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Abstract

Most object-oriented languages are strong on reusability or on strong-typing, but weak on con-
currency. In response to this gap, we are develdytgid, an object-oriented language in which
objects are the active entities. Objects in Hybrid are organizedamains and concurrent ex-
ecutions int@ctivities All object communications are based on remote procedure-calls. Unstruc-
turedsendsandacceptsare forbidden. To this the mechanismsiefegationanddelay queues

are added to enable switching and triggering of activities. Concurrent subactivities and atomic ac-
tions are provided for compactness and simplicity. We show how solutions to many important
concurrent problems, such a pipelining, constraint management and “administration” can be
compactly expressed using these mechanisms.

1. Introduction.

The idea of applying object-oriented approaches to the programming of concurrent systems has
been gaining popularity in recent years. Some of the object-oriented languages that have mech-
anisms for dealing with concurrency are: Orient84/K [Toko86], ConcurrentSmalltalk [Yoko86],
ABCL/1 [Yone86] and Emerald [Blac86]. It is very appealing to imagine environments of high-

ly independent active objects for solving concurrent and distributed problems. Previous work in
object-oriented systems, however, has emphasized reusability of objects, as in Smalltalk
[Gold83], Objective C [Cox86], C++ [Stro86] and Lisp with flavors [Wein81], and, more recent-

ly, strong-typing of objects in Smalltalk [John86] and in Owl [Scha86], with little or no attention
paid to concurrency. Work on concurrent “objects” has been mostly limited to actor languages
[Hewi77, Byrd82, Ther83] and other kinds of systems supporting message-passing processes,
such as Thoth [Gent81].

Hybrid is an object-oriented programming language in which objects themselves are the ac-
tive entities. We believe that, with some care, concurrency can not only be easily accommodated
within an object-oriented framework, but that the object-oriented approach is exceptionally
well-suited for structuring concurrent activity. In this paper we shall attempt to demonstrate this
by presenting an object-oriented model for concurrency, a small set of primitives which can be
embedded into a language sucligbrid, and a number of examples indicating how these prim-
itives can be used to compactly express solutions to various concurrent programming problems.

Concurrency models have traditionally taken one of two views for communication and syn-
chronization of concurrently executing processes: either that of processes synchronizing access-
es to a shared memory, or that of processes communicating by passing messages (whether syn-
chronously or asynchronously) [Andr83]. If we accept that a programming paradigm and a con-
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currency model should be mutually supportive, then it is clear that we must take care in choosing
how to view concurrency in the context of object-oriented programming.

The fundamental concept of the object-oriented approach is that objects are encapsulations,
providing access to hidden data through a set of visible operat@iigcts can thus be viewed
as “servers,” responding to requests via message-passing. A concurrency model that views ob-
jects as active entities passing messages has the advantage that message-passing can be usec
both for communicatioandas a basis for synchronization. When objects are viewed as passive
entities, on the other hand, one must use additional mechanisms for synchronizing access to ob-
jects, such as semaphores (as in Smalltalk)astis andsignalsas in monitors [Hoar74]. Fur-
thermore, shared memory models do not generalize well to distributed environments. The ad-
vantage of the shared memory view over message-passing, however, is that the threads of con-
trol are explicit, whereas messages do not necessarily entail a transfer of control.

We propose a hybrid model in which objects are potentially active entities that communi-
cate by message-passing. Message-passing operations are based on remote-procedure calls, and
always entail either a transfer of control, or the creation of a new thread of conadiyy.

A “unit of concurrency” is called domain and may contain one or more top-level objects. In
addition, we require mechanisms for deciding when an operation may be invoked, thus effec-
tively scheduling activities attempting to invoke those operations, and when to relax the remote-
procedure call protocol by permitting the interleaving of activities.

Briefly, the concepts we define are as follows:
1. domain:a “unit of concurrency” (i.e., a process)
2. activity: a thread of control
3. reflex: an operation that starts a new activity
4. delay queuea scheduling mechanism to delay calls
5. delegation:a mechanism for permitting the interleaving of activities

In addition, we show how this framework can be consistently extended to accomourdate
rent sub-activitiesndatomic actions

To illustrate the use of these mechanisms, we give several examples of objects that encap-
sulate:

1. pipelining
2. postactions

3. administration [Gent81]
4. triggering
5

constraints

1. The notion of class inheritance, though crucial to object-oriented programming, is secondary to the idea
of encapsulation.
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Furthermore, with the higher-level constructs for composing concurrent subactivities and atomic
actions, it becomes possible to structure sets of related activities.

The examples are defined in Hybrid [Nier87a], a strongly-typed object-oriented program-
ming language that supports the concurrency model and primitives described in this paper. We
shall explain the non-obvious aspects of Hybrid during the presentation of the examples.

2. Domains and Activities.

The description that is often given of objects communicating by passing “messages” can seduce
one into thinking of objects as independent message-passing processes. Listeners are often dis-
appointed when they discover that, although objects are in some ways independent, they are not
generally concurrent.

If we try to imagine how concurrency would fit into an object-oriented world, it would be
quite natural to start by proposing that every object be a message-passing process. Since objects
encapsulate a set of operations and a hidden representation, all we need is to structure the mes-
sage-passing operations to conform to a remote procedure-call protocol: every message is either
acall to an operation or eturn.

This solution has a terrible problem, however, which becomes apparent when we recall that
objects are structured. Would this then mean that every instance variable would be a process,
and every instance variable of every instance variable a process? And finally every bit of every
byte a process? It is clear that this approach (though perhaps yielding to an appealing formal “pu-
rity”) has crippling practical drawbacks. There is simply too much concurrency.

To tackle this problem, rather than definmgriori how much concurrency there will be,
we allow the programmer to define the granularity of concurrency by providing a single unit of
concurrency that we calldomain Intuitively, a domain bundles a collection of active objects
into a single message-passing process. Typically there will be one “root” (top-level) object in a
domain and a number of “sub-objects” which are instance variables and dynamically instantiat-
ed objects.

More concurrency is achieved by splitting objects up into more domains. Objects in the
same domain ar@ependentAn object can only communicate with an independent object if it
knows its name, avbject identifier which it may store as an instance variable. To create a new
domain, a new object is created angborted The new object becomes the root of the new do-
main. (If a new object is not exported, it simply becomes a dependent of the domain that created
it.)

Since a domain is like a process, it can only be “doing” one thing at a time. That means that
at any time at most one object may be active in a given domain. We also need to get a handle on
what is happening when a domain is active. We call a single thread of conaictivaty. An
activity isstartedby invoking areflex A reflex is a special kind of “main” operation in Hybrid
which, when invoked, starts a new activity while allowing the parent activity to continue inde-
pendently. Thetart message is a variation on el message where no return is expected.
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From then on, the activity passes as a thread of control from object to object in a series of
call andreturn message-passing operations. The activity is like a token, and is always in a
unique location. When one independent object calls another, the activity antoakgfrom
one domain to the other.

There is a default degree of mutual exclusion provided by the remote-procedure call model.
Domains may bédle, active or blocked Objects in idle domains are capable of handling re-
guests. Objects in active domains are busy, and can only handle requests arising from the current
activity. When an objectalls an independent object, its doméaiocks and objects in that do-
main can only accept call or return requests from that same activity. (Since a call was made, pre-
sumably there will eventually be a return.) In effect, calls are by default blocking serats. An
tive or blockeddomain therefore causes all incoming requests to wait.

Activities may either bactive that is, when they are running in some active domain, or
suspendedwvhen they are bundled irstart, call or return message that cannot (yet) be accept-
ed. The “location” of an activity is therefore always either a domain (when it is active), or a mes-
sage queue (when itis suspended). Furthermore, every message is always associated with an ac-
tivity, and therefore the number of messages in the system is always bounded by the number of
activities. This is an obvious consequence of the fact that the total number of activities is equal
to the sum of the number of active domains and the number of suspended activities (each repre-
sented by a message).

Also note that the total amount of potential parallelism is bounded by the lesser of the num-
ber of domains and the number of activities. One cannot have more running activities than there
are domains. But idle domains do not count, and so there also cannot be more domains running
than there are activities.

The activity model we have described thus far is basically a remote procedure-call model
with blocking sends focall messages, and non-blocking sendsfartsandreturns The basic
model can be easily mapped to a world with structured objects that support a visible interface
and a hidden realization. Objects cannot be seen in an inconsistent state while they are assigned
to an activity.

We shall now argue for two additional mechanisms that enable more flexible interaction
between activities, while maintaining consistency with the remote procedure-call message-pass-
ing model and the principle of encapsulation adhered to by objects.

3. Delay Queues.

Objects may not always be ready to provide a service encapsulated in one of their operations.
This can be handled either by having the object return an error, in which case it is up to the caller
to try again or “poll” the object, or the caller candatayeduntil its request can be serviced, thus
obviating the need for polling.

A mechanism for delaying calls allows an object to schedule requests based on its own in-
ternal state. It also provides a way for activities tdriggjeredon the basis of other events that
take place. Event-driven behaviour can thus be captured concisely.



5 Active Objects in Hybrid

In Hybrid, objects may delay calls by associating an operation vdéiey queueln the
realization of the operation, it is declarediaggthe queue. This has the effect that calls to that
operation are only accepted if the queuepen If the queue i€losed the calls are delayed.

Delay queues can therefore be viewed as a restricted fguaaf [Dijk75], the only allowable

boolean being: “is my delay queue open?” Objects service delayed requests on open queues be-
fore accepting new requests. (There is a permanently open queatifarmessages and for

calls to all other operations that do not use a delay queue.)

A delay queue is an instance variable of an object, and may only be opened or closed by the
operations of that object. Typically, one operation will detect a condition that causes it to close
a queue, and another may detect the condition that causes it to be opened again. The delay queue
variable typically represents the availability of a resource or the precondition for performing an
operation. Delay queues may be shared by several operations, but an operation can use at most
one queue. (Some care must be taken in designing delay queues, or deadlock situations may
arise: for example, if all operations use the same queue and that queue is closed, the object will
be deadlocked since a call to an operation that opens the queue can never be accepted.)

As a first example, considep#elineas implemented by a circular bounded buffer in Hy-
brid (see example 1).

“Programs” in Hybrid are definitions of object types, in this case theptyg@e. The pipe-
line object type has two type parametees)Type, the type of the objects the pipeline manages,
andbound, which is used to index the array containing the buffered itemsolihe parameter
is constrained to be an enumerated typeniType). Comments are preceded by a number sign

(H#”)'

A pipeline is defined with thebstract constructor in terms of the operatiages andput.
(Other type constructors exist in Hybrid for defining arrays, enumerated types, subtypes, and so
on). Each operation includes a specification of its argument types (before the arrow) and return

value types (after the arrow). Hepet andget accept and return, respectively, an object of the
parameter typgemType.

A pipeline object has delay queuesull andnotEmpty as instance variables, initialized re-
spectively to the valuegpenandclosed As a consequence, callggta are initially delayed since
it uses theotEmpty queue. Thegetindex andputindex variables index the circular buffer, and are
initialized to the first element of the enumerated type objacid.

The trigger conditionsotFull and notEmpty are managed by the operatiais and put.
Whenever an event occurs that causes a trigger condition to become true or false, the appropriate
delay queue is respectively opened or closed. This principle can be used in far more elaborate
triggering examples, some of which we shall describe in this paper.

An instance opipeline can be used to pass objects from one activity to another. Objects tak-
ing part in a producer activilg can use theut operation of the pipeline object to buffer items
for a consumer activitlp. The pipeline object alternatively services requests for actiathesl
b. If either activity gets “ahead of” the other (i.e., if the buffer becomes empty or full), the pipe-
line will delay one activity or the other by closing one of its delay queues. Notice that the pipe-
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# definition header with parameters:
type pipeline of (itemType , bound :< enumType ) :
# interface specification:
abstract {
put : itemType -> ;
get: ->itemType ;
b

# realization of operations and instance variables:
private
{
# instance variables and initialization
var notFull <- open , notEmpty <- closed : delay ; # delay queues
var bufferSpace : array [ bound ] of itemType ;
var getindex <- bound.first , putindex <- bound.first : bound ;

# calls are delayed if notFull is closed
put: (item : itemType ) ->;

uses notFull ;
{
bufferSpace [ putindex ] := item ;
switch ( putindex ) {
case bound.last { putindex := bound.first ; }
default { putindex.inc ; } # increment
}
if ( putindex =? getindex ) {
notFull.close ; # full, so delay put()
}
notEmpty.open ; # trigger delayed calls to get()
return ;
}

# calls are delayed if notEmpty is closed
get: ->itemType ;
uses notEmpty ;

{
var item : itemType ;
item := bufferSpace [ getindex ] ;
switch ( getindex ) {
case bound.last { getindex := bound.first ; }
default { getindex.inc ; } # increment
}
if ( getindex =? putindex ) {
notEmpty.close ; # empty, so delay get()
}
notFull.open ; # trigger delayed calls to put()
return (item) ;
}

Example 1: A pipeline

line does not have an activity of its own, but plays a passive role switching between aativities
andb.
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It is instructive to compare our pipeline object to implementations of bounded buffers using
monitors [Hoar74, Wirt83] and CSP [Hoar78]. The monitor approach takes a shared memory
view of objects, whereas the CSP approach uses message passing and guards to synchronize ob-
jects. Both of these solutions superficially resemble our pipeline object, however there are some
important differences.

In the case of monitors, since objects are viewed as shared mevatgndsignal must
be used to implement mutual exclusion as well as scheduling; in a message-passing world, mu-
tual exclusion is not an issue, and one only has to worry about which message to accept next.
Next, one is free to useait andsignalin a non-structured fashion, whereas delay queues can
only be used at the point where one acceptlanessage. Finallyyait andsignalmay entail
a transfer of control, whereapenandclosenever do.

If we compare the use of delay queues in our pipeline object to the CSP solution of a bound-
ed buffer, as proposed by Hoare, the differences are less profound. In fact, guarded commands
appear to be strictly more general: guards may be arbitrary boolean expressions, whereas delay
gueues are only tested for beiogenor closed guarded commands may be used anywhere,
whereas delay queues only affect acceptance of messages; guards may be placed on output ex-
pressions as well as input expressions (since message-passing is synchronous in CSP); and one
may explicitly name both input and output processes in CSP, whereas obkdgbsichcannot
do so! Despite the restrictions we introduce, it is possible to solve many useful classes of con-
current problems using the mechanisms we propose.

In addition to triggering, delay queues can be used to implgomostdactionsBy “postac-
tion,” we mean an action that may be performed in response to a call to an operation, but which
may proceed after the operation returns. Examples are consistency checking, garbage collection,
reorganization of data structures, redisplaying of images and reformatting of text..

var ready : delay ;

delete : (key : keyType ) -> itemType ;
uses ready ;
{

# code to mark item as deleted ...
ready.close ; # delay future calls
self | cleanup ; # start new activity
return (item) ;

}

# postaction

reflex cleanup : ;

{
# code to clean up data structures
ready.open ; # trigger delayed calls
end ; # doesn’t return

Example 2: Postactions

1. On the other hand, the collection of available processes and the input and output channels are statically
defined in Hoare’s original description of CSP.
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In the example we havelalete operation which deletes an item associated witly aalue
and returns the value of the item deleted. The delete operation stastsigpostaction which
cleans up data structures and possibly does compression. The postaction is encapsulated as a re-
flex, thus causing a new activity to be created when it is invoked. Note that reflexes in Hybrid
are invoked with an exclamation masklficleanup) instead of a period to clearly denote the cre-
ation of a new activity

In order to prevent further calls delete intervening before theeanup reflex can start, the
delete operation is associated with a delay queue (cadkely) which is closed beforgeanup is
invoked. Only when the postaction has terminated is the delay queue opened. Notice the use of
theend statement to terminate an activity, since a reflex does not “return” anywhere.

Delay queues provide the programmer with control over the scheduling of invocation re-
quests to operations and reflexes. As a consequence, event-driven behaviour or “triggering” can
be easily expressed by delaying calls to operations which are later triggered by the awaited
events. Delay queues are not adequate for expressing more flexible interleaving of several ac-
tivities within a single domain. We introduce the notion of “delegation” in the following section
in order to address this problem.

4. Delegation.

Mutual exclusion is provided at the level of domains by allowing no more than one activity to
be active in a domain at once. (By definition a process cannot be doing two things at once.) A
further level of mutual exclusion is enforced by the semantics of remote procedure-calls since
an object that calls an independent object causes its domain to become blocked rather than idle.
Only requests related to the activity can unblock the domain in order to prevent other activities
from seeing objects in the domain in an inconsistent state.

Sometimes it is convenient to relax this constraint. For example, an object that functions as
an “administrator” [Gent81] may delegate a task to an independent “worker” object. The admin-
istrator, if it is not in an inconsistent state, may then wish to accept further requests while it is
waiting for the worker to finish its job.

An expression in Hybrid may be bracketed with dhlegate construct, which effectively
causes the expression to be evaluated asynchronously. Ftesgitiandargumentsubexpres-
sions are evaluated, and then the target operation is inwakieout causing the domain to
block. If the target is an independent object then the domain will be free to accept requests from
other activities. When the target eventually returns, execution may resume from the point of the
delegated call as soon as the domain is idle (i.e., the target’'a message must now queue up
for the domain as would any other request).

If the target is a dependent object (i.e., in the same domain), then the effect is to permit the
domain to switch activities, depending, of course, on whether or not any activities are waiting to
get in, and whether the target operation has a delay queue or not.

For example, in:

delegate ( target.operation(argument) )
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Thetargetandargumengexpressions are evaluated, theahmessage is sent to ttegget The

caller may proceed witnotheractivity, if there is one waiting. (If there are no suspended ac-
tivities to switch to, delegation has no observable effect.) Wherarttetreturnsandthe caller

is idle, the calling activity may continue executing from the point where the call was made. The
value of a delegated expression is exactly the same as an ordinary (non-delegated) expression.

In an implementation, a domain would have to keep track of several execution stacks, one
for each activity with a pending delegated call. These activities continue executing in other do-
mains, in parallel, if possible, and resume in the calling domain when the target operation com-
pletes.

In the following example we see how an administrator might delegate jobs to “worker” ob-
jects. The target and argument expressions here are both trivial, being respectieelsind
newJob. We assume that the object idsd§) of the workers identify independent objects that
may execute concurrently with the administrator. The call tddbe operation is achieved by
passing &all message to the worker. The administrator’'s domain, instead of blocking, is now
free to switch to another activity, if there is one waiting to get in.

var available : pipeline of ( oid of jobDoer, workerRange ) ;

assign : ( newJob : job) ->job ;

{

var doneJob : job ;
var worker : oid of jobDoer ;

# get a worker from the pipeline,
# but don’t block if none available
worker := delegate ( available.get ) ;

# delegate the work, and switch to waiting calls
doneJob := delegate ( worker.doJob ( newJob) ) ;

# release the worker
available.put ( worker ) ;
return ( doneJob ) ;

Example 3: Delegation

Delegation is used twice in this example. In the first case, the administrator must not block
if there are no workers available in the pipeline. The calVdtable.get is therefore delegated,
allowing the administrator to switch to another activity, possibly oneikeaa worker back into
the pipeline. When the call returns, the value returnegbfig assigned taorker, just as if the
call had not been delegated.

The call toworker.doJob is also delegated, since there is no reason for the administrator to
wait while the worker handles the request. When the result is ready and the administrator is idle,
the worker is made available again, and the result is returned to the original caller. (If there are
more workers than the pipeline can hold, then the callttshould be delegated as well.)
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One may imagine other kinds of administrators that use some other criterion than load-bal-
ancing to distribute jobs to workers. In a case where the delegated expression is directly re-
turned, as in:

return(delegate(worker.doJob(newJaob))) ;

we could optimize by substituting:

forward(worker.doJob(newJob)) ;

In this case the worker would not return to the administrator but return directly to the original
caller, thus eliminating a message-passing operation. This optimization is relatively unimportant
in the example we have given here, but the savings can be substantial in a setting where a large
number of workers cooperate to produce a result. Consider an object-oriented implementation
of a search tree in which nodes forward a call to one of their children to search for a particular
entry. The node which determines success or failure may return directly to the caller rather than
being forced to pop all the way back up the tree [Hogg87]. We provide this option in Hybrid,
although it is not formally necessary.

5. Constraints.

Delegation used in conjunction with delay queues allows one to exqanesisaints By a con-

straint we mean a predicate that is expected to hold over a collection of objects. Examples are
graphical constraints such as the requirement that the endpoint of one line be coincident with the
midpoint of another line. Graphical constraints of this variety are managédiglLah a “sim-

ulation laboratory” written in Smalltalk [Born81]. Another example is that of a database con-
straint which is checked periodically, or after every update.

Especially appealing in an environment like ThingLab is the possibility of being able to dy-
namically create and destroy constraints. This suggests that one might like to encapsulate con-
straints as objects themselves. (Of course, objects with static built-in constraints can also be of
interest.) Such a constraint object would have to wait for a set of events, namely the modification
of any of the constrained objects. The approach we suggest is to have the constraint object create
one suspended activity for each awaited event. In order to be able to wait for multiple events,
each of these activitiatelegatesa call to an operation that returns when the constraint must be
checked.

In the following example we see part of such a constraint object witleraify operation
that constrains two points to coincide. (Each point might in turn be the endpoint of a line, or part
of some other more complex graphic object.) iBbatify operation spawns two activities by in-
voking theconnect reflex twice. These activities may start, one after the other, ity re-
turns. Each activity waits for one of the two points to be modified, and then re-establishes the
constraint that the points coincide. The calhwaitUpdate must be delegated in order to allow
the constraint object to switch to the secomthect after the first has been set up.

TheawaitUpdate operation requires some care. In order to be well-defined, one must specify
the previous state with respect to which updates must be considered. Since constraints may
themselves trigger updates, it is not possible to guarantee that all constraints will see all of the
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# identify points p1 and p2
identify : (p1, p2: oid of updateablePoint ) -> ;
{

# set up activities

# (the state is a “timestamp”)

self ! connect ( p1, p2, p2.state ) ;
self ! connect ( p2, pl1, pl.state) ;

# make sure the points are in sync
pl.moveTo ( p2.pos) ;
return ;

}

# connect point pl to point p2
reflex connect :
(pl, p2 : oid of updateablePoint ; state : updateCount) ;

{

var newPos : point ;

# wait for point p2 to change state
(newPos , state ) := delegate ( p2.awaitUpdate ( state ) ) ;

# moveTo() has no effect if the new position
# already coincides with the old

pl.moveTo ( newPos) ;

# re-establish the constraint

self ! connect (pl, p2, state ) ;

end ;

Example 4. Constraints

states of the objects they are monitoring (at least not in the setting we describe here). A state
counter is therefore explicitly managed for eaglateablePoint object (as opposed tgaint ob-

ject which maintains no such counter). TpeateablePoint object must examine the previous

state argument before determining whether the calling activity must be delayed or not. If so, it
then forwards the call to itsvaitNext operation, which is delayed until a state change takes place.

ThewasUpdated reflex is used by update operations to closest®pdated delay queue
after all the activities suspended on that queue have been triggered. Note that since this reflex
itself uses thevasUpdated delay queue, the effect of the request is to “flush” the queue. Old calls
to awaitNext will precede thevasUpdated request, whereas new calls will follow it.

6. Concurrent Subactivities.

It is possible to structure activities hierarchically to some extent using delegation and delay
gueues. A parent activity must create several child activities, each of which updates a counter
when it terminates. The parent then suspends itself on an operation that is triggered when all the
children are done. The approach is workable but results in rather clumsy code. Furthermore, one
would like to be able texplicitly express the idea that a domain may be blockedsetoasub-
activities rather than just a single activity. This enables more flexible switching between the sub-
activities, without allowing other, unrelated activities into the domain.
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var pos : point ;
var updates := 0 : updateCount ;
var uponUpdate : delay ;

awaitUpdate : ( previous : updateCount ) -> (point, updateCount) ;

{
# check if an update has already taken place
if ( previous <? updates ) {
return ( pos, updates ) ;
}
else {
forward ( self.awaitNext ) ;
}
}

# in sync, so “next” state is well-defined
awaitNext : -> ( point, updateCount ) ;
uses uponUpdate ;

{
# triggered by any update operation

return ( pos, updates ) ;

}

# invoked by update operations to “flush” calls to awaitNext
reflex wasUpdated : ;
uses uponUpdate ;

{
uponUpdate.close ;
end ;

Example 5: Awaiting updates

In Hybrid one expresses this through ¢hieop andcoblock constructs and thetivity con-
struct. Acoloop (executed repeatedly) oteéblock (executed just once) creates a scope within an
operation that permits new concurrent subactivities to be createdctiilngeconstruct creates a
new child activity which takes over from the parent until it either terminates or executes a dele-
gated call. When the parent exits to®op or coblock, it waits until all its children have termi-
nated. Then the parent activity may continue.

The scheme is hierarchical, and supports the notion of nested subactivities. Note that at no
time may a parent and a child be simultaneously active within the same domain. Each activity
is a unique thread of control and cannot “share” a domain with another activity. Concurrency
(and hence potential parallelism) enters the picture when a subactivity delegatesamodtdn
domain, thus allowing its parent or any of its peers to continue in the domain it has just left.

In example 6 we see how@oop can be used to delegate jobs to an array of worker objects.
Each time the parent enters Hugvity statement, control is switched to a new child. When the
child delegates its call to a worker, control is returned to the parent (or to a waiting peer). When
the parenbreaks out of the coloop, it is required to wait at the end of the coloop scope till all the
children have terminated.



13 Active Objects in Hybrid

var n : workerRange ;

n := workerRange.first ;
coloop {
activity {
doneJob[n] := delegate ( worker[n].doJob ( newJob[n]) ) ;

}
if (n <? workerRange.last) {n+=1;}
else { break ; }
} # wait here ...
Example 6: Concurrent subactivities.

In this example we created a number of similar, parameterized subactivitiesibibhie
construct is sufficient if a sequence of dissimilar subactivities is required. In this case one would
make repeated use of theivity construct within theoblock rather than the single instance in the
example. Thecoblock used in this fashion is comparable to tHeeegin statement in CSP
[Hoar78] and Argus [Lisk83].

7. Atomicity.

Atomic actions can be very useful in a distributed environment [Lisk83]. They provide the log-
ical counterpart to delegation, since with atomic actions one wishes to further restrict interleav-
ing of activities by ensuring mutual exclusion for a series of statements rather than for a single
call/return sequence. Atomic actions are useful for ensuring that an object not be “touched” by
another activity while a series of requests are made to it. Atomic actions, when combined with
checkpointing, also provide a facility for reliably “aborting” transactions that go wrong because
of a detected deadlock or some unsatisfied requirement discovered during execution.

Atomic actions can be specified in Hybrid using dteenic statement. This defines a scope
within which all completed operations cause their objects (and hence the domains containing
them) to enter eeadystate. This is like thielockedstate, except that the domain waits fosra-
mit Or abort message (or any further calls related to the transaction).

var n : partRange ;
var part : array [partRange] of oid of graphicObject ;

n := partRange.first ;

atomic {
coloop {
activity {
delegate ( part[n].displaySelf ) ;
}
if (n <? partRange.last) {n+=1;}
else { break ; }
}
}

Example 7: Atomic actions
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In the example, a complex graphic object displays its parts within a single atomic action to
guarantee that the parts will all be synchronized. Assuming that the parts are independent ob-
jects, it would otherwise be possible for some parts to be moved by other activities before all of
them have been displayed. The atomic action prevents this from happening.

Notice that it is possible to use concurrent subactivities within atomic actions. Delegation
within atomic actions only makes sense within this context. To otherwise delegate a call en-
abling switching to other activities would conflict with the atomicity requirement.

8. Implementation.

In our prototype implementation of Hybrid we are mapping each environment of objects with
its own object manager to a single Unprocess. Each object manager maintains a workspace
containing the persistent data of each of its objects. The workspace may be atomically written
to disk.

Hybrid type definitions are translated into intermediate code which is stored in the work-
space and interpreted at run-time. The object managers mimic some of the functions of an oper-
ating system by time-sharing between active domains. Scheduling of domains is done on the ba-
sis of message-passing operations executed. Message-passing between objects in different envi-
ronments is accomplished by object managers communicating through Unix “sockets”.
Parallelism is thus achieved by having object managers execute on different machines.

One may speculate as to the requirements for an architecture better suited to supporting ac-
tive objects. Such a machine would probably be a multiprocessor, with each processor running
an object manager and a medium-sized collection of domains. Message-passing and process-
switching would need to be fairly cheap since heavy use is expected to be made of both. It must
be possible for processes to have multiple stacks to easily support delegation. (Recall that a do-
main requires a stack for each pending activity with a delegated call.)

Active domains should either reside in main memory only, with a method for “swapping”
them out to disk, or object managers should manage their workspaces as huge persistent virtual
memories with a paging algorithm that atomically updeg&gsionsof the stable workspace. In
either case, it is important that “dormant” domains, that is, domains that are idle for a long time,
be swapped out, and thus impose no run-time overhead.

9. Concluding Remarks.

We have presented a model for active objects in which concurrently executing objects commu-
nicate using an extended remote-procedure call protocol, and we have shown how the model can
be used consistently in an object-oriented programming language to express solutions to a num-
ber of important concurrent problems. Specifically, we have demonstrated how to capture mu-
tual exclusion, pipelines, triggering, postactions, “administration,” constraints, concurrent sub-
activities and atomic actions.

1. Unix is a trademark of AT&T Bell Laboratories
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A more detailed description of the Hybrid language is given in [Nier87a]. A formal speci-
fication for our activity model is provided in [Nier87b]. In the same paper we examine the issue
of deadlock and we suggest ways in which it can be handled.

We have not addressed the issue of signaling or “express messages” as they are called in
ABCL/1 [Yone86]. We are still investigating ways in which the “interruption” of an active ob-
ject can be defined in a way that is consistent with data-hiding and object-independence. The
idea of “high-priority” operations is promising, though it is not clear how that may be used to
affect the control of the interrupted activity.

We are experimenting with techniques for animating objects [Fium87]. We expect that the
triggering and constraint mechanisms provided by Hybrid will be useful in binding animated ob-
jects to the active objects they represent. The separation of specification and realization given
by the object-oriented approach means that we shall be able to respecify our animated objects in
Hybrid while retaining parts of their existing implementation in C.

We are also carrying out research into useful objects for encapsulating and managing
knowledge [Tsic87]. The objects, or “knos,” are highly independent, active entities that may
move between object environments. Knos may be complex, consisting of many concurrent parts
(i.e., domains). Knos may react to their environment based on the rules they contain. Our previ-
ous experiments with knos have been in terms of object-oriented Lisp, using the flavors package
[Wein81, Moon86]. We expect that the activities model that Hybrid provides will be useful for
structuring knos, and that the triggering and delegation mechanism will be invaluable for man-
aging the relationships between kno parts.

Finally, we have been carrying out work on the modeling of cooperating active objects to
better understand complex activitiestasks and to formalize the properties of concurrent ob-
ject-oriented systems [Hogg87].
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