software artifacts during their life cycle. Infor-
mation about how the evolution of these artifacts proceeds in its different
contexts, however, is not retained. The semantics of the changes are fixed
by the corresponding approaches.

2.2. CURRENT ATTEMPTS TO COPE WITH CHANGE 11

Extendable Modules

With modules, different versions of the same software artifacts may exist
separately. Newer module mechanisms allow developers to adapt third-party
components in well-defined, separated scopes.

Classboxes. Classboxes [Berg05a, Berg05b, Berg03b] is a module system
that provides scoped access to class extensions. A classbox can import def-
initions from other classboxes and redefine them locally, i.e., these changes
are only visible within the local classbox. The classbox in which a class was
originally defined remains unaffected and cannot see the changes. Class-
boxes only support addition and overriding of methods, they do not support
removal and thus cannot model general changes. Classboxes also do not offer
high-level changes, but only new method definitions. They do not provide
any general merging operations. Method extensions simply override existing
methods of the same name.

OpenModules. OpenModules [Aldr04, Aldr05] allow clients to adapt a
module by providing advice code (derived from AOP) for methods and point-
cuts declared in the interface. OpenModules are open for external exten-
sion by advice but modular in that they hide implementation information.
Advice only works for message sends. Other software artifacts cannot be
extended and thus change cannot be modeled in a general way.

The presented techniques allow a developer to extend existing entities in
a dedicated scope. Controlling the scope of change helps one to improve the
separation of concerns. However, these mechanisms are limited to extending
method definitions and do not offer a more general notion of change.

Systems with Multiple Object Versions

Besides viewing or extending existing software artifacts in clearly separated
scopes, several mechanisms exist for keeping completely distinct versions
of the same artifact in a system. They support objects of the same kind,
but with a different shape and mostly serve the purpose to help an existing
object evolve.

Gemstone. Gemstone [Penn87, Otis91] provides the concept of class ver-
sions. Classes are automatically versioned, but existing instances keep the
class (shape and behavior) of their original definition. Instances can be mi-
grated at any time. Gemstone provides (database) transaction semantics,

12 CHAPTER 2. MANAGING SOFTWARE CHANGE

thus state can be rolled back if the migration fails. Versions of different
classes, however, cannot be related with each other to model the evolution
of a complete system or to provide separate execution contexts.

Virtual Classes. Virtual classes [Erns99, Mezi03] allow class names to be
looked up dynamically. Virtuality of classes, however, is associated with a
hierarchy of encapsulating entities, rather than with a particular version of
the system as it evolves.

Erlang. In Erlang [Arms96, Arms03] two different versions of the same
software artifact can be active at the same time. When code is loaded in the
running system, it retains both the old and new version. Calling conventions
define which code is called. This allows for a module to continue to execute
old code until it is restarted. There are at most two versions active at any
time. If a third version is loaded, all processes executing the oldest code
are killed. Erlang focuses on providing a robust model for dynamic code
loading. It does not try to model change.

Oriol. Oriol [Orio04] has developed an approach to migrate objects in
wide-scale applications to new specifications at runtime. The focus is nei-
ther on encapsulating change, nor on providing multiple execution contexts
within the same running application.

DOORS. DOORS and its Smalltalk prototype [Mezi97] enable dynamic
object evolution. Depending on a specific condition, objects can be altered
or extended at runtime with adjustments. The usefulness of this feature is
shown for modeling domain objects, it does not provide a general model of
change.

Having multiple object versions in a single system with ways to migrate
between them supports the evolution and change of a running system. En-
tities are basically regarded as modifiable and the change process is actively
supported. However, an explicit notion to locate these changes in a certain
context is not given by the mentioned mechanisms.

2.2.2 Supportive Tools

Many free and commercial tools capture and store changes performed on
software systems. The recorded information may then be exploited in dif-
ferent ways, as the following enumeration illustrates.

2.2. CURRENT ATTEMPTS TO COPE WITH CHANGE 13

Versioning Systems. Versioning systems are used to keep track of all
changes made to a software system. They provide a history of the system
and allow a developer to explore various branches of its evolution. A wide
range of tools with similar functionality exist, such as RCS [Tich85], CVS
[Berl90], Subversion [Coll04], Darcs [Roun05] and Monticello [Brya]. These
tools all work on snapshots of the source code of a software system. They
are text-based and capture changes post facto, i.e., only the results of the
changes performed since the last snapshot [MacK03]. Because the snapshot
interval mostly depends on the developers, a coarse-grained evolution of a
system is represented. But even with automatic mechanisms (e.g., change
sets in Smalltalk), only the effects without any semantic information of the
performed changes are made available.

CatchUp! and RefactoringCrawler. Refactorings change the struc-
ture of a software system, but not its behavior [Opdy92, Fowl99]. These
changes often affect several parts of a system and may be performed auto-
matically [Dig05a]. With CatchUp! [Henk05], API refactoring operations
are captured at the IDE level where they are performed. RefactoringCrawler
[Dig05b] extracts the transformations from two snapshots of a system with
pattern recognition algorithms. The obtained refactorings from both tools
may then be replayed atomically in client code, minimizing manual mi-
gration efforts. Replayable refactorings support a developer in maintain-
ing cleaner designs, because client compatibility of refactored versions can
be guaranteed. This lowers an important restructuring barrier. General
changes (other than refactorings) are neither captured, nor are they related
in a way that would allow one to model the evolution of a system.

SpyWare. SpyWare [Robb06] captures software changes at the level of
the IDE and represents their semantic information as first-class entity. The
captured change operations can be executed to obtain an arbitrary version of
the system. The prototype is able to represent changes on packages, classes,
methods, variables and statements. Its primary intent is to provide infor-
mation for reverse engineering and evolution analysis. There is no support
for running multiple versions concurrently.

Version Editor. The Version Editor [Atki98] is a history sensitive pro-
gramming environment that provides online information derived from ver-
sioning system repositories. Change information about date, author, previ-
ous and related changes may be directly displayed in the editor tool to help
the understanding of code. This tool illustrates the importance of evolution-
ary information for the development of a system, which, however, can only
be provided at the granularity available in the versioning system.

14 CHAPTER 2. MANAGING SOFTWARE CHANGE

The presented tools are primarily concerned with handling software change.
They build on top of or independently from a certain language and only take
the source, i.e., the non-executable form of the system into account. Ap-
propriate abstractions for software change are defined differently for each
tool.

2.2.3 Merging Algorithms

Merging is required to integrate changes from different versions of a system.
It is an essential part of versioning systems and other cooperative work
environments.

State-Based. Most merging algorithms used for programming languages
are text-based and take lines as indivisible units [Hunt76]. Two different
modifications of the same line cannot be handled very well, which often re-
sults in a conflict the user has to resolve manually. Most popular versioning
tools work with state-based merging [Tich85, Berl90, Coll04]. They compare
either only the two different snapshots to be merged (two-way merging) or
additionally consider the common ancestor (three-way merging) to detect
conflicts. Usually, state-based systems do not take semantic information
into account [Mens02], neither of the snapshots to merge nor of the changes
performed to obtain these snapshots. Conflicts that arise because of seman-
tic reasons might not be detected or not be resolved automatically with pure
state-based merging.

Operation-Based. A more sophisticated approach that includes informa-
tion about actually performed changes is operation-based merging [Feat89,
Lipp92, Muns94]. Recorded transformations of a system are partitioned
into blocks based on their imposed application order. Whenever the result
of applying two transformations of the same block differs depending on the
application order (i.e., when the transformations do not commute), they
conflict with each other. Directly comparing the change operations of a
system may result in a finer-grained detection of conflicts and in the iden-
tification of possible application orders that may eliminate certain conflicts
[Mens02]. The merged result is more likely to be accurate. For example,
when an element is renamed in one branch, references to this element added
in the other branch may point to the renamed object in the merged version.
The operation-based approach is applicable for arbitrary object types. If
required, the behavior of state-based merge algorithms can be emulated as
well [Muns94].

2.2. CURRENT ATTEMPTS TO COPE WITH CHANGE 15

2.2.4 Engineering and Analysis Techniques

The need for software change is reflected as well in various (reverse) engi-
neering processes that treat change as a fundamental component:

Software Configuration Management. Software configuration man-
agement (SCM) is a software development process responsible for managing
changeable entities in a system in order to create different product versions
[Tich88, Conr98, Nguy05]. Besides identifying these entities, relationships
can be established amongst them and meta-information is attachable. SCM
tools offer support to control, audit and report changes on the identified en-
tities and maintain different configuration versions. Versioning systems can
be involved for configuration management, which covers not only software,
but also hardware, documentation and tests. The target of configuration
management is the runnable system.

Model-Driven Engineering. In model-driven engineering, models are
considered as first-class entities for the software development process [Kent02].
To reflect changes to a model in different views of a system, transformations
are executed. These transformations build a crucial part in the evolution
of a model-driven system and have been subject to several investigations
[Send03, Koeh03, Hear06]. Transformations are expected to work generically
on arbitrary models to generate different specific views, for example, to map
a business model to a platform specific software design. As transformations
work on models, they also hold semantic information about syntactic effects
that result from their execution.

Reverse Engineering. Many reverse engineering techniques involve the
use of historical data of a software system. The evolving metrics of software
artifacts may be visualized to classify evolutionary phenomena [Lanz02,
Girb05b]. Information about components that changed at the same time
may be used to detect coupling of modules [Gall03]. Yesterday’s Weather
is used to identify candidates for reverse engineering based on class evolu-
tion [Girb04a]. Mining refactoring operations from software archives can
provide an insight into the semantic evolution of a system [Gorg05]. The
past can provide helpful information to understand and further develop a
system. This information mostly origins from versioning repositories and
can reconstruct the system evolution only with the found granularity. With
more detailed change information, more accurate views would be possible
[Robb06].

16 CHAPTER 2. MANAGING SOFTWARE CHANGE

2.2.5 Summary

All presented concepts and techniques help one to cope with change and
have their pros and cons. Programming language constructs allow for mod-
eling systems in which objects may exhibit different behavior depending on
the execution context or in which the behavior may be extended by different
components. Software artifacts appear changed depending on the perspec-
tive. The semantics that are inherent in these changes, however, are not
explicitly stated. Such information may be captured by designated tools,
possibly even with the complete history of a system. Important shortcom-
ings of these tools are that their change information is not directly runnable
and only a selected set of semantics is made available. Merging algorithms
help us to integrate changes from different snapshots of a system, while the
ones taking semantic information into account can produce more adequate
results. Various engineering approaches state different best practices with
high-level abstractions but tend to be hard to put into practice due to the
missing support by current development environments.

The most important shortcoming is that all these techniques manage change
from their own perspective. In each case thoroughly different mechanisms
are employed to state and manage change. Some of the presented attempts
model the spatial dimension of change by allowing different coexistent ver-
sions of the same software artifact, others are more concerned with the evo-
lutionary aspects of change. No common infrastructure allows one to handle
change in a unified, elementary way. Without a unifying approach, many
resources are spent to cope with change, while much information remains
unexploited.

2.3 Modeling Change as a First-Class Entity

Although change is fundamental to software, means to encapsulate and ex-
press change in such a way that it can be effectively controlled and exploited
are missing. An elementary approach that actively supports change by mod-
eling it as a first-class entity is required.

The following points to represent the temporal and spatial dimensions of
change would have to be fulfilled by such an attempt:

• Encapsulating Change. Change should be captured as it occurs, i.e.,
directly in the development environment, or better, at the language
level. This asserts that the complete history of a system is available
for further exploitation. Not only the syntactic results of change, but
also the semantics behind the modification need to be captured so that
it is possible to reason about change in a meaningful way.

2.4. MOTIVATING EXAMPLE 17

• Scoping Change. Different snapshots of a system may be simultane-
ously active, even within the same running instance. Changes can be
applied to arbitrary snapshots of a system, resulting in new snapshots
of that system. A mechanism to control the scope of change is needed,
for systems being developed as well as for running systems.

• Merging and Deploying Change. Since running systems are subject to
modifications as well, means to merge and deploy changes dynamically
are required. Different semantics may be inherent in merge operations
and have to be facilitated. Modifications should be able to take place
at runtime without affecting the availability of a system.

2.4 Motivating Example

To illustrate the benefits of a system that would support the points identified
in the previous section, we would like to discuss a few scenarios from web
application development. Web applications are a domain in which changes
occur frequently and the applications have to be running virtually all the
time.

The evolution of a web application along three development branches is
shown in Figure 2.1. Each screenshot represents a snapshot of the applica-
tion that emerged from applying specific changes to its antecedent version.
All these snapshots are runnable and encapsulate the performed changes.
The arrows point backwards in time to the respective ancestors.

From the initial version 1.0, a branch with a customized version is created
and deployed (1). Both versions are simultaneously active on the same run-
ning web application container. A developer can safely extend and test the
main branch while visitors only see the stable deployed version. Although
developing and testing on a productive server might seem highly unusual,
numerous advantages may arise. Only one environment has to be set up and
potential problems do not have to be reproduced in a different environment
in order to fix them. Maintenance tasks are generally sped up. The system
supports the separation of different versions.

A second branch from version 1.0 is started for version 1.1, where some
changes broke the application (2). Because the broken snapshot runs in its
own scope, the 1.0 branch and the deployed version are not affected and
operate regularly. Later on, several refactorings (e.g., class renamings that
affect many different places in the code) are applied in version 1.1 (3).

After some time, a bug is found in the deployed version. The developers fix
it in the 1.0 branch (4) and merge the changes into the deployed branch (5).
This change is propagated atomically and directly updates all active visitor

18 CHAPTER 2. MANAGING SOFTWARE CHANGE

Deployed:

Version 1.0:

Version 1.1:

1. branched, deployed

2. branched, broken

5. merged 7. merged

6. merged

4. bug fix

3. refactored

Key
ancestor

Figure 2.1: The evolution of a web application. Every screenshot represents
a running snapshot of the system.

sessions. Because the semantics of the refactorings from the 1.1 branch are
available, the bug fix code can be transformed appropriately and be merged
into that branch as well (6).

When the stability of the 1.1 branch is assured, the deployed branch can
be upgraded (7). Because fine-grained control of the merging process and
the semantics of the previously performed changes is available, the precise
changes to be merged in can be selected while retaining the customized
features of the deployed branch.

The deployed changes of 1.1 have modified the user interface in different
ways, therefore this snapshot is not directly activated. Only a selected group
is granted access to the upgrade by attaching the corresponding snapshot to
the visitor session, which determines the scope within which page requests
should be executed. After the approval of the new release all users get to
access it. The release is activated for all new sessions, while existing sessions
continue with the previous snapshot and then phase out.

A developer who joins the project at a later date will first have to get a
basic understanding of the system. The novice cannot only browse through
the code of the application, but he may also inspect the changes this code
underwent. Information about which parts of the system changed together,
at what time and by whom is available. So if a piece of code is completely
incomprehensible, maybe a previous version or at least the actual author
might provide some hints.

This example illustrates the following advantages for the development of a
web application, compared to conventional approaches:

2.4. MOTIVATING EXAMPLE 19

• Several versions of the same running system can coexist without af-
fecting each other. Versions can therefore be customized, developed
and tested in the same environment. Problems may be reproduced in
the same environment as they occur.

• Changes can be directly integrated into a running system. This may
happen immediately, for newly created sessions or only for special
users. The currently active snapshot is a simply configurable setting.

• The different snapshots are not only available in textual form like in
modern versioning systems, but also in executable form. Tests may be
run in different system snapshots to identify the change causing a test
to fail.

• Because the semantics of change are encapsulated in every snapshot,
refactorings can be captured and applied to different branches by merg-
ing the corresponding snapshots. Refactorings are no longer cumber-
some modifications that cause vast inconsistencies with related code.

• The meta-information of the changes help one to analyze the sys-
tem. Fine-grained information is available for the complete history of
a project.

20 CHAPTER 2. MANAGING SOFTWARE CHANGE

Chapter 3

Changeboxes

In this chapter, we present Changeboxes as a unifying mechanism to model
software change as a first-class entity. Changeboxes actively support change
by encapsulating their semantics as well as their effects. They capture the en-
tire change history of a system which can be extended at arbitrary versions.
Each Changebox provides an execution scope for controlling the visibility
of changes in a running system, while multiple Changeboxes can be simul-
taneously active. Furthermore, multiple Changeboxes can be combined by
merging, while a fine-grained control over the merge semantics allows a wide
variety of possible applications.

3.1 Overview

A Changebox is a container for a single change applied to a specific version of
a system. Each Changebox defines a snapshot of a system, upon which new
changes can be applied. Normally, changes are performed in a sequential
order, hence a Changebox has exactly one ancestor. In the special case where
several Changeboxes are merged together and changes of different branches
are combined, a Changebox can have several ancestors. Over the ancestor(s),
all past changes that lead to this Changebox can be retrieved.

Every Changebox defines an execution scope for a running software system.
This scope is constituted by the complete ancestry of a Changebox (includ-
ing the Changebox itself), which corresponds to a directed, acyclic graph.
The execution scope determines which versions of the classes and meth-
ods a running program should use and thus denotes a runnable version of
the system. Because every change is encapsulated in Changeboxes, certain
scopes might provide inconsistent views of a system when the corresponding
software artifacts do not work together.

21

22 CHAPTER 3. CHANGEBOXES

1
1.a.1

1.b.1 1.b.2
2

1.a.2 1.a.3

3

Figure 3.1: The evolution of a system modeled by Changeboxes. The
changes visible in the execution scope of Changebox 3 are highlighted.

Figure 3.1 shows the evolution of a system modeled by Changeboxes. Change-
box 1 represents the initial snapshot of the system. Changebox 1.a.1 encap-
sulates a single change applied to Changebox 1, a further change results in
Changebox 1.a.2, and so on. These Changeboxes all represent separate snap-
shots of the system. Changebox 2 performs a merge of the two Changeboxes
1.a.1 and 1.b.2. Changebox 2 is the ancestor of Changebox 3.

The execution scope defined by Changebox 3 (grayed area) is aware of all
changes up to this Changebox, i.e., of the initial system 1, of the two merged
branches containing 1.a.1, 1.b.1 and 1.b.2 and of the change encapsulated in
3. A separate branch is started from 1.a.1, ending in 1.a.3. These changes
are not visible from within the execution scope of Changebox 3.

Once created, a Changebox is immutable. A Changebox represents a change
applied to the system, which is a past event. To guarantee consistent views
of the past, Changeboxes are protected from being manipulated at a later
point.

Nevertheless, it is possible to extend a system at arbitrary Changeboxes by
applying new changes to them. Subsequent Changeboxes encapsulating the
applied changes are created by this process. This is illustrated by Changebox
1.a.2 which represents a new branch originating from 1.a.1. Because every
single change applied to a system is represented by a dedicated Changebox,
the entire history of a system remains available.

Changebox 2 combines the changes found in the ancestries of 1.a.1 and
1.b.2 by merging them. Hence, this Changebox has two Changeboxes as
ancestors. Potential conflicts are resolved by a customizable merge strategy ,
which allows one to define the exact semantics of the merge operation.

For our implementation of Changeboxes in Squeak, we decided to build on
the reflective features of Smalltalk rather than attempting to modify the
underlying virtual machine. The following issues had to be addressed to
make Smalltalk aware of Changeboxes:

• The Changebox metamodel needed to be implemented for the software

3.2. THE CHANGEBOX METAMODEL 23

artifacts and their possible modifications existing in Smalltalk. In
Section 3.2, the detailed model for encapsulating change is presented.

• Because Changeboxes offer the possibility to view a system as it ex-
isted in the past, changes need to be tracked. The Smalltalk reflective
kernel had to be adapted to capture change as it occurs. This is dis-
cussed together with our approach to record higher level changes in
Section 3.3.

• A mechanism that enables scoped execution was required in Smalltalk.
In Section 3.4, we expose how methods and classes are dispatched
based on a defined scope so that the same program may execute in
different scopes concurrently.

• Merging several Changeboxes proved to be a crucial issue. The steps
to keep the merge process open for various customizable conflict res-
olution strategies that may take change semantics into account are
explained in Section 3.5.

• The tools constituting the development environment in Squeak had
to be made Changebox-aware. They are presented in Section 3.6,
together with a utility that is responsible for managing Changeboxes.

3.2 The Changebox Metamodel

A Changebox encapsulates a single change that has been applied to a certain
snapshot of a system. To capture the actual change process and its inherent
semantics, a Changebox contains one or more change specifications. Change
specifications identify the subject element of a change and define the pro-
cess for changing an element from one version into another. These classes
encapsulated by a Changebox are shown in Figure 3.2.

Class and CompiledMethod represent the runnable meta-objects that define
the structure of a system. These are the most important changeable software
artifacts in Smalltalk. Since every change process primarily works on and
modifies instances of these classes, we introduce the term variant for them
in Section 3.2.1. In order to provide an executable system, variants are
encapsulated in Changeboxes together with change specifications.

Every change works on the software artifacts that define a system. We call
these artifacts elements, which can be classes, methods, instance variables
etc. The sum of the current versions of all elements constitutes a software
system. The means to represent them appropriately are described in Sec-
tion 3.2.2.

24 CHAPTER 3. CHANGEBOXES

ElementChangeSpecification 1*
*

1

ancestor

...

ancestor
specifications
variants
author
timestamp

Changebox

MergeStrategy

1

*

Class

CompiledMethod

*

1

*

Figure 3.2: Changebox and its associated classes.

A change specification holds the modified element and the information about
a change operation and can be used to re-apply this change to the system.
Thus, a change specification is not bound to a certain snapshot of a system,
but only encapsulates a single change process. How change specifications are
used to represent the semantics of changes is discussed in Section 3.2.3.

In addition to information about the captured change, a Changebox may
contain related data of interest, such as the date and time when the change
was applied, the author of the change or any other metadata.

3.2.1 Variants: Instances of Runnable Meta-Objects

When a change is performed in a Smalltalk system, it results in new in-
stances of the runnable meta-objects Class and CompiledMethod. To ease
the formulation when reasoning about these changeable instances, we intro-
duce the term variant. A variant denotes a single version of a class or of
a method. As Smalltalk is a reflective system implemented in itself, these
instances, i.e., classes and methods, are normal objects. They provide all
the necessary information for the virtual machine to instantiate new objects
(e.g., the class format) and execute methods (e.g., bytecode), respectively.
Class and CompiledMethod are the classes of the most important change-
able software artifacts. Their definitions are shown in Figure 3.3.

In a conventional software system, there is exactly one variant for each class
and method. Whenever a change is performed, the involved variants are
replaced with new ones. Thus, only the last version of a system is runnable.
The variants needed to run previous versions are lost. With Changeboxes,
every class and method in the system can have multiple variants. For every

3.2. THE CHANGEBOX METAMODEL 25

...

name
superclass
format
category
instanceVariables
classPool
sharedPool
...

Class

literals
selector
methodClass
getSource
...

CompiledMethod

*1

Figure 3.3: Class and CompiledMethod, the meta-objects modeling a
Squeak system.

change that is captured, all the created variants are recorded, along with
the semantics given by the change specification in the Changebox that rep-
resents the change. Previous variants are not discarded. They are kept in
the Changebox that initially captured them. Keeping the variants of all
versions of a system in the according Changeboxes offers the possibility to
run a system in all versions. Theoretically, all variants could be created
on-the-fly from the encapsulated change specifications. This would result
in a serious runtime overhead, so variants are cached in the appropriate
Changeboxes.

Variants are stored in a dictionary. In the case an element has been deleted,
nil is put into the dictionary. The representation of removed elements in
the variant dictionary of a Changebox is important for various mechanisms
explained in the further course.

3.2.2 Elements

In our model, Class and CompiledMethod are so-called primitive elements.
Each primitive element is directly represented by a corresponding object
(i.e., a variant) in the system. Other changeable software artifacts, such as
instance variables or class variables, are so-called non-primitive elements.
These elements are not represented by a dedicated object in the system, but
form parts of a primitive element. For example, field elements are defined
by the instance of Class they belong to. They are stored in the Class
attributes instanceVariables, classPool and sharedPool. Changes to
non-primitive elements will entail a change of their corresponding primitive
element to take effect (i.e., a new variant is created).

To model the different elements found in a software system, a class for every
identified element was created as shown in Figure 3.4. Each instance of these
Element classes represents one specific element, e.g., a certain class, method

26 CHAPTER 3. CHANGEBOXES

Element
«abstract»

PrimitiveElement
«abstract»

 name
classElement

FieldElement
«abstract»

source:
...

selector
classElement
classIsMeta

MethodElement

superclassName:
format:
category:
...

theClassName
ClassElement

Instance
VariableElement

ClassVariable
Element

PoolDictionary
Element

ClassInstance
VariableElement

Figure 3.4: All elements with their attributes and changeable properties in
Squeak.

or instance variable, independent of the evolution of a system. They provide
functionality to access and modify the element. In the following, the model
classes are referenced by their common superclass Element, the structural
software artifacts are continuously named as lower-case ‘element’.

An Element models the identity of a software artifact, but does not pro-
vide information about a certain version of that artifact. Each element is
mainly distinguished from others of the same type by its name; methods and
variables additionally by the class they belong to. Given these attributes,
the Element object belonging to a certain system artifact can be identi-
fied.

Whenever a change affects an attribute that is used to identify an element
(e.g., when a method is renamed), the new version of the method will belong
to another Element. It is the responsibility of the change specification to
model these circumstances appropriately.

The most important functions of the Element class are illustrated in Fig-
ure 3.5 and are discussed in the following.

Each Element knows the changeable properties and how to extract them
from a given instance of their represented software artifact. A property can
be the source code of a method or the format of a class. Field elements, on
the other hand, do not have any properties in Smalltalk.

Given a change specification, the corresponding Element is able to apply the
specification to the system. This cannot be performed by the change speci-

3.2. THE CHANGEBOX METAMODEL 27

MergeStrategy

currentVariant
specificationsFor: aVariant
subElements
...

PrimitiveElement
«abstract»

ChangeSpecification

Changebox

propertyNames
propertiesFor: aVariant
primitiveElement
exists
load: properties
unload
...

Element
«abstract»

Figure 3.5: The main functionality of Element and PrimitiveElement.

fication itself as each element is created, modified and removed differently.
The corresponding Element type has to provide the appropriate behavior
by implementing the methods #load: and #unload for low-level changes
and any others required for complex operations.

On the other hand, Elements can generate change specifications from in-
stances of Class and CompiledMethod as well, dependent on the current
snapshot of a system. Because these instances can contain information
about several elements (i.e., also about their non-primitive sub elements),
multiple change specifications may be generated. Each primitive Element
knows the potential non-primitive elements their represented artifacts may
contain.

PrimitiveElements are additionally responsible for accessing the corre-
sponding variants (i.e., Classes and CompiledMethods) in the system, based
on the current execution scope. This also includes handling definitions and
removals of these elements when the changes should not be captured in
Changeboxes, which is required to ensure the functionality of a conventional
system.

The different elements identified in Smalltalk and modeled for our proof of
concept, as shown in Figure 3.4, are described in the following. This selection
is not meant to be complete. Additional elements could be provided for
categories, different statements or local variables.

Class Elements

A class is the meta-descriptions of an object, i.e., it defines the object’s
shape, the associated fields and methods. The name of a class is used as
its identifier in the system. In Smalltalk, every class has exactly one super-
class from which fields and methods are inherited. As methods and fields are

28 CHAPTER 3. CHANGEBOXES

represented by their own Elements, there only remain three modifiable prop-
erties that constitute a class element. They are the name of the superclass,
the format of a class1 and the category a class belongs to.

A class is a primitive element that has a directly corresponding meta-object
in Smalltalk, namely an instance of Class. The ClassElement provides
access to the represented, currently active Class instance of the system, as
well as to its superclass.

When a change is captured, the ClassElement generates change specifica-
tions from the newly created Class instance. The ClassElement generates
a change specification for itself and then passes the Class instance to all
the available FieldElements to create appropriate specifications as well, if
necessary.

On the other hand, a ClassElement is able to generate a new class from
a set of change specifications whose elements (primitive and non-primitive)
all contribute to the same class. A specification for a ClassElement can be
applied on its own as well, defining a new class with different properties as
the previous one, but with the same fields. The contained fields depend on
the system snapshot the change specification was applied to.

Method Elements

In Squeak, methods are identified uniquely by their name (i.e., their se-
lector), the class they belong to and whether they are instance or class
side methods. The source code of a method is the only modifiable prop-
erty2.

Methods are primitive elements as well. In a Smalltalk system, they are
represented by the object CompiledMethod. The MethodElement provides
access to the represented CompiledMethod in the currently active execution
scope, to the ClassElement this method belongs to and to the potential
indirect super class method in the same scope.

When a method is modified, the MethodElement can extract the source
code to generate a change specification. As a method does not have any
other associated elements, only one specification for each method change is
created.

Given a change specification for a method, a MethodElement is able to apply
1In Squeak, an object can have different formats, defining its shape in memory: normal,

bytes, variable, words and weak [Guzd01].
2As mentioned, additional properties and even sub elements such as statements or local

variables would be possible. This representation corresponds to our current implementa-
tion.

3.2. THE CHANGEBOX METAMODEL 29

the specification and create a new CompiledMethod. This is achieved by
compiling the method’s source code found in the specification for the class
given by the associated ClassElement.

Field Elements

A class has several kinds of fields which define different scopes for variables.
In Squeak, instance variables, class variables and shared pool dictionaries
are possible field types, while instance variables may exist on the class side
of an object as well [Guzd01]. A field element is identified by its name and
the class it belongs to. There are no additional properties for a field that
can be modified, the field either exists in the associated class or not.

Fields are not directly represented with their own meta-object in Squeak, but
they are managed by Class instances (i.e., they are non-primitve elements).
Thus, each FieldElement belongs to a ClassElement. A FieldElement can
tell whether the represented field exists in the associated class in the current
execution scope.

As well as primitive elements, FieldElements are able to create change
specifications for their represented field. Such specifications can be applied
as well, creating a new Class instance based on the preceding one in the
current system snapshot. If for example a definition specification for a field
is applied, the new class is identical to its predecessor except for the newly
added field.

A short definition of the identified field elements in Squeak follows.

Instance Variable Elements. Instance variables store information bound
to each single instance of a class. The number of instance variables con-
tributes to the memory footprint of an object. They are accessed using an
offset which is compiled into the bytecode representation of a method, thus
changing instance variables requires a recompilation of all methods of the
affected class and its subclasses.

Class Variable Elements. Class variables are fields that contain infor-
mation accessible to all objects of the same class. They can be used to share
class data between objects. Their name is used to lookup the current value
in a class-side dictionary, thus no recompilation of any methods is needed
for a class variable modification.

30 CHAPTER 3. CHANGEBOXES

Class Instance Variable Elements. Class instance variables are the
same for a class as instance variables are for an object. They are not acces-
sible to the instances of the class, only to the class itself. A recompilation is
required for all class-side methods and those of all subclasses when a class
instance variable changes.

Shared Pool Dictionary Elements. Shared pools define a scope for
variables that are available to all classes and objects, as long as the shared
pool field is defined for a given class. They can be considered as global
variables and usually contain constants. Pool dictionaries are not widely
used in Squeak.

3.2.3 Change Specifications

All of the described elements may be modified in similar ways. Each mod-
ification is considered to be a change, which always builds on two basic
kinds of changes in Smalltalk: the definition and the removal of an element.
Squeak does not distinguish between the modification of an existing element
and the creation of a new one. These two operations are both considered
to be a definition change. The two identified simple changes, definition and
removal, build a foundation for other, more complex changes. They can
be combined in a generic way to create complex modifications, which can
still be considered as a single semantic change. For example, pushing up
a method to the super class requires the definition of a method with the
same content in the super class and the subsequent removal of the original
method.

For every kind of change to be captured with Changeboxes, a change spe-
cification has to be created to encapsulate its semantics. The semantics of
a change characterize its intent (e.g., to push up a method), instead of its
effect (e.g., create a method with the same body in the super class and
delete the original one). The specification is also responsible for storing the
information needed to apply the represented change to the system (e.g., the
method element and the super class to push it up to, but not the actual
method content).

For the basic changes (e.g., method definition and removal), the mapping of
a low-level change process performed by the runtime system to an according
change specification is trivial. However, the system procedures do not always
correspond directly to semantic definition of a change. A single action might
(i) entail changes to several elements by modifying only one variant or (ii)
update multiple variants to reflect the change of one software artifact. Both
cases are discussed in the following.

3.2. THE CHANGEBOX METAMODEL 31

An example illustrating the first situation is class definition in Squeak. A
class definition also contains the definitions for the various fields of a class.
For this single action, several separate change specifications are generated,
namely for the class and for all fields. They encapsulate the fine-grained se-
mantic information of every single definition. To preserve the unity of such
a change, all generated specifications are encapsulated in the same Change-
box, together with the created variant. In most other cases, nevertheless, a
single change specification suffices to represent a change action.

The second case is more complex since other elements may be updated that
do not directly belong the the changed element. This is best shown by the
definition of an instance variable. When adding an instance variable to a
class, in Squeak, the entire class and its subclasses are recreated and all their
methods are recompiled in order to reflect the new offsets of the instance
variables. However, semantically, the definitions of the classes and methods
have not been modified, only their runnable representations needed to be
updated. For this reason, only a single change specification for the instance
variable is created and encapsulated in the according Changebox, together
with all updated variants.

In this way, change specifications encapsulated in a Changebox are inde-
pendent of the system snapshot they were initially captured in. Applying
a definition specification for an instance variable updates the correspond-
ing elements generically, even if they are different in another snapshot. If
specifications for the updated classes and methods would be generated as
a consequence to an instance variable change, applying these specifications
would revert the entire classes to the point an instance variable change was
originally captured.

Hence, a change specification does not encapsulate the result, but rather
the process of a change. Only in this way, can the semantics of a change

properties
DefinitionSpecification

Element

Changebox

element

ChangeSpecification
«abstract»

RemovalSpecification
newName
RenameSpecification

MergeStrategy

Figure 3.6: The implemented ChangeSpecifications and their properties.

32 CHAPTER 3. CHANGEBOXES

be preserved at an appropriate level. The changes represented in our imple-
mentation of Changeboxes are shown in Figure 3.6 and are described in the
following. Additional specifications could be implemented as long as their
represented change is defined for the corresponding elements.

Definition Specification

The most frequently applied change to a software system is the definition
or redefinition of an element. The specification for such an operation has
to contain all the properties that distinguish one instance of the defined
element from another. Given these properties, the corresponding Element
has to be able to create a new software artifact.

Removal Specification

Whenever anything is removed from a software system, this is represented
by a removal specification. This specification only knows the element to
remove, no additional data is needed for this purpose. When an element
exists in the current system snapshot, it is possible to apply a matching
removal specification to discard this element.

Renaming Specification

The renaming of an element can already be considered to be a more com-
plex change, where a copy of the element with a new name is created and
the old one is removed. Instead of modeling this with a definition and a
removal specification, which would affect the semantics of the change, a new
specification type was introduced. The created copy of an element should
be identical to the previous one except for the name. Therefore, a renam-
ing specification does not contain any other information than the element
in question and its new name. Elements that support renaming have to
implement a #rename: method. A renaming specification can be applied to
any definition of an element, preserving its other properties. Named refer-
ences to the corresponding element might be updated automatically when a
renaming specification is applied.

3.3 Capturing Changes

Having defined a metamodel to represent changes of software artifacts,
a mechanism to capture these changes and instantiate the encapsulating
Changeboxes is required.

3.3. CAPTURING CHANGES 33

Changes are usually performed incrementally by a developer. To keep track
of the most recent Changebox to which further changes can be applied, the
concept of a work session is presented in Section 3.3.1.

Two different ways of applying changes have been identified in Smalltalk.
Basic modifications of primitive elements (i.e., the compilation of meth-
ods and the building of classes) are performed using the system’s reflective
libraries. To capture these processes with Changeboxes, the according mech-
anisms have been intercepted as described in Section 3.3.2.

More complex changes that may involve the modification of several elements
are usually performed by appropriate tools of the development environment.
Section 3.3.3 suggests to record such changes at the point of their origin to
capture the complete semantics.

3.3.1 Work Sessions

With the Changebox model, every change is performed with respect to a cer-
tain snapshot of a system, which is represented by a dedicated Changebox.
As an interface to external tools, we introduce the concept of a work ses-
sion, which keeps track of the most recent Changebox and thus allows one to
apply changes sequentially. A work session starts from a Changebox and re-
members the most current one when additional changes are performed. Like
a Changebox, a work session defines an execution scope, which is detailed
in Section 3.4.

Work sessions are responsible for recording all changes that happen to a
system. When a change is captured, a new Changebox is created with the
one referenced by the current work session as its ancestor. The work session
then updates its reference to the new Changebox. Like this, a work session
captures a sequence of changes and applies them in one line. In Figure 3.7,
the shown work session manages the middle development line A.

Normally, a developer is working within one work session. Whenever the

A.1 A.2

A.a.1 A.a.2

A.3 A.4 A.5

B.1 B.2 B.3 B.4

changebox
...
record: aVariant
apply: aSpec
pick: aCBX
mergeWith: aCBX
...

WorkSession

pick

Figure 3.7: Three work sessions illustrating branching, merging and picking.

34 CHAPTER 3. CHANGEBOXES

developer wants to explore a second approach, it is possible to create a new
work session, i.e., a branch, with an arbitrary Changebox as its initial snap-
shot. This is illustrated by the upper line which started from work session
A at A.2 and continued with A.a.1 and A.a.2. The changes appended there
are completely independent of the changes in other work sessions. Instead
of undoing changes, such as for example removing previously defined ele-
ments, a developer can just go back to the desired Changebox and continue
a different work session from there.

Work sessions cannot only be split up into different ones when creating a
branch, they are also responsible for merging other Changeboxes with the
most recent one. The changes from other branches are then visible in the
current work session as well. Changebox A.5 merges B.3 of work session
B into A, making the changes from B.1 to B.3 available in A. Virtually
any set of Changeboxes can be merged together, combining the different
classes and methods found in their respective ancestries. Potential conflicts
between elements have to be resolved during the merge process, which is
encapsulated in a new Changebox. The details of merging can be found in
Section 3.5.

Instead of merging complete branches, it is possible to pick some Change-
boxes from one work session and apply the contained change specifications
to another session. This process is known as cherry picking and may be
used to apply bug fixing software patches in different development branches.
As only the specifications are picked, new Changeboxes are created in the
active work session to represent the applied changes. In Figure 3.7, the
specifications of A.a.2 are applied to the snapshot defined by A.3, which
results in Changebox A.4. The changes from A.a.1 are not integrated into
A. Currently, the semantics of a cherry picking operation are not explic-
itly represented in the Changebox model besides the results of applying the
corresponding change specifications.

3.3.2 Capturing Simple Changes

Changes in a Smalltalk system, i.e., the compilation of methods and building
of classes, are performed through the reflective kernel. Previously existing
variants are discarded and replaced with the new ones.

Squeak provides a notification system for changes of methods and classes.
Registered objects get notified on class and method changes. Because these
notifications only provide a read-only access to the changed elements, there
is no possibility to take action in the change process. With Changeboxes, the
semantics of defining and removing elements changes slightly, which makes
it necessary to alter the modification processes.

3.3. CAPTURING CHANGES 35

:aClass

compile:

:aMethod
Dictionary

recordDefinition: aCompiledMethod

:aCompiled
Method

asCBXElement

:aMethod
Element

aMethodElement

:aWork
Session

:aChangebox

 for: aMethodElement
 with: aCompiledMethod
 in: aPreviousChangebox

 addVariant:
 aCompiledMethod
 for: aMethodElement

aMethodElement

aChangebox
simpleAt: aSelector
put: aMethodElement

for: aClass aSelector: aSelector

specificationsFor: aCompiledMethod

aDefinitionSpecification

installDispatcher

at: aSelector put: aCompiledMethod

Figure 3.8: Capturing changes bottom-up: UML sequence diagram of a
method creation.

A change should only affect the snapshot of a system defined by the current
Changebox, other snapshots should not notice anything of that change. In
a conventional Smalltalk system, changes to certain elements can result in
further actions to adapt the system. For example, redefining a class causes
all pointers to the old class variant to be changed to the new one in the
entire system. Removing a class causes the old variant to be added to the
collection of obsolete classes, or removing a method causes the compiled
method to be discarded from the class’ method dictionary. This behavior is
not desired for Changeboxes, because it would affect the entire system and
all its different snapshots. As a consequence, the modification procedures
for classes and methods have to be adapted to the needs of Changeboxes.
Simply subscribing to the read-only notification system of Squeak would not
have offered these possibilities.

The mentioned side effects in the compilation and class building libraries
were removed. Instead of replacing an old variant with a new one in the
case of a definition, the system procedures pass every new variant to the
currently active work session. This creates a new Changebox containing the
recorded variant to represent the change. The diagram in Figure 3.8 shows
the creation of a method and all subsequent actions to capture the change

36 CHAPTER 3. CHANGEBOXES

in a Changebox. Corresponding actions are taken to capture the removal of
an element.

A recorded variant is analyzed by its corresponding Element for the change-
able properties. The properties are then compared to those of the preceding
specification for the same element, as found in the ancestors of the newly
created Changebox. When these properties differ, a change specification
with the new properties is created and added to the Changebox.

If the properties remain identical, the element did not change and no spe-
cification is created. This may happen, e.g., for method recompilations re-
sulting from an instance variable definition. Because the properties of these
methods do not change, no change specifications are generated. Only the
recompiled variants are put into the Changebox representing that change in
order to have a runnable system.

To access a modified element further on, a dispatcher is installed at the
element’s original place in the system. How this dispatcher retrieves the
correct variant for a given execution scope is described in Section 3.4. In
the method creation example from Figure 3.8, the dispatcher is installed in
the MethodDictionary of the corresponding class.

This bottom-up approach allows one to capture every change applied to a
system. Every definition, modification or removal of a class or method is
recorded by the active work session. A fine-grained capturing of structural
changes independent of their higher level intent is made possible by this
approach.

3.3.3 Recording Refactorings

The bottom-up approach described above captures every single change of
a system separately and generates corresponding Changeboxes. It works
well for simple changes like definition and removal, but makes it difficult
to record high-level changes that are composed of several individual, simple
changes. Refactorings generally belong to this group.

As an illustrating example, renaming a class creates a complete copy of the
class with the new name and then removes the old class. With the cur-
rent approach, several definition specifications would be created because all
copied elements (i.e., the class, its fields and methods) are assigned to the
new class name and thus have their identity changed. Because the copied
elements are recorded sequentially, the specifications would all be captured
in separate Changeboxes. Our requirement to encapsulate a single change in
one Changebox is not met this way. Furthermore, the created change speci-
fications would present semantic information that is not appropriate. Even

3.3. CAPTURING CHANGES 37

add: aVariant for: anElement

:aClient

rename: aClass
to: newName

apply: aRenameSpecification

:aClass

:aClass
Element

aClassElement

:aWork
Session

:aChangebox

 with: aRenameSpecification
 in: aPreviousChangebox

for: aClass

apply
renameTo: newName

for: aClassElement with: newName

renameSilently: newName

apply

asCBXElement

recordDefinition: aVariant*

:aRename
Specification

Figure 3.9: Capturing changes top-down: UML sequence diagram of a class
renaming.

though the methods of the renamed class are not modified, corresponding
definition specifications are created for every method present at the point
of the renaming. This might distort the results of applying the captured
renaming process to different system snapshots, where the same class may
contain other methods, which would be overridden.

To capture the semantics of such a change as precisely as possible, a sin-
gle specification for the renaming process has to be created. The updated
method and class variants should all be captured within a single Changebox
to preserve the unity of the change.

Generating the appropriate specification for a refactoring from the variants
captured by the bottom-up approach would be ambiguous and error-prone,
if not impossible. One common property of refactorings is that they do no
change behavior, but only structure [Opdy92]. Hence, a refactoring does not
need a lot of information to be specified and works generically on the present
elements, which may be different in every snapshot of a system.

As a consequence, we introduce a top-down approach for recording refac-
torings. The exact process is illustrated in Figure 3.9. First, a specification

38 CHAPTER 3. CHANGEBOXES

for the refactoring is created, which is straight forward. This task can be
completed by an IDE tool that is aware of the data to perform a refactor-
ing. For a renaming, for example, an instance of RenameSpecification is
created by specifying the desired element and its new name. In a second
step, the specification is applied in the active work session, which creates
a new Changebox for this change. All variants produced by applying the
change specification are captured in the new Changebox, but no additional
specifications are generated for them. Because a change specification encap-
sulates the process of a change, the result may look different, depending on
the system snapshot the specification was applied to.

This approach for recording refactorings works for simple changes as well.
In contrast to the bottom-up approach, change specifications have to be
created by an external source. The advantage of the bottom-up approach
is that it is able to capture any change independent of its origin. Even
changes initiated by Changebox-unaware tools can be captured in this way.
Furthermore, in the case of a simple definition, determining the property
differences to the preceding specification might be tedious for an external
tool.

For these reasons, both approaches are applied to record changes. Simple
changes can be captured by the bottom-up approach. Advanced refactor-
ings that are easy to specify make use of the top-down approach. Addi-
tional refactoring packages which are not part of the Squeak kernel may be
consulted to apply more complex change specifications. In this way, the
advantages of both approaches find their appropriate applications.

3.4 Scoping Execution

A conventional Smalltalk system does not offer the notion of execution
scopes. Only the most recent versions of the different software artifacts
are present in a system.

The representation of an execution scope should provide the following fa-
cilities (also visible in Figure 3.10). It has to be possible (i) to lookup the
active variant of a given element and (ii) to record changes performed in this
execution scope. The lookup for the current variant has to be unambiguous,
i.e., only one variant for each element can be active in a given scope. Hence,
a scope fulfills the flattening property [Nier06b]. Point (ii) is optional, since
a scope could be immutable as well.

Both Changeboxes and work sessions may define an execution scope. A
Changebox encapsulates Classes and CompiledMethods which may be re-
cursively looked up over the ancestors. A work session is responsible for

3.4. SCOPING EXECUTION 39

lookupVariantOf: anElement
record: aVariant for: anElement
apply: aChangeSpecification
...

Scope
«abstract»

ChangeboxWorkSession GlobalScope

Figure 3.10: The abstract Scope class and its subclasses.

capturing changes and can delegate a lookup to the referenced Change-
box. Since this reference is incrementally updated, the changes performed
in a work session become automatically visible. Changeboxes alone are im-
mutable, so potential changes are discarded when a Changebox is set as
execution scope for applying changes. In this way a sandbox system could
be modeled where no changes are possible.

The conventional Smalltalk system libraries are currently not encapsulated
in Changeboxes. To represent these globally available parts, we introduced
a GlobalScope object. Every Changebox has the single instance3 of this
class as its ultimate ancestor. The global scope provides the scope facilities
when no Changebox or work session is specified, i.e., it acts as an interface
to the modified reflective kernel functions and redirects change requests to
the conventional Smalltalk procedures.

As Smalltalk is a completely reflective system that is permanently running,
scope only has to be set for runtime. There is no difference between a
compile time scope where changes are performed and a runtime scope needed
for program execution. How the current scope object for execution can be
specified is explained in Section 3.4.1

To enable different dynamic views of a system, it should be runnable in
arbitrary versions simultaneously. To control the visible variants when ex-
ecuting an application in a given scope, primitive elements are dispatched
using the lookup facility of Changeboxes. The rationales behind this variant
lookup for a given scope are discussed in Section 3.4.2. How dispatching was
achieved for methods is presented in Section 3.4.3, while in Section 3.4.4 the
more intricate solution for classes is described.

3Following the well-known Singleton pattern [Gamm95]

40 CHAPTER 3. CHANGEBOXES

3.4.1 Specifying the Execution Scope

In order to run code in a given scope, this scope has to be specified some-
how. It should be possible to have several scopes active simultaneously in a
running system, but for every executed method the scope has to be clearly
defined.

Given the possibility of executing statements within a block closure in
Smalltalk, we implemented a mechanism to specify a scope for the execution
of an arbitrary block of code. This mechanism asserts that only one scope is
active for a given message send. The syntax for accessing the current scope
object is straightforward. A block closure can be run with a specific scope
as follows:

CurrentScope use: aScope during: [...]

Inside the given block closure, the scope can be obtained by sending

CurrentScope value

The specified value will be returned and can be used in the block. If no
value is explicitly specified, i.e., the block is run without a #use:during:
statement anywhere in the method execution context stack, the instance
of GlobalScope is returned when calling #value. This enables a unified
handling as the returned object is always of type Scope.

Storing the Scope

We investigated several mechanisms for storing the current scope object and
found an additional instance variable in Process to be the most efficient.
In Squeak, a Process object represents a running thread. The instance
variable added to Process can hold an arbitrary object for every process
and is accessed by CurrentScope. In this way the scope can be set for a
certain block of code running within one process.

It is essential that the scope variable is set back to the previous value when
the executed block exits. This is required because processes may span over
several tasks, only few of which might actually be run in a special scope. As
an example we mention the GUI process that renders the different windows
in the Squeak world, whereby different class browser windows can represent
the system in different scopes.

A great advantage is that the same block can be run in different scopes at
the same time, i.e., in different processes. There is no need to adapt a block
to the scope it should be executed in.

3.4. SCOPING EXECUTION 41

Discontinued Alternative: Dynamic Variables

Another possibility we considered was the use of dynamic variables. They
build on Notifications, which are part of Squeak’s exception handling API.
A request for the current scope object would have triggered the notification,
which walks up the execution stack of the method from where the request
originated until it is handled. The handler for the request then returns the
scope object specified earlier and resumes the action at the point where the
request has started. This is the same mechanism that exceptions use, except
that they usually do not resume the action.

This approach was followed for some time during the development of Change-
boxes. During benchmarking, it proved to be significantly slower than a
Process instance variable, as can be read in Section 4.1.2. Dynamic vari-
ables did not reveal any special advantages over the Process instance vari-
able, so their use was discontinued. In certain situations, a Process instance
variable is even more accurate. When forking processes, the content of the
scope instance variable can easily be copied to the new process, while dy-
namic variables would have required the duplication of the complete method
execution stack up to the fork message in order to retain the scope informa-
tion in the new process.

3.4.2 The Changebox Lookup Mechanism

As already described in Section 3.2.1, all variants resulting from change pro-
cesses are captured in corresponding Changeboxes. To obtain the runnable
variant for a primitive element in a given execution scope, a lookup over
the Changeboxes in that scope has to be performed. Remember that a
captured variant can also be nil, denoting a removed element. Since vari-
ants are represented by PrimitiveElements, these objects are responsible
to retrieve the active variant for the current scope and to invoke the lookup
mechanism:

1. The lookup starts at the Changebox defining the current scope as
found in the Process instance variable.

2. If this Changebox contains a variant for the demanded element, this
variant is returned.

3. If the Changebox does not contain the demanded variant, the lookup
continues in the ancestor of the Changebox.

4. If the ancestor is the global scope, i.e., if the end of the ancestry is
reached, then the variant from the global scope is returned (which
might be nil as well).

42 CHAPTER 3. CHANGEBOXES

Changebox>>lookupVariantOf: anElement
 ^(self hasVariantOf: anElement)
 ifTrue: [self variantOf: anElement]
 ifFalse: [ancestor lookupVariantOf: anElement]

remove
B>>o

remove
B>>n

define
A>>ndefine

B>>m define
B>>p

define
B>>n

define
B>>o

:Process

scope

:CompiledMethod

Global

Figure 3.11: Variant lookup over several Changeboxes.

5. If the ancestor is a conventional Changebox, the lookup proceeds re-
cursively with step 2.

The steps followed by an example lookup are illustrated in Figure 3.11.
The method B>>m should be retrieved. No variant is found in the first
Changebox, therefore the lookup continues in its ancestor. Only in the last
Changebox, a variant for this method is found and can be returned. A
lookup for B>>n would find a variant in the second Changebox. Because
the method was removed there, the returned variant is nil and the previous
definition of B#n is overridden. When retrieving B>>p, the algorithm does
not encounter any variants up to the global scope, and nil is returned as
well. Because B>>p is defined in a different branch, it is not visible in the
current execution scope.

Only one variant per element will be found by this algorithm, namely the
latest one created in a given scope. The flattening property is observed.
The variants in previous Changeboxes are not considered anymore, but they
might be the active ones when a system is running in a different scope.

The existence of a variant in a certain Changebox does not have to depend on
the presence of a change specification for the same element. As discussed in
Section 3.2.3, changes may update variants without affecting the semantics
of the corresponding elements. The variants captured from such changes
are required to run the system and are considered equally by the lookup
algorithm.

If nil is found for the element looked up in the variant dictionary of a
Changebox, then this value is returned. Whenever the lookup results in a
nil value, the requested element has been removed and no longer exists in
this execution scope.

A big advantage of modeling the global scope with its own object that
precedes every Changebox ancestry is the reduced runtime complexity of

3.4. SCOPING EXECUTION 43

the lookup. With this design, every Changebox has an ancestor object
with a #lookupVariantOf: method. Therefore, this message can be sent
directly without testing any conditions. The receiver (i.e., a Changebox or
GlobalScope object) then performs the appropriate actions. This behavior
is generally described as the Null Object pattern [Wool96].

Caching Lookup Results

Iterating recursively through the ancestry of a Changebox to find the latest
variant of a primitive element can become very time consuming as soon as
this ancestry grows big. A cache for the variants was introduced, trading
memory space for execution time. After the first lookup for an element in
a given scope the found variant is put into the cache. On any subsequent
requests in the same scope the cached variant can be used, which results in
a major speed up. Performance details are discussed in Section 4.1.2.

3.4.3 Dispatching Message Sends

In order to execute methods depending on a given scope, a mechanism to
dispatch message sends to the right variants is needed. In Smalltalk, several
techniques for message passing control exist [Duca99]. Methods are stored
in the MethodDictionary of the class they belong to. This dictionary asso-
ciates the method selectors with their CompiledMethods. When a message
is sent to an object, the value belonging to the method selector is looked
up in the method dictionary. If the dictionary does not contain an instance
of CompiledMethod for this key, the message #run:with:in: is sent to
the found object. Replacing CompiledMethods by objects to intercept this
message is known as method substitution.

Using method substitution, it is possible to alter the behavior of a message
send and to control the method interface published by an object. In the im-
plementation of Changeboxes, an instance of MethodElement representing
the actual method takes the place in the method dictionary. It is put there
when a change of the corresponding method is captured. MethodElement
implements the method #run:with:in: to perform a lookup of the active
method variant for the current execution scope. Additionally, the Method-
Dictionary is modified to only show those selectors of a class that contain
a variant in the current scope. Like that, the interface of a class can vary
between different execution scopes. In the case that a method was never af-
fected by a change captured by Changeboxes, the CompiledMethod remains
in its place in the method dictionary and is called directly, without the need
for additional dispatching.

44 CHAPTER 3. CHANGEBOXES

variant notNil?

MethodElement>>run: aSelector
with: arguments in: anObject

variant := CurrentScope value
lookupVariantOf: self

superElement := self
superElementFrom: anObject

superElement
nil?

^variant valueWithReceiver:
anObject arguments: arguments

^anObject
doesNotUnderstand: aSelector

superElement run: aSelector with:
arguments in: anObject

true false

true false

Figure 3.12: Object-oriented message send with a lookup in the current
execution scope.

To achieve a behavior identical to object-oriented message sending in a dy-
namically typed environment like Smalltalk, the algorithm modeled in Fig-
ure 3.12 is followed by a MethodElement to dispatch a message send.

The main difference to a conventional message send algorithm is the lookup
performed for the active variant in the current scope. When a valid Compiled-
Method is found, it is sent the message #valueWithReceiver:arguments:
to execute it [Duca99]. The value obtained from this call is returned to the
sender of the original message.

If the lookup returns nil, the method does not exist for the corresponding
class in the current execution scope (either because it was removed in a cap-
tured change or because it never existed at all). In this case, the algorithm
continues in the MethodElement for the same selector in the superclass of
the concerned object. This process works up the inheritance hierarchy re-
cursively. When the root class is reached without a non-nil method variant
being found, the #doesNotUnderstand: method is sent. For conventional
objects, this causes an exception to be raised.

3.4. SCOPING EXECUTION 45

3.4.4 Dispatching Class References

As opposed to method lookup, class reference resolution in Squeak is not
dynamic. All references to classes in the source code are resolved at compile
time and a pointer to the actual Class object is stored in the corresponding
CompiledMethod. When a class is rebuilt, the previous class object is re-
placed using the #become: primitive. This causes all variables in the entire
system that used to point to the previous class variant to point to the newly
created instance. This process is known as identity swapping.

While this approach is perfectly sufficient for the Squeak environment, it
does not fulfill the requirements of Changeboxes. As with methods, we need
to be able to dynamically dispatch the references to a class. Whenever a
message is sent to a certain class, it should be sent to the active variant in the
current execution scope. The instantiation of an object should depend on
the current shape of the corresponding class. To achieve this behavior, two
issues needed to be resolved. The first problem is to keep several variants of
the same class in the image, the second is the dynamic lookup for the active
variant in a given execution scope.

Keeping Several Variants of the Same Class

To retain different versions of a class in a system, the reflective kernel for
building classes had to be modified. Identity swapping was removed from the
class building process, so that the previous version is not affected. Addition-
ally, not all changes to a class variant require to rebuild it in the conventional
Squeak system (e.g., adding a class variable). Because Changeboxes store
variants that should not be modified later on (Changeboxes are immutable),
a new variant has to be created for every class change. The reflective system
facilities were adapted to this functionality.

In Squeak, classes are stored in the global variable Smalltalk, which is
an instance of SystemDictionary. Whenever a class is modified in the
scope of a work session, the resulting class variant is encapsulated in the
newly created Changebox and the corresponding ClassElement is put at
the place in the Smalltalk dictionary (identical to the MethodElement in
the MethodDictionary). The ClassElement takes the role of a dispatcher,
as explained in the following section.

Dynamic Class Reference Resolution

With identity swapping deactivated, the class pointers stored in Compiled-
Methods would always point to the class variant active at their compile time.

46 CHAPTER 3. CHANGEBOXES

instance
 ^MyClass new

pushLit: MyClass
send: new
returnTop

Compiler

pushLit: Smalltalk
pushConstant: #MyClass
send: at:
send: new
returnTop

Compiler*

Figure 3.13: The bytecode for a class reference generated by the conventional
Smalltalk compiler (top) and by our modified version (bottom).

Thus, a running method would possibly send its messages to old variants,
ignoring any more recently built ones. Therefore, class reference resolution
must happen at runtime.

In order to achieve the desired behavior, we chose to modify the method
compilation process. Instead of putting a direct pointer to the Class ob-
ject in the literals array of a CompiledMethod (which is the conventional
behavior of Squeak [Guzd01]), we substituted each occurrence of a class
in the source code with a lookup of the class name in the global variable
Smalltalk. The resulting bytecode of this compiler modification is illus-
trated in Figure 3.13. This modification was possible by using the packages
AST [AST] and NewCompiler [NewC, Denk06], which provide a Smalltalk
compiler with high-level syntax tree abstractions.

The SystemDictionary was adapted to work with ClassElements, which
lookup the active variant of a class for the current execution scope. The
design we applied for the MethodDictionary could be reused identically.
If the lookup for a class variant returns nil, a custom block is evaluated,
which defaults to raising an exception.

3.5 Merging Changeboxes

A Changebox can build on several ancestors, combining all the changes
they contain. This may lead to various conflicts about the visible variants
in the merged execution scope. Generally, a conflict occurs when two or
more Changeboxes belonging to different ancestries contain different change
specifications for the same element. Additionally, removal specifications
for certain elements can conflict with specifications for dependent elements.
For example, the removal of a class conflicts with the definition of one of its
member methods.

The present section discusses the detection and resolution of such merge

3.5. MERGING CHANGEBOXES 47

conflicts. As Changeboxes capture change processes in the form of change
specifications, the concepts of operation-based merging [Lipp92] are followed
widely. A pre-processing of the change specification set to be merged re-
moves any pseudo conflicts (Section 3.5.1). The remaining conflicts are then
resolved by an appropriate merge strategy (Section 3.5.2). Finally, to obtain
a runnable system, the merged specifications have to be sorted and applied
based on their dependencies (Section 3.5.3).

3.5.1 Pre-Processing Change Specifications

Operation-based merging builds on the same prerequisites as Changeboxes:
not the effects of a change, but their semantics are captured. Changeboxes
also model changes with objects instead with pure text files. The encapsu-
lated change specifications correspond to the transformations in operation-
based merging. Commutation of specifications can be determined quite eas-
ily when the affected elements are considered. Hence, many of the concepts
of operation-based merging could be reused for Changeboxes.

For each Changebox to be merged, all change specifications from its ancestry
are collected. This entire set is then searched for conflicts before the resolved
specifications can be applied. If change specifications for the same element
are found in different ancestries, they might conflict with each other.

An additional pre-processing, as suggested by [Lipp92], may be able to re-
move redundant change specifications. A definition of an element is redun-
dant, for example, when the same element gets deleted later on in the same
work session. This pre-processing speeds up the merge process and avoids
unnecessary conflicts.

If an ancestry contains several specifications for the same element, only
the last one is considered. In Figure 3.14, the specifications for A>>o can
be consulted to illustrate this policy. This method was first defined in the
lower branch and then removed again. The second specification overrides the
first one, which can therefore be discarded from the specification set. The
pre-processing removes unnecessary change specifications in this case.

Key:

remove
A>>o

define
A>>n

define
A>>ndefine

A>>m define
A>>o

define
A>>n

define
A>>m

?define
A>>i

conflict

selected

ignored

Figure 3.14: Merge of two Changeboxes with common ancestors.

48 CHAPTER 3. CHANGEBOXES

Different change specifications for the same element in different ancestries
do not necessarily have to present a conflict. Having the directed acyclic
graph structure of Changeboxes available helps one to detect some pseudo
conflicts that would emerge from comparing only two versions without look-
ing at their common ancestor. Consider the situation of A>>m. A lookup in
both branches results in two different definition specifications which conflict
with each other at first glance. Taking the graph structure into account, we
see that the first definition of A>>m is a common ancestor of both branches.
No changes to this method were performed in the lower branch. It was
only overridden in the upper one. Therefore, the common change specifi-
cation can be discarded and only the specification from the upper branch
remains. This resolution of a pseudo conflict corresponds to a simple three-
way merge.

Two different specifications exist for A>>n. Because they were defined sep-
arately in both branches, neither of them can be discarded. They remain
in the set of change specifications and present a conflict to be resolved in a
later step.

As three-way merging is a practice generally agreed upon [Mens02], change
specifications are always pre-processed with this technique. However, three-
way merging only eliminates pseudo conflicts. Other conflicts may still re-
main, and no common resolution approach would meet all the needs for
different domains.

3.5.2 Merge Strategies

Potential conflicts in the pre-processed set of change specifications have to
be resolved before the specifications can be applied to generate runnable ele-
ments. For certain applications, the resolution policies offered by operation-
based merging could be too sophisticated and purely autonomous decisions
would be required. Or a simple order based procedure would be sufficient in
another domain. To comply with these different needs, the Strategy pattern
[Gamm95] was used for the merge process. Every merge is controlled by
a customizable MergeStrategy that provides a tailored conflict resolution
policy and appropriate semantics. This keeps the Changebox model both
simple and extensible.

A MergeStrategy gets the set of pre-processed change specifications and
their originating Changeboxes as input and is expected to return a non-
conflicting subset of these specifications (definable by #setConflicting:
and #resolveOpenConflictsFor: as shown in Figure 3.15). When an el-
ement possesses several simple change specifications, i.e., for definition or
removal, they conflict amongst each other. Such conflicts should be resolved

3.5. MERGING CHANGEBOXES 49

...
OrderStrategy

ChangeSpecification

Changebox

setConflicting: aDictionary
resolveOpenConflictsFor: aChangebox
resolveConflictOf: anElement in: aCollection
...

MergeStrategy
«abstract»

Element

...
TimeStrategy

...
UserChoiceStrategy

resolveConflictOf: anElement
 in: aCollection
 ^aCollection first

resolveConflictOf: anElement
 in: aCollection
 ^self mostRecentIn: aCollection

Figure 3.15: The abstract MergeStrategy and its concrete subclasses.

by the #resolveConflictOf:in: method. Conflicts that occur amongst
specifications for different elements have to be identified and resolved by the
MergeStrategy independently. As a proof of concept, the following merge
strategies were implemented:

Sort Order Strategy. The Changeboxes to be merged are specified in
an ordered collection. In the case of a conflict, this strategy chooses the
change specification found in the first Changebox (or in any of its antecedent
Changeboxes) and discards the others. Conflicts occurring amongst different
elements are ignored.

Latest in Time Strategy. When several change specifications for one el-
ement are found, this strategy chooses the one from the Changebox that was
created last in time. This strategy illustrates the use of meta-information for
the conflict resolution process. Any inter-element conflicts are ignored.

User Choice Strategy. This strategy acts as an example for a more
sophisticated conflict resolution. It follows the principles of revision control
systems and provides the most appropriate resolution for software systems
developed by multiple programmers. The user is presented a list of all
conflicting change specifications and is supposed to choose one of them. This
task is supported by a graphical user interface as shown in Figure 3.16.

Conflicts occurring between different elements are presented to the user for
resolution as well. Only when all conflicts are resolved will the merge process
continue. The user has the possibility to cancel the merge operation at any
point.

50 CHAPTER 3. CHANGEBOXES

Figure 3.16: User interface of the user choice merge strategy.

3.5.3 Change Specification Dependencies

In order to have the merged Changebox be runnable, the resolved change
specifications have to be applied to generate the appropriate classes and
methods. Because the specifications merged from different branches can
define elements in a shape not existing in any of the branches, the previous
variants cannot simply be reused. For example, adding different instance
variables to the same class in each branch can result in a merged class with
all these instance variables, requiring a re-compilation of all its methods as
well.

After all conflicts are eliminated, the remaining change specifications are
sorted based on their dependencies, just as in operation-based merging. This
order is determined by the actual specifications and their changed elements.
The following order of application is proposed:

1. Definitions and removals of classes. Superclasses must be defined be-
fore subclasses. Class removals invalidate potential specifications of
adherent fields and methods.

2. Definitions and removals of fields.

3. Definitions and removals of methods.

4. Refactorings for classes.

5. Refactorings for fields.

6. Refactorings for methods.

This order is based on the following dependencies. When defining a field or
a method, the corresponding class has to be present in the system. Hence

3.6. TOOL SUPPORT 51

class specifications must be applied before any other specifications. The
class hierarchy is important, since class definitions requires the existence of
the according superclass. When a class is removed, none of the adherent
elements can be modified anymore. Although this should be treated as a
conflict and be resolved by the merge strategy, invalidating the correspond-
ing specifications guarantees a fail-safe behavior.

Steps 1 and 2 could be combined in order to increase performance. Instead
of building a simple class and iteratively adding field variables to it, a class
with all the specified fields can be created in one single step.

Because method compilation takes the offsets of instance variables into ac-
count, the associated class with all its fields should be created before. For
handling class references in methods, the according class must already exist
as well. Hence, methods specifications are applied third.

Refactorings work generically on present elements and are applied only after
the simple specifications. A renaming specification for a class, for example,
results in a class that belongs to a different ClassElement. Method spe-
cifications for the old class name would miss their associated class when
applied after the class rename. Therefore, we assert that all elements are
present before performing any refactorings. Following the considerations
above, refactoring specifications for classes are applied first, then the ones
for fields and finally those for methods.

The merge process terminates when all selected change specifications are
applied. A Changebox representing the merge holds all generated class and
method variants, providing a new scope for execution. The semantics of the
operation are covered by the chosen merge strategy.

3.6 Tool Support

Various tools have been implemented or adapted for the use with Change-
boxes. This section presents an overview of the most common ones used for
the daily work.

3.6.1 Work Session Browser

To manage the various work sessions, a new browser had to be built. The
Work Session Browser allows the user to inspect the existing work sessions
and their assigned Changeboxes, invoke designated functions on them and
execute code in the respective scopes.

52 CHAPTER 3. CHANGEBOXES

Figure 3.17: Screenshot of the Work Session Browser.

In the left-most pane displayed in Figure 3.17, a list of all currently active
work sessions can be found. Each work session is given a name and a color
that are used to draw work session aware windows, which makes it easier
to separate them. Over a context menu, new work sessions can be created,
existing ones can be branched, merged with others, loaded into global scope,
modified or removed. Additionally, the tools described in the following sec-
tions can be opened from here, whereby the selected work session is passed
as the tool’s execution scope.

The central pane contains a tree of Changeboxes, originating from the
Changebox currently defining the scope of the work session. The Change-
boxes are sorted chronologically, with the most recent one on top, to repre-
sent the history of the work session. After every Changebox that represents
a merge, the following Changeboxes are indented and every direct ances-
tor of the merging Changebox is marked to emphasize the start of another
ancestry. This representation corresponds to commonly-known, fully ex-
panded tree views. Something that is not yet modeled here is the branching
of work sessions. Whenever a work session is split up into branches that
are merged together again later on, the initial Changeboxes appear twice in
this simulated tree view, once for each branch. So this representation is an
attempt to fit the directed acyclic graph structure modeled by Changeboxes
into a list view. Far from being perfect, it allows the user to browse through
the Changebox history in a well-known environment. Similar actions as for
the work session can be invoked on the elements in this list. The text pane
below the three columns is used to display additional information about the
selected Changebox, such as the author and the time of the change.

The last pane in the upper row displays the change specifications held by the
currently selected Changebox. The modified element and a short description

3.6. TOOL SUPPORT 53

of the change type are used to identify the specifications. A complete rep-
resentation of the change specification is presented in the lower pane. This
representation usually contains the source code for definition specifications,
i.e., the method source or a class creation statement, and an appropriate
description for removal and renaming specifications.

Additionally, any code that is executed in the pane in the lower half of the
window runs in the scope of the selected work session or Changebox. This
provides a convenient way to go back in time and run selected statements
in different execution scopes and watch the changed behavior. Thus, the
Work Session Browser acts as a first place to get familiar with the scoped
execution of code and is the entry point to the other tools.

3.6.2 Developing: OmniBrowser

OmniBrowser [Putn] is a rewrite of the conventional system browsers in
Squeak. It provides about the same functionality and is designed for flexibil-
ity and extensibility. It proved to be convenient for integrating Changeboxes,
so it was preferred to act as the main code browser. We made OmniBrowser
aware of work sessions, allowing a programmer to browse and develop a
system in several trails.

From the Work Session Browser, OmniBrowser windows can be opened for
a given work session. The view provided by the modified OmniBrowser

Figure 3.18: OmniBrowser windows for different work sessions.

54 CHAPTER 3. CHANGEBOXES

reflects the system in the scope of this work session. Figure 3.18 displays
two windows with different work session. All actions invoked from a browser
are performed in the execution scope of the corresponding work session. New
browser windows sharing the same work session may be opened. All changes
are captured by the work session as explained in Section 3.3.2.

All additional browsers work as expected. Implementors, senders, hierar-
chies, inheritance, references and variables can be browsed in the scope of
a given work session. The browsers are all colored and named after the
work session they hold, so the user will not lose the overview over the dif-
ferent windows usually opened in Squeak. For the programmer, there are
no differences between developing with Changeboxes or with a conventional
system.

3.6.3 Source Control: Monticello

Monticello [Brya] is a versioning system for Squeak that provides support
for concurrent development and is able to work with different source reposi-
tories. We extended Monticello to be Changebox-aware. Snapshots of pack-
ages, the bundling unit of Monticello, can be loaded into work sessions and
vice versa. This allows a programmer to use external source repositories for
code developed with Changeboxes as well. For example, external packages
could be loaded in a sandbox work session, without affecting the remaining
image.

An additional feature we implemented is the subsequent loading of multiple
versions into one work session. Either a selected subset of all available
snapshots for a package is loaded, or all snapshots in their sequential order.
This feature may be used to study the evolution of a package post facto,
with all its changes encapsulated in Changeboxes (see Chapter 4).

3.6.4 Testing: Test Runner & Debugger

Unit testing is an important activity during software development [Beck98].
With SUnit, Smalltalk provides a basic testing framework that was adapted
for many other programming languages. The graphical user interface of
SUnit, the Test Runner, was adapted to be aware of execution scopes as
well. Tests cannot only be run in the work session a programmer is cur-
rently developing, but in the scope of any previously recorded Changebox.
Evolutionary analysis of test cases and test results becomes possible.

Another important tool in relation to the Test Runner is the Debugger. In
Squeak, a debugger pops up whenever an unhandled exception is encoun-
tered and provides operations to step through code and to modify it in

3.6. TOOL SUPPORT 55

place. As a debugger is running in a different process than the interrupted
one, it does not share the same execution scope. Stepping, which simulates
the interrupted process in a different thread, had to be modified to use the
appropriate scope.

Modifying code inside the Debugger could lead to ambiguities as soon as a
special execution scope is defined for the interrupted process. Should the
change be appended to the work session, or does it affect the global scope?
This issue has to be solved by the user, who is presented an option dialog
whenever a method that is interrupted in a non-global scope is saved.

56 CHAPTER 3. CHANGEBOXES

Chapter 4

Evaluation

To validate our model and implementation, we performed several experi-
ments in different application domains. First of all, we were interested in
the performance of our implementation and conducted various benchmarks.
The results for different real world applications are presented in Section 4.1.
The fact that Changeboxes have all versions of a system directly runnable
was exploited in Section 4.3 to analyze the evolution of a protocol library.
The runtimes of different snapshots could be easily compared in order to
identify the changes responsible for performance decreases. A completely
different application of Changeboxes was examined by using them to model
classboxes. How this module system supporting local rebinding could be
emulated is discussed in Section 4.2. These various uses of Changeboxes
outline only a part of their possibilities offered, but clearly show the value
of this unifying approach for modeling software change.

4.1 Benchmarks

The current implementation of Changeboxes builds on the kernel libraries in
the image and does not contain any changes to the Squeak virtual machine.
It did not undergo any significant optimization processes and leaves open
several possibilities for such efforts. To obtain a general idea about the
execution speed of systems using Changeboxes and to identify the areas
where performance could be improved, we conducted several benchmarking
experiments.

Various aspects and applications of Changeboxes were tested. In Section 4.1.1,
the use of Changeboxes for real projects is examined under the benchmark
of execution time. Section 4.1.2 reveals the pure values for basic operations
like messages send and class reference resolution. It can be shown that real

57

58 CHAPTER 4. EVALUATION

world projects execute with an overhead of 4% to 500% although the basic
operations suffer from a bigger speed decrease.

4.1.1 Real World Applications

To get an impression of the performance of a system using Changeboxes,
two real world applications have been loaded into Changeboxes. This was
achieved by subsequently loading all available versions from a source code
repository. Although this does not represent the real development trail of an
application, a large line of subsequent Changeboxes is created, encapsulating
the elements of all versions from the source control repository.

The focus of our experiments is on the performance of a system using
Changeboxes compared to the same system not using Changeboxes. As
an indicator we used the runtime of the unit tests of the applications, as
they should cover most of the application code.

All benchmarks were performed on a MacBook Pro 2 GHz Intel Core Duo
with 2 GB RAM. The Squeak virtual machine version was 3.8.12beta4U.

Hessian

The first application we benchmarked is Hessian, an implementation of a
binary web service protocol. Source control contained 13 versions for this
project, which resulted in a total of 570 Changeboxes. The last version of
Hessian contained 28 classes, 468 methods and 107 test cases. The running
time for these tests in a plain Squeak image is 3.85 seconds. The results of
this experiment are shown in Table 4.1.

of Changeboxes first execution subsequent execution
time ratio time ratio

570 4.33 s 1.12 3.96 s 1.03
14 820 44.51 s 11.55 4.05 s 1.05
29 070 67.73 s 17.57 4.09 s 1.06
43 320 85.35 s 22.15 4.03 s 1.05
57 570 112.13 s 29.09 3.99 s 1.03
71 820 145.34 s 37.71 3.99 s 1.03
86 070 173.12 s 44.92 4.02 s 1.04

100 320 204.71 s 53.12 4.03 s 1.05

Table 4.1: Hessian: runtime in seconds of 107 tests with 570 Changeboxes
and artificially added Changeboxes. Runtime without Changeboxes: 3.85 s.

4.1. BENCHMARKS 59

To highlight the impact of the number of Changeboxes on the element
lookup, we artificially added intermediate Changeboxes with a dummy change
between the real Changeboxes. Because the ancestry is larger with artifi-
cially added Changeboxes, but no runnable elements are found in the dummy
Changeboxes, the lookup has to go deeper and thus takes a longer time to
complete. The first row shows the values for the original 570 Changeboxes.
In the subsequent ones 25, 50, 75, 100, 125, 150 and 175 dummy Change-
boxes have been inserted in between each connected pair.

For the initial run, which is shown in the first column, the variants have
not yet been cached and thus a lookup over the complete ancestry has to
be performed for every element request (i.e., message sends and class ref-
erences). The run with the original 570 Changeboxes takes 4.33 seconds,
representing an overhead of 12% (i.e., a ratio of 1.12 compared to the time
in a conventional image). For the second and all subsequent executions, the
variant cache is filled and no class and method lookup is required anymore.
The overhead of the test run drops to 3% (i.e., a ratio of 1.03).

In the following rows, the time grows linearly with the number of Change-
boxes in the ancestry and becomes 53 times slower with over 100 000 Change-
boxes in place, compared to the running time of the tests without Change-
boxes. This overhead is very high, but it only applies for the initial access of
every element. For all subsequent runs a constant time could be achieved,
independent of the number of Changeboxes. The differences occurring in the
corresponding column conform with regular fluctuations. The subsequent
execution time represents an overhead of about only 4%.

Given the possibility to fill the cache in the background before execution,
the resulting overhead when using Changeboxes proves to be really small.
For this application, the use of Changeboxes is absolutely acceptable.

Pier

To obtain data for a medium project, we performed a similar experiment
with Pier, an object-oriented content management system [Reng06]. The
repository of Pier contained 115 versions, the last one consisting of 194
classes and 1883 methods. In total, 6283 Changeboxes were created from
these versions. The 1057 tests of Pier run in 1.01 seconds (average time over
100 runs) in a plain Squeak image.

The values in Table 4.2 show similar results as for the Hessian implementa-
tion - a linear growth of the runtime for the first execution and a constant
time once the caches are filled. However, the overhead for running the Pier
tests with a filled cache is much bigger with a factor of about 4.9 compared
to a system running without Changeboxes. The ratios for the first execution

60 CHAPTER 4. EVALUATION

of Changeboxes first execution subsequent execution
time ratio time ratio

6 283 24.28 s 23.96 4.87 s 4.83
56 547 305.40 s 301.37 5.00 s 4.94

106 811 489.63 s 483.18 5.02 s 4.95

Table 4.2: Pier: runtime in seconds of 1057 tests with 6283 Changeboxes
and artificially added Changeboxes. Runtime without Changeboxes: 1.01 s.

with roughly 50 000 and 100 000 Changeboxes are about 10 times higher
compared to Hessian.

Comparing Hessian and Pier

These runtime overhead differences between various projects tell more about
the applications themselves than about Changeboxes. Only methods and
classes belonging to the respective application are encapsulated in Change-
boxes and have to be dispatched. The objects belonging to the systems
libraries are unaffected and still run at the same speed.

Hessian spends a lot of its execution time with encoding and decoding binary
data. Most of these conversions build directly on the functions provided by
the appropriate data types from the system framework (e.g., String and
Array). Only a small layer of application code encapsulated in Changeboxes
is traversed and needs to be dispatched, the main work is then done by low-
level system functions. Therefore, the overhead for the thin application layer
encapsulated with Changeboxes is marginal.

Pier, on the other hand, models many different entities and provides the
behavior to work with them. Most of the message sends are within the
objects of the application and thus involve a variant lookup. As a result,
the overhead is much higher.

The runtime overhead of Changeboxes depends strongly on the actual appli-
cation. With a project like Pier which builds on many local message sends,
an implementation using Changeboxes is about five times slower than in a
conventional system. Since the current implementation is at the state of a
proof of concept, the obtained values are more than adequate.

4.1.2 Micro Benchmarks

Besides examining the cost to run real projects, execution times for the most
basic operations were measured. In Smalltalk, these operations are message

4.1. BENCHMARKS 61

Operation Global Dynamic Process Instance
scope Variables Variable
Time Time Ratio Time Ratio

106 message sends 100 ms 14 023 ms 140.2 6 510 ms 65.1
106 class lookups 2 030 ms 13 724 ms 6.8 6 053 ms 3.0

Table 4.3: Benchmarks for basic operations, average from three runs.

sending and class reference resolution. In a conventional image, message
sends are directly performed by the virtual machine, and class reference
resolution is accomplished at compile time, resulting in no runtime costs
(apart from pushing the class on the stack). As discussed in Section 3.4,
both of these operations are dispatched at runtime in our implementation.
The basic operations were benchmarked using different implementations of
the scoping mechanism.

The micro benchmarks were conducted with few Changeboxes, containing
only the definitions of the reference class and method used for the experi-
ments. The variant cache was filled before starting the measurements. Like
this, the pure overhead of the basic operations could be measured indepen-
dently from the scope lookup. As we could show in the previous section,
the execution time is independent of the Changebox lookup ancestry depth
when using a cache.

Table 4.3 shows the results of the benchmarks for the basic operations. We
compared times for message sending and class lookup (i) in the global scope
(i.e., without Changeboxes), (ii) using dynamic variables for retrieving the
current scope object and (iii) with the scope object stored in an instance
variable of the active Process object.

The large difference between message sends and class lookups in the global
scope originates in the compiler modification introduced for Changeboxes.
While message sends in the global scope operate at the same speed as in
a conventional image, class reference resolution always happens at runtime
instead of at compile-time. In a plain system, class access works with no cost
because a direct reference is present in the method’s literal array. The com-
piler modification affects all class references in a system, independent of the
presence of a special scope. The Squeak virtual machine is neither designed
nor optimized for runtime class resolution, hence the slow time.

The big overhead of message sends when using Changeboxes is not surprising
as it reflects the difference between executing compiled machine operations
and interpreting them in a high-level language.

This experiment also revealed a factor two difference between dynamic vari-
ables and the process instance variable for basic operations. This issue was

62 CHAPTER 4. EVALUATION

Scope Object Access
(106 times each)

Dynamic Variables Process Instance
Variable

Stack depth 0 7 455 ms 258 ms
Stack depth 100 7 967 ms 258 ms
Stack depth 1000 17 833 ms 255 ms

Table 4.4: Benchmarks for scope access, average from three runs.

investigated further. Table 4.4 shows the access times for the scope object
based on different method call stack depths. This is important because dy-
namic variables have to search that stack upwards for the definition of their
value. The method execution context stack was built up using a recursive
function.

The difference between the two approaches is even more significant when
measured in isolation. Even with a flat execution stack, accessing the
Process instance variable is 29 times faster than accessing a dynamic vari-
able. With growing method context stacks, dynamic variables get increas-
ingly slower, while the access time for the Process instance variable remains
stable. The values obtained from this experiment lead to the decision to use
a Process instance variable to define the execution scope.

106 message sends take 6510 ms to run using the process instance variable
(s. Table 4.3). To identify the areas where future performance increases
would be possible, we split up our modified method lookup (as described in
Section 3.4.3) into the following measurable steps:

1. Dispatch the message send on the object in the method dictionary.

2. Determine the scope object from the Process instance variable.

3. Lookup the active variant of the method in the current scope.

4. Call the found method variant.

The first step only takes a fraction of the total time with 146 ms (2.2%). The
scope object lookup takes 258 ms (4.0%) as shown in Table 4.4. The third
step for the variant lookup in the cache uses the most time with 6006 ms
(92.3%). Calling the found method variant then takes 100 ms (1.5%).

The first step is fast because it uses a reflective capability of the virtual
machine. The second step only accesses instance variables and is also not
time consuming. The last step corresponds to a single message send and
is also negligible. The variant lookup has the main impact. It consists of
many message sends including a dictionary lookup in a cache implemented in
Smalltalk. Possible ways to further improve this performance are discussed
in Section 5.4.1.

4.2. MODELING CLASSBOXES 63

4.2 Modeling Classboxes

Changeboxes can model spatial and temporal dimensions of software change.
With multiple simultaneously active Changeboxes denoting execution scopes
in a running system, different views of the same software artifacts are pos-
sible. An artifact may exhibit a different behavior or shape depending on
the current execution scope. In this section, we illustrate this possibility by
implementing Classboxes with Changeboxes.

Bergel proposed Classboxes [Berg05a], a module system for object-oriented
languages supporting local rebinding. Local rebinding means that changes
made by a classbox are only visible within that classbox or classboxes im-
porting it. We show how Classboxes may be expressed as a semantic addition
on top of Changeboxes. As a proof of concept, we implemented a Classbox
example first introduced in [Berg03a].

4.2.1 The Classbox Model

A classbox is defined as follows:

“A classbox is a module containing scoped definitions and import
statements. Classboxes define classes, methods and variables.
Imported declarations may be extended, possibly redefining im-
ported methods.” ([Berg05a], p. 39)

All definitions made in a classbox and its imported classes are globally ac-
cessible by all methods executed in the scope of that classbox. Imported
classes may be extended within a classbox. The extensions are then only
visible within that classbox, but not in the classbox originally defining the
class. As a consequence, different versions of the same class may be active
within a single running system. Any visible class — imported or defined —
in the scope of a classbox may be imported from another classbox.

To illustrate the mechanism of classboxes, we use the implementation of
a HTML link checker that is built with several classboxes, as illustrated
in Figure 4.1. The classbox HTML CB defines a module that parses a
HTML document into an abstract syntax tree. The elements of this tree
are extended in the classbox HTMLVisitor CB (that imports HTML CB)
to accept visitors. An abstract HTMLVisitor class is created in this class-
box as well. When code is running inside the scope of classbox HTML
CB, the methods #acceptVisitor: of HTMLEntity and its subclasses are
not visible. Classbox LinkChecker CB imports HTMLVisitor CB and de-
fines a subclass of HTMLVisitor, LinkChecker, which overrides the method
#acceptAnchor: to check for dead links. For this purpose, we make use
of the method #httpGetDocument: from class HTTPSocket from the global

64 CHAPTER 4. EVALUATION

Global HTML CB

HTMLVisitor CBLinkChecker CB

HTTPSocket

httpGetDocument: url

httpGetDocument: url args: args

 accept: mimeType request: aString

...

HTMLParser
HTMLEntity

HTMLBody HTMLHead

...

...

HTMLVisitor

visitBody:

visitHead:

visitAnchor:

...

HTMLEntity

acceptVisitor:

HTMLBody

acceptVisitor:

HTMLHead

acceptVisitor:

...

...

C

m
CB

Import of a classbox Extension of C with method m Classbox definition

HTMLVisitor

LinkChecker

visitAnchor: anchor

check: url

...

HTTPSocket

httpGetDocument:args:

 accept:request:

url := anchor href asUrl.

(HTTPSocket httpGetDocument: url)

 ifNil: [self addFailed: url]

...

Figure 4.1: A link checker modularized with classboxes.

classbox. This method calls #httpGetDocument:args:accept:request:,
which returns the HTML document or the HTTP response from the server
in case of an error as a stream. For our link checker example, the effort to
parse the stream in order to detect an error message from a server seemed
inappropriate. Instead, that method was modified to return the HTML
document or nil if any error occurred, which was easier because the HTTP
error codes are directly available there. This modification again is only vis-
ible within the classbox LinkChecker CB, any other clients of HTTPSocket
remain unaffected.

Classboxes offer a model to control the scope of class extensions. The prop-
erties provided by this model are summarized as follows:

Class Extensions with Redefinition. Classes imported from other class-
boxes may be extended by redefining and adding new methods within the
local classbox. This is illustrated by classbox HTMLVisitor CB that adds
the method #acceptVisitor: to HTMLEntity and all of its subclasses. The
implementation of classboxes in Smalltalk does not provide removal of meth-
ods or other changes on classes and fields.

Locality of Changes. The visibility of redefinitions is confined to the
classbox that made the changes. Classes in other classboxes are not affected.
A classbox that imports HTML CB, but not HTMLVisitor CB would obtain
a HTMLEntity tree from HTMLParser that is not visitable.

4.2. MODELING CLASSBOXES 65

Local Rebinding. A system is executed in the scope of a certain classbox.
Message sends always run the methods defined in this classbox, even if they
originate from a different classbox. For example, the method #httpGet-
Document: is called from within the LinkChecker CB classbox. This method
is not part of LinkChecker CB, but it calls the method #httpGetDocument:-
args:accept:request:, which was redefined there. When running in the
scope of LinkChecker CB, the redefined method is executed. When another
classbox defines the execution scope, the original method is run. Hence,
classboxes are reentrant. Local rebinding asserts that the correct version of
a method is executed. From within a classbox, the world looks flat, i.e.,
there is only one visible version for every method.

4.2.2 Using Changeboxes to Express Classboxes

A Changebox may be directly mapped to a classbox. Although a Change-
box only encapsulates a single change, including its ancestors, a complete
executable scope of software elements is defined. This scope is directly com-
parable to the scope of a classbox. Whenever a change is performed, a new
snapshot of the classbox represented by a new Changebox is obtained.

The properties described in the previous section are all met by Change-
boxes. Classes defined in a system snapshot represented by one Changebox
may be extended by (re-)defining selected methods in a subsequent Change-
box. This illustrates class extension with redefinition and even provides the
additional possibilities to modify fields and remove methods. The locality
of changes is a crucial concept for Changeboxes. Changes are encapsulated
in Changeboxes and do not affect other parts of the system (i.e., different
Changeboxes). When executing code in the scope of a Changebox, the ver-
sions defined in this scope are used, independent of the versions visible at
the point the currently executing method was defined. Changeboxes thus
provide local rebinding.

With the concept elaborated until here, the scope of a classbox is represented
by Changeboxes, but imports are still missing in this model. We found that
a classbox importing another one corresponds to a merge of two (or more)
Changeboxes, using an appropriate merge strategy. The semantics behind
a classbox import say that all elements defined in the local classbox should
override the same elements from an imported classbox. This is needed to
fulfill the property of class extension with redefinition. A merge strategy
(named ImportStrategy) reflecting these semantics was implemented. This
proved to be straightforward. For each element conflict the specification
originating from the local Changebox is chosen and the one from an imported
Changebox is discarded. If several classboxes should be imported, an order
has to be specified to define their respective priorities.

66 CHAPTER 4. EVALUATION

CB B

CB A

define
A>>m

define
A

define
A>>n

define
A>>m

define
A>>o

import
CB A

import
CB A

WorkSessionChangebox

imports

ClassboxSession
MergeStrategy

ImportStrategy

Figure 4.2: Two classboxes modeled with Changeboxes.

The left part of Figure 4.2 illustrates how we modeled classboxes using
Changeboxes. CB A initially defines a class A with a single method #m.
This first version is imported into CB B, where a Changebox is created
to represent this import (i.e., a merge using the ImportStrategy). In the
following, CB B defines an additional method #n and overwrites #m. A call
to A new m from CB B will involve a lookup for #m that resolves to the local
definition. Hence, A is extended by #m and #n in CB B. Both methods are
not visible from the latest Changebox representing CB A (i.e., the one that
initially defined #m).

To reflect changes from an imported classbox, they need to be merged into
the importing classbox continuously. This can easily be achieved by a tool
that keeps track of changes in classboxes and performs the merge automat-
ically. The most recent version of a classbox might be tracked by a work
session, hence a subclass of WorkSession named ClassboxSession was cre-
ated. ClassboxSession is not required to model classboxes, it only acts
as a helper tool for automating certain tasks. The design of this exten-
sion is shown on the right hand side of Figure 4.2. Changes performed in
a ClassboxSession are considered to be performed in the managed class-
box. The Changebox representing the last version of the classbox is always
retained and will be used as an ancestor for subsequent changes. The im-
ported classboxes (managed by their own ClassboxSessions) are cached
in the local ClassboxSession, as well as the last merged (i.e., imported)
Changebox from each imported classbox. Whenever code should be exe-
cuted in the scope of a ClassboxSession, the last merged Changeboxes are
compared to the current Changeboxes of previously imported Classbox-
Sessions and are merged automatically with the local one if they do not
match.

When the Changebox last displayed in CB A (defining A>>o) is created,
the ClassboxSession managing CB B will merge it with its most recent
Changebox (i.e., the one overwriting #m). With the special merge strategy,
only elements not present in CB B will be merged from CB A. This affects

4.2. MODELING CLASSBOXES 67

method #m, which is defined in both classboxes now. The merge strategy gets
notified about the two conflicting definitions and chooses the one originating
in CB B, because local changes take precedence over imports. Method #o
is not yet existing in CB B and it is merged in. Hence the new execution
scope of CB B, as defined by the rightmost Changebox, will know the newly
added method #o by CB A, without altering any previously defined methods
in CB B.

The Link Checker Modularized with Changeboxes

Using this lightweight implementation, we were able to rebuild the mod-
ularized link checker application with Changeboxes. The HTML parser
package was loaded into a first ClassboxSession to build the HTML CB
classbox, using the Changebox-aware Monticello. The second Classbox-
Session was initially merged with the last Changebox of the loaded HTML
CB session and then extended with the visitor class and methods. Finally,
in a third ClassboxSession representing the LinkChecker CB, after being
merged with HTMLVisitor CB (which already contained the Changeboxes
of HTML CB), the LinkChecker was implemented and the required modi-
fications of HTTPSocket were performed.

The behavior of this Changebox-based link checker application is identi-
cal to the one using the original classbox implementation. The #accept-
Visitor: methods added in HTMLVisitor CB are only visible there and
from LinkChecker CB, but not from HTML CB. This illustrates the locality
of changes. In the LinkChecker CB, HTTPSocket was extended through re-
definition of the method #httpGetDocument:args:accept:request:. No
other methods nor the class itself had to be touched for this modification.
When running in the scope of LinkChecker CB, the redefined version of this
method is executed. From the global scope, the original version will be
called, according to the local rebinding property.

The ImportStrategy asserts that the correct versions are visible in a class-
box. When an element was modified in the local ClassboxSession, the ac-
cording specification will be chosen over others from imported Changeboxes.
If an element was not locally defined, the one from an imported Changebox
will be merged in. Because imported classboxes have already been merged
with their imports in the same way at the point of a merge, the transitive
relation of the import operation is abode. Only when no definition specifi-
cation for a called method is found in a ClassboxSession the inheritance
relationship of the called object is used. The classbox property that import
takes precedence over inheritance is met with this approach.

68 CHAPTER 4. EVALUATION

4.2.3 Discussion

In the previous section, we presented an approach to model classboxes using
Changeboxes. This solely required the implementation of a special merge
strategy which represents the semantics of a classbox import. Because the
ImportStrategy is able to separate the elements from the local and the
imported Changebox (i.e., classbox), the entire import information is con-
tained in the merging Changebox. This information remains available over
the ancestry of every subsequent Changebox representing a new snapshot of
the same classbox.

This approach meets all major properties of classboxes, including locality
of changes, local rebinding and class extensions with redefinition. It is not
only possible to extend imported classes with new methods and redefine
existing methods, but also to locally remove methods from imported classes,
to add and remove instance variables and to perform class modifications only
visible in the local classbox. This introduces several new possibilities not
available in the conventional implementation of classboxes. Furthermore,
Changeboxes not only represent the module composed by a classbox, but
also its evolutionary history.

With the extension of the WorkSession to a ClassboxSession, the merge
process reflecting an import of a classbox could be automated. Further-
more, all tools that are aware of work sessions could be directly used with
ClassboxSession. The present implementation merges lazily, i.e., only
when needed for executing the system. Merging constantly on every change
would be possible by using an Observer pattern [Gamm95]. The Classbox-
Session is not required for running or analyzing a classbox represented by a
Changebox. All information is already captured by Changeboxes, including
the imports. The ClassboxSession only serves as a tool to keep track of
changes and to update the managed classbox appropriately.

Our classbox model involves minor variations from the conventional classbox
model. These variations mostly originate from the design decisions inherent
to Changeboxes and are discussed in the following.

Implicit Import

By using the merge functionality of Changeboxes to represent classbox im-
ports, all elements from the scope of a classbox are implicitly imported. This
allows one to use all available classes directly. The original classbox model
requires that for every class referenced the import is explicitly stated.

Explicit imports help to preserve inter-class associations and inheritance
hierarchies of imported classes. Consider an example in which B inherits

4.2. MODELING CLASSBOXES 69

from A and both classes are defined in classbox K. If classbox L imports
only B and defines a new A’, B still inherits from A. Because of the implicit
import, A would be imported as well with Changeboxes. Redefining it would
cause B to inherit from the new version A’. By modeling classboxes with
Changeboxes, associated classes cannot be re-defined separately.

The explicit import property also helps to avoid diamond conflicts. They
happen when two classboxes extend a class A with different methods #m
and define a uniquely named subclass (B and C) of A each. With explicit
imports, only B and C may be imported in another classbox, preserving the
two different extensions of #m. A detailed description of this problem is
found in [Berg05a]. With implicit imports, a classbox importing the two
others imports A as well, whereby the two versions of #m conflict.

Changeboxes require the import of any element that should be accessible.
An import of only B and C without their superclass A would not be pos-
sible with Changeboxes. When A is missing, the definition specifications
for B and C could not be applied to generate the runnable entities for the
merged execution scope. Therefore, every element is imported implicitly
with Changeboxes. A is imported together with #m from both classboxes,
which results in a conflict. With the ImportStrategy, this conflict is re-
solved regarding the order of the imported classboxes.

Avoiding diamond conflicts in this way contrasts with the flat world pic-
ture brought by local rebinding. In the conventional classbox model, A>>m
looks differently depending on which subclass of A calls this method. This
increases complexity and might often be unclear to developers. In a real flat
world, methods would always look the same.

Lookup of Classes

It is an inherent part of Changeboxes that not only methods, but also classes
depend on the current execution scope. Our model of classboxes inher-
its this property and therefore provides a local rebinding of classes. The
lookup of classes is considered only as an alternative approach for class-
boxes ([Berg05a], p. 54).

This allows one to extend classes not only with methods, but also with fields,
such as, for example, instance or class variables. Because class reference
resolution is based on the name of a class, it is not recommended to define
different classes (e.g., for different domains) in separate classboxes with the
same name when using Changeboxes. Equal class names should only be
used in classboxes that do not contain any intersecting import chains.

70 CHAPTER 4. EVALUATION

Removing Imports

As a consequence of merging, which is a purely additive function, class-
boxes once imported cannot simply be removed again, since the ancestry of
a Changebox is immutable. For that purpose, tools would have to provide
support. For example, a tool could compute the changes required to neu-
tralize the imported specifications, like removing elements that have been
defined during a merge process. Another possibility would be to collect all
change specifications in an ancestry, following only the local classbox ances-
tors, and to re-apply them in a new ClassboxSession, without the merges
being performed.

4.3 Evolution Analysis with Changeboxes

Changeboxes model the entire evolution of a software system at a fine-
grained level while every single snapshot is directly runnable. To illustrate
the advantages emerging from this model and especially from the directly
runnable snapshots, we conducted an evolution analysis of the Hessian pro-
tocol. This case study focuses on the temporal dimension of change repre-
sented by Changeboxes.

Software evolution analysis often builds on the history of the structural
software elements of a system [Girb04b, Girb05a]. Metrics like the number
of classes or lines of code for methods are consulted for this purpose. While
these values and their evolution are easily determinable with Changeboxes,
having all versions of a system concurrently runnable additionally opens up
a large field of new analysis methods.

For each of the 13 versions found in the source repository of Hessian [Hess],
the unit tests were executed and the number of tests, failures and errors
recorded. The results with the corresponding runtimes are displayed in
Figure 4.3(a).

We observed an almost constant runtime for the tests during the evolution
of the system. Only for version 12, the runtime exploded and grew even
higher for version 13. Additionally, an exceptional test failed for version
12 and was fixed only in the following version. The question we followed
further was: What caused this increase of the runtime in version 12 and
does it have a relation to the failed test case?

The first investigation focused on the evolution of the metrics for the struc-
tural software artifacts. All observed values, which are the number of classes,
number of methods, number of test cases and number of changes, grew
continuously over the several versions of the library. None of the metrics

4.3. EVOLUTION ANALYSIS WITH CHANGEBOXES 71

1 2 3 4 5 6 7 8 9 10111213
0

2

4

6

8

10

Version

#

Runtime (s)

Failures

Tests (*10)

(a) Test run results, no errors occured.

1 2 3 4 5 6 7 8 9 10111213
0

20

40

60

80

100

Version

#

Classes

Methods (*10)

Tests

Changes (*10)

(b) Structural elements.

Figure 4.3: Evolution of Hessian over 13 Versions. (*10) denotes values that
have been scaled down by a factor of 10.

revealed any unconventional peaks. The schematic evolution of the corre-
sponding values can be seen in Figure 4.3(b).

We continued with a detailed analysis of the runtime behavior for all the
changes performed after the eleventh version. For that purpose, we ran
the system for every captured Changebox of the twelfth and thirteenth ver-
sion. This corresponds to regression testing the system after every single
change, only performed retrospectively. The detailed results are shown in
Figure 4.4.

The script to generate the values in Figure 4.4 is very simple and straight-
forward. It only took the summed time of all test runs to execute. No
pre-computations were required. The following code shows how the runtime
was determined. versions11to13 is a list of all Changeboxes from version
11 to 13, which was derived from the directed graph of Changeboxes.

versions11to13 collect: [:cbx |

CurrentScope use: cbx during: [

[(PackageInfo named: ’Hessian’) allTestCases

run: TestResult new] timeToRun]]

Using this method, we were able to measure the direct impact of every single
change. The runtime remained mostly constant during the development
of version 12. Towards the end of the iteration, two changes doubled the
runtime of the 105 tests present. The method in question is the method
#convert: of the HSDecodingContext that converts a UTF-8 string into a
wide string, which is a fairly expensive function. This method is called by the
modified version of #decodeShortString and #decodeLongString, which
caused the major runtime increase. The failed test decoded a previously
encoded string and asserted that the result is equal to the source. Obviously,

72 CHAPTER 4. EVALUATION

0

2

4

6

8

10

#

11 12 13

Runtime (s)
Tests (*10)

Failures

Errors

H
S
J
a
v
a
F
il
e
N

o
tF

o
u
n
d
E
x
c
e
p
ti

o
n

H
S
E
n
c
o
d
in

g
C

o
n
te

x
t>

>
e
n
c
o
d
e
D

a
te

:
H

S
F
a
u
lt

c
la

ss
>

>
c
o
d
e
:m

e
ss

a
g
e
:d

e
ta

il
:

H
S
F
a
u
lt

c
la

ss
>

>
c
o
d
e
K

e
y

H
S
F
a
u
lt

c
la

ss
>

>
m

e
ss

a
g
e
K

e
y

H
S
D

e
c
o
d
in

g
C

o
n
te

x
t>

>
d
e
c
o
d
e
F
a
u
lt

H
S
F
a
u
lt

c
la

ss
>

>
d
e
ta

il
K

e
y

H
S
E
n
c
o
d
in

g
C

o
n
te

x
t>

>
e
n
c
o
d
e
F
a
u
lt

:
H

S
D

e
c
o
d
in

g
C

o
n
te

x
t>

>
in

it
ia

li
z
e
A

c
ti

o
n
D

ic
ti

o
n
a
ry

H
S
F
a
u
lt

>
>

h
e
ss

ia
n
E
n
c
o
d
e
O

n
:

O
b
je

c
t>

>
h
e
ss

ia
n
C

la
ss

N
a
m

e
H

S
T
y
p
e
M

a
p
p
e
r>

>
h
e
ss

ia
n
M

a
p
T
y
p
e
O

f:
H

S
T
y
p
e
M

a
p
p
e
r>

>
h
e
ss

ia
n
L
is

tT
y
p
e
O

f:
H

S
J
a
v
a
F
il
e
N

o
tF

o
u
n
d
E
x
c
e
p
ti

o
n

>
>

h
e
ss

ia
n
C

la
ss

N
a
m

e
H

S
C

o
n
te

x
tT

e
st

>
>

fa
u
lt

H
S
E
n
c
o
d
in

g
C

o
n
te

x
tT

e
st

>
>

te
st

F
a
u
lt

H
S
C

o
n
te

x
tT

e
st

>
>

fa
u
lt

S
tr

in
g

H
S
D

e
c
o
d
in

g
C

o
n
t
e
x
t
>

>
c
o
n
v
e
r
t
:

H
S
D

e
c
o
d
in

g
C

o
n
t
e
x
t
>

>
d
e
c
o
d
e
S
h
o
r
t
S
t
r
in

g
H

S
D

e
c
o
d
in

g
C

o
n
t
e
x
t
>

>
d
e
c
o
d
e
L
o
n
g
S
t
r
in

g
H

S
C

o
n
te

x
tT

e
st

>
>

u
n
ic

o
d
e
S
tr

in
g

H
S
D

e
c
o
d
in

g
C

o
n
te

x
tT

e
st

>
>

te
st

S
tr

in
g
9

H
S
D

e
c
o
d
in

g
C

o
n
te

x
tT

e
st

>
>

te
st

F
a
u
lt

H
S
E
n
c
o
d
in

g
C

o
n
te

x
t>

>
c
o
n
v
e
rt

:
H

S
D

e
c
o
d
in

g
C

o
n
t
e
x
t
>

>
c
o
n
v
e
r
t
:

S
t
r
in

g
>

>
h
e
s
s
ia

n
E
n
c
o
d
e
O

n
:

H
S
E
n
c
o
d
in

g
C

o
n
te

x
tT

e
st

>
>

te
st

S
tr

in
g
9

H
S
C

o
n
te

x
tT

e
st

>
>

u
n
ic

o
d
e
S
tr

in
g

H
e
ss

ia
n
S
e
rv

e
r>

>
d
is

p
a
tc

h
e
rF

o
rU

rl
:

H
S
C

o
n
te

x
t>

>
o
n
:

H
S
C

o
n
te

x
t

c
la

ss
>

>
o
n
:

H
S
D

e
c
o
d
in

g
C

o
n
t
e
x
t
>

>
in

it
ia

li
z
e

H
S
D

e
c
o
d
in

g
C

o
n
te

x
t>

>
o
n
:

H
S
E
n
c
o
d
in

g
C

o
n
te

x
t>

>
o
n
:

H
e
ss

ia
n
S
e
rv

e
r>

>
d
e
c
o
d
e
r

H
e
ss

ia
n
S
e
rv

e
r>

>
d
e
c
o
d
e
r:

H
e
ss

ia
n
S
e
rv

e
r>

>
e
n
c
o
d
e
r:

H
e
ss

ia
n
S
e
rv

e
r>

>
e
n
c
o
d
e
r

H
e
ss

ia
n
S
e
rv

e
r>

>
e
n
c
o
d
e
rC

ri
ti

c
a
l:

H
e
ss

ia
n
S
e
rv

e
r>

>
d
e
c
o
d
e
rC

ri
ti

c
a
l:

H
e
ss

ia
n
S
e
rv

e
r>

>
e
n
c
o
d
e
R

e
p
ly

:
H

e
ss

ia
n
S
e
rv

e
r>

>
d
e
c
o
d
e
C

a
ll
:i
fE

rr
o
r:

H
e
ss

ia
n
S
e
rv

e
r>

>
fa

u
lt

F
o
rD

e
c
o
d
e
E
x
c
e
p
ti

o
n
:

H
e
ss

ia
n
S
e
rv

e
r>

>
fa

u
lt

F
o
rS

e
rv

ic
e
E
x
c
e
p
ti

o
n
:

H
e
ss

ia
n
S
e
rv

e
r>

>
d
is

p
a
tc

h
:t

o
:

Figure 4.4: Hessian test runs for every Changebox of versions 12 and 13.

the new feature for decoding UTF-8 strings did not yet have a counterpart
that correctly encoded a UTF-8 string.

The elimination of this exceptional failure was addressed at the beginning
of the development for version 13. The #convert: methods of both HSDe-
codingContext and HSEncodingContext were refactored. The modification
of the String extension #hessianEncodeOn: to encode a string to UTF-8
(using the #convert: methods) could resolve the failure, but, being as
expensive as decoding, doubled the runtime of the tests a second time.

In the following, another test was created to reflect the new encoding. It
first failed, but was immediately fixed by an update of a helper method
of that test. During the remaining changes, the runtime stayed constantly
at the higher value, being about four times slower than before the UTF-8
conversion was introduced.

4.3. EVOLUTION ANALYSIS WITH CHANGEBOXES 73

Figure 4.4 illustrates another property of Changeboxes. The execution scope
of a Changebox does not necessarily have to represent a consistent system.
A change might introduce many errors to a system, as did the definition
of the HSDecodingContext>>initialize method. It is not unusual that
changes break a system, and there is no reason to not encapsulate them
since they hold own semantics as well. Changeboxes allow views of possibly
inconsistent systems.

With this evolution analysis, we could show that adding UTF-8 conversion
to the Hessian protocol resulted in a dramatic decrease of the performance
for the test cases. An additional failure emerged in one version because the
decoding function was completed there, but the encoding function only in
the subsequent version.

Determining the test run values for every single change was very easy by us-
ing Changeboxes. Because the complete history of a system is available, no
tedious version switching was required to run the tests. Having every single
change runnable allowed us to determine their impact on the execution time
and on the test results and thus to directly relate changes to exceptional
values of these metrics. This detailed identification of the corresponding
methods would not have been possible otherwise without a profound knowl-
edge of the system. We believe that Changeboxes greatly ease analysis of
the evolution of software systems and also provide many new possibilities
for this area.

74 CHAPTER 4. EVALUATION

Chapter 5

Conclusions

This chapter concludes the thesis by discussing the most important con-
cepts of Changeboxes (Section 5.1) and the issues not covered yet by our
implementation (Section 5.2). We state our main contributions to the field
of software change (Section 5.3) and discuss the work future investigations
on Changeboxes should tackle (Section 5.4).

5.1 Discussion

With Changeboxes, it is possible to explore different runnable versions of a
software system simultaneously. The complete history of changes remains
available, because once created, a Changebox is immutable. This guaran-
tees unlimited navigation in time: each version that ever existed can be
returned to. There is no need for undo or redo functions anymore since
it is possible to go to any captured snapshot of the system, without losing
others. Every Changebox can be extended by creating new Changeboxes.
Having the entire history of changes provides new kinds of data that helps
one to understand how systems evolve. Various reengineering efforts, for ex-
ample, invest a lot of work into recovering the meaning of changes (e.g., by
identifying refactorings [Deme00, Gorg05]). With Changeboxes, the seman-
tics are directly available and we can concentrate on other questions, like on
understanding of why changes happened. Furthermore, any additional infor-
mation could be encapsulated in Changeboxes, like clicks, menu activations
or keys pressed to perform a change. Such information would reveal data
about which tools are used by programmers and how they are used.

Changeboxes encapsulate the process of change using change specifications
that work on software elements. Both elements and change specifications
are open for extensions, so that any kind of change on software artifacts may

75

76 CHAPTER 5. CONCLUSIONS

be modeled. Changeboxes may be used to package bug fixes, refactorings or
new program features.

Elements are either primitive — representing a runnable instance, e.g., a
compiled method — or non-primitive — representing an artifact held by a
runnable instance, e.g., an instance variable specified by a class. The advan-
tage of this separation lies in the additional semantic information that can
be captured. Consider the example where an instance variable is added to
a class, which causes several other primitive elements to be modified in the
class rebuilding process (i.e., all methods of this class and its subclasses are
recompiled to reflect the new instance variable offset). Having a dedicated
element for the instance variable allows one to create a change specification
that solely represents the definition of an instance variable. The additional
low-level modifications (i.e., the recompilation of all methods) depend on
the implementation of a language and do not hold additional semantic in-
formation (i.e., the method definitions are not changed). Therefore, the
semantics of the change are completely covered by the definition specifica-
tion of the instance variable, while the resulting runnable entities are all
captured by the corresponding Changebox. Would this specific change, on
the other hand, be specified for a class element, any other fields besides the
defined instance variable would form a part of the corresponding specifica-
tion as well. The specification would therefore explicitly define unaffected
artifacts and hold misleading change information. In general, each software
artifact of interest should be modeled with a separate element in order to
collect semantic information about its changes. In our implementation, we
confined ourselves to modeling the most important ones.

Change specifications describe the process of how certain elements in one sys-
tem snapshot are changed to yield a new snapshot. The possible transforma-
tions and their corresponding implementations depend on the programming
language and are not limited to simple changes like definition or removal.
High-level change specifications bring the advantage of more appropriate
semantic information and are kept together with the results of their related
low-level edits in one Changebox. By capturing high-level changes directly
in the tools that produce them, the purpose rather than simply the effects
of a change can be encapsulated. In this way, change specifications (e.g.,
for refactorings) can be applied generically to arbitrary snapshots, taking
the respective existing elements into account. A method renaming specifi-
cation, for example, can be applied to different snapshots and also update
all senders of the renamed method there. This may be interesting to ease
framework refactorings. All refactoring transformations would be stored in
change specifications. The specifications are then available to clients that
want to migrate to a new framework version. By applying the specifications
to their own system, the code is transformed appropriately.

5.1. DISCUSSION 77

Agile environments require the developers to integrate their changes fre-
quently into the versioning system to stay as much in contact with the overall
development as possible. The possibilities for collaboration offered by cur-
rent versioning systems entail a programmer to checkout a snapshot from the
system, perform changes locally and then commit them. For a Changebox-
aware system, we can envision a single server as development platform where
programmers transparently and concurrently perform changes. They can di-
rectly see who is changing the system when and where, and can choose to
integrate at any point. Because all changes are on-line, the system does not
have to be shut down and restarted again, allowing Changeboxes to be de-
ployed dynamically. The execution scope may be dynamically switched with
Changeboxes. As such, Changeboxes serve as a general-purpose mechanism
to control the scope of software evolution.

This can be particularly useful for systems that have to be running vir-
tually all the time. Upgrading a system to a new version may happen at
runtime, affecting existing objects directly. With the execution scope at-
tached to a user session, it is possible that existing sessions continue with
the old versions, while new ones begin with the upgraded system. Or only
certain users may be granted a preview of the upgrade before it is released
to the broad public. Of course, scope-aware sessions are not limited to sub-
sequent versions, but can also be used to completely personalize a system.
In collaborative work applications, for example, objects could exhibit differ-
ent behavior or properties depending on who is interacting with them. For
each user, a Changebox providing the corresponding active features may be
specified [Goke02]. With Changeboxes, applications can dynamically adapt
their behavior at runtime. Having fine-grained control over the scope of
the evolution and the runtime behavior of a system creates numerous new
possibilities for product line management.

Context aware systems (e.g., context-oriented or aspect-oriented program-
ming languages) allow for different simultaneous views of their software ar-
tifacts as well. While techniques like before and after methods [Cost05] are
not directly represented with Changeboxes yet, the foundation of different
concurrently active element versions is existing. Based on the execution
scope given by a Changebox, a context may be defined. Before and after
change specifications, for example, could be implemented to concatenate
methods in an appropriate way. Layers may be expressed directly with dif-
ferent Changeboxes and be merged for execution. Various context aware
systems might build on top of Changeboxes, which provide a unifying ap-
proach to model change.

By modeling classboxes, we could show that Changeboxes can be used to
package extensions of existing components. Conventional class extensions
(as, e.g., in Smalltalk) add or override methods of existing classes. Because

78 CHAPTER 5. CONCLUSIONS

these extensions are global, they might break existing clients. With Change-
boxes, extensions can be encapsulated and are only visible in a well-defined
scope. The property of Changeboxes that different versions of the same
software artifact can exist concurrently may thus be exploited in temporal
and spatial dimensions.

In our implementation, not the complete system is encapsulated in Change-
boxes, but only changes explicitly captured in a work session. If no variants
are found in the ancestry of the Changebox defining the current execution
scope, we fall back to the artifacts present in the global scope. Like this,
Changeboxes may be used only for certain parts of a project, while the other
components behave as usual.

5.2 Open Issues

A few issues remain unsolved in our implementation of Changeboxes. Some
already have possible workarounds and others do not affect a system signif-
icantly, but they should all be tackled for a complete model:

• Migrating instances between different scopes. A major shortcoming
is that instances always stick to the version of their class from the
execution scope they were created in. The need for migrating instances
to move them between different scopes is discussed in Section 5.2.1.

• Changeboxes for system components. System components are cur-
rently excluded from being encapsulated in Changeboxes. The reasons
and a possible solution for this problem are presented in Section 5.2.2.

• Fixed class references Because of the reflective nature of Smalltalk,
class references may still be fixed in some cases and evade the dis-
patch mechanism. Certain workarounds exist and are discussed in
Section 5.2.3.

5.2.1 Migrating Instances between Different Scopes

Every object knows the class it was instantiated from, namely the exact
version (i.e., instance) of that class. Whenever the shape of a class changes,
for example when instance variables are modified or the format of the class
changes, all instances have to be migrated to the new version. The con-
ventional class modification procedures in Smalltalk offer a rudimentary
migration of instances. Newly added fields are simply initialized with a nil
value. This migration affects all instances in the system, independent of any
specified execution scope.

5.2. OPEN ISSUES 79

When a certain class is modified in a special execution scope, this could result
in undefined behavior. Therefore, the basic migration was deactivated in our
implementation. Instances keep the shape of the class in the execution scope
they were created in. Currently, Changeboxes do not offer any mechanism
that would enable the migration to new class shapes.

Support for migrating instances between different execution scopes is nec-
essary because objects may be accessed from the scope of different Change-
boxes. A sophisticated solution could, for example, encapsulate migration
scripts in Changeboxes which would upgrade instances according to the
performed class shape change (eg, they could initialize newly added in-
stance variables). These scripts could be executed whenever the scope is
switched.

In Smalltalk, classes have initialization and unloading methods, i.e., meth-
ods that are invoked from the system when a class is newly created or
removed. With Changeboxes, where the visible software artifacts can be
dynamically switched together with the execution scope, the semantics of
these callback methods change. Classes are not globally loaded or removed
from a system, they are only visible or hidden in different scopes. Like for mi-
grating objects, a solution has to be found that manages the circumstances
when classes are introduced or excluded when switching the execution scope.
In the current implementation, unloading methods are not executed when
a class is removed in a work session in order to prevent undefined behav-
ior.

5.2.2 Changeboxes for System Components

In our implementation, the Changebox defining the execution scope for a
block closure has to be set explicitly. This introduces several restrictions for
the use of Changeboxes. The most important one is that certain Smalltalk
kernel components, Changebox-aware development tools, and the Change-
box packages themselves cannot benefit from Changeboxes. The develop-
ment process of a system relies highly on the functionality of these compo-
nents. The possibility to further evolve them in an insulated scope would
be a big advantage. Because the execution scope is specified for a com-
plete block of code, it is not possible (or only with a disproportional effort)
to separate the scope of a modified software artifact from the scope of the
components that perform the change. For example, changing a method
of the compiler immediately falls back on this method in the compilation
process. Potential errors would invalidate the compiler, resulting in a dead-
locked system. With separate scopes, the working version of the compiler
in one scope could modify an experimental version in another scope.

80 CHAPTER 5. CONCLUSIONS

This problem could possibly be solved by implicitly specifying the execution
scope based on the current execution context. Development processes could
run in a scope separated from the artifact they are currently changing, even
when this artifact is a part of such a process. Scope could, for example, be
defined depending on where a call originates from, distinguishing the exe-
cution of reflective system methods (e.g., to retrieve information about the
artifact to change) from inner-component calls (e.g., messages sent within
the compiler).

For other domains, implicit scope specification might be interesting as well,
for example for context-aware, mobile applications.

5.2.3 Fixed Class References

To allow classes being dispatched depending on the current execution scope,
the compiler was modified to replace class references with a lookup mech-
anism. This works well for references in source code, but as Smalltalk is a
highly reflective language in which classes are ordinary objects, they can be
stored in variables as well. Because variables store a direct reference to an
object, reading such a variable results in the class from the execution scope
where it was originally stored instead of where it is read. For the moment,
this issue can be worked around by only storing the name of a class in a vari-
able and performing a lazy lookup (e.g., in an accessor method) whenever
the actual class object is needed.

Another issue resulting from the compiler modification is that the class
lookup is only introduced for newly compiled methods. System library
methods still contain direct class references and would need to be recom-
piled to perform a lookup. Because such classes are currently not affected
by Changeboxes and therefore do not need to be dispatched, we abstained
from recompiling these libraries. If required, this can be done quickly.

5.3 Contributions

In this thesis, we proposed Changeboxes as a unifying mechanism for model-
ing software change. To comply with the importance of change, we represent
it as a first-class entity. Changeboxes allow one to exploit change for many
different domains. In the following, we expose our key contributions.

Metamodel for Software Change. Changeboxes provide a generic meta-
model for representing software change. They not only encapsulate the ef-
fects, but also the semantics of change using change specifications. Change-

5.4. FUTURE WORK 81

boxes can model temporal and spatial dimensions of software change. Be-
cause Changeboxes are immutable, they may be arbitrarily and safely ex-
tended to form new ones. Changeboxes encapsulate the entire history of a
software system, which creates many possibilities for potential applications
managing or analyzing software evolution.

Capturing Changes. Changes are captured automatically at the level
of the reflective language kernel and the integrated development environ-
ment (IDE). A bottom-up approach enables a fine-grained recording of ba-
sic changes like definition and removal of software artifacts, independent
of where a change action originated. To capture the meaning of complex
changes (e.g., refactorings) that involve several basic change operations, a
top-down approach hooks into the IDE, where most semantic information
about such operations is available.

Different Active Execution Scopes. Every captured Changebox pro-
vides an execution scope that defines the active software artifacts constitut-
ing a system. Different scopes, i.e., different versions of the same system,
can be simultaneously active within a single running application. With the
ability to change the execution scope dynamically, bug fixes or new features
can be safely integrated into a running system without impacting active
user sessions. Because several versions of the same software artifact may
coexist, Changeboxes may be used to model dynamic module systems and
other spatial concepts of change. The evolution of a system may be studied
based on fine-grained snapshots which are all directly runnable.

Integration into Programming Environment. Changeboxes are
tightly integrated into the development environment. All conventional pro-
gramming tools such as code browsers, debugger, test runner and source
control facilities are made Changebox-aware. This allows a developer to
work conventionally without the need to learn handling new applications.
Different windows may represent different views of a system, i.e., they may
display or execute code in the scope of different Changeboxes concurrently.
A tool to manage work sessions acts as a central hub for developing in several
branches and for switching scope.

5.4 Future Work

Changeboxes offer a simple and uniform mechanism to encapsulate changes.
With our proof-of-concept implementation, we developed a runnable, Change-
box-aware environment that may be used for a multitude of experiments.

82 CHAPTER 5. CONCLUSIONS

Besides the issues mentioned in Section 5.2, further investigations in this
topic should address (i) performance issues by considering an implementa-
tion at the virtual machine level and (ii) a refinement of how and which
changes are encapsulated in order to gain additional semantic information.
These two issues are discussed in the two concluding sections.

5.4.1 Performance Enhancements

One problem for our implementation is that Smalltalk does not provide
a notion of execution scope. Scope must be simulated by modifying the
method lookup and introducing a dynamic class reference resolution. The
performance analysis in Section 4.1.2 showed that most of the time needed
for a method or class lookup is spent in image level Smalltalk code.

By implementing the lookup mechanism at the virtual machine level, a sig-
nificant speed improvement should be possible. With this modification,
execution scope would become an implicit property of the language. This
should also ease the introduction of Changeboxes for the entire system, in-
cluding the kernel libraries.

Furthermore, the caching logic could be improved as well to provide an ad-
ditional speed-up. The current implementation is very rudimentary and did
not undergo any optimization process. For example, one cache per message
call site in relation to the current execution scope, similar to a polymorphic
inline cache (PIC) [Holz91] could bring some enhancements.

Not only speed, but also space can become a critical factor. The growth
of memory is currently linear to the number of Changeboxes in the system.
All Changeboxes captured are kept in the image, even when they contain
changes overridden long ago. A strategy to swap-out unused Changeboxes
and flush the lookup caches would heavily reduce the memory footprint in
real world usage.

5.4.2 Finer-grained Change Information

Changeboxes offer support for capturing changes of arbitrary software ele-
ments. Currently, only the most basic elements like classes, methods and
fields are represented. Finer-grained elements (e.g., statements, blocks or
packages) are required for more detailed change information. The inclusion
of newer concepts like Traits [Scha05] might be interesting as well.

Aside from simple definition and removal changes, there is only one change
specification that encapsulates a more complex change: the renaming speci-
fication. To fully exploit the mechanism to capture high-level changes (as

5.4. FUTURE WORK 83

described in Section 3.3.3), additional change specifications have to be mod-
eled for the corresponding transformations. Especially, support for vari-
ous well-known refactorings would be significant. A tight integration with
Smalltalk’s refactoring browser [Robe97] or the succeeding refactoring en-
gine is possible. Composable change specifications could be helpful to model
certain change processes, for example when several changes are initiated by
a single action (e.g., a method consisting of several changeable statements
is saved).

Together with the introduction of additional elements and change specifica-
tions, the merge logic has to be evolved as well. The newly added entities
have to be taken into account for the merge algorithm. Additional investi-
gations into a sophisticated and more general merge process will be needed
for that. The possibility of merging only selected parts from the ancestry of
a Changebox might have to be examined (e.g., to support explicit imports
for classboxes). With new merge strategies, an even wider range of semantic
meanings would arise for merging Changeboxes.

84 CHAPTER 5. CONCLUSIONS

Appendix A

Short Guide to Our
Implementation

A.1 Installing Changeboxes

Changeboxes are tested and developed with Squeak 3.9. You need an image
that is compiled with NewCompiler1 [NewC].

A ready to run demo image with Changeboxes is available at http://www.
iam.unibe.ch/∼scg/Research/Changeboxes/ChangeboxesDemo.zip.

A.1.1 Source Installation

All sources can be loaded from SqueakSource using Monticello [Brya].

1. Get the latest version of Squeak 3.9 and the virtual machine for your
operating system at http://ftp.squeak.org/3.9

2. Get the latest version of AST at http://www.squeaksource.com/AST

3. Get the latest version of NewCompiler at http://www.squeaksource.
com/NewCompiler

4. Compile the entire image using Recompiler:

[Recompiler new inspect; recompileImage] forkAt: 30

5. Get the latest ChangeBoxes package at http://www.squeaksource.
com/ChangeBoxes

1A precompiled image with NewCompiler is available at http://www.iam.unibe.ch/
∼scg/Research/NewCompiler/NewCompiler.zip. With this image, you can skip steps 2.
to 4. in the following installation guide and directly start loading the Changebox packages.

85

http://www.iam.unibe.ch/~scg/Research/Changeboxes/ChangeboxesDemo.zip
http://www.iam.unibe.ch/~scg/Research/Changeboxes/ChangeboxesDemo.zip
http://ftp.squeak.org/3.9
http://www.squeaksource.com/AST
http://www.squeaksource.com/NewCompiler
http://www.squeaksource.com/NewCompiler
http://www.squeaksource.com/ChangeBoxes
http://www.squeaksource.com/ChangeBoxes
http://www.iam.unibe.ch/~scg/Research/NewCompiler/NewCompiler.zip
http://www.iam.unibe.ch/~scg/Research/NewCompiler/NewCompiler.zip

86 APPENDIX A. SHORT GUIDE TO OUR IMPLEMENTATION

6. Get the latest ChangeBox-activation package at the same place. This
loading order is essential.

7. Run the SUnit Tests in the ChangeBoxes-Tests package in order to
assert everything went well.

If you like syntax highlighting as you type in your own work sessions as well,
you can get Shout like this:

1. Get ShoutUsingNewCompiler.3.15-tween.73 at http://www.squeaksource.
com/shout

2. Get ShoutOmniBrowser-tween.3 at the same place

3. Get the latest version of ChangeBox-shout at http://www.squeaksource.
com/ChangeBoxes

A.2 Getting Started

After loading Changeboxes, you may want to try the following small tuto-
rial.

• First, you want to create a new work session, where all your changes
will be put. For that purpose, open the Work Session Browser from
your world menu. You should see a window like in Figure A.1 with
three columns in the top and one big pane in the bottom, all empty at
first. In the upper left pane, right-click and choose create worksession.
In the dialog, enter a name for your work session and change the color
if you like, then click on accept.

Figure A.1: The Work Session Browser with our project.

http://www.squeak source.com/shout
http://www.squeak source.com/shout
http://www.squeak source.com/ChangeBoxes
http://www.squeak source.com/ChangeBoxes

A.2. GETTING STARTED 87

• There should now be an entry with the name of your created work
session. On the context menu you will find the option browse, which
will open a new image browser that is aware of your work session.

• There we go. All the modifications you perform in this browser will
now be local to your work session. The rest of the system will not be
aware of your changes at all. So let’s start with some coding. Create
a new category, e.g. CBXGettingStarted, and create a new class called
Sorter therein. We will code a quicksort algorithm. Let’s add the
following method to the class Sorter:

sort: aCollection

^aCollection isEmpty

ifTrue: [aCollection species new]

ifFalse: [

(self sort: (aCollection allButFirst

select: [:each | each < aCollection first])) ,

(aCollection species with: aCollection first) ,

(self sort: (aCollection allButFirst

select: [:each | each >= aCollection first]))]

• Of course, we need to test that algorithm. So let’s create a class
SorterTest that extends TestCase and put the method #testSort
in there (still in the browser for our work session):

testSort

self assert: (Sorter new sort: #(2 4 3 6)) = #(2 3 4 6).

self assert: (Sorter new sort: #(2 3 4 3 2)) = #(2 2 3 3 4).

self assert: (Sorter new sort: #(1)) = #(1).

• If you open a normal image browser from the open menu, you will
recognize that neither the class Sorter nor the class SorterTest are
existing there. Your changes are only visible in the browser with the as-
signed work session. (Caveat: This is only true for OBSystemBrowser.
The old browser will still display both of the classes, as it is not aware
of Changeboxes). So let’s see what we did so far. For that purpose,
go back to the Work Session Browser. You should now see a list on
the right with all the changes you performed so far.

• To run your test, go to the top Changebox in the center column of
the Work Session Browser and select open test runner from the con-
text menu. This will open a Test Runner that is aware of the selected
Changebox and its execution scope. Maybe you need to refresh the
categories list in the Test Runner in order to see your category con-
taining SorterTest. Select only this class, run the test and enjoy the
green light if everything went right.

• Our code for the sorting algorithm is not that beautiful yet. The two
calls for sorting the rest of the list could be put in their own method:

88 APPENDIX A. SHORT GUIDE TO OUR IMPLEMENTATION

sort: aCollection relation: aSelector

^self sort: (aCollection allButFirst select: [:each |

each perform: aSelector withArguments: aCollection first])

• So the #sort: method can be changed to the following:

sort: aCollection

^aCollection isEmpty

ifTrue: [aCollection species new]

ifFalse: [

(self sort: aCollection relation: #<) ,

(aCollection species with: aCollection first) ,

(self sort: aCollection relation: #>=)]

• Let’s test. Switch to the Test Runner and run again. Still green. But
wait a minute... What did we actually test? Not our new changes, no,
but the snapshot of the system we had before. The Test Runner is still
executing its tests in the scope of the previous Changebox. Nobody
told it to switch to the new execution scope. This also shows that
the code before the refactoring is still completely runnable, no matter
what we changed. So before running the tests on the new version,
update the Test Runner by opening it from the last Changebox in the
Work Session Browser. For more convenience, you could also open the
Test Runner on the work session, so the tests will always run on the
latest snapshot. What’s the result of running the tests now? Red. By
clicking on the failed test, you get a Debugger saying that instances of
SmallInteger are not indexable. What happened? A small research
shows that we used the first element of our collection as a parameter
for #perform:withArguments:, instead of an Array containing that
element. The fix is (change in your work session aware browser):

sort: aCollection relation: aSelectors

^self sort: (aCollection allButFirst select: [:each |

each perform: aSelector

withArguments: (Array with: aCollection first)])

• If you now update your Test Runner again and run the test, everything
should be green. Congratulations!

• Let’s do some reverse engineering at the end: Open an inspector for
your work session from the context menu in the Work Session Browser.
Then evaluate the following code in the inspector window:

| cursor breakingChange |

breakingChange := nil.

cursor := self changebox.

[breakingChange isNil] whileTrue: [

cursor doScoped: [

A.2. GETTING STARTED 89

[(Smalltalk at: #SorterTest) new testSort]

on: Error

do: [breakingChange := cursor]].

cursor := cursor ancestor].

breakingChange specifications first

definitionString asString inspect.

• What you get is the source code of the last change that broke the tests,
a change of Sorter>>sort:. You see that the change is the refactored
#sort: that uses the new #sort:relation: method.

Of course, here we did not change anything else, but imagine a big sys-
tem with a lot of parallel changes, where iterating through all versions
and executing them directly could reveal many important details.

We hope that these few steps helped you to get more familiar with Change-
boxes. Another approach to take is to create a few more work sessions
and play around a little bit. CBXMethodChangeTest and CBXClassChange-
Test are also good entry points to directly see the reflective kernel func-
tions.

90 APPENDIX A. SHORT GUIDE TO OUR IMPLEMENTATION

Appendix B

An Introduction to Squeak

Changeboxes were developed in Squeak [Inga97], an open-source dialect
based on Smalltalk-80 [Gold83]. Smalltalk is a dynamically typed, object-
oriented programming language from top to bottom. In Smalltalk, every-
thing is an object, i.e., an instance of a corresponding class that describes
properties and behavior. The language is built as a powerful reflective sys-
tem, implemented in itself. The classes and methods that constitute a sys-
tem are Smalltalk objects themselves.

A Squeak system consists of two major components: the virtual machine and
the image. The virtual machine provides an environment to allocate memory
space, execute bytecode and a set of additional primitive calls as an interface
to the underlying operating system. The Smalltalk image contains the entire
structure and state of the system, both represented by congeneric objects.
There is no separation of program code defined by classes and methods and
the runtime objects this code instantiates.

The reflective capabilities and the availability of the complete system li-
braries in the image enables the modification of nearly everything in Smalltalk
from within a running program. Methods can be added and even modified
for any object in the image, including the kernel classes that define the
system. The development environment is part of the image as well and is
equally open for modifications. The class building and method compilation
processes are both implemented using Smalltalk objects.

In Smalltalk, basically two classes encode the runnable parts of an object
oriented software system: Class defines classes and CompiledMethod rep-
resents methods. The instances of these two classes build the structure
of a running system. Class objects provide the information for the vir-
tual machine to instantiate new objects and CompiledMethods contain exe-
cutable instructions in the form of bytecode. Developing a software system

91

92 APPENDIX B. AN INTRODUCTION TO SQUEAK

in Smalltalk mainly involves the permanent creation, modification and re-
moval of instances of these two objects. In most cases, these changes are
performed in an abstracted way over an appropriate IDE.

The reflective system with its wide possibilities formed a crucial part in
the development of Changeboxes. Modifications of essential system objects
were feasible in Smalltalk so that their behavior could be adapted to our
requirements. Changes to software artifacts could be captured by intercept-
ing system methods and the scope for executing code could be defined in a
general way.

To ease portability, deployment and maintenance, Changeboxes are com-
pletely implemented using the facilities provided inside the Squeak image.
No changes to the virtual machine have been conducted.

Index

branching, 33

change, 1
capturing, 32, 34, 36, 81

bottom-up, 34, 36
top-down, 36

encapsulating, 16, 23
scoping, 17

change specification, 30, 76, 82
applying, 26
definition, 32
dependencies, 50
generating, 27
pre-processing, 47
removal, 32
renaming, 32

Changebox, 21, 75
immutability, 22
metamodel, 23, 80

cherry picking, 34

deploy, 17
dispatching

classes, 45, 80
methods, 43

dynamic variables, 41

element, 23, 25, 76, 82
class, 27
class instance variable, 29
class variable, 29
field, 29
identity, 26
instance variable, 29
method, 28
non-primitive, 29
primitive, 25, 28, 41

properties, 26, 28, 29
shared pool dictionary, 30

flattening property, 38, 42

merge, 22, 34, 46, 83
operation-based, 14, 47
pre-processing, 47
state-based, 14
strategy, 22, 48

order-based, 49
time-based, 49
user choice, 49

three-way, 48
message send, 43
migrate instances, 78

performance, 59, 61, 82
process instance variable, 40

refactorings, 36, 76, 82

scope, 38, 62, 76, 81
global, 39, 78
implementation, 40
specifying, 40

Smalltalk, 91
snapshot, 21
Squeak, 91

variant, 24
cache, 43, 82
lookup, 41, 61, 82

work session, 33, 38
browser, 51

93

94 INDEX

List of Figures

1.1 The evolution of a system modeled with Changeboxes. 3

2.1 The evolution of a web application. Every screenshot repre-
sents a running snapshot of the system. 18

3.1 The evolution of a system modeled by Changeboxes. The
changes visible in the execution scope of Changebox 3 are
highlighted. 22

3.2 Changebox and its associated classes. 24
3.3 Class and CompiledMethod, the meta-objects modeling a

Squeak system. 25
3.4 All elements with their attributes and changeable properties

in Squeak. 26
3.5 The main functionality of Element and PrimitiveElement. . 27
3.6 The implemented ChangeSpecifications and their properties. 31
3.7 Three work sessions illustrating branching, merging and picking. 33
3.8 Capturing changes bottom-up: UML sequence diagram of a

method creation. 35
3.9 Capturing changes top-down: UML sequence diagram of a

class renaming. 37
3.10 The abstract Scope class and its subclasses. 39
3.11 Variant lookup over several Changeboxes. 42
3.12 Object-oriented message send with a lookup in the current

execution scope. 44
3.13 The bytecode for a class reference generated by the conven-

tional Smalltalk compiler (top) and by our modified version
(bottom). 46

3.14 Merge of two Changeboxes with common ancestors. 47
3.15 The abstract MergeStrategy and its concrete subclasses. . . 49
3.16 User interface of the user choice merge strategy. 50
3.17 Screenshot of the Work Session Browser. 52
3.18 OmniBrowser windows for different work sessions. 53

95

96 LIST OF FIGURES

4.1 A link checker modularized with classboxes. 64
4.2 Two classboxes modeled with Changeboxes. 66
4.3 Evolution of Hessian over 13 Versions. (*10) denotes values

that have been scaled down by a factor of 10. 71
4.4 Hessian test runs for every Changebox of versions 12 and 13. 72

A.1 The Work Session Browser with our project. 86

List of Tables

4.1 Hessian: runtime in seconds of 107 tests with 570 Change-
boxes and artificially added Changeboxes. Runtime without
Changeboxes: 3.85 s. 58

4.2 Pier: runtime in seconds of 1057 tests with 6283 Change-
boxes and artificially added Changeboxes. Runtime without
Changeboxes: 1.01 s. 60

4.3 Benchmarks for basic operations, average from three runs. . . 61
4.4 Benchmarks for scope access, average from three runs. 62

97

98 LIST OF TABLES

Bibliography

[Ache00] Franz Achermann and Oscar Nierstrasz. “Explicit Namespaces”.
In: Jürg Gutknecht and Wolfgang Weck, Eds., Modular Pro-
gramning Languages, Proceedings of JMLC 2000 (Joint Modu-
lar Languages Conference), pp. 77–89, Springer-Verlag, Zürich,
Switzerland, Sep. 2000.

[Ache01a] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Os-
car Nierstrasz. “Piccola — a Small Composition Language”.
In: Howard Bowman and John Derrick, Eds., Formal Methods
for Distributed Processing — A Survey of Object-Oriented Ap-
proaches, pp. 403–426, Cambridge University Press, 2001.

[Ache01b] Franz Achermann and Oscar Nierstrasz. “Applications = Com-
ponents + Scripts — A Tour of Piccola”. In: Mehmet Aksit, Ed.,
Software Architectures and Component Technology, pp. 261–292,
Kluwer, 2001.

[Aldr04] Jonathan Aldrich. “Open Modules: Reconciling Extensibility
and Information Hiding”. In: Lodewijk Bergmans, Kris Gybels,
Peri Tarr, and Erik Ernst, Eds., SPLAT: Software engineering
Properties of Languages for Aspect, March 2004.

[Aldr05] Jonathan Aldrich. “Open Modules: Modular Reasoning About
Advice”. In: Proceedings ECOOP 2005, pp. 144–168, Springer
Verlag, Glasgow, UK, July 2005.

[Arms03] Joe Armstrong. Making reliable distributed systems in the pres-
ence of software errors. PhD thesis, The Royal Institute of Tech-
nology Stockholm, 2003.

[Arms96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike
Williams. Concurrent Programming in Erlang. Prentice Hall,
1996.

[AST] “AST, an Abstract Syntax Tree package for Squeak”.
http://www.squeaksource.com/AST.html.

99

100 BIBLIOGRAPHY

[Atki98] David L. Atkins. “Version Sensitive Editing: Change History as
a Programming Tool”. In: System Configuration Management:
ECOOP’98 SCM-8 Symposium, pp. 146–157, Springer Verlag,
Brussels, Belgium, July 1998.

[Beck98] Kent Beck and Erich Gamma. “Test Infected: Programmers
Love Writing Tests”. Java Report, Vol. 3, No. 7, pp. 51–56,
1998.

[Berg03a] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. “The
Classbox Module System”. In: Proceedings of the ECOOP
’03 Workshop on Object-oriented Language Engineering for the
Post-Java Era, July 2003.

[Berg03b] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. “Class-
boxes: A Minimal Module Model Supporting Local Rebind-
ing”. In: Proceedings of Joint Modular Languages Conference
(JMLC’03), pp. 122–131, Springer-Verlag, 2003.

[Berg05a] Alexandre Bergel. Classboxes — Controlling Visibility of Class
Extensions. PhD thesis, University of Berne, Nov. 2005.

[Berg05b] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. “Classboxes: Controlling Visibility of Class Extensions”.
Computer Languages, Systems and Structures, Vol. 31, No. 3-4,
pp. 107–126, Dec. 2005.

[Berl90] Brian Berliner. “CVS II: Parallelizing Software Development”.
Proc. The Advanced Computing Systems Professional and Tech-
nical Association (USENIX) Conf., pp. 22–26, 1990.

[Bobr80] Daniel G. Bobrow and Ira P. Goldstein. “Representing Design
Alternatives”. In: Proceedings of the Conference on Artificial
Intelligence and the Simulation of Behavior, July 1980.

[Bric05] J. Brichau and M. Haupt. “Survey of Aspect-oriented Languages
and Execution Models”. Tech. Rep., AOSD-Europe-VUB-01,
May 2005.

[Brya] Avi Bryant. “Monticello”. http://www.wiresong.ca/Monticello.

[Char06] Anis Charfi, Michel Riveill, Mireille Blay-Fornarino, and Anne-
Marie Pinna-Dery. “Transparent and Dynamic Aspect Composi-
tion”. In: In Proceedings of the 4th Software Engineering Proper-
ties of Languages and Aspect Technologies (SPLAT) Workshop,
March 2006.

BIBLIOGRAPHY 101

[Coll04] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pi-
lato. Version Control with Subversion. O’Reilly & Associates,
Inc., 2004.

[Conr98] Reidar Conradi and Bernhard Westfechtel. “Version Models for
Software Configuration Management”. ACM Computing Sur-
veys, Vol. 30, No. 2, pp. 232–282, June 1998.

[Cost05] Pascal Costanza and Robert Hirschfeld. “Language Constructs
for Context-oriented Programming: An Overview of ContextL”.
In: Proceedings of the Dynamic Languages Symposium (DLS)
’05, co-organized with OOPSLA’05, ACM Press, New York, NY,
USA, Oct. 2005.

[Deme00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. “Find-
ing Refactorings via Change Metrics”. In: Proceedings of 15th
International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’00), pp. 166–178,
ACM Press, New York NY, 2000. Also appeared in ACM SIG-
PLAN Notices 35 (10).

[Denk06] Marcus Denker, Stéphane Ducasse, and Éric Tanter. “Runtime
Bytecode Transformation for Smalltalk”. Journal of Computer
Languages, Systems and Structures, Vol. 32, No. 2-3, pp. 125–
139, July 2006.

[Dig05a] Daniel Dig and Ralph Johnson. “The Role of Refactorings in API
Evolution”. In: Proceedings of 21st International Conference on
Software Maintenance (ICSM 2005), pp. 389–398, Sep. 2005.

[Dig05b] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph John-
son. “Automatic Detection of Refactorings for Libraries and
Frameworks”. Proc. sixth ECOOP Workshop on Object-Oriented
Reengineering, 7 2005.

[Dig06] Danny Dig and Ralph Johnson. “How do APIs evolve? A story
of refactoring”. Journal of Software Maintenance and Evolution:
Research and Practice (JSME), Vol. 18, No. 2, pp. 83–107, Apr.
2006.

[Duca99] Stéphane Ducasse. “Evaluating Message Passing Control Tech-
niques in Smalltalk”. Journal of Object-Oriented Programming
(JOOP), Vol. 12, No. 6, pp. 39–44, June 1999.

[Erns99] Erik Ernst. “Propagating Class and Method Combination”. In:
R. Guerraoui, Ed., Proceedings ECOOP ’99, pp. 67–91, Springer-
Verlag, Lisbon, Portugal, June 1999.

102 BIBLIOGRAPHY

[Feat89] Martin S. Feather. “Detecting Interference when Merging Spe-
cification Evolutions”. Proc. Fifth International Workshop on
Software Specification and Design, pp. 169–176, 1989.

[Fowl99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

[Gall03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. “CVS Re-
lease History Data for Detecting Logical Couplings”. In: Inter-
national Workshop on Principles of Software Evolution (IWPSE
2003), pp. 13–23, IEEE Computer Society Press, Los Alamitos
CA, 2003.

[Gamm95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, Mass., 1995.

[Gass98] M.L. Gassanenko. “Context-Oriented Programming”. In: euro-
Forth’98, Schloss Dagstuhl, Germany, apr 1998.

[Girb04a] Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. “Yester-
day’s Weather: Guiding Early Reverse Engineering Efforts by
Summarizing the Evolution of Changes”. In: Proceedings of
20th IEEE International Conference on Software Maintenance
(ICSM’04), pp. 40–49, IEEE Computer Society, Los Alamitos
CA, Sep. 2004.

[Girb04b] Tudor Gı̂rba and Michele Lanza. “Visualizing and Characteriz-
ing the Evolution of Class Hierarchies”. 2004.

[Girb05a] Tudor Gı̂rba. Modeling History to Understand Software Evolu-
tion. PhD thesis, University of Berne, Berne, Nov. 2005.

[Girb05b] Tudor Gı̂rba, Michele Lanza, and Stéphane Ducasse. “Character-
izing the Evolution of Class Hierarchies”. In: Proceedings of 9th
European Conference on Software Maintenance and Reengineer-
ing (CSMR’05), pp. 2–11, IEEE Computer Society, Los Alamitos
CA, 2005.

[Goke02] Ayse Göker and Hans I. Myrhaug. “User context and Personal-
isation”. In: ECCBR Workshop on Case Based Reasoning and
Personalisation, Aberdeen, UK, 2002. invited paper.

[Gold80a] Ira P. Goldstein and Daniel G. Bobrow. “Descriptions for a
Programming Environment”. In: Proceedings of the First Annual
Conference of the National Association for Artificial Intelligence,
Aug. 1980.

BIBLIOGRAPHY 103

[Gold80b] Ira P. Goldstein and Daniel G. Bobrow. “Extending Object-
Oriented Programming in Smalltalk”. In: Proceedings of the
Lisp Conference, pp. 75–81, Aug. 1980.

[Gold80c] Ira P. Goldstein and Daniel G. Bobrow. “A Layered Approach
to Software Design”. Tech. Rep. CSL-80-5, Xerox PARC, Dec.
1980.

[Gold83] Adele Goldberg and David Robson. Smalltalk 80: the Language
and its Implementation. Addison Wesley, Reading, Mass., May
1983.

[Gorg05] Carsten Görg and Peter Weissgerber. “Detecting and Visual-
izing Refactorings from Software Archives”. In: Proceedings of
IWPC (13th International Workshop on Program Comprehen-
sion, pp. 205–214, IEEE CS Press, 2005.

[Guzd01] Mark Guzdial and Kim Rose. Squeak — Open Personal Com-
puting and Multimedia. Prentice-Hall, 2001.

[Hear06] David Hearnden, Michael Lawley, and Kerry Raymond. “Incre-
mental Model Transformation for the Evolution of Model-Driven
Systems”. In: International Conference on Model Driven Engi-
neering Languages and Systems (Models/UML 2006), pp. 321–
335, Springer-Verlag, Berlin, Germany, 2006.

[Henk05] Johannes Henkel and Amer Diwan. “CatchUp!: capturing and
replaying refactorings to support API evolution”. In: Proceedings
International Conference on Software Engineering (ICSE 2005),
pp. 274–283, 2005.

[Hess] “Hessian, a Squeak implementation of the binary web service
protocol”. http://www.squeaksource.com/hessian.html.

[Hick05] Michael Hicks and Scott Nettles. “Dynamic software updating”.
ACM Trans. Program. Lang. Syst., Vol. 27, No. 6, pp. 1049–1096,
2005.

[Holz91] Urs Hölzle, Craig Chambers, and David Ungar. “Optimizing
Dynamically-Typed Object-Oriented Languages With Polymor-
phic Inline Caches”. In: P. America, Ed., Proceedings ECOOP
’91, pp. 21–38, Springer-Verlag, Geneva, Switzerland, July 1991.

[Hunt76] James Hunt and Douglas McIlroy. “An Algorithm for Differen-
tial File Comparison”. Tech. Rep. CSTR 41, Bell Laboratories,
Murray Hill NJ, 1976.

[Inga97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. “Back to the Future: The Story of Squeak, A Practical

104 BIBLIOGRAPHY

Smalltalk Written in Itself”. In: Proceedings OOPSLA ’97, ACM
SIGPLAN Notices, pp. 318–326, ACM Press, Nov. 1997.

[Keay03] Roger Keays and Andry Rakotonirainy. “Context-oriented pro-
gramming”. In: MobiDe ’03: Proceedings of the 3rd ACM inter-
national workshop on Data engineering for wireless and mobile
access, pp. 9–16, ACM Press, New York, NY, USA, 2003.

[Kend99] Elizabeth Kendall. “Role Model Design and Implementations
with Aspect-Oriented Programming”. In: Proceedings of OOP-
SLA ’99, pp. 353–369, Nov. 1999.

[Kent02] Stuart Kent. “Model Driven Engineering”. Proc. Integrated For-
mal Methods: Third International Conference, 2002.

[Kicz97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
“Aspect-Oriented Programming”. In: Mehmet Aksit and Satoshi
Matsuoka, Eds., Proceedings ECOOP ’97, pp. 220–242, Springer-
Verlag, Jyvaskyla, Finland, June 1997.

[Koeh03] Jana Koehler, Rainer Hauser, Shubir Kapoor, Fred Y. Wu, and
Santhosh Kumaran. “A Model-Driven Transformation Method”.
Proc. Seventh IEEE International Conference on Enterprise Dis-
tributed Object Computing, pp. 186–197, 2003.

[Lanz02] Michele Lanza and Stéphane Ducasse. “Understanding Software
Evolution Using a Combination of Software Visualization and
Software Metrics”. In: Proceedings of Langages et Modèles à
Objets (LMO’02), pp. 135–149, Lavoisier, Paris, 2002.

[Lehm80] Manny Lehman. “On Understanding Laws, Evolution and Con-
servation in the Large Program Life-Cycle”. J Sys and Software,
Vol. 1, No. 3, 1980.

[Lehm85] Manny Lehman and Les Belady. Program Evolution: Processes
of Software Change. London Academic Press, London, 1985.

[Lehm96] Manny Lehman. “Laws of Software Evolution Revisited”. In:
European Workshop on Software Process Technology, pp. 108–
124, Springer, Berlin, 1996.

[Lipp92] Ernst Lippe and Norbert van Oosterom. “Operation-based merg-
ing”. In: SDE 5: Proceedings of the fifth ACM SIGSOFT sym-
posium on Software development environments, pp. 78–87, ACM
Press, New York, NY, USA, 1992.

BIBLIOGRAPHY 105

[MacK03] David MacKenzie, Paul Eggert, and Richard Stallman. Com-
paring and Merging Files With Gnu Diff and Patch. Network
Theory Ltd., 2003.

[Mens02] Tom Mens. “A State-of-the-art Survey on Software Merging”.
IEEE Transactions on Software Engineering, Vol. 28, No. 5,
pp. 449–462, May 2002.

[Mezi03] Mira Mezini and Klaus Ostermann. “Conquering aspects with
Caesar”. In: Proceedings of the 2nd international conference on
Aspect-oriented software development, pp. 90–99, ACM Press,
2003.

[Mezi97] Mira Mezini. “Dynamic Object Evolution without Name Col-
lisions”. In: Proceedings ECOOP ’97, pp. 190–219, Springer-
Verlag, June 1997.

[Muns94] Jonathan P. Munson and Prasun Dewan. “A Flexible Object
Merging Framework”. Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pp. 231–242, 1994.

[NewC] “NewCompiler, a Squeak compiler based on ClosureCompiler”.
http://www.squeaksource.com/NewCompiler.html.

[Nguy05] Tien Nguyen, Ethan Munson, and John Boyland. “An Infras-
tructure for Development of Object-Oriented, Multi-level Con-
figuration Management Services”. In: Internationl Conference
on Software Engineering (ICSE 2005), pp. 215–224, ACM Press,
2005.

[Nier04] Oscar Nierstrasz and Marcus Denker. “Supporting Software
Change in the Programming Language”. In: OOPSLA Work-
shop on Revival of Dynamic Languages, Oct. 2004.

[Nier05] Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane
Ducasse, Markus Gaelli, and Roel Wuyts. “On the Revival of
Dynamic Languages”. In: Thomas Gschwind and Uwe Aßmann,
Eds., Proceedings of Software Composition 2005, pp. 1–13, LNCS
3628, 2005. Invited paper.

[Nier06a] Oscar Nierstrasz, Marcus Denker, Tudor Gı̂rba, and Adrian
Lienhard. “Analyzing, Capturing and Taming Software
Change”. In: Proceedings of the Workshop on Revival of Dy-
namic Languages (co-located with ECOOP’06), July 2006.

[Nier06b] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli.
“Flattening Traits”. Journal of Object Technology, Vol. 5, No. 4,
pp. 129–148, May 2006.

106 BIBLIOGRAPHY

[Opdy92] William F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, 1992.

[Orio04] Manuel Oriol. An Approach to the Dynamic Evolution of Soft-
ware Systems. PhD thesis, Centre Universitaire d’Informatique,
University of Geneva, Apr. 2004.

[Otis91] Allen Otis, Paul Butterworth, and Jacob Stein. “The GemStone
Object Database Management Systems”. Communications of
the ACM, Vol. 34, No. 10, pp. 64–77, Oct. 1991.

[Penn87] D. Jason Penney and Jacob Stein. “Class Modification in the
GemStone Object-Oriented DBMS”. In: Proceedings OOPSLA
’87, ACM SIGPLAN Notices, pp. 111–117, Dec. 1987.

[Putn] Colin Putney. “OmniBrowser, an extensible browser framework
for Smalltalk”. http://www.wiresong.ca/OmniBrowser.

[Reng06] Lukas Renggli. Magritte – Meta-Described Web Application De-
velopment. Master’s thesis, University of Bern, June 2006.

[Robb05] Romain Robbes and Michele Lanza. “Versioning Systems for
Evolution Research”. In: Proceedings of IWPSE 2005 (8th
International Workshop on Principles of Software Evolution),
pp. 155–164, IEEE Computer Society, 2005.

[Robb06] Romain Robbes and Michele Lanza. “Change-based software
evolution”. In: Proceedings of EVOL 2006 (1st Interna-
tional ERCIM Workshop on Challenges in Software Evolution),
pp. 159–164, 2006.

[Robe97] Don Roberts, John Brant, and Ralph E. Johnson. “A Refactor-
ing Tool for Smalltalk”. Theory and Practice of Object Systems
(TAPOS), Vol. 3, No. 4, pp. 253–263, 1997.

[Roun05] David Roundy. “Darcs: Distributed Version Management in
Haskell”. In: Haskell ’05: Proceedings of the 2005 ACM SIG-
PLAN workshop on Haskell, pp. 1–4, ACM Press, New York,
NY, USA, 2005.

[Sato04] Yoshiki Sato and Shigeru Chiba. “Negligent class loaders for soft-
ware evolution”. Proc. ECOOP 2004 Workshop on Reflection,
AOP and Meta-Data for Software Evolution, 2004.

[Scha05] Nathanael Schärli. Traits — Composing Classes from Behavioral
Building Blocks. PhD thesis, University of Berne, Feb. 2005.

[Send03] Shane Sendall and Wojtek Kozaczynski. “Model transformation:
the heart and soul of model-driven software development”. IEEE
Software, Vol. 20, pp. 42–45, 2003.

BIBLIOGRAPHY 107

[Smit96] Randall B. Smith and Dave Ungar. “A Simple and Unifying
Approach to Subjective Objects”. TAPOS special issue on Sub-
jectivity in Object-Oriented Systems, Vol. 2, No. 3, pp. 161–178,
1996.

[Stey96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt.
“Reuse Contracts: Managing the Evolution of Reusable Assets”.
In: Proceedings of OOPSLA ’96 (International Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations), pp. 268–285, ACM Press, 1996.

[Tich85] Walter F. Tichy. “RCS - a system for version control”. Software
Practice and Experience, Vol. 15, No. 7, pp. 637–654, July 1985.

[Tich88] Walter Tichy. “Tools for Software Configuration Management”.
In: Proceedings of the International Workshop on Software Ver-
sion and Configuration Control, pp. 1–20, 1988.

[Wool96] Bobby Woolf. “The Null Object Pattern”. In: Design Pat-
terns, PLoP 1996, Robert Allerton Park and Conference Center,
University of Illinois at Urbana-Champaign, Monticello, Illinois,
1996.

	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Our Approach in a Nutshell
	Contributions
	Thesis Outline

	Managing Software Change
	Problems of a Static World
	Current Attempts to Cope with Change
	Language Constructs
	Supportive Tools
	Merging Algorithms
	Engineering and Analysis Techniques
	Summary

	Modeling Change as a First-Class Entity
	Motivating Example

	Changeboxes
	Overview
	The Changebox Metamodel
	Variants: Instances of Runnable Meta-Objects
	Elements
	Change Specifications

	Capturing Changes
	Work Sessions
	Capturing Simple Changes
	Recording Refactorings

	Scoping Execution
	Specifying the Execution Scope
	The Changebox Lookup Mechanism
	Dispatching Message Sends
	Dispatching Class References

	Merging Changeboxes
	Pre-Processing Change Specifications
	Merge Strategies
	Change Specification Dependencies

	Tool Support
	Work Session Browser
	Developing: OmniBrowser
	Source Control: Monticello
	Testing: Test Runner & Debugger

	Evaluation
	Benchmarks
	Real World Applications
	Micro Benchmarks

	Modeling Classboxes
	The Classbox Model
	Using Changeboxes to Express Classboxes
	Discussion

	Evolution Analysis with Changeboxes

	Conclusions
	Discussion
	Open Issues
	Migrating Instances between Different Scopes
	Changeboxes for System Components
	Fixed Class References

	Contributions
	Future Work
	Performance Enhancements
	Finer-grained Change Information

	Short Guide to Our Implementation
	Installing Changeboxes
	Source Installation

	Getting Started

	An Introduction to Squeak
	Index
	List of Figures
	List of Tables
	Bibliography

