Component-Oriented Software Development

Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis

Université de Genéve'

Introduction We shall outline a series of ongoing research projects at the

University of Geneva that address component-oriented soft-

Object-oriented programming tgchn!ques .promote anew afhre development at the levels of languages, tools and frame-
proach to software engineering in which reliable, open applica-

. orks, in particular, (1) the integration of object-oriented lan-
tions can be largely constructed, rather than programmed, P (1) g J

reusing “frameworks” 131 of ol moatibl ftwar m 0g ge features that support software composition with features
eusing “frameworks” [3] of plug-compatible software comp concerned with other issues, like concurrency, (2) application

nents. Although the dream of acomponents—based sOftvv‘ared'(gﬁelopment tools to support composition and reuse, and (3)
dustry is very old [9], only now does it appear that we are cl

to realizing the dream. The reason for this is twofold: e development of reusable application frameworks, specifi-

T i ) ) cally in the domain of multimedia applications.
* Modern applications are increasinglyenin terms of to- )
pology, platform and evolution, and so the need forlaanguage Feature Integration

t-oriented h to devel ti . . .
component-orientec approach fo development 1S evggject—orlented programming languages (OOPLSs) are charac-

mo_re acute than inthe pa§t, ) . terized by features that support (1) the definitioolgéctsen-
* Objects provide an organizational paradigmdecom- ., qjating state and behaviour as a set of servicetagaps
posinglarge applications into cooperating objects as Welf; jnstantiating new objects, and (@eritanceas a mecha-
as a reuse paradigm foomposingapplications from i for defining new (sub)classes [18]. These features provide
pre-packaged software components. the means to model applications as collections of cooperating
Despite the contributions of object-oriented technologybjects (i.e., fodecomposition)and the potential to derive
there are several open research problems that must be resqlé@dspecifications of objects from existing ones (i.e gdon-
to reach the goal of effective component-oriented develgjsitior). Unfortunately these object-oriented featuresnate
ment. First, object-oriented mechanisms for composition ashogonal to other language design issues. Semantic interfer-
reuse must be cleanly integrated with other features, sucheage may occur between features if they are designed indepen-
concurrency, persistence and distribution. Second, effectivedently (or even if they are not!) [16]. We shall briefly summa-

use of software presupposes the existence of tools to supagethe key issues and point out some promising directions for
the organisation and retrieval of components according to ggature integration.

plication requirements and the interactive construction of run- Hybrid is a concurrent object-oriented language, developed

ning applications from components. Third, the design of reUg~ e yniversity of Geneva, that is an attempt to cleanly inte-
able frameworks is an iterative, evolutionary process, so 'tg'rsate the following features [10]:

necessary to manage software and software information™in

such away that designs and implementations can evolve graces: OPIECtS, Classes and Inheritancall” run-time entities
are instances of classes; subclasses may inherit instance

fuIIy.. , , . (state) variables and methods (operations) from multiple
Finally, present object-oriented methodologies do not ex-  gyper-classes;

plicitly address the design of reusable frameworks. Not only

the languages and tools, but the economics, methods and cu

ture of software development must ultimately adapt to a new

evolutionary software life-cycle if we are to realize the benefits

of large-scale software reuse [2][17].

F_. Strong-Typing and Genericitynethods are statically
typed-checked — it is not possible to invoke an unsup-
ported operation on an object; classes may have type pa-
rameters;

3. Concurrency:all objects are active entities with their
* In Communications of the AGNol. 35, No. 9, special issue own thread of control; ObjeCtS may issue Congurrent re-
on Analysis and Modelling in Software Development, Sept. quests and may delay their response to a pending request;

1992, pp. 160-165. Permission to copy without fee all or part 4 persistenceobjects may outlive the process that created
of this material is granted provided that the copies are not them and may, in general, live indefinitely
made or distributed for direct commercial advantage, the ’ ’ '

ACM copyright notice and title of the publication and its date ~ Although a working compiler for Hybrid has been success-
appear, and notice is given that copying is by permission of thefully implemented [8], a number of difficulties were encoun-
Association of Computing Machinery. To copy otherwise, or tered:

to republish, requires a fee and/or specific permission.

» Encapsulation and Inheritances with other OOPLs,
T.Authors’ addressCentre Universitaire d’Informatique, 24 classes have two kinds of clients (objects and subclass-
rue Général Dufour, CH-1211 Genéve 4, Switzerl&mhail: es), but the services provided to each are not distin-
{oscar,simon,dt}@cui.unige.cfiel: +41 (22) 705.7664ax: guished; reusability would be enhanced by making ex-
+41 (22) 320.2927. plicit the different client/server contracts [14];



Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 2

« Homogeneityalthough Hybrid was intended to be a ful- To provide the appropriate context, we can distinguish be-
ly object-oriented language, certain entities, such &geen two quite different activities:

classes andelay queuegused for delaying requests for ;- application Engineeringis the activity of abstracting

selected services), are not first-class objects; a more ho- the domain knowledge for selected application domains,
mogeneous approach would be both simpler and more developing reusable software components to address
general; these domains, and encapsulating this knowledge into

- Typesin Hybrid the notions of class and type are separat-  9€N€ric application frameSAFs);
ed to avoid confusion between subtyping (refinement of 2. Application Developmenis the activity of instantiating
specification) and inheritance (incremental modification ~ a specific application from a GAF to meet some particu-
of implementation); nevertheless, operational interfaces  lar requirements.

used as types tell us little about the client/server contractcapital investment occurs during application engineering.
when concurrency and synchronization are atissue; Thjs js an expert activity that requires detailed understanding of
« Concurrency and Inheritancé:is difficult for a subclass both the application domain and of the mechanisms available
to extend the synchronization policy of its superclassts packaging and composing software components. The return
in a meaningful way [7]. on investment should occur during application development.

To a large extent, these difficulties can be traced to the | lications will be easier to develop, will be more robust and

of any generally accepted computational model for active Ors_lable, and will be more flexible and easy to adapt to evolving

jects suitable for defining the semantics of language construt gwrements. The degree to which gppllca'uorj dgvelopment IS
stréamlined depends on (1) the quality of application engineer-

and to the lack of good prototyping tools for experimentin o o
with language design alternatives. As a consequence, we'a? rf;:gmg it, and (2) application development tools to sup-

now pursuing a radically different approach to the integratiglgl)r
of OOPL features in which objects are viewegpatterns of ~ Concerning the first point, we will only say that application
communicating agenfé1]. engineering isiecessarilyterative and evolutionary. One can-
not be sure that software is truly reusable until it has been suc-
8§_ssfully reused. We must better understand how application
Bgineering works in some selected application domains be-
ore we can hope to offer any insight into how to accomplish it
general. It is for this reason, we suspect, that object-oriented
lysis and design methodologies have been slow to address
£ issue of reuse.

At the lowest semantic level, we only hagentswhich are
entities that communicate by synchronously exchanging m
sages. At any point in time, an agent may make a humbe
communication offer input or output certain specific mes:
sages, or it may silently change state by means of an intefA
communication. Communication events take place when th
are matching input and output offers between concurré
agents. Concerning the second point, it is critical to take into ac-
The behaviour of agents may be described precisely bcoémt tha.‘t reuse ocecurs by designz not by accident. As a conse-
simple language, or “object calculus” called OC [13]. Itis po uence, it is essential that the environment support and exploit

sible to define higher-level abstractions such as remote prot &. GAF str.uct”ure. In _effect,_GAFs function as spemahzed
ethodologies” for object-oriented development in selected

dure calls, various synchronization mechanisms, control str{€Nodc . . L
(y_catlon domains. They drive the application development

tures, classes, and even inheritance, as patterns, that is, as : .
tions over the space of agents. Since OC is an executdbfEess by means of pre-packaged requirements models, appli-
{:%lron designs and software components.

language, it can serve simultaneously as a semantic targe
formally specifying language features and as a tool for rapiqu-HACA

prototyping them. We are presently working on the definition

of apattern language for active objediased on OC, in which ITHACA is a Technology Integration Project in the Office &
the basic patterns representing language features can be Buginess section of the European Community’s Esprit Il Pro-
mented by libraries of patterns representing reusable softw@gi@nme. The goal of ITHACA is to produce a complete ob-

components. ject-oriented application development environment that can be
) ) easily adapted to various application domains [1]. The environ-
Application Development Tools ment consists of:

The use of an object-oriented programming language for devel® An Object-Oriented Programming Environmeintlud-

oping applications is not sufficient to guarantee an improve- ing an object-oriented language with support for persis-
ment in programmer productivity. The development of lan-  tence and transactions, an object-oriented database, and
guages to better support component-oriented software devel- Programming and debugging tools;

opment addresses only part of the problem. It is necessar
invest in development of reusable component sets and to*.The partners are Siemens/Nixdorf (Berlin), Bull (Paris), Da-
streamline the application development activity as much astamont (Milan), TAO—Tecnics en Automatitzacio d'Oficines
possible by providing an environment that encourages applica{Barcelona), FORTH—the Foundation of Research and Tech-

tion construction through reuse over programming from first n?logy, Hgllas (Irakhon).and .CU|—the Centre Universitaire
principles. d’Informatique of the University of Geneva.




Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 3

» A Software Information Base (SIBJr storing all infor- and composition models. For example, in a dataflow-based
mation concerning software reuse and the developmeantipting model, connections cause values to be propagated
process (i.e., GAFs), and including a graphical browsifiggm output ports to input ports [12]. Dataflow components
and querying interface; compute some values as a function of their inputs, and make

A Requirements Collection and Specification Tool (REem available at their output ports. There is no distinction be-

CAST):for guiding the application developer in the infween composing a dataflow script and executing it since infor-
stantiation of a GAF; mation can flow as soon as connections are made.

* A Visual Scripting Tool (Vista)or interactively con- In an object-oriented scripting model, on the other hand,
structing applications from pre-packaged, plug-compaonnections represent service availability. A connection be-
ible software components; tween an input port and an output port binds the client to the

- Application Workbenchesor selected application do- Service provider. When an object-based script is used, ?ts com-
mains, including Public Administration, Office SystemBON€nts may (or may not) make use of available services ac-
and Financial Systems. cording to their needs.

The application workbenches constitute the software com-An €xample of an object-based scripting model is one that
ponents and tools specific to a particular application domafffs developed within ITHACA for generating specifications in
Knowledge concerning the development of these applicatigHgACtivity Definition Language (ADL) for coordinating office
is stored in the SIB (i.e., as GAFs). The GAFs then drive apgjfocedures. Each component (representing office objects, ac-
cation development by constraining the development procd¥{i€s, €tc.) is equipped with methods for generating various
to the context of the particular application domain. The requif@2de fragments. An office procedure is then defined as a visual
ments model is provided and all generic design choices SF&Pt by connecting existing code generation components. A
fixed in advance. Only the specific application requiremerf@Mplete script can then be packaged as an office procedure,
and design choices that depend on them should, in principle2Bd requested to generate its own ADL specification.
specified during application development. The degree to whichClearly, scriptable components are not limited to generating
this is true will depend on how general or specific the GAF #2de — in an equally reasonable scenario, the scripting of an
For example, a GAF for defining workflow procedures that ceffice procedure would cause run-time entities to be connected,
ordinate the processing of electronic office documents mayassl changes to scripts would immediately entail changes in the
completely general, or it may be specially tailored to the nedhaviour of the associated office activities.
of a specific organisation and leave open only very few designBy decoupling scripting models from the underlying pro-
alternatives. gramming language, a variety of different software composi-
Vista tion paradigms can be supported. Furthermore, the ability to

encapsulatescript as a compone(BAC) makes it possible to
Visual scriptingis the interactive construction of applicationgevelop higher-level abstractions through scripting rather than
from pre-packaged, plug-compatible software componentsfy programming. To define a SAC, one must provide script
direct manipulation and graphical editingstais the visual jth (1) a scripting interface (by specifying which ports of the

scripting tool developed within ITHACA [12]. _ script are to become ports of the SAC), and (2) a visual presen-
Scriptable software components are characterized by thgon (which can be composed of existing presentation compo-
following properties: nents). The behaviour of a SAC is simply the behaviour of the

1. Scripting Interfaceevery component has a sebotput script it encapsulates.
portswhere it makes available services that it provides, . .
and a set aihput portswhere it receives connections tdMlultimedia Frameworks

services it requires; Languages and tools only provitkechnologyfor achieving
2. Visual Presentationdirect manipulation is supported by

idi t and h of it . .%Iomponent-oriented software development. Application
providing every component and each ot IS ports Wigl, ye\orks are needed to provide a discipline for component
some editable visualization;

development and reuse. Since new ideas, methods and tools
3. Run-time Behavioura component, when all its inputfare pest in new application areas where inertia is not a factor,
ports are connected, provides some set of services {QHi$ realm of multimedia applications provides a good test-bed
clients. for component-oriented software development. We are pres-
A script’ is a set of software components with compatibntly developing a multimedia framework that is intended to
input and output ports connected. The types of ports defineddinnplify the programming of multimedia applications.
a set of components and the rules that determine plug-compaian early version of the framework has been described else-
ibility constitute what is called scripting model This very \yhere [5] — here we shall summarize the main concepts. The
general scheme can accommodate a variety of programnfiggnework introduces classesrgdia valuesndmedia ob-
jects Media values are temporal sequences. They may be either
*.The term “script” is intended to suggest a parallel between synchronous streams (in which elements occur at regular inter-
an application and a theatrical performance, in which the de-\/5|5) or asynchronous “bursts” (in which elements occur irreg-
sired behaviour is obtained by means of a script that Spec'f'esularly). Media objects produce, consume and transform media
how actors are to interact. : ’ : : :
values. Media values are grouped into multimedia values by




Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 4

specifying temporal transformations (which determine whehading, hardware-based without. A list of the port descriptions
particular values start and stop) — we call teimporal com- of these objects is provided in Table 1.

position Media objects, in turn, are grouped into multimedia

objects by specifying the flow of values from one object to an- Table1 Virtual Museum Components.

other — we call thilow composition

component input port(s)]  output port(

o
~

Flow composition is perhaps closer to component-orienies _ . .
software development than is temporal composition. Whergdgput Device Object (1) raw device data
tem_p_oral composition is a form pf d_ata structuring, flovx_/ co '?'Navigation Object (N) raw device data  render requests
position actually produces applications. Flow composition}is
intended for applications in which many media streams undeMuseum Object (M) render requests  render requests

g0 _smultaneous processmg._The _scnptmg rr_10de| is based DR A0 Source Object (V video frames
hi-fi component metaphamedia objects have input and outpyt

ports that may be connected and through which media valu&ender Object (B render requesty raster frames
flow". These objects correspond to pieces of hardware (e.g., a video frames

video digitizer), or software processes (e.g., a process that
erates audio events). Both forms of media object are exam
of active objectsobjects that can spontaneously perform ac-

tions, even in the absence of method invocation. This results irDne benefit of flow-based composition is that new function-
a high degree of concurrency, and, consequently, special tedltly can be added, or removed, by simple modifications to the
niques are needed for synchronization [5]. During constructiseript. As an example of reduced functionality, note that the
of an application using flow composition, the scripting moddMuseum Object (M) can be bypassed by connecting the Navi-
determines which port connections are valid; for instance, gation Object (N) directly to the Render Objecg)(Rhe re-
input port can be connected to an output port if the two hangldting application allows the user to interactively move
compatible media values. Another constraint is that some pdf®ugh an “empty” 3D space. This simpler configuration is
may require single connections while others may allow multiseful for testing components. An example of an extended con-

1félls_splay Object(D) raster frames

ple connections. figuration is shown in Figure 2 where an Animator Object (A)
As a specific example of flow composition, we will descrik
a prototype we are developing called ¥ireual museunjl5]. Q @

The system is based on a 3D model of a building. Users 1

navigate through the model with a joystick-like device. At s

lected locations, various “exhibits” are displayed. At the m 0 m o ® @ Q
ment exhibits include raster images, video frames, simple ¢

mated geometric objects and 3D surface scan data (simila o

raster images, but with depth information).
Figure 2 Extended Virtual Museum Script.
The script for the virtual museum is shown in Figure 1. Tr

transforms or displaces parts of the museum (e.g., rotates an ex-
0 m m @ Q hibit), a Tee Object (T) duplicates its input to produce two out-
put streams, and a Recorder Object (R) produces a time-
stamped log of requests. By again slightly changing the script
o one could playback the log, possibly in reverse, possibly at dif-
ferent speeds.

Figure 1 Basic Virtual Museum Script. . . .
g P These brief examples illustrate the potential of component-

oriented software development. We believe that our experi-
script specifies a multimedia object that is composed of six gfice, and that of others, indicates that this form of development
dividual media objects. These objects produce a data stré@ftitable when components are derived from a framework de-
from the input device (1), translate this stream into requests fégned for a particular application domain.
movement within a 3D space (N), interpret movement requests )
in the context of a geometric model of the museum (M), rendePNclusions
geometric models and overlay video frameg) (Rrovide vid-
eo frames (V), and display the output of the rendering proc
(D). In Figure 1, software-based media objects are shown

There is today still too much emphasis on object-oriepited
§§mmingrather than on applicatiocompositionfrom pre-
kaged components. There are a number of reasons for this,
one of which is that present-day object-oriented languages do
not fully support &omponent-orientegoftware development
approach. A second reason is that application development

* This view of multimedia applications resembles the “digital
production studio” model proposed for Intel's DVI system [6].



Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis

tools tend to emphasize programming and debugging ratl%r S. Gibbs, “Composite Multimedia and Active Objects,” Pro-
than composition and reuse. ceedings OOPSLA91, ACM SIGPLAN Notices, vol. 26, no.

There are two other difficult problems that are not techno- 11, Nov. 1991, pp. 97-112.

logical but methodological and cultural: [6] J.L.Green, “The Evolution of DVI System Software,” Commu-
1. The Framework Design Problerftow do we abstract nications of the ACM, vol. 35, no. 1, Jan 1992, pp. 52-67.
from acquired domain knowledge in order to enginegs; p . Kafura and K.H. Lee, “Inheritance in Actor Based Con-
p|U9'C0mpat|b|e components for composing new appli-  current Object-Oriented Languages,Firoceedings ECOOP
cations? '89, Cambridge University Press, Nottingham, July 10-14,
2. The Large-Scale Reuse ProbleHow can we obtain a 1989, pp. 131-145.
satisfactory return on our capital investment in reusat{g? D. Konstantas, O. Nierstrasz and M. Papathomas, “An Imple-

software components? mentation of Hybrid, a Concurrent Object-Oriented Lan-

The first problem is an order of magnitude more difficult ~ guage inActive Object Environmentsd. D.C. Tsichritzis,

than that of developing a single, specific application. One must S:entre Universitaire d'Informatique, University of Geneva,

. . . . . une 1988, pp. 61-105.
acquire domain knowledge, factor out functionality, anticipate
future requirements, develop reusable software componeffts, M.D. Mcliroy, “Mass Produced Software Components,” in
package the results for generations of future application devel- Software Engineeringd. P. Naur and B. Randell, NATO Sci-
opers,evaluatethe ease with which new applications can be ence Committee, Jan 1969, pp. 138-150.
composed, and iterate. It is necessarily an evolutionary pfi®] O. Nierstrasz, “Active Objects in Hybrid,” Proceedings OOPS-
cess. Reusable object classes are like poems — it is easy to talk LA '87, ACM SIGPLAN Notices, vol. 22, no. 12, Dec 1987, pp.
about them, but it is hard to write a good one! 243-253.

The second problem has to do with the way software is papik] O. Nierstrasz and M. Papathomas, “Viewing Objects as Pat-
aged and marketed, and the way in which software communi- terns of Communicating Agents,” Proceedings OOPSLA/
ties share and exchange information [4]. Software developers ig:g%OP 930é 'ZgM SIGPLAN Notices, vol. 25, no. 10, Oct
have always recognized the need for standards, but standards > PP. 96-59.
for interoperability of object-oriented applications are onljt2] O. Nierstrasz, D. Tsichritzis, V. de Mey and M. Stadelmann,
now being explored. Present-day project management practic- “Objects + Scripts = Applications,” Proceedings, Esprit 1991
es discourage reuse by leaving little room for capital invest- clzggn{erse;iz,sgluwerAcademuc Publishers, Dordrecht, NL,
ment in reusable software. Existing software is reused only if it ' '
is part of the basic environment, if it is free, or if it constituted®3] O. Nierstrasz, “Towards an Object CalculusPinceedings of
complete subsystem (such as a database). New approaches to the ECOOP '91 Workshop on Object-Based Concurrent Com-
software licensing and exchange of software information are E&tgg esd'rm' Z?—li;)errcl) go'ggifégasszv’vﬁ'z\é\ﬁffn” der:]ﬁ\l. Yfgizeawa,
needed if developers of reusable software are to see a return on 1991 o gppgar_ 9 ’ Y ’

their investment.
[14] R.K.Rajand H.M. Levy, “A Compositional Model for Soft-
References ware Reuse,” iffroceedings ECOOP '8€ambridge Univer-

. . . sity Press, Nottingham, July 10-14, 1989, pp. 3-24.
[1] M. Ader, O. Nierstrasz, S. McMahon, G. Miller and A-K. Pro-

frock, “The ITHACA Technology: A Landscape for Object- [15] D. Tsichritzis and S. Gibbs, “Virtual Museums and Virtual Re-
Oriented Application Development,” Proceedings, Esprit 1990 alities” Proc. Intl. Conf. on Hypermedia & Interactivity in Mu-

Conference, Kluwer Academic Publishers, Dordrecht, NL, seums, Archives and Museum Informatics Technical Report,
1990, pp. 31-51. no. 14, Pittsburgh, October 14-16, 1991, 17-25.

[2] B.J.Cox, “Planning the Software Industrial Revolution,” IEEE[16] D. Tsichritzis, O. Nierstrasz and S. Gibbs, “Beyond Objects:
Software, vol. 7, no. 6, Nov. 1990, pp. 25-33. Objects,” ICIS, vol. 1, no. 1, 1992, to appear.

[3] L.P.Deutsch, “Design Reuse and Frameworks in the Smalltalk- W . . R
80 System,” irSoftware Reusability, Vol., lfeds. T.J. Bigger- 17] P. Wegner, “Capital-Intensive Software Technology,” IEEE

staff and A.J. Perlis) ACM Press, 1989, pp. 57-71. Software, vol. 1, no. 3, July 1984.
[4] S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz and X. Pint§t8] P. Wegner, “Dimensions of Object-Based Language Design,”

do, “Class Management for Software Communities,” Commu- Proceedings OOPSLA '87, ACM SIGPLAN Notices, vol. 22,
nications of the ACM, vol. 33, no. 9, Sept. 1990, pp. 90-103. no. 12, Dec 1987, pp. 168-182.



	Component-Oriented Software Development
	Introduction
	Language Feature Integration
	Application Development Tools
	Multimedia Frameworks
	Conclusions
	References


