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Active Objects in Hybrid1

Oscar Nierstrasz2

Abstract
Most object-oriented languages are strong on reusability or on strong-typing, but weak on con-
currency. In response to this gap, we are developing Hybrid, an object-oriented language in which
objects are the active entities. Objects in Hybrid are organized into domains, and concurrent ex-
ecutions into activities. All object communications are based on remote procedure-calls. Unstruc-
tured sends and accepts are forbidden. To this the mechanisms of delegation and delay queues
are added to enable switching and triggering of activities. Concurrent subactivities and atomic ac-
tions are provided for compactness and simplicity. We show how solutions to many important
concurrent problems, such a pipelining, constraint management and “administration” can be
compactly expressed using these mechanisms.

1. Introduction.

The idea of applying object-oriented approaches to the programming of concurrent syste
been gaining popularity in recent years. Some of the object-oriented languages that have
anisms for dealing with concurrency are: Orient84/K [Toko86], ConcurrentSmalltalk [Yoko
ABCL/1 [Yone86] and Emerald [Blac86]. It is very appealing to imagine environments of h
ly independent active objects for solving concurrent and distributed problems. Previous w
object-oriented systems, however, has emphasized reusability of objects, as in Sm
[Gold83], Objective C [Cox86], C++ [Stro86] and Lisp with flavors [Wein81], and, more rec
ly, strong-typing of objects in Smalltalk [John86] and in Owl [Scha86], with little or no atten
paid to concurrency. Work on concurrent “objects” has been mostly limited to actor lang
[Hewi77, Byrd82, Ther83] and other kinds of systems supporting message-passing pro
such as Thoth [Gent81].

Hybrid is an object-oriented programming language in which objects themselves are t
tive entities. We believe that, with some care, concurrency can not only be easily accomm
within an object-oriented framework, but that the object-oriented approach is exceptio
well-suited for structuring concurrent activity. In this paper we shall attempt to demonstra
by presenting an object-oriented model for concurrency, a small set of primitives which c
embedded into a language such as Hybrid, and a number of examples indicating how these pr
itives can be used to compactly express solutions to various concurrent programming pro

Concurrency models have traditionally taken one of two views for communication and
chronization of concurrently executing processes: either that of processes synchronizing 
es to a shared memory, or that of processes communicating by passing messages (whe
chronously or asynchronously) [Andr83]. If we accept that a programming paradigm and 

1. In OOPSLA ’87 Proceedings, ACM SIGPLAN Notices, Vol. 22, No. 12, Dec. 1987, pp. 243-253.

2. Author’s address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerlan
E-mail: oscar@cui.unige.ch, oscar@cgeuge51.bitnet. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.0
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currency model should be mutually supportive, then it is clear that we must take care in ch
how to view concurrency in the context of object-oriented programming.

The fundamental concept of the object-oriented approach is that objects are encapsu
providing access to hidden data through a set of visible operations.1 Objects can thus be viewed
as “servers,” responding to requests via message-passing. A concurrency model that vie
jects as active entities passing messages has the advantage that message-passing ca
both for communication and as a basis for synchronization. When objects are viewed as pa
entities, on the other hand, one must use additional mechanisms for synchronizing acces
jects, such as semaphores (as in Smalltalk), or waits and signals as in monitors [Hoar74]. Fur-
thermore, shared memory models do not generalize well to distributed environments. T
vantage of the shared memory view over message-passing, however, is that the threads
trol are explicit, whereas messages do not necessarily entail a transfer of control.

We propose a hybrid model in which objects are potentially active entities that comm
cate by message-passing. Message-passing operations are based on remote-procedure
always entail either a transfer of control, or the creation of a new thread of control, or activity.
A “unit of concurrency” is called a domain, and may contain one or more top-level objects.
addition, we require mechanisms for deciding when an operation may be invoked, thus
tively scheduling activities attempting to invoke those operations, and when to relax the re
procedure call protocol by permitting the interleaving of activities.

Briefly, the concepts we define are as follows:

1. domain: a “unit of concurrency” (i.e., a process)

2. activity: a thread of control

3. reflex: an operation that starts a new activity

4. delay queue: a scheduling mechanism to delay calls

5. delegation: a mechanism for permitting the interleaving of activities

In addition, we show how this framework can be consistently extended to accommodate concur-
rent sub-activities and atomic actions.

To illustrate the use of these mechanisms, we give several examples of objects that
sulate:

1. pipelining

2. postactions

3. administration [Gent81]

4. triggering

5. constraints

1. The notion of class inheritance, though crucial to object-oriented programming, is secondary to the id
of encapsulation.
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Furthermore, with the higher-level constructs for composing concurrent subactivities and a
actions, it becomes possible to structure sets of related activities.

The examples are defined in Hybrid [Nier87a], a strongly-typed object-oriented prog
ming language that supports the concurrency model and primitives described in this pap
shall explain the non-obvious aspects of Hybrid during the presentation of the examples.

2. Domains and Activities.

The description that is often given of objects communicating by passing “messages” can 
one into thinking of objects as independent message-passing processes. Listeners are o
appointed when they discover that, although objects are in some ways independent, they
generally concurrent.

If we try to imagine how concurrency would fit into an object-oriented world, it would
quite natural to start by proposing that every object be a message-passing process. Sinc
encapsulate a set of operations and a hidden representation, all we need is to structure 
sage-passing operations to conform to a remote procedure-call protocol: every message 
a call to an operation or a return.

This solution has a terrible problem, however, which becomes apparent when we rec
objects are structured. Would this then mean that every instance variable would be a p
and every instance variable of every instance variable a process? And finally every bit of
byte a process? It is clear that this approach (though perhaps yielding to an appealing form
rity”) has crippling practical drawbacks. There is simply too much concurrency.

To tackle this problem, rather than defining a priori how much concurrency there will be
we allow the programmer to define the granularity of concurrency by providing a single u
concurrency that we call a domain. Intuitively, a domain bundles a collection of active objec
into a single message-passing process. Typically there will be one “root” (top-level) obje
domain and a number of “sub-objects” which are instance variables and dynamically inst
ed objects.

More concurrency is achieved by splitting objects up into more domains. Objects 
same domain are dependent. An object can only communicate with an independent object 
knows its name, or object identifier, which it may store as an instance variable. To create a 
domain, a new object is created and exported. The new object becomes the root of the new d
main. (If a new object is not exported, it simply becomes a dependent of the domain that c
it.)

Since a domain is like a process, it can only be “doing” one thing at a time. That mea
at any time at most one object may be active in a given domain. We also need to get a ha
what is happening when a domain is active. We call a single thread of control an activity. An
activity is started by invoking a reflex. A reflex is a special kind of “main” operation in Hybri
which, when invoked, starts a new activity while allowing the parent activity to continue 
pendently. The start message is a variation on the call message where no return is expected.
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From then on, the activity passes as a thread of control from object to object in a se
call and return message-passing operations. The activity is like a token, and is always
unique location. When one independent object calls another, the activity actually moves from
one domain to the other.

There is a default degree of mutual exclusion provided by the remote-procedure call m
Domains may be idle, active or blocked. Objects in idle domains are capable of handling 
quests. Objects in active domains are busy, and can only handle requests arising from the
activity. When an object calls an independent object, its domain blocks, and objects in that do-
main can only accept call or return requests from that same activity. (Since a call was mad
sumably there will eventually be a return.) In effect, calls are by default blocking sends. Aac-
tive or blocked domain therefore causes all incoming requests to wait.

Activities may either be active, that is, when they are running in some active domain
suspended, when they are bundled in a start, call or return message that cannot (yet) be acce
ed. The “location” of an activity is therefore always either a domain (when it is active), or a
sage queue (when it is suspended). Furthermore, every message is always associated w
tivity, and therefore the number of messages in the system is always bounded by the nu
activities. This is an obvious consequence of the fact that the total number of activities is
to the sum of the number of active domains and the number of suspended activities (eac
sented by a message).

Also note that the total amount of potential parallelism is bounded by the lesser of the
ber of domains and the number of activities. One cannot have more running activities tha
are domains. But idle domains do not count, and so there also cannot be more domains 
than there are activities.

The activity model we have described thus far is basically a remote procedure-call 
with blocking sends for call messages, and non-blocking sends for starts and returns. The basic
model can be easily mapped to a world with structured objects that support a visible int
and a hidden realization. Objects cannot be seen in an inconsistent state while they are a
to an activity.

We shall now argue for two additional mechanisms that enable more flexible intera
between activities, while maintaining consistency with the remote procedure-call message
ing model and the principle of encapsulation adhered to by objects.

3. Delay Queues.

Objects may not always be ready to provide a service encapsulated in one of their ope
This can be handled either by having the object return an error, in which case it is up to th
to try again or “poll” the object, or the caller can be delayed until its request can be serviced, thu
obviating the need for polling.

A mechanism for delaying calls allows an object to schedule requests based on its o
ternal state. It also provides a way for activities to be triggered on the basis of other events th
take place. Event-driven behaviour can thus be captured concisely.
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In Hybrid, objects may delay calls by associating an operation with a delay queue. In the
realization of the operation, it is declared as using the queue. This has the effect that calls to t
operation are only accepted if the queue is open. If the queue is closed, the calls are delayed
Delay queues can therefore be viewed as a restricted form of guard [Dijk75], the only allowable
boolean being: “is my delay queue open?” Objects service delayed requests on open que
fore accepting new requests. (There is a permanently open queue for return messages and fo
calls to all other operations that do not use a delay queue.)

A delay queue is an instance variable of an object, and may only be opened or closed
operations of that object. Typically, one operation will detect a condition that causes it to
a queue, and another may detect the condition that causes it to be opened again. The del
variable typically represents the availability of a resource or the precondition for performi
operation. Delay queues may be shared by several operations, but an operation can use
one queue. (Some care must be taken in designing delay queues, or deadlock situatio
arise: for example, if all operations use the same queue and that queue is closed, the ob
be deadlocked since a call to an operation that opens the queue can never be accepted

As a first example, consider a pipeline as implemented by a circular bounded buffer in H
brid (see example 1).

“Programs” in Hybrid are definitions of object types, in this case the type pipeline. The pipe-
line object type has two type parameters, itemType, the type of the objects the pipeline manag
and bound, which is used to index the array containing the buffered items. The bound parameter
is constrained to be an enumerated type (enumType). Comments are preceded by a number s
(“#”).

A pipeline is defined with the abstract constructor in terms of the operations get and put.
(Other type constructors exist in Hybrid for defining arrays, enumerated types, subtypes, 
on). Each operation includes a specification of its argument types (before the arrow) and
value types (after the arrow). Here, put and get accept and return, respectively, an object of t
parameter type itemType.

A pipeline object has delay queues notFull and notEmpty as instance variables, initialized re
spectively to the values open and closed. As a consequence, calls to get are initially delayed since
it uses the notEmpty queue. The getIndex and putIndex variables index the circular buffer, and a
initialized to the first element of the enumerated type object bound.

The trigger conditions notFull and notEmpty are managed by the operations get and put.
Whenever an event occurs that causes a trigger condition to become true or false, the app
delay queue is respectively opened or closed. This principle can be used in far more el
triggering examples, some of which we shall describe in this paper.

An instance of pipeline can be used to pass objects from one activity to another. Objects
ing part in a producer activity a can use the put operation of the pipeline object to buffer item
for a consumer activity b. The pipeline object alternatively services requests for activities a and
b. If either activity gets “ahead of” the other (i.e., if the buffer becomes empty or full), the 
line will delay one activity or the other by closing one of its delay queues. Notice that the
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ities 
line does not have an activity of its own, but plays a passive role switching between activa
and b.

# definition header with parameters:
type pipeline of ( itemType , bound :< enumType ) :

# interface specification:
abstract {

put : itemType -> ;
get : -> itemType ;

} ;

# realization of operations and instance variables:
private
{

# instance variables and initialization
var notFull <- open , notEmpty <- closed : delay ; # delay queues
var bufferSpace : array [ bound ] of itemType ;
var getIndex <- bound.first , putIndex <- bound.first : bound ;

# calls are delayed if notFull is closed
put : ( item : itemType ) -> ;

uses notFull ;
{

bufferSpace [ putIndex ] := item ;
switch ( putIndex ) {

case bound.last { putIndex := bound.first ; }
default { putIndex.inc ; } # increment

}

if ( putIndex =? getIndex ) {
notFull.close ; # full, so delay put()

}
notEmpty.open ; # trigger delayed calls to get()
return ;

}

# calls are delayed if notEmpty is closed
get : -> itemType ;

uses notEmpty ;
{

var item : itemType ;
item := bufferSpace [ getIndex ] ;
switch ( getIndex ) {

case bound.last { getIndex := bound.first ; }
default { getIndex.inc ; } # increment

}

if ( getIndex =? putIndex ) {
notEmpty.close ; # empty, so delay get()

}
notFull.open ; # trigger delayed calls to put()
return ( item ) ;

}
}

Example 1: A pipeline
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It is instructive to compare our pipeline object to implementations of bounded buffers 
monitors [Hoar74, Wirt83] and CSP [Hoar78]. The monitor approach takes a shared m
view of objects, whereas the CSP approach uses message passing and guards to synchr
jects. Both of these solutions superficially resemble our pipeline object, however there are
important differences.

In the case of monitors, since objects are viewed as shared memory, wait and signal must
be used to implement mutual exclusion as well as scheduling; in a message-passing wo
tual exclusion is not an issue, and one only has to worry about which message to acce
Next, one is free to use wait and signal in a non-structured fashion, whereas delay queues
only be used at the point where one accepts a call message. Finally, wait and signal may entail
a transfer of control, whereas open and close never do.

If we compare the use of delay queues in our pipeline object to the CSP solution of a b
ed buffer, as proposed by Hoare, the differences are less profound. In fact, guarded com
appear to be strictly more general: guards may be arbitrary boolean expressions, where
queues are only tested for being open or closed; guarded commands may be used anywhe
whereas delay queues only affect acceptance of messages; guards may be placed on o
pressions as well as input expressions (since message-passing is synchronous in CSP)
may explicitly name both input and output processes in CSP, whereas objects in Hybrid cannot
do so.1 Despite the restrictions we introduce, it is possible to solve many useful classes o
current problems using the mechanisms we propose.

In addition to triggering, delay queues can be used to implement postactions. By “postac-
tion,” we mean an action that may be performed in response to a call to an operation, bu
may proceed after the operation returns. Examples are consistency checking, garbage co
reorganization of data structures, redisplaying of images and reformatting of text..

1. On the other hand, the collection of available processes and the input and output channels are stati
defined in Hoare’s original description of CSP.

var ready : delay ;

delete : ( key : keyType ) -> itemType ;
uses ready ;

{
# code to mark item as deleted ...
ready.close ; # delay future calls
self ! cleanup ; # start new activity
return ( item ) ;

}

# postaction
reflex cleanup : ;
{

# code to clean up data structures
ready.open ; # trigger delayed calls
end ; # doesn’t return

}
Example 2: Postactions
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In the example we have a delete operation which deletes an item associated with a key value
and returns the value of the item deleted. The delete operation starts a cleanup postaction which
cleans up data structures and possibly does compression. The postaction is encapsulate
flex, thus causing a new activity to be created when it is invoked. Note that reflexes in H
are invoked with an exclamation mark (self!cleanup) instead of a period to clearly denote the cr
ation of a new activity

In order to prevent further calls to delete intervening before the cleanup reflex can start, the
delete operation is associated with a delay queue (called ready) which is closed before cleanup is
invoked. Only when the postaction has terminated is the delay queue opened. Notice the
the end statement to terminate an activity, since a reflex does not “return” anywhere.

Delay queues provide the programmer with control over the scheduling of invocatio
quests to operations and reflexes. As a consequence, event-driven behaviour or “triggeri
be easily expressed by delaying calls to operations which are later triggered by the a
events. Delay queues are not adequate for expressing more flexible interleaving of sev
tivities within a single domain. We introduce the notion of “delegation” in the following sec
in order to address this problem.

4. Delegation.

Mutual exclusion is provided at the level of domains by allowing no more than one activ
be active in a domain at once. (By definition a process cannot be doing two things at on
further level of mutual exclusion is enforced by the semantics of remote procedure-calls
an object that calls an independent object causes its domain to become blocked rather th
Only requests related to the activity can unblock the domain in order to prevent other ac
from seeing objects in the domain in an inconsistent state.

Sometimes it is convenient to relax this constraint. For example, an object that functi
an “administrator” [Gent81] may delegate a task to an independent “worker” object. The a
istrator, if it is not in an inconsistent state, may then wish to accept further requests whi
waiting for the worker to finish its job.

An expression in Hybrid may be bracketed with the delegate construct, which effectively
causes the expression to be evaluated asynchronously. First the target and argument subexpres-
sions are evaluated, and then the target operation is invoked without causing the domain to
block. If the target is an independent object then the domain will be free to accept reques
other activities. When the target eventually returns, execution may resume from the point
delegated call as soon as the domain is idle (i.e., the target’s return message must now queue u
for the domain as would any other request).

If the target is a dependent object (i.e., in the same domain), then the effect is to per
domain to switch activities, depending, of course, on whether or not any activities are wai
get in, and whether the target operation has a delay queue or not.

For example, in:

delegate ( target.operation(argument) )
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The target and argument expressions are evaluated, then a call message is sent to the target. The

caller may proceed with another activity, if there is one waiting. (If there are no suspended 

tivities to switch to, delegation has no observable effect.) When the target returns and the caller

is idle, the calling activity may continue executing from the point where the call was made

value of a delegated expression is exactly the same as an ordinary (non-delegated) expr

In an implementation, a domain would have to keep track of several execution stack

for each activity with a pending delegated call. These activities continue executing in oth

mains, in parallel, if possible, and resume in the calling domain when the target operation

pletes.

In the following example we see how an administrator might delegate jobs to “worker

jects. The target and argument expressions here are both trivial, being respectively worker and

newJob. We assume that the object ids (oids) of the workers identify independent objects th

may execute concurrently with the administrator. The call to the doJob operation is achieved by

passing a call message to the worker. The administrator’s domain, instead of blocking, is

free to switch to another activity, if there is one waiting to get in.

Delegation is used twice in this example. In the first case, the administrator must not

if there are no workers available in the pipeline. The call to available.get is therefore delegated

allowing the administrator to switch to another activity, possibly one that puts a worker back into

the pipeline. When the call returns, the value returned by get is assigned to worker, just as if the

call had not been delegated.

The call to worker.doJob is also delegated, since there is no reason for the administra

wait while the worker handles the request. When the result is ready and the administrator

the worker is made available again, and the result is returned to the original caller. (If the

more workers than the pipeline can hold, then the call to put should be delegated as well.)

var available : pipeline of ( oid of jobDoer, workerRange ) ;

assign : ( newJob : job ) -> job ;
{

var doneJob : job ;
var worker : oid of jobDoer ;

# get a worker from the pipeline,
# but don’t block if none available
worker := delegate ( available.get ) ;

# delegate the work, and switch to waiting calls
doneJob := delegate ( worker.doJob ( newJob ) ) ;

# release the worker
available.put ( worker ) ;
return ( doneJob ) ;

}
Example 3: Delegation
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One may imagine other kinds of administrators that use some other criterion than loa
ancing to distribute jobs to workers. In a case where the delegated expression is dire
turned, as in:

return(delegate(worker.doJob(newJob))) ;

we could optimize by substituting:

forward(worker.doJob(newJob)) ;

In this case the worker would not return to the administrator but return directly to the or
caller, thus eliminating a message-passing operation. This optimization is relatively unimp
in the example we have given here, but the savings can be substantial in a setting where
number of workers cooperate to produce a result. Consider an object-oriented impleme
of a search tree in which nodes forward a call to one of their children to search for a par
entry. The node which determines success or failure may return directly to the caller rath
being forced to pop all the way back up the tree [Hogg87]. We provide this option in Hy
although it is not formally necessary.

5. Constraints.

Delegation used in conjunction with delay queues allows one to express constraints. By a con-
straint we mean a predicate that is expected to hold over a collection of objects. Examp
graphical constraints such as the requirement that the endpoint of one line be coincident w
midpoint of another line. Graphical constraints of this variety are managed in ThingLab, a “sim-
ulation laboratory” written in Smalltalk [Born81]. Another example is that of a database
straint which is checked periodically, or after every update.

Especially appealing in an environment like ThingLab is the possibility of being able t
namically create and destroy constraints. This suggests that one might like to encapsula
straints as objects themselves. (Of course, objects with static built-in constraints can als
interest.) Such a constraint object would have to wait for a set of events, namely the modif
of any of the constrained objects. The approach we suggest is to have the constraint obje
one suspended activity for each awaited event. In order to be able to wait for multiple e
each of these activities delegates a call to an operation that returns when the constraint mus
checked.

In the following example we see part of such a constraint object with an identify operation
that constrains two points to coincide. (Each point might in turn be the endpoint of a line, o
of some other more complex graphic object.) The identify operation spawns two activities by in
voking the connect reflex twice. These activities may start, one after the other, when identify re-
turns. Each activity waits for one of the two points to be modified, and then re-establish
constraint that the points coincide. The call to awaitUpdate must be delegated in order to allo
the constraint object to switch to the second connect after the first has been set up.

The awaitUpdate operation requires some care. In order to be well-defined, one must sp
the previous state with respect to which updates must be considered. Since constrain
themselves trigger updates, it is not possible to guarantee that all constraints will see al
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states of the objects they are monitoring (at least not in the setting we describe here). 
counter is therefore explicitly managed for each updateablePoint object (as opposed to a point ob-
ject which maintains no such counter). The updateablePoint object must examine the previou
state argument before determining whether the calling activity must be delayed or not. I
then forwards the call to its awaitNext operation, which is delayed until a state change takes pl

The wasUpdated reflex is used by update operations to close the wasUpdated delay queue
after all the activities suspended on that queue have been triggered. Note that since thi
itself uses the wasUpdated delay queue, the effect of the request is to “flush” the queue. Old 
to awaitNext will precede the wasUpdated request, whereas new calls will follow it.

6. Concurrent Subactivities.

It is possible to structure activities hierarchically to some extent using delegation and
queues. A parent activity must create several child activities, each of which updates a c
when it terminates. The parent then suspends itself on an operation that is triggered whe
children are done. The approach is workable but results in rather clumsy code. Furthermo
would like to be able to explicitly express the idea that a domain may be blocked on a set of sub-
activities rather than just a single activity. This enables more flexible switching between th
activities, without allowing other, unrelated activities into the domain.

# identify points p1 and p2
identify : ( p1 , p2 : oid of updateablePoint ) -> ;
{

# set up activities
# (the state is a “timestamp”)
self ! connect ( p1 , p2 , p2.state ) ;
self ! connect ( p2 , p1 , p1.state ) ;

# make sure the points are in sync
p1.moveTo ( p2.pos ) ;
return ;

}

# connect point p1 to point p2
reflex connect :

( p1, p2 : oid of updateablePoint ; state : updateCount ) ;
{

var newPos : point ;

# wait for point p2 to change state
( newPos , state ) := delegate ( p2.awaitUpdate ( state ) ) ;

# moveTo() has no effect if the new position
# already coincides with the old
p1.moveTo ( newPos ) ;
# re-establish the constraint
self ! connect ( p1 , p2 , state ) ;
end ;

}
Example 4: Constraints
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In Hybrid one expresses this through the coloop and coblock constructs and the activity con-

struct. A coloop (executed repeatedly) or a coblock (executed just once) creates a scope within

operation that permits new concurrent subactivities to be created. The activity construct creates a

new child activity which takes over from the parent until it either terminates or executes a

gated call. When the parent exits the coloop or coblock, it waits until all its children have termi-

nated. Then the parent activity may continue.

The scheme is hierarchical, and supports the notion of nested subactivities. Note tha

time may a parent and a child be simultaneously active within the same domain. Each a

is a unique thread of control and cannot “share” a domain with another activity. Concur

(and hence potential parallelism) enters the picture when a subactivity delegates a call to another

domain, thus allowing its parent or any of its peers to continue in the domain it has just le

In example 6 we see how a coloop can be used to delegate jobs to an array of worker obje

Each time the parent enters the activity statement, control is switched to a new child. When 

child delegates its call to a worker, control is returned to the parent (or to a waiting peer).

the parent breaks out of the coloop, it is required to wait at the end of the coloop scope till al

children have terminated.

var pos : point ;
var updates := 0 : updateCount ;
var uponUpdate : delay ;

awaitUpdate : ( previous : updateCount ) -> (point, updateCount) ;
{

# check if an update has already taken place
if ( previous <? updates ) {

return ( pos, updates ) ;
}
else {

forward ( self.awaitNext ) ;
}

}

# in sync, so “next” state is well-defined
awaitNext : -> ( point, updateCount ) ;

uses uponUpdate ;
{

# triggered by any update operation
return ( pos, updates ) ;

}

# invoked by update operations to “flush” calls to awaitNext
reflex wasUpdated : ;

uses uponUpdate ;
{

uponUpdate.close ;
end ;

}
Example 5: Awaiting updates
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In this example we created a number of similar, parameterized subactivities. The coblock

construct is sufficient if a sequence of dissimilar subactivities is required. In this case one

make repeated use of the activity construct within the coblock rather than the single instance in th

example. The coblock used in this fashion is comparable to the cobegin statement in CSP

[Hoar78] and Argus [Lisk83].

7. Atomicity.

Atomic actions can be very useful in a distributed environment [Lisk83]. They provide the

ical counterpart to delegation, since with atomic actions one wishes to further restrict inte

ing of activities by ensuring mutual exclusion for a series of statements rather than for a

call/return sequence. Atomic actions are useful for ensuring that an object not be “touche

another activity while a series of requests are made to it. Atomic actions, when combine

checkpointing, also provide a facility for reliably “aborting” transactions that go wrong bec

of a detected deadlock or some unsatisfied requirement discovered during execution.

Atomic actions can be specified in Hybrid using the atomic statement. This defines a scop

within which all completed operations cause their objects (and hence the domains con

them) to enter a ready state. This is like the blocked state, except that the domain waits for a com-

mit or abort message (or any further calls related to the transaction).

var n : workerRange ;

n := workerRange.first ;
coloop {

activity {
doneJob[n] := delegate ( worker[n].doJob ( newJob[n] ) ) ;

}
if ( n <? workerRange.last ) { n += 1 ; }
else { break ; }

} # wait here ...
Example 6: Concurrent subactivities.

var n : partRange ;
var part : array [partRange] of oid of graphicObject ;

n := partRange.first ;
atomic {

coloop {
activity {

delegate ( part[n].displaySelf ) ;
}
if ( n <? partRange.last ) { n += 1 ; }
else { break ; }

}
}

Example 7: Atomic actions
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In the example, a complex graphic object displays its parts within a single atomic act
guarantee that the parts will all be synchronized. Assuming that the parts are independ
jects, it would otherwise be possible for some parts to be moved by other activities before
them have been displayed. The atomic action prevents this from happening.

Notice that it is possible to use concurrent subactivities within atomic actions. Deleg
within atomic actions only makes sense within this context. To otherwise delegate a c
abling switching to other activities would conflict with the atomicity requirement.

8. Implementation.

In our prototype implementation of Hybrid we are mapping each environment of objects
its own object manager to a single Unix1 process. Each object manager maintains a worksp
containing the persistent data of each of its objects. The workspace may be atomically 
to disk.

Hybrid type definitions are translated into intermediate code which is stored in the w
space and interpreted at run-time. The object managers mimic some of the functions of a
ating system by time-sharing between active domains. Scheduling of domains is done on
sis of message-passing operations executed. Message-passing between objects in differ
ronments is accomplished by object managers communicating through Unix “soc
Parallelism is thus achieved by having object managers execute on different machines.

One may speculate as to the requirements for an architecture better suited to suppor
tive objects. Such a machine would probably be a multiprocessor, with each processor r
an object manager and a medium-sized collection of domains. Message-passing and p
switching would need to be fairly cheap since heavy use is expected to be made of both.
be possible for processes to have multiple stacks to easily support delegation. (Recall th
main requires a stack for each pending activity with a delegated call.)

Active domains should either reside in main memory only, with a method for “swapp
them out to disk, or object managers should manage their workspaces as huge persisten
memories with a paging algorithm that atomically updates versions of the stable workspace. In
either case, it is important that “dormant” domains, that is, domains that are idle for a long
be swapped out, and thus impose no run-time overhead.

9. Concluding Remarks.

We have presented a model for active objects in which concurrently executing objects co
nicate using an extended remote-procedure call protocol, and we have shown how the mo
be used consistently in an object-oriented programming language to express solutions to
ber of important concurrent problems. Specifically, we have demonstrated how to captu
tual exclusion, pipelines, triggering, postactions, “administration,” constraints, concurren
activities and atomic actions.

1. Unix is a trademark of AT&T Bell Laboratories
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A more detailed description of the Hybrid language is given in [Nier87a]. A formal sp
fication for our activity model is provided in [Nier87b]. In the same paper we examine the
of deadlock and we suggest ways in which it can be handled.

We have not addressed the issue of signaling or “express messages” as they are c
ABCL/1 [Yone86]. We are still investigating ways in which the “interruption” of an active 
ject can be defined in a way that is consistent with data-hiding and object-independenc
idea of “high-priority” operations is promising, though it is not clear how that may be us
affect the control of the interrupted activity.

We are experimenting with techniques for animating objects [Fium87]. We expect th
triggering and constraint mechanisms provided by Hybrid will be useful in binding animate
jects to the active objects they represent. The separation of specification and realization
by the object-oriented approach means that we shall be able to respecify our animated ob
Hybrid while retaining parts of their existing implementation in C.

We are also carrying out research into useful objects for encapsulating and ma
knowledge [Tsic87]. The objects, or “knos,” are highly independent, active entities that
move between object environments. Knos may be complex, consisting of many concurren
(i.e., domains). Knos may react to their environment based on the rules they contain. Ou
ous experiments with knos have been in terms of object-oriented Lisp, using the flavors p
[Wein81, Moon86]. We expect that the activities model that Hybrid provides will be usefu
structuring knos, and that the triggering and delegation mechanism will be invaluable for
aging the relationships between kno parts.

Finally, we have been carrying out work on the modeling of cooperating active obje
better understand complex activities or tasks, and to formalize the properties of concurrent o
ject-oriented systems [Hogg87].
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