
racter-
ot just by
y over
classes
s, tools
ystems
ate the
r then
ced and

t organi-
velop-

over the
these
n. It is

velop-

h cre-
ucts.
ality
we ap-
Class Management for Software

Communities1

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz and X. Pintado

Abstract
Object-oriented programming is considered in the context of software communities – groups of
designers and developers sharing knowledge and experience. One way of fostering reuse of this
experience is by establishing large collections of reusable object classes. Resulting problems in-
clude: Class packaging and class organization – how can classes and their methods be represent-
ed to simplify reuse. Class selection and exploration – what query and browsing facilities are
needed by developers in order to facilitate software reuse. Class evolution – how may the class
hierarchy be reorganized as a result of changes introduced by developers. These issues are illus-
trated by examining prototype tools and systems intended to aid object-oriented programming.

Introduction

Object-oriented programming may engender an approach to software development cha
ized by the large-scale reuse of object classes. Large-scale reuse is the use of a class n
its original developers, but by other developers possibly from other organizations, possibl
a long period of time. Our hypothesis is that the successful dissemination and reuse of
requires a well organized community of developers who are ready to share ideas, method
and code. Furthermore these communities should be supported by software information s
which manage and provide access to class collections. In the following sections we motiv
need for software communities and software information systems. The bulk of the pape
discusses various issues associated with managing the very large class collections produ
used by these communities.

Software Communities

Software development and maintenance has been and still is a major headache for mos
zations. Although it has been recognized as a problem for many years now, software de
ment still costs too much and induces overruns and delays. Advances have been made
years, particularly in the area of CASE tools which aim to improve productivity. In spite of
improvements, software development has resisted efforts at mechanization or automatio
perhaps time to recognize that there is something intrinsically different about software de
ment which does not allow easy automation.

It is widely recognized that software development is not repetitive but requires muc
ative and intellectually taxing effort. It is, therefore, different from most manufactured prod
Nevertheless, we still dream of “software factories” which will cheaply produce high qu
software (see [20] for an early expression of this idea). The problem, perhaps, is that

1. In Communications of the ACM, Sept. 1990, pp. 90-103.
1

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 2

 math-
he em-
h soft-
duced
esult of
owever,
e us to

 fully

al case:
resent-
Science
gy, it is
medi-
actory.
awyers
ated not
n inte-

otion of
h legal
eventu-
usabil-

fort to
 should
evel-
al case
 require-

oftware
 compo-
ly rear-
l.

t legal
 help
ver all
alysis

scour-
r hand,
ting a
proach software development with the wrong paradigm. If we approach software using a
ematical paradigm, the program resembles a proof of a stated problem (the theorem). T
phasis is on structure, methodical development and proof of correctness. If we approac
ware with an engineering/manufacturing paradigm, we view the program as a product pro
by a well-known procedure whose steps have to be streamlined. Over the years, as a r
considerable research activity we have achieved some success using these paradigms. H
the fact that software development and maintenance is still a problem should encourag
search for other paradigms.

One new paradigm is offered by object-oriented programming. This paradigm, when
applied, promotes a method of development we call cooperative large-scale reuse. This method
can be illustrated by use of a legal analogy. Suppose that a program corresponds to a leg
its development and maintenance parallels the legal effort associated with building and p
ing a legal case. Such an analogy would have been natural if the pioneers of Computer
had been lawyers rather than mathematicians and engineers. Note that, within this analo
difficult to talk about the correctness of software, or software factories, for the analogy im
ately points out the difficulties in considering correctness of a legal case or a legal case f
The most interesting insights, however, come in a positive sense when we consider how l
go about building a case. First, they base their arguments on past experience accumul
only by themselves, but especially that of their colleagues. Recording this experience is a
gral part of the legal process. Second, a legal case continuously evolves. There is no n
separating design from implementation or development from maintenance. Instead, eac
case continuously develops (through the appeal procedure) and links up to previous and
ally future cases. Two outstanding characteristics of legal effort seem, therefore, to be re
ity of past experience and a continuously evolving effort.

Let us now draw parallels from the analogy and apply the characteristics of legal ef
software. The two outstanding characteristics of software development and maintenance
be reusability of experience and evolving software. To increase productivity of software d
opment one should reuse past experience, in the same way that a lawyer building a leg
uses past ideas, arguments and cases. By the term past experience we mean to include
ments, specifications, models, designs and software components. To promote evolving s
we should be able to interchange parts, such as documentation, designs, and software
nents, and link them in various ways, just as a lawyer enhances his case by continuous
ranging his arguments, drawing in new ones and abandoning those that are unsuccessfu

Software development and maintenance is intellectually taxing, in the same way tha
work is. Both can benefit from proper organization and appropriate use of technology to
manage and locate information. The prevailing software engineering methods tend to co
phases of software development for every single project, from requirements collection, an
and specification, all the way to coding. Reuse of experience and software is effectively di
aged by restricting the context to a single application at a time [22]. We argue, on the othe
that long-term gains in software productivity and reliability can only be achieved by adop
more global view of software development.

3 Class Management for Software Communities

t of a
areas
unities:

of pieces
f col-
gained
mains.
f this

 accu-
ppli-
del of
nitialize
lawyers
es.

ater or
on how
 such
scenario
ific re-
nly a

s clear
e must
 it easy
) pro-

im-
itory,
ware
hould
are is

e that
e com-
ct-ori-
 inherit-
its and
 nature
In particular, software development can be viewed as taking place within the contex
software community. Just as there are legal communities – groups of lawyers with common
of legal expertise and a shared history of legal cases – so there should be software comm
groups of people engaged in the development, and also the dissemination and end use,
of software. An essential characteristic of any community is its history: an accumulation o
lective past experience. The history of a software community would be the experiences
in the design, development, use and maintenance of software for particular application do
For a software community to function efficiently it must learn from and take advantage o
wealth of experience.

In our ideal scenario, applications would be based on generic software components
mulated by a software community familiar with the application domain. To build a new a
cation, a developer would collect requirements according to an existing, well-defined mo
the domain, select generic software components according to these requirements, and i
and compose the selected components to construct the running application. By analogy,
would like to handle all legal cases as though they were slight variations on textbook cas

Although this scenario is rather idealized, we believe that it can be realized to a gre
lesser extent, depending on how well an application domain can be characterized, and
routine the required applications will be. In fact, commercially available generic software,
as spreadsheets, relational databases, and hypertext systems, is already proving this
workable for certain application domains. Even in cases where clients have very spec
quirements, we believe that a large part of an application should be “boilerplate,” with o
few software components being designed specifically to meet the new requirements.

To approach this scenario as closely as possible for any given application domain, it i
that we must support the process of developing generic, reusable software. To this end w
(1) organize and manage software and information about software development, (2) make
to find information concerning prior projects that may be relevant to new projects, and (3
vide support for the gradual evolution of software and software components.

Software Information Systems

The use of software information systems is one way of achieving the above three goals and
proving the efficiency of software communities. A software information system is a repos
likely very large, containing all the information, including documents, designs, and soft
components, relevant to the functioning of a particular software community. The system s
be readily available to members of the community and continuously augmented as softw
developed or refined.

To make the notion of a software information system more concrete we shall assum
applications are developed using an object-oriented approach and that individual softwar
ponents are primarily classes written in an object-oriented programming language. Obje
ented languages, through mechanisms of encapsulation, data abstraction, instantiation,
ance, genericity, and strong typing, have demonstrated their potential in developing toolk
libraries of reusable software components. Although we make few assumptions about the

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 4

 to sup-
tarting
.

forma-
quality
 reliabil-
nowl-
sing files

rom a
 of un-

lopment
ase

em in
e pro-
sest ex-
sitories

g, access
ecific to
e; we call
finding
r reuse:
. These

ary to

oaches
use, ap-
e con-

 here a
critical

se the
roach

s in a file
g con-

rowsers.
of the particular mechanisms supported by the language of choice, we feel it reasonable
pose that object classes and some form of class inheritance will play an important role. A s
point, then, is to consider a software information system as a collection of object classes

There are a number of advantages to collecting and organizing classes within an in
tion system. First, the classes can be indexed to help with retrieval. Second, by applying
control procedures to classes added to the system, developers can be more certain of the
ity of classes obtained from the system. Furthermore, a software information system with k
edge about dependencies between classes can ensure that its contents be complete (mis
or definitions are often problems when reusing software). Finally, by obtaining a class f
repository, developers are more likely to get a standard version rather than a version full
documented local modifications.

There has been considerable work in the area of database support for software deve
[3][4][15][28], primarily in the context of extending programming environments with datab
facilities for project and configuration management. We view a software information syst
a rather different light, as an autonomous service, not necessarily tightly coupled with th
gramming development tools but, nonetheless, easily accessible by these tools. The clo
isting systems of this nature are electronic bulletin boards and the various software repo
scattered over Internet. Such facilities, while useful, are very limited in their functionality.

The task of maintaining a collection of classes we will call class management. Class man-
agement includes many traditional database management issues such as data modellin
methods and authorization. Additionally, class management encompasses new issues sp
classes. For instance, as requirements change or designs improve, classes must chang
this class evolution. When the collection is large, developers may require assistance in
a class for reuse; we call this class selection. There is the problem of preparing classes fo
class packaging. Other class management issues pertain to security and pricing policies
include keeping the class collection free from viral infection or, when a class is propriet
particular groups, helping to enforce licensing constraints.

In the following we explore the basic issues in class management by discussing appr
to organizing and managing object classes so as to support software development and re
proaches to browsing and querying a collection of object classes, and techniques for th
trolled evolution of object classes and class hierarchies. Our objective is not to propose
design for software information systems, but rather to identify and categorize some of the
issues that must be addressed when designing these systems.

Class Packaging

Object-oriented programming has been described as a “packaging technology” [9]. Class pack-
aging is the problem of representing an object class so that the information needed to u
class can be easily located and incorporated within an application. A straightforward app
to packaging would be to represent classes by source text and store these representation
system. The information could be organized using simple mechanisms such as file namin
ventions and directories, and accessed though standard utilities such as editors and file b

5 Class Management for Software Communities

s. For

l-

ssor,

(com-

ant
ay

: it be-
ed and
ging the
ftware
. For in-
 to de-
ips of
However, even if the number of classes is small this representation may present difficultie
instance, on a UNIX™ system, a C++ programmer typically represents a class X by two files: a
source file, X.c, and header file, X.h, containing public declarations. Suppose X.h consists of:

#include "common.h"
#include "Y.h"
#include "Z.h"

class X : public Y, public Z {
int x;

protected:
void setx(int);
int getx();

public:
X(int);
~X();

};

Given X.h, a programmer who wants to make use of class X would have to locate at least the fo
lowing information:

• the include files common.h, Y.h, and Z.h,

• the source code or object code for the methods X::setx, X::getx, X::X, and X::~X, and

• the source code or object code for methods of the classes Y and Z.

In addition the programmer would have to consider:

• whether the names (classes, structures, type definitions, etc.) used in common.h, Y.h, or
Z.h, are in conflict with names already in use,

• whether any of common.h, Y.h, or Z.h, in turn refer to other include files,

• if object code is available, whether it is suitable for the runtime environment (proce
operating system) the programmer intends to use,

• if source code is available, whether it is suitable for the development environment
piler, operating system) the programmer intends to use,

• whether X will be reused directly or refined. In the first case the programmer may w
to examine the source of public methods of X; in the second case the programmer m
also want source of private and protected methods.

As the number of classes increases, more problems appear with this representation
comes difficult to find classes, relationships between classes are not explicitly represent
so must be deduced from the source code, and adding new classes may involve rearran
file system. By choosing a richer, more explicit representation of class structure, the so
information system can be of greater assistance in managing large numbers of classes
stance, advanced querying and browsing facilities, versioning, and high-level interfaces
velopment tools all require, to some extent, knowledge of the structure and relationsh
classes.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 6

ation
hich
tain var-
h layer

 of rep-
ted with
rtext-

ment
ns con-
ared and
g tool

tage of
s which
e added
itions

believe
ition of
t the at-
ltiple

ber of
r pro-
An early example of class packaging can be found in Xerox’s PIE (Personal Inform
Environment) [14]. PIE is an extension of the Smalltalk programming environment in w
Smalltalk classes are represented by layered networks. The nodes of these networks con
ious chunks of code for the associated class (see Figure 1 for a simplified example). Eac

corresponds to a different design of the class (so in the example shown, class X has one method
in the initial layer and a second method added by the superseding layer). One advantage
resenting classes by data structures rather than text is that software can then be integra
other forms of information.This is illustrated by PIE since it supports the creation of hype
like links between nodes containing code and nodes containing documentation.

A more recent example of packaging is found in the Trellis programming environ
[27]. As a programmer defines new classes using the Trellis/Owl language, representatio
sisting of the source code of these classes are added to a database. This information is sh
augmented by the programming tools within the environment, including a cross-referencin
and a compiler which adds object code and possibly error information. A second advan
representing classes by data structures, rather than text, is that it is easier to build tool
examine and manipulate classes. Trellis is an open-ended environment where tools can b
or modified. This is, at least in part, a result of the packaging and sharing of class defin
provided by the database.

It is natural to ask what are the characteristics of useful class representations. We
three things are important. First, the representation should allow a structural decompos
the class into a number of logical components. Second, the representation should permi
tachment of descriptive information. And, third, the representation should support mu
views.

Structural Decomposition
By structural decomposition we mean breaking the representation of a class into a num
interrelated components. In choosing a decomposition for classes written in a particula

class X

method2

method1

ivar2

ivar1

Initial Layer

Superseding Layer

Figure 1 PIE Network Layers

7 Class Management for Software Communities

the pro-

 contain

ethods

senta-

d sim-

y tools

e repre-

. Possi-

e infor-

ual de-

ftware

 number

iffering

osition

 of the

te que-

ecome

y have

t, their

hms),

 order

enta-

ples of

For in-

ion of

ds into

hat role

 partic-

ance,

indepen-

etailed,

s class-
gramming language, one can be guided by the constructs provided by the language. So if

gramming language supports class and instance variables then the representation should

structural components corresponding to both class and instance variables. Similarly if m

may be private or public it should be possible to capture this distinction within the repre

tion. However, there is a tradeoff between the granularity of structural decomposition an

plicity of the representation: as the representation becomes more finely detailed, its use b

such as browsers becomes more complex.

Descriptive Attachment

Not all components of the class representation need be derivable from source code. Th

sentation should allow one to attach components corresponding to descriptive attributes

ble attributes include the author of the class, the date it was written, version and releas

mation, and comments or documentation. For retrieval purposes it is useful to attach text

scriptions of the class. This could be a set of keywords, or descriptors from a so

classification scheme such as described in [34].

Multiple Views

Structural decomposition of classes is a very general mechanism which can be used in a

of ways. One use is in versioning, the advantage being that only those components d

from a previous version need be stored. This is demonstrated by PIE. Structural decomp

is also useful for browsing – since the browser can then display or highlight different parts

class in different ways, and for querying – since it is then possible to express and evalua

ries which refer to different parts of the class. However the representation of a class may b

rather complex. Considering only versioning there are many complications. Versions ma

different designs (i.e., different signatures), may refer to different stages of developmen

implementations may differ (i.e., different choices for internal data structures and algorit

and their compilations may differ (i.e., object code for various machine architectures). In

to cope with this complexity it is useful if multiple views of a class are supported.

Some examples of views include the private and public parts of a class, the implem

tions of a class (see Figure 2), and owner versus user views of a class [42]. Other exam

views can be found in the ways various object-oriented languages organize methods.

stance, Smalltalk conventionally groups methods into categories. In CV++ [37], an extens

C++, methods can be grouped into a number of interfaces. Other proposals group metho

roles – each object has a current role and will only respond to methods associated with t

[30][36]. In such cases one may want to be able to view a class from the perspective of a

ular category, interface, or role. Finally, in a multi-language environment where, for inst

both C++ and Smalltalk classes are needed, it may be useful to have a coarse language-

dent view, showing perhaps only class names and method names, in addition to more d

language-dependent views. In general, as these examples show, a view mechanism allow

es to be dealt with at different levels of detail and in more flexible ways.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 8

 A soft-
 of rea-
 reuse, it
roups of
g since

n also
system

truc-

te-
ined by
efine a
ook at

uld ex-
 classes.

ing
inherit-
iented
Class Organization

Class packaging deals with the representation of single classes. Class organization, on the other
hand, deals with the relationships and dependencies that occur in collections of classes.
ware information system should capture the relationships between classes for a number
sons. First it is needed for reuse; although classes have been proposed as units of code
is often the case that one class depends on another and so it is not single classes but g
classes which are reused. Second, knowledge of class relationships can help with browsin
a browser needs to identify related pieces of information. Finally, class relationships ca
help to detect inconsistencies or incompleteness. For example, a software information
would be incomplete if it contained a class but not its superclass.

It is useful to distinguish two categories of relationships involving classes. The first, s
tural relationships, are derivable from source code. Examples include the SubclassOf or inherit-
ance relationship, InstanceOf, and a DependsOn relationship. Relationships of the second ca
gory are those which are not derivable from source code, instead these are explicitly def
some agency external to the software information system. For example a project could d
relationship for the purposes of collecting together the classes which it uses. We now l
some of the issues involved in representing relationships among classes.

SubclassOf (inheritance)
Inheritance is one of the standard features of object-oriented languages [44], thus we wo
pect a software information system to keep track of which classes are subclasses of other
Representing this relationship itself is straightforward; single inheritance is a 1-n relationship
between classes while an m-n relationship is needed for multiple inheritance. An interest
question is to what extent the software information system need model the semantics of
ance. There are many varieties of inheritance [25][39]. To take one example, object-or

Figure 2 Alternative Views

method2method1

Class X

privatepublic

method2

method1

Class X

method2

method1

implementation2implementation1

9 Class Management for Software Communities

sible to
w of a
iew of
more,

lar-
ut gen-
lications
 are sit-
es

e software
 relation-
 Some
tions by
taclass-

ces
 a class
xamples
een

 which

e other
und in
ce vari-
tions of
volve
group of
sses. In
ature or
 repre-
 shows
lection.

lation-
ture of
 the soft-
gure 3
programming languages differ on whether the instance variables of a superclass are vi
the methods of a subclass. If we want the software information system to provide a vie
class showing all available instance variables or all available methods, as does the “flat” v
Eiffel [21], then it will be necessary to model some of the semantics of inheritance. Further
such views involve calculating the transitive closure of the SubClassOf relationship, so efficient
traversal of this relationship must be possible within the software information system.

InstanceOf
The role of the InstanceOf relationship within software information systems requires some c
ification. We see software information systems as containing representations of classes, b
erally not instances of these classes. Instances would be created and managed by app
constructed using the classes provided by a software information system. However there
uations when an inter-class InstanceOf relationship is useful. Some object-oriented languag
contain metaclasses. In this case classes themselves can be viewed as instances and th
information system would need to represent both classes and metaclasses as well as the
ship between the two. A second potential use is in modelling parametric polymorphism.
object-oriented languages contain constructs which can be expanded into class specifica
binding type parameters. Such polymorphic class specifications could be modelled as me
es, in which case the derived class would be an instance of the metaclass.

DependsOn (ClientOf, PartOf)
One class may depend on another in a variety of ways: A class may be a ClientOf (i.e., invoke)
the methods of another class. One class may be PartOf a second, as when a class has instan
of other classes among its instance variables. In strongly-typed object-oriented languages
may depend on another by declaring it as the type of a method parameter. These are e
of a general DependsOn relationship that identifies the various syntactic references betw
classes. A software information system should be able to determine for a given class,
classes it depends on, and conversely, which depend on it.

The above relationships are common to many object-oriented languages. There ar
relationships which are more language-dependent, such as the “friend” relationship fo
C++ [40]. If one class declares a second as its friend then the private methods and instan
ables of the first class are available to the second. Other examples result from aggrega
classes such as “features” [17] and “frameworks” [45]. Both features and frameworks in
groups of classes: a feature is a language construct that specifies an interface to some
classes while a framework is a subsystem design based on an inter-working group of cla
these examples, one class may be related to another via participation in the same fe
framework. In general any language dependent software information system may have to
sent a number of additional relationships derived from the language concerned. Figure 3
an example of a more extensive group of relationships used to represent a C++ class col

In addition to structural relationships such as SubClass, InstanceOf, and DependsOn, class
organization also requires relationships not derivable from source code. These include re
ships that associate documentation and other design information with classes. The na
these relationships depends on many factors such as the procedures for adding a class to
ware information system and documentation conventions and formats. For example, Fi

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 10

 prac-
 likely

ful to
ng lan-
nviron-
 name
” ob-
 user-

sign.
omain
ner to
orking

rchy. As
ovation

st too
m
n may

e, Figure
shows a simple “DocumentationOf” relationship between C++ classes and documents. In
tice, however, a more refined and versatile inter-linking of classes and documentation is
to be necessary.

In addition to organizing classes in terms of inter-class relationships, it may be use
have more abstract groupings of the class collection. In many object-oriented programmi
guages the class name space is essentially flat. This can be problematic in a multi-user e
ment since a monolithic class hierarchy constrains the designer of new objects to avoid
clashes. A simple example would be a CAD programmer who wants to provide a “Window
ject class for use in architectural applications but is unable to because of a conflict with a
interface “Window” class. A more subtle form of this problem may also occur in object de
There is a tendency for the initial choice of object classes within a given an application d
to prescribe the design of future applications for the domain. It can be difficult for a desig
break out of the prescribed design by class specialization since: 1) inheritance is now w
against the designer, and 2) the designer really wants a reorganization of the class hiera
a result the class hierarchy may become a rigid constraining structure that hampers inn
and evolution.

For large software information systems it appears that a single class hierarchy is ju
simple. What is needed is a context mechanism, so, for instance, the object classes deriving fro
a particular design for a particular domain can be grouped together. One possible solutio
be context hierarchies, each context corresponding to a class name space. As an exampl

C++Class

SubClassOf

UsesPrivatesOf

Document

DocumentationOf

C++Source

ImplementationOf

C++Method

DependsOn

ClientOfMethodOf
FirstDeclaredBy

RefinementOf

InvokerOf

RefinedBy
InheritedBy

PartOf

Figure 3 C++ Class Relationships

11 Class Management for Software Communities

nsists

hin the

ring

re are

r or ap-

f com-

oking

trying

to two

he

 area of

idual

 collec-

on and

mmon-

ia are

 class
4 shows three contexts: A, B and C. The class hierarchy visible within a given context co

of those classes visible within the context’s parent and any additional classes defined wit

context in question. For instance, context B includes classes C1, C2 and C3 from its parent, A,

and the locally defined class C4. A map of the context hierarchy, such as the small tree appea

in the left of Figure 4, provides a high-level global view of the class collection.

Class Selection and Exploration

We now discuss the general problem of retrieving information from a class collection. The

many programming situations where retrieval is necessary. A user (such as a programme

plication developer) may, for example, be looking for a specific class – perhaps the class o

plex numbers or a particular version of a window class. Alternatively, the user may be lo

for functionality that is provided by any of a number of classes in the system, or simply

to get a feel for the scope of the class collection. We can divide these retrieval activities in

groups: class selection and class exploration. Class selection refers to the situation in which t

user has fairly specific selection criteria, such as the name of a class or method, or an

functionality. With class exploration, on the other hand, the user is not interested in indiv

classes but rather in the relationships among classes and the overall organization of the

tion. This is the case, for instance, when a programmer is implementing a new applicati

wants to determine which classes may be relevant to the application. The two methods co

ly used for retrieval are querying and browsing. Querying is useful when search criter

known, it is thus more appropriate for selection – while browsing is more appropriate for

exploration.

Figure 4 Class Hierarchies within Contexts

A

C

B

C1

C2

C3

C1

C2

C3

C1

C2

C3

C4

C’4 C5

context

class

A

B

C

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 12

lasses,
oach is
 class
es send

ing cat-
malltalk
ossible
 order to
is pos-
on do-
ing de-

he de-
em as

rojects.
 Small-
ftware
lection

d que-
 selec-
at ap-
eeman
 com-

rmore a
onent to

loring
sers

riented
der for
trate

 meth-

s with
Class browsers

Currently most programming environments do not contain extremely large numbers of c
thus a single tool, a class browser, is used for both selection and exploration. This appr
exemplified by the Smalltalk-80 browser [13] which allows a user to browse through the
inheritance hierarchy, display instance variables and methods, and determine which class
or receive a given message. Classes are grouped by functionality into possibly overlapp
egories, and it is possible to browse through categories of classes and methods. The S
browser has been extended in many ways. For instance with the PIE browser [14], it is p
to associate textual components to classes, categories and other entities of the system in
help in the understanding of the system. The PIE browser also provides multiple views. It
sible, for example, to present the user with a set of views adapted to different applicati
mains. One such view might correspond to a development project where classes are be
veloped incrementally and thus should be kept hidden from other users not involved in t
velopment effort. The ability to define partial views can reduce the complexity of the syst
it appears to a particular user.

Most of the existing browsers have been tested on small or medium-scale software p
Although extrapolating their usefulness is not an easy task, it is natural to ask whether the
talk approach is scalable and whether it will be able to cope with the potential size of so
information systems. We believe that current browsers are unlikely to be adequate for se
when class collections increase in size by a few orders of magnitude.

As the size of the class collection increases, class selection becomes more difficult an
ry facilities are of greater benefit. There has been relatively little work in the area of class
tion, although information retrieval techniques may be applicable [10]. One proposal th
pears promising is the software classification scheme developed by Prieto-Diaz and Fr
[34]. This scheme uses a six-tuple of “facets,” or descriptive attributes, to classify software
ponents according to such things as functional area, medium and system type. Furthe
conceptual distance based on facet values can be used to estimate the match of a comp
a particular query.

Another question is whether browsing is sufficient for users who are interested in exp
the functionality of a class collection. The primary navigational structure used by brow
based on the Smalltalk approach is the inheritance hierarchy. However, in most object-o
programming languages, the semantics of inheritance is not sufficiently constrained in or
it to give useful insight into the functionality of subclasses. The following examples illus
the point:

• A subclass may add behavior to that of its superclass.

• A subclass may provide the same interface as its superclass but reimplement the
ods.

• A subclass may combine the methods of its superclasses.

• With multiple inheritance, a subclass may override a method from one superclas
that from another.

13 Class Management for Software Communities

 while
inher-
bclass
pically

mining
nd con-

roblem
ceived
ser are
ualize

rities
ors” of
w resem-
oft-
lation-

tional
o di-
ould be
lasses

y of a
n class-
ether,
 func-
ether

ions
otential
concep-
e textual
es, or a
the same

hich
d
erclass-

ovide
In general, it is possible that classes related by inheritance provide dissimilar functionality
classes unrelated by inheritance may provide similar functionality, so merely knowing the
itance relationships between classes gives little indication of how the functionality of a su
differs from its superclass or why the subclass appears where it does in the hierarchy. Ty
the user will resort to comparing the code belonging to the two classes. However, deter
the structure and dependencies of a set of classes by examining the code is difficult [41] a
trary to encapsulation.

The problem of guiding a user engaged in exploring the class space is similar to the p
of providing navigational assistance in hypermedia environments, a subject that has re
much attention recently [43]. Possible features that could be integrated in a class brow
global views of the organization of the system and navigation charts that help users vis
their position and the structure of the surrounding space.

Affinity browsing

Another approach to guiding exploration is by providing means for determining the simila
between classes, their interfaces and their functionality. In this case the “nearest neighb
a class are not simply its super and subclasses but rather those classes which it someho
bles. We call this affinity browsing. The principal assumption of this approach is that in a s
ware information system containing a large collection of inter-dependent classes, the re
ships among these classes are complex and can be viewed in many ways.

The affinity browser [31] is an attempt to integrate navigational aspects of conven
browsing with query capabilities. The affinity browser provides the user with a set of tw
mensional views, each displaying some relationship among a set of classes. One view c
based on the usual inheritance relationship while another could portray a grouping of c
based on their relevance to some query. An affinity function, which defines the intensit
relationship, is associated with each view. When the view is displayed, distances betwee
es convey their affinity, i.e., pairs of classes with strong affinity are displayed close tog
while those with less affinity lie further apart. For example, classes that implement similar
tionality, or have similar signatures, could have a higher affinity, and would then cluster tog
when displayed.

In order to apply affinity browsing to class exploration we need to define affinity funct
for classes. Clearly there are many such functions, some more useful than others. Some p
candidates include: the distance between two classes on the inheritance hierarchy, the
tual distance between two classes using some classification scheme such as facets, th
similarity of the signatures of two classes, the amount of code shared between two class
measure based on class dependency (where two classes are similar if they depend on
classes).

As a specific example of an affinity function and view generation, consider Figure 5 w
shows the inheritance structure of a set of classes, C = {C0, ..., C8}, and the methods defined (an
redefined) by each class. Assume that classes recursively inherit methods from their sup
es. Let M(X) be the set of methods in the interface to class X. For instance M(C7) = {a, b, e, f, i,
j, o, p}. We want to define an affinity function that conveys the extent to which classes pr

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 14

nd
a good
mod-

ality.

ses

ly de-

r infor-

lects a
r-defined
r than
 class-

y can be
similar functionality. As a candidate function, suppose we define A(X, Y), the affinity between
class X and class Y, as:

where card() is a function that returns the cardinality of a set. For example, to evaluate A(C3,
C4), we have M(C3) = {a, b, g, h} and M(C4) = {a, b, i, j}, so card(M(C3) ∩ M(C4)) = 2 and
card(M(C3) ∪ M(C4)) = 6. Hence, A(C3, C4) = 1/3. Of course other definitions are possible a
it may be necessary to perform a few iterations before one obtains views which convey
intuition of the underlying relationship. To illustrate this point, the above function could be
ified slightly in the case of redefinition of an inherited method (such as method a of class C1).
Suppose we want to emphasize that redefined functionality differs from inherited function
Let m be the inherited method and m’ be its redefinition. In the case where both m and m’ appear
in M(X) ∪ M(Y) then in the affinity calculation we consider m = m’ in M(X) ∩ M(Y) while in
M(X) ∪ M(Y) we take m ≠ m’. This produces a slight reduction of the affinity between clas
where one redefines a method of the other.

Figure 6 depicts a typical view generated by the affinity browser using the previous
fined measure of affinity. The highlighted class, C4, is the current class. The Inspect Window
displays the names of the classes within the view, these can be selected to obtain furthe
mation about each class.

The affinity browser promotes the local exploration of the class space. The user se
class, it becomes the current class, and the tool displays the classes that are within a use
affinity neighborhood (i.e., those that have an affinity with the current class that is greate
a user-defined limit). Selecting a new current class causes a shift in the neighborhood; new
es enter the view while others disappear. Views can be connected in the sense that the

Figure 4
Figure 5 Inheritance Structure of a Set of Classes

a b

c d a e f g h i j

k l m n o p

q r

C0

C1 C2 C3

C4

C5

C6 C7

C8

A X Y,() card M X() M Y()∩()
card M X() M Y()∪()
--=

15 Class Management for Software Communities

on con-
 affinity

 gen-
layout
ssign

ide an
he view

 repro-
s. This

 but are

have to

mers

iently,
alized or
constrained to have the same current class. Each view then provides a different explorati
text; they are centered on the same class but have different neighborhoods since different
functions are involved.

It should be pointed out that given a measure of affinity it is not possible, in general, to
erate a two dimensional representation that satisfies all the affinity constraints. The view
algorithm [32][33] attempts to find a good approximate solution. For example, it does not a
the same weight to each affinity constraint. It assumes that it is more important to prov
accurate representation of affinity between the current class and the other classes of t
than between two arbitrary classes.

Class Evolution

Issues

Classes developed with an object-oriented language frequently undergo considerable
gramming before they become readily reusable in a wide range of applications or domain
phenomenon is due to a number of reasons:

• Experience shows that stable, reusable classes are not designed from scratch,
“discovered” through an iterative process of testing and improvement [16].

• Classes are difficult to arrange in predefined taxonomies.

• Because user’s needs are rarely stable, additional constraints and functionalities
be constantly integrated into existing applications.

• Reusing software raises complex integration problems when teams of program
share classes that do not originate from a common, standard hierarchy.

To apply such powerful techniques as inheritance, genericity, and delayed binding effic
real-world concepts have to be properly encapsulated as classes so they can be speci

C1

C3 C4

C2

C7

C0

C8

C6

C5

Inspect

Figure 6 Affinity Browser Display

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 16

actions
mpair
ch de-

n pro-
ped re-
ctive

hierar-
r ex-
remain
 same
erclass.
unction
. With
erited

anism
 do not
n stu-
untries
 of the
dged.
uses
abase
cally,
es.

n, but
cuses
l cases
ener-
 that it

g mod-
ass hi-
ns that
combined in a large number of programs. Inadequate inheritance structure, missing abstr
in the hierarchy, overly specialized classes or deficient object modelling may seriously i
the reusability of a class collection. The collection must therefore evolve to eliminate su
fects and improve its robustness and reusability.

Several approaches, ranging from class tailoring to class reorganization, have bee
posed to improve class collections. We describe here some relevant techniques develo
cently for controlling evolution in object-oriented environments, and discuss their respe
merits.

Class tailoring

Object-oriented languages have always provided simple constructs for tailoring class
chies, notably by allowing the redefinition of inherited properties. The body of a method, fo
ample, can be completely modified in a subclass, although its name and its signature
identical. It is therefore possible to implement specialized or optimized versions of the
method, rather than using the general, and perhaps inefficient algorithm defined in a sup
Some languages, such as Eiffel, allow the type of inherited variables, parameters and f
results to also be overridden, provided the new type is compatible with the old one [21]
the object-oriented variants of LISP, the programmer can choose how to combine inh
methods in a new class [24].

A similar, but more formal approach is described in [7]. The author proposes a mech
for “excusing” abnormal cases that arise when modelling an application domain, and that
fit with the existing class hierarchy. For example, a system for managing information o
dents may have to cope with the case of people who did part of their studies in foreign co
with different grading schemes and academic titles. Contradictions between the definition
“foreign student” class and its superclass (“normal student”) must be explicitly acknowle
The explicit redefinition of inherited attributes according to a formal model integrating exc
with inheritance facilitates the detection of type violations and the correct handling of dat
queries (without overlooking exceptional entities). Moreover, exceptions are handled lo
and do not require the factoring of common properties into numerous intermediate class

These techniques are useful for performing limited adjustments to a class collectio
they do not provide any help for detecting design flaws. Over-reliance on tailoring and ex
may quickly lead to an incomprehensible specialization structure, overloaded with specia
and difficult to manage efficiently with current database technology. Such a situation is g
ally a strong indication that the hierarchy does not contain the proper abstractions and
should be reorganized.

Class surgery

Whenever changes are brought to the modelling of an application domain, correspondin
ifications must be applied to the classes representing real-world concepts. Modifying a cl
erarchy is a delicate operation because of the multiple connections between class definitio
must be taken into account to guarantee the consistency of the hierarchy.

17 Class Management for Software Communities

le tech-
atisfy.
allowed
, and so
. These
restrict
ress a

lass hi-
recon-
or ex-

m all
rited

cted.
int from
n

onse-
rs detect
 speci-
re the
e or de-
eleting

n sys-
 to lo-
ss
ed.

lution.
s and

elps in
ments

 refer
lass. An
ed to.
e class
This problem also arises in the area of object-oriented databases. There, the availab
niques [1][29] first determine a set of integrity constraints that a class collection must s
For example, all instance variables of a class should bear distinct names, no loops are
in the hierarchy, the attributes defined in a class should be inherited by all its subclasses
on. In a second step, a taxonomy of all possible updates to the system is established
changes concern the structure of classes, like “add a method,” “rename a method,” or “
the domain of a variable”; they may also refer to the hierarchy as a whole, as with “supp
class,” or “add a superclass to a class.”

For each of these update categories, a precise characterization of its effects on the c
erarchy is given, and the conditions for its application are analyzed. Generally, additional
figuration procedures have to be applied in order to preserve integrity constraints. It is, f
ample, illegal to suppress an attribute from a class C if this attribute is really inherited from a
superclass of C; if the attribute can be suppressed, it must also be recursively dropped fro
subclasses of C, or possibly replaced by another variable with the same identifier inhe
through another subclassing path. As another example, deleting a class S from the list of ances-
tors of another class C is not allowed if this operation leaves the inheritance graph disconne
If the operation does not cause any problems, the inheritance links are reassigned to po
C to the superclasses of S. Of course, the properties of S no longer belong to the representatio
of C, nor to those of its subclasses.

Decomposing all class modifications into update primitives and determining their c
quences brings several advantages. During class design, this approach helps develope
implications of their actions on the class collection and maintain the consistency of class
fications. During application development, it guides the propagation of changes to whe
class is reused. For example, renaming an instance variable of a class, changing its typ
fining a new default value, has no impact on an application using the class. Changing or d
methods, on the other hand, generally leads to changes in applications.

Depending on the class model and on the integrity constraints, a software informatio
tem may provide different forms of class surgery. This approach however limits its scope
cal, primitive kinds of evolution; it forms a solid framework for defining “well-formed” cla
modifications, but it gives no guidance as to when these modifications should be perform

Class versioning

Versioning is a particularly appealing technique for managing class development and evo
It enables programmers to try different paths when modelling complex application domain
to record the history of class modifications during the design process. Versioning also h
keeping track of various implementations of the same class for different software environ
and hardware platforms.

A basic problem to deal with concerns the identity of classes. It is no longer enough to
to a class by its name, since the name might correspond to many versions of the same c
additional version number must be provided to identify unambiguously the class referr
When this version number is absent, a default class is assumed: the very first version of th

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 18

t mak-

 need
number
ential,
ftware
ss hi-

tance
ions for
etween

kind of
r all its
d, such
 can be
s are

s ver-
m an
lly au-

etween
, so that
lt value

impor-
 inte-
 [2].

ations
tations
r sup-
g class

 class-
out con-
s more
ls that

onsider-

sses
ritance
referred to, or its current version, or its most recent version when the software componen
ing the reference was created.

If only the most recent version can give rise to new versions, there is in principle no
for an elaborate structure to keep track of the history of classes: their name and version
suffice to identify their relationship to each other. The case where versioning is not sequ
i.e., where new versions can be derived from any previous version, requires that the so
information system record a hierarchy of versions somewhat similar to the traditional cla
erarchy.

Another difficulty arises because of the superimposition of versioning on the inheri
graph. For example, when creating a new version for a class should one derive new vers
the entire tree of subclasses attached to it as well? A careful analysis of the differences b
two successive versions of the same class gives some directions for dealing with this
problem. If the interface of a class is changed, then new versions should be created fo
subclasses and all its dependent classes. If only non-public parts of the class are modifie
as methods visible only to subclasses, or the types of instance variables, then versioning
limited to its existing subclasses. If only the implementations of the class’s method
changed, no new versions for other classes are required.

Application developers may want to consider objects instantiated from previous clas
sions as if they originated from the current version, or they may want to forbid objects fro
old version to refer to instances of future versions. These effects are rarely achieved by fu
tomatic means. For every new version, one must program special functions for mapping b
old and new class structures [6], [38]. These functions filter the messages sent to objects
proper actions can be taken, like translating between method names, returning a defau
when accessing a non-existent variable, or simply aborting an unsuccessful operation.

In spite of their overhead, class versioning techniques have proved indispensable in
tant domains like CAD/CAM and Office Information Systems. They have therefore been
grated in object-oriented systems such as Orwell [42], AVANCE [5], ORION [1], and IRIS

Class reorganization

Class evolution is intimately linked with class design. Suppose programmers build applic
chiefly in a bottom-up fashion by reusing existing classes. Classes may then require adap
so that they fully suit the needs of software developers. This is achieved by redefining o
pressing attributes (instance variables and methods), reimplementing methods, changin
interfaces, etc. Such modifications indicate that the current hierarchy is not satisfactory: if
es cannot be reused as they are, if subclasses cannot be derived from other classes with
siderable tailoring, then one needs to look for missing abstractions, to make some classe
general, to increase modularity, in short, to reorganize, at least in part, the hierarchy. Too
automatically restructure a class collection and suggest alternative designs can reduce c
ably the efforts required for carrying out these tasks.

One solution is to restructure algorithmically the hierarchy when introducing new cla
by creating intermediate nodes, shuffling attributes among them, and rearranging inhe

19 Class Management for Software Communities

wing
presses
 to ac-

 in the
espond
to de-
impor-
imate for
cts are
rough
erarchy

s, ex-
es, on
olution

solete
n as is
 like al-

prohibit
 access
meters.
utomati-
ty more
paths, so as to avoid the need for explicitly redefining or rejecting attributes [8]. In the follo
example, we want to insert a class that inherits attributes A and D, introduces E, but sup
attributes B and C. The second part of Figure 7 shows how the graph has to be modified

commodate class ADE; notice that two intermediate classes are required for its integration
hierarchy. These additional classes represent shared modules of functionality; they corr
to constructs, such as the “mixins” of LISP with Flavors [23], whose main purpose is not
scribe real-world entities, but rather to support the implementation of other classes. More
tantly, the classes introduced during the reorganization process can serve as a rough est
the abstractions that are missing from the modelling of an application domain. Such defe
unavoidable; it is exceptional to achieve a stable, definitive class design without going th
several iterations. New classes and inheritance links correspond to the places in the hi
warranting redesign.

This approach works incrementally and preserves the structure of all original classe
cept for their inheritance links. It can be extended to take into account information on typ
mutual dependencies between attributes, and on multiple inheritance. When typical ev
patterns emerge, they can help guide the design process [18].

An analogous technique is used to fully recast a class hierarchy, by getting rid of ob
classes or unwanted versions. Global restructuring algorithms keep as much informatio
needed to reconstruct all original classes, if needed; they try to enforce some properties,
lowing an attribute to be introduced at only one point in the hierarchy [8].

Reorganization can also improve the quality of classes. Some class design methods
certain kinds of references to the attributes of objects [19]. Thus, a method should never
variables that do not belong to the class where it is defined or are not passed to it as para
Such unsafe expressions can be detected and replaced with appropriate method calls a
cally. By eliminating unnecessary dependencies, classes should encapsulate functionali
tightly and show better resilience to change.

initial situation final situation
ABCDE

ABCD

ABC

AB

ABCD

ABC

AB

A

ADE

AD

Figure 7 Reorganizing a Class Hierarchy

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 20

osing
ecause
 user
nd the

lassing,
ild in-
ion sys-
ion.

d by the
ch en-
lopers.

dressed.
 collec-
nd how
uestion
s.

sed on
oked at
pers to

ittle ex-
ome of
or “ex-
asses
odify
ate var-

ss re-

velop-
nent
enting
m pri-
is on the
r appli-
ts into

PRIT
t-ori-
Reorganization algorithms appear useful for detecting missing abstractions, for prop
generalizations of very specialized classes, and for cleaning up a hierarchy. However, b
they perform strictly structural transformation on object descriptions, their results require
intervention to compensate for the lack of knowledge concerning the application domain a
concepts embodied in the class collection.

Object-oriented development has an iterative nature and successive stages of subc
class tailoring, class modification, version creation and reorganization are needed to bu
creasingly general, reusable and robust classes. We expect, therefore, software informat
tems to take advantage of a spectrum of tools and techniques for managing class evolut

Concluding Remarks

We have argued, in the preceding sections, that object-oriented programming, augmente
availability of large class collections, leads to a new method of software development whi
courages the design and reuse of generic components by communities of software deve

In establishing this method there appear to be three sets of issues which must be ad
First, there are basic questions related to the design of systems for maintaining the class
tions – what we have called software information systems. Second, we need to understa
to integrate such systems with software development methods. And, third, there is the q
of establishing the appropriate infrastructure to assure wide accessibility of these system

We have been more concerned with the first set of issues; in particular we have focu
class management, or how to organize and maintain large class collections. We have lo
various alternatives for representing classes and their relationships, for assisting develo
select classes, and for allowing the class collection to evolve over time. There has been l
perience working with very large, shared class collections and so we plan to evaluate s
the techniques described above. Currently we are implementing a prototype, called Xos,
ternal object system,” which has been specifically designed for modelling object cl
[11][12]. Xos allows application development tools to concurrently create, query and m
class representations. We plan to use Xos to capture a large C++ hierarchy and then evalu
ious querying and browsing facilities, such as affinity browsing, and experiment with cla
organization algorithms.

Regarding the role of software information systems and class collections in the de
ment lifecycle, it is useful to distinguish between two kinds of development activity: compo
development and application development. The former consists of designing and implem
reusable or generic components while the latter consists of constructing applications fro
marily predesigned components. For reuse to occur there must be an increased emphas
development, evaluation and refinement of components, as opposed to final products o
cations. Furthermore, tools must be provided that aid in configuring existing componen
new applications.

We are exploring this approach by participating in Ithaca [35], a large European ES
project, the aim of which is to build an environment to support the development of objec

21 Class Management for Software Communities

ct-ori-
d man-

 brows-
 SIB.
s

n soft-
gle or-
pment
vices in
 workers
ay also
 issues,
laced

condi-
w will
ss man-

n in

 Chal-

-

9,

ented applications in a variety of application domains. The environment includes an obje
ented language with database support, a software information base (SIB) which stores an
ages information concerning reusable software and its intended use, a selection tool for
ing and querying the SIB and a variety of application development tools built around the
Among these tools is a visual scripting tool for interactively constructing running application
from visual representations of packaged application objects [26].

Finally, we believe that the greatest benefits of large-scale class reuse will occur whe
ware information systems are publicly available resources rather than confined within sin
ganizations. Despite facilities such as electronic mail and bulletin boards, software develo
is still too isolated an activity. The past decade has seen the establishment of on-line ser
areas such as finance and travel.These services are decentralizing and interconnecting
in many occupations. Using the class as a unit of interchange, software development m
become a more open, networked, cooperative activity. This raises a number of pragmatic
some of which we have alluded to in this paper. For instance, if proprietary software is p
in publicly accessible systems will it be possible to ensure that licensing and copyright
tions are met? Who will operate these systems and what services will be provided? Ho
they be accessed? These pragmatic issues, in addition to the technical problems of cla
agement, must be addressed before large-scale reuse of object classes can be realized.

References

[1] Banerjee, J., Kim, W., Kim, H.-J., and Korth, H.F. Semantics and Implementation of Schema Evolutio
Object-Oriented Databases. In Proc. ACM SIGMOD Conference on the Management of Data, (San Fran-
cisco, California, May 27-29, 1987). ACM, New-York, 311-322.

[2] Beech, D., and Mahbod, B. Generalized Version Control in an Object-Oriented Database. In Proc. 4th IEEE
International Conference on Data Engineering, Feb. 1988.

[3] Biggerstaff, T., Ellis, C., Halasz, F., Kellog, C., Richter, C., and Webster, D. Information Management
lenges in the Software Design Process. MCC Technical Report STP-039-87, 1987.

[4] Bernstein, P. Database System Support for Software Engineering. In Proc. Int. Conf. on Software Engineer
ing (1987), 161-178.

[5] Björnerstedt, A., and Britts, S. AVANCE: An Object Management System. Proc. OOPSLA’88 (Sept. 1988),
206-221.

[6] Björnerstedt, A., and Hultén, C. Version Control in an Object-Oriented Architecture. In Object-Oriented
Concepts, Databases and Applications, (Ed. W. Kim and F. Lochovsky) Addison-Wesley/ACM Press, 198
451-485.

[7] Borgida, A. Modelling Class Hierarchies with Contradictions. In Proc. ACM SIGMOD Conference on the
Management of Data, (Chicago, June 1-3, 1988), ACM, New-York, 434-443.

[8] Casais, E. Reorganizing an Object System. In Object Oriented Development, (Ed. D. Tsichritzis) Centre Uni-
versitaire d’Informatique, Université de Genève, 1989, 161-189.

[9] Cox, B.J. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley, 1986.

[10] Frakes, W.B., and Gandel, P.B. Classification, Storage, and Retrieval of Reusable Components. In Proc.
ACM SIGIR Conference on Research and Development in Information Retrieval, (Cambridge, Mass., June
25-28, 1989). ACM, New-York, 251-254.

[11] Gibbs, S. and Prevelakis, V. Xos: An Overview. In Object Management (Ed. D. Tsichritzis) Centre Univer-
sitaire d’Informatique, Université de Genève, 1990.

[12] Gibbs, S. Querying Large Class Collections. In Object Management (Ed. D. Tsichritzis) Centre Universitaire
d’Informatique, Université de Genève, 1990.

S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado 22

-

980.

stem.

 De-

-

: To-

ents.

 Senter

[13] Goldberg, A. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley, Reading, Massa
chusetts, 1984.

[14] Goldstein, I.P., and Bobrow, D.G. A Layered Approach to Software Design. Rep. CSL-80-5, Xerox, 1

[15] Hudson, S.E., and King, R. Object-oriented Database Support for Software Environments. Proc. ACM SIG-
MOD Conf. on the Management of Data (1987), 491-503.

[16] Johnson, R.E., and Foote, B. Designing Reusable Classes. Journal of Object Oriented Programming, (June-
July 1988), 22-35.

[17] Kaiser, G.E., and Garlan, D. MELDing Data Flow and Object-Oriented Programming. Proc. OOPSLA’87
(Oct. 1987), 254-267.

[18] Li, Q., and McLeod, D. Object Flavor Evolution Through Learning in an Object-Oriented Database Sy
In Proc. 2nd International Conference on Expert Database Systems, (Tysons Corner, Virginia, April 25-27,
1988), 241-256.

[19] Lieberherr, K.J., and Holland, I.M. Assuring Good Style for Object-Oriented Programming. IEEE Software,
(Sept. 1989), 38-48.

[20] McIlroy, M.D. Mass Produced Software Components. In Software Engineering, (Ed. P. Naur and B. Randell)
NATO Science Committee (Oct. 1968), 138-150.

[21] Meyer, B. Object-Oriented Software Construction. Prentice-Hall (1988).

[22] Meyer, B. The New Culture of Software Development: Reflections on the Practice of Object-Oriented
sign. In TOOLS’89, 13-23.

[23] Moon, D.A. Object-Oriented Programming with Flavors. In Proc. OOPSLA’86 (Sept. 1986), 1-8.

[24] Moon, D.A. The Common LISP Object-Oriented Programming Language. In Object-Oriented Concepts, Da-
tabases, and Applications, (Ed. W. Kim and F. Lochovsky) Addison-Wesley/ACM Press, 1989, 49-78.

[25] Nierstrasz, O.M. A Survey of Object-Oriented Concepts. In Object-Oriented Concepts, Databases and Ap
plications, (Ed. W. Kim and F. Lochovsky) Addison-Wesley/ACM Press, 1989, 3-21.

[26] Nierstrasz, O.M., Dami, L., de Mey, V., Stadelmann, M., Tsichritzis, D., and Vitek, J. Visual Scripting
wards Interactive Construction of Object-Oriented Applications. In Object Management (Ed. D. Tsichritzis)
Centre Universitaire d’Informatique, Université de Genève, 1990. (Submitted for publication.)

[27] O’Brien, P.D., Halbert, D.C., and Kilian, M.F. The Trellis Programming Environment. Proc. OOPSLA’87
(Oct. 1987), 91-102.

[28] Penedo, M.H., and Stukle, E.D. PMDB: A Project Master Database for Software Engineering Environm
Proc. Int’l. Conf. on Software Engineering, 1985, 150-157.

[29] Penney, D.J., and Stein, J. Class Modification in the GEMSTONE object-oriented DBMS. In Proc. OOPS-
LA’87 (Oct. 1987), 111-117.

[30] Pernici, B. Objects with Roles. Proc. ACM Conference on Office Information Systems (Apr. 1990), 205-215.

[31] Pintado, X., Tsichritzis, D. An Affinity Browser. In Active Object Environments, (Ed. D. Tsichritzis) Centre
Universitaire d’Informatique, Université de Genève, 1988.

[32] Pintado, X., and Fiume, E. Grafields: Field-directed Dynamic Splines for Interactive Motion Control. Com-
puters & Graphics, vol 13, no 1, pp 77-82, Pergemon Press (1989).

[33] Pintado, X., Tsichritzis, D. Satellite: A Visualization and Navigation Tool for Hypermedia. Proc. ACM Con-
ference on Office Information Systems (Apr. 1990), 271-280.

[34] Prieto-Diaz, R., and Freeman, P. Classifying Software for Reusability. IEEE Software (Jan. 1987), 6-16.

[35] Pröfrock, A., Tsichritzis, D., Müller, G., and Ader, M. ITHACA: An Overview. In Proc. European Unix Us-
ers’ Group (EUUG) Conference, Spring 1990, 99-105.

[36] Reenskaug, T., and Nordhagen E. The Description of Complex Object-Oriented Systems: Version 1.
for Industriforskning, Oslo, 1989.

[37] Schilling, J.J., and Sweeney, P.F. Three Steps to Views: Extending the Object-Oriented Paradigm. InProc.
OOPSLA’89 (Oct. 1989), 353-361.

23 Class Management for Software Communities

. In
93-
[38] Skarra, A.H., and Zdonik, S.B. The Management of Changing Types in an Object-Oriented DatabaseRe-
search Directions in Object-Oriented Programming, The MIT Press, Cambridge, Massachusetts, 1987, 3
415.

[39] Snyder, A. Encapsulation and Inheritance in Object-Oriented Programming Languages. In Proc. OOPSLA’86
(Sept. 1986), 38-45.

[40] Stroustrup, B. The C++ Programming Language. Addison-Wesley (1986).

[41] Taenzer, D., Ganti, M., and Podar, S. Problems in Object-Oriented Software Reuse. In Proc. ECOOP 89 Con-
ference, Cambridge University Press, July 1989, 25-38.

[42] Thomas, D., and Johnson, K. Orwell: A Configuration Management System for Team Programming. Proc.
OOPSLA’88 (Sept. 1988), 135-141.

[43] Utting, K., Yankelovich, N. Context and Orientation in Hypermedia Networks. ACM Transactions on Office
Information Systems 7, 1 (Jan. 1989), 58-84.

[44] Wegner, P. Dimensions of Object-Based Language Design. Proc. OOPSLA’87 (Oct. 1987), 168-182.

[45] Wirfs-Brock, R.J., and Johnson, R.E. A Survey of Current Research in Object-Oriented Design. In CACM,
this issue.

	Class Management for Software Communities
	Introduction
	Software Communities
	Software Information Systems
	Class Packaging
	Class Organization
	Class Selection and Exploration
	Class browsers
	Affinity browsing

	Class Evolution
	Issues
	Class tailoring
	Class surgery
	Class versioning
	Class reorganization

	Concluding Remarks
	References

