

Component-Oriented Software Development *

Oscar Nierstrasz, Simon Gibbs and Dennis Tsichritzis

Université de Genève†
 the
oft-
me-
n-
res

ion
 (3)
ifi-

rac-

ide
ting

rfer-
pen-
a-
 for

ed
te-

nce
ple

p-
 pa-

r
re-
est;

ed

s-
-

ss-
tin-
x-
Introduction
Object-oriented programming techniques promote a new ap-
proach to software engineering in which reliable, open applica-
tions can be largely constructed, rather than programmed, by
reusing “frameworks” [3] of plug-compatible software compo-
nents. Although the dream of a components-based software in-
dustry is very old [9], only now does it appear that we are close
to realizing the dream. The reason for this is twofold:

• Modern applications are increasingly open in terms of to-
pology, platform and evolution, and so the need for a
component-oriented approach to development is even
more acute than in the past;

• Objects provide an organizational paradigm for decom-
posing large applications into cooperating objects as well
as a reuse paradigm for composing applications from
pre-packaged software components.

Despite the contributions of object-oriented technology,
there are several open research problems that must be resolved
to reach the goal of effective component-oriented develop-
ment. First, object-oriented mechanisms for composition and
reuse must be cleanly integrated with other features, such as
concurrency, persistence and distribution. Second, effective re-
use of software presupposes the existence of tools to support
the organisation and retrieval of components according to ap-
plication requirements and the interactive construction of run-
ning applications from components. Third, the design of reus-
able frameworks is an iterative, evolutionary process, so it is
necessary to manage software and software information in
such a way that designs and implementations can evolve grace-
fully.

Finally, present object-oriented methodologies do not ex-
plicitly address the design of reusable frameworks. Not only
the languages and tools, but the economics, methods and cul-
ture of software development must ultimately adapt to a new
evolutionary software life-cycle if we are to realize the benefits
of large-scale software reuse [2][17].

We shall outline a series of ongoing research projects at
University of Geneva that address component-oriented s
ware development at the levels of languages, tools and fra
works, in particular, (1) the integration of object-oriented la
guage features that support software composition with featu
concerned with other issues, like concurrency, (2) applicat
development tools to support composition and reuse, and
the development of reusable application frameworks, spec
cally in the domain of multimedia applications.

Language Feature Integration

Object-oriented programming languages (OOPLs) are cha
terized by features that support (1) the definition of objects en-
capsulating state and behaviour as a set of services, (2) classes
for instantiating new objects, and (3) inheritance as a mecha-
nism for defining new (sub)classes [18]. These features prov
the means to model applications as collections of coopera
objects (i.e., for decomposition), and the potential to derive
new specifications of objects from existing ones (i.e., for com-
position). Unfortunately these object-oriented features are not
orthogonal to other language design issues. Semantic inte
ence may occur between features if they are designed inde
dently (or even if they are not!) [16]. We shall briefly summ
rize the key issues and point out some promising directions
feature integration.

Hybrid is a concurrent object-oriented language, develop
at the University of Geneva, that is an attempt to cleanly in
grate the following features [10]:

1. Objects, Classes and Inheritance: “all” run-time entities
are instances of classes; subclasses may inherit insta
(state) variables and methods (operations) from multi
super-classes;

2. Strong-Typing and Genericity: methods are statically
typed-checked — it is not possible to invoke an unsu
ported operation on an object; classes may have type
rameters;

3. Concurrency: all objects are active entities with thei
own thread of control; objects may issue concurrent
quests and may delay their response to a pending requ

4. Persistence: objects may outlive the process that creat
them and may, in general, live indefinitely.

Although a working compiler for Hybrid has been succes
fully implemented [8], a number of difficulties were encoun
tered:

• Encapsulation and Inheritance: as with other OOPLs,
classes have two kinds of clients (objects and subcla
es), but the services provided to each are not dis
guished; reusability would be enhanced by making e
plicit the different client/server contracts [14];

*.In Communications of the ACM, Vol. 35, No. 9, special issue
on Analysis and Modelling in Software Development, Sept.
1992, pp. 160-165. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the
ACM copyright notice and title of the publication and its date
appear, and notice is given that copying is by permission of the
Association of Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific permission.

†.Authors’ address: Centre Universitaire d’Informatique, 24
rue Général Dufour, CH-1211 Genève 4, Switzerland. E-mail:
{oscar,simon,dt}@cui.unige.ch. Tel: +41 (22) 705.7664. Fax:
+41 (22) 320.2927.

Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 2

e-

ns,
ess
nto

u-

g.
g of
ble
turn
nt.
nd
ing
t is
er-

up-

n

-
uc-

tion
be-
 it
ted
ress

c-
nse-
loit

ed
ed
nt

ppli-

ro-

-
 be
on-

is-
 and

• Homogeneity: although Hybrid was intended to be a ful-
ly object-oriented language, certain entities, such as
classes and delay queues (used for delaying requests for
selected services), are not first-class objects; a more ho-
mogeneous approach would be both simpler and more
general;

• Types: in Hybrid the notions of class and type are separat-
ed to avoid confusion between subtyping (refinement of
specification) and inheritance (incremental modification
of implementation); nevertheless, operational interfaces
used as types tell us little about the client/server contract
when concurrency and synchronization are at issue;

• Concurrency and Inheritance: it is difficult for a subclass
to extend the synchronization policy of its superclasses
in a meaningful way [7].

To a large extent, these difficulties can be traced to the lack
of any generally accepted computational model for active ob-
jects suitable for defining the semantics of language constructs,
and to the lack of good prototyping tools for experimenting
with language design alternatives. As a consequence, we are
now pursuing a radically different approach to the integration
of OOPL features in which objects are viewed as patterns of
communicating agents [11].

At the lowest semantic level, we only have agents, which are
entities that communicate by synchronously exchanging mes-
sages. At any point in time, an agent may make a number of
communication offers to input or output certain specific mes-
sages, or it may silently change state by means of an internal
communication. Communication events take place when there
are matching input and output offers between concurrent
agents.

The behaviour of agents may be described precisely by a
simple language, or “object calculus,” called OC [13]. It is pos-
sible to define higher-level abstractions such as remote proce-
dure calls, various synchronization mechanisms, control struc-
tures, classes, and even inheritance, as patterns, that is, as func-
tions over the space of agents. Since OC is an executable
language, it can serve simultaneously as a semantic target for
formally specifying language features and as a tool for rapidly
prototyping them. We are presently working on the definition
of a pattern language for active objects based on OC, in which
the basic patterns representing language features can be aug-
mented by libraries of patterns representing reusable software
components.

Application Development Tools

The use of an object-oriented programming language for devel-
oping applications is not sufficient to guarantee an improve-
ment in programmer productivity. The development of lan-
guages to better support component-oriented software devel-
opment addresses only part of the problem. It is necessary to
invest in development of reusable component sets and to
streamline the application development activity as much as
possible by providing an environment that encourages applica-
tion construction through reuse over programming from first
principles.

To provide the appropriate context, we can distinguish b
tween two quite different activities:

1. Application Engineering is the activity of abstracting
the domain knowledge for selected application domai
developing reusable software components to addr
these domains, and encapsulating this knowledge i
generic application frames (GAFs);

2. Application Development is the activity of instantiating
a specific application from a GAF to meet some partic
lar requirements.

Capital investment occurs during application engineerin
This is an expert activity that requires detailed understandin
both the application domain and of the mechanisms availa
for packaging and composing software components. The re
on investment should occur during application developme
Applications will be easier to develop, will be more robust a
reliable, and will be more flexible and easy to adapt to evolv
requirements. The degree to which application developmen
streamlined depends on (1) the quality of application engine
ing preceding it, and (2) application development tools to s
port reuse.

Concerning the first point, we will only say that applicatio
engineering is necessarily iterative and evolutionary. One can
not be sure that software is truly reusable until it has been s
cessfully reused. We must better understand how applica
engineering works in some selected application domains
fore we can hope to offer any insight into how to accomplish
in general. It is for this reason, we suspect, that object-orien
analysis and design methodologies have been slow to add
the issue of reuse.

Concerning the second point, it is critical to take into a
count that reuse occurs by design, not by accident. As a co
quence, it is essential that the environment support and exp
the GAF structure. In effect, GAFs function as “specializ
methodologies” for object-oriented development in select
application domains. They drive the application developme
process by means of pre-packaged requirements models, a
cation designs and software components.

ITHACA

ITHACA is a Technology Integration Project in the Office &
Business section of the European Community’s Esprit II P
gramme*. The goal of ITHACA is to produce a complete ob
ject-oriented application development environment that can
easily adapted to various application domains [1]. The envir
ment consists of:

• An Object-Oriented Programming Environment: includ-
ing an object-oriented language with support for pers
tence and transactions, an object-oriented database,
programming and debugging tools;

*.The partners are Siemens/Nixdorf (Berlin), Bull (Paris), Da-
tamont (Milan), TAO—Tècnics en Automatitzaciò d’Oficines
(Barcelona), FORTH—the Foundation of Research and Tech-
nology, Hellas (Iraklion) and CUI—the Centre Universitaire
d’Informatique of the University of Geneva.

Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 3

sed
ated
ts
ake
be-
for-

d,
e-

the
om-
 ac-

hat
 in

 ac-
us
sual
. A
ure,

ing
f an
ted,
 the

-
si-
 to

an
ipt
e
en-
po-
the

on
ent
tools
tor,
ed
es-
 to

lse-
he

ither
ter-
g-
dia
 by

• A Software Information Base (SIB): for storing all infor-
mation concerning software reuse and the development
process (i.e., GAFs), and including a graphical browsing
and querying interface;

• A Requirements Collection and Specification Tool (RE-
CAST): for guiding the application developer in the in-
stantiation of a GAF;

• A Visual Scripting Tool (Vista): for interactively con-
structing applications from pre-packaged, plug-compat-
ible software components;

• Application Workbenches: for selected application do-
mains, including Public Administration, Office Systems
and Financial Systems.

The application workbenches constitute the software com-
ponents and tools specific to a particular application domain.
Knowledge concerning the development of these applications
is stored in the SIB (i.e., as GAFs). The GAFs then drive appli-
cation development by constraining the development process
to the context of the particular application domain. The require-
ments model is provided and all generic design choices are
fixed in advance. Only the specific application requirements
and design choices that depend on them should, in principle, be
specified during application development. The degree to which
this is true will depend on how general or specific the GAF is.
For example, a GAF for defining workflow procedures that co-
ordinate the processing of electronic office documents may be
completely general, or it may be specially tailored to the needs
of a specific organisation and leave open only very few design
alternatives.

Vista
Visual scripting is the interactive construction of applications
from pre-packaged, plug-compatible software components by
direct manipulation and graphical editing. Vista is the visual
scripting tool developed within ITHACA [12].

Scriptable software components are characterized by the
following properties:

1. Scripting Interface: every component has a set of output
ports where it makes available services that it provides,
and a set of input ports where it receives connections to
services it requires;

2. Visual Presentation: direct manipulation is supported by
providing every component and each of its ports with
some editable visualization;

3. Run-time Behaviour: a component, when all its input
ports are connected, provides some set of services to its
clients.

A script* is a set of software components with compatible
input and output ports connected. The types of ports defined for
a set of components and the rules that determine plug-compat-
ibility constitute what is called a scripting model. This very
general scheme can accommodate a variety of programming

and composition models. For example, in a dataflow-ba
scripting model, connections cause values to be propag
from output ports to input ports [12]. Dataflow componen
compute some values as a function of their inputs, and m
them available at their output ports. There is no distinction
tween composing a dataflow script and executing it since in
mation can flow as soon as connections are made.

In an object-oriented scripting model, on the other han
connections represent service availability. A connection b
tween an input port and an output port binds the client to
service provider. When an object-based script is used, its c
ponents may (or may not) make use of available services
cording to their needs.

An example of an object-based scripting model is one t
was developed within ITHACA for generating specifications
an Activity Definition Language (ADL) for coordinating office
procedures. Each component (representing office objects,
tivities, etc.) is equipped with methods for generating vario
code fragments. An office procedure is then defined as a vi
script by connecting existing code generation components
complete script can then be packaged as an office proced
and requested to generate its own ADL specification.

Clearly, scriptable components are not limited to generat
code — in an equally reasonable scenario, the scripting o
office procedure would cause run-time entities to be connec
and changes to scripts would immediately entail changes in
behaviour of the associated office activities.

By decoupling scripting models from the underlying pro
gramming language, a variety of different software compo
tion paradigms can be supported. Furthermore, the ability
encapsulate a script as a component (SAC) makes it possible to
develop higher-level abstractions through scripting rather th
by programming. To define a SAC, one must provide scr
with (1) a scripting interface (by specifying which ports of th
script are to become ports of the SAC), and (2) a visual pres
tation (which can be composed of existing presentation com
nents). The behaviour of a SAC is simply the behaviour of
script it encapsulates.

Multimedia Frameworks
Languages and tools only provide technology for achieving
component-oriented software development. Applicati
frameworks are needed to provide a discipline for compon
development and reuse. Since new ideas, methods and
fare best in new application areas where inertia is not a fac
the realm of multimedia applications provides a good test-b
for component-oriented software development. We are pr
ently developing a multimedia framework that is intended
simplify the programming of multimedia applications.

An early version of the framework has been described e
where [5] — here we shall summarize the main concepts. T
framework introduces classes of media values and media ob-
jects. Media values are temporal sequences. They may be e
synchronous streams (in which elements occur at regular in
vals) or asynchronous “bursts” (in which elements occur irre
ularly). Media objects produce, consume and transform me
values. Media values are grouped into multimedia values

*.The term “script” is intended to suggest a parallel between
an application and a theatrical performance, in which the de-
sired behaviour is obtained by means of a script that specifies
how actors are to interact.

Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 4

ns

n-
the
he
avi-

e
 is
on-

A)

n ex-
ut-
me-
ript
dif-

nt-
eri-
ent

 de-

 this,
 do

ent

specifying temporal transformations (which determine when
particular values start and stop) — we call this temporal com-
position. Media objects, in turn, are grouped into multimedia
objects by specifying the flow of values from one object to an-
other — we call this flow composition.

Flow composition is perhaps closer to component-oriented
software development than is temporal composition. Whereas
temporal composition is a form of data structuring, flow com-
position actually produces applications. Flow composition is
intended for applications in which many media streams under-
go simultaneous processing. The scripting model is based on a
hi-fi component metaphor: media objects have input and output
ports that may be connected and through which media values
flow*. These objects correspond to pieces of hardware (e.g., a
video digitizer), or software processes (e.g., a process that gen-
erates audio events). Both forms of media object are examples
of active objects, objects that can spontaneously perform ac-
tions, even in the absence of method invocation. This results in
a high degree of concurrency, and, consequently, special tech-
niques are needed for synchronization [5]. During construction
of an application using flow composition, the scripting model
determines which port connections are valid; for instance, an
input port can be connected to an output port if the two handle
compatible media values. Another constraint is that some ports
may require single connections while others may allow multi-
ple connections.

As a specific example of flow composition, we will describe
a prototype we are developing called the virtual museum [15].
The system is based on a 3D model of a building. Users can
navigate through the model with a joystick-like device. At se-
lected locations, various “exhibits” are displayed. At the mo-
ment exhibits include raster images, video frames, simple ani-
mated geometric objects and 3D surface scan data (similar to
raster images, but with depth information).

The script for the virtual museum is shown in Figure 1. This

script specifies a multimedia object that is composed of six in-
dividual media objects. These objects produce a data stream
from the input device (I), translate this stream into requests for
movement within a 3D space (N), interpret movement requests
in the context of a geometric model of the museum (M), render
geometric models and overlay video frames (R3), provide vid-
eo frames (V), and display the output of the rendering process
(D). In Figure 1, software-based media objects are shown with

shading, hardware-based without. A list of the port descriptio
of these objects is provided in Table 1.

One benefit of flow-based composition is that new functio
ality can be added, or removed, by simple modifications to
script. As an example of reduced functionality, note that t
Museum Object (M) can be bypassed by connecting the N
gation Object (N) directly to the Render Object (R3). The re-
sulting application allows the user to interactively mov
through an “empty” 3D space. This simpler configuration
useful for testing components. An example of an extended c
figuration is shown in Figure 2 where an Animator Object (

transforms or displaces parts of the museum (e.g., rotates a
hibit), a Tee Object (T) duplicates its input to produce two o
put streams, and a Recorder Object (R) produces a ti
stamped log of requests. By again slightly changing the sc
one could playback the log, possibly in reverse, possibly at
ferent speeds.

These brief examples illustrate the potential of compone
oriented software development. We believe that our exp
ence, and that of others, indicates that this form of developm
is suitable when components are derived from a framework
signed for a particular application domain.

Conclusions

There is today still too much emphasis on object-oriented pro-
gramming rather than on application composition from pre-
packaged components. There are a number of reasons for
one of which is that present-day object-oriented languages
not fully support a component-oriented software development
approach. A second reason is that application developm

*.This view of multimedia applications resembles the “digital
production studio” model proposed for Intel’s DVI system [6].

I

V

DR3MN

Figure 1 Basic Virtual Museum Script.

Table 1 Virtual Museum Components.

component input port(s) output port(s)

Input Device Object (I) raw device data

Navigation Object (N) raw device data render requests

Museum Object (M) render requests render requests

Video Source Object (V) video frames

Render Object (R3) render requests
video frames

raster frames

Display Object(D) raster frames

I

V

D

A

R3T MN

R

Figure 2 Extended Virtual Museum Script.

Component-Oriented Software Development — O. Nierstrasz, S. Gibbs, D. Tsichritzis 5

-

-

S-
.

-

-

a,

-

,

:

,”

tools tend to emphasize programming and debugging rather
than composition and reuse.

There are two other difficult problems that are not techno-
logical but methodological and cultural:

1. The Framework Design Problem: How do we abstract
from acquired domain knowledge in order to engineer
plug-compatible components for composing new appli-
cations?

2. The Large-Scale Reuse Problem: How can we obtain a
satisfactory return on our capital investment in reusable
software components?

The first problem is an order of magnitude more difficult
than that of developing a single, specific application. One must
acquire domain knowledge, factor out functionality, anticipate
future requirements, develop reusable software components,
package the results for generations of future application devel-
opers, evaluate the ease with which new applications can be
composed, and iterate. It is necessarily an evolutionary pro-
cess. Reusable object classes are like poems — it is easy to talk
about them, but it is hard to write a good one!

The second problem has to do with the way software is pack-
aged and marketed, and the way in which software communi-
ties share and exchange information [4]. Software developers
have always recognized the need for standards, but standards
for interoperability of object-oriented applications are only
now being explored. Present-day project management practic-
es discourage reuse by leaving little room for capital invest-
ment in reusable software. Existing software is reused only if it
is part of the basic environment, if it is free, or if it constitutes a
complete subsystem (such as a database). New approaches to
software licensing and exchange of software information are
needed if developers of reusable software are to see a return on
their investment.

References
[1] M. Ader, O. Nierstrasz, S. McMahon, G. Müller and A-K. Prö-

frock, “The ITHACA Technology: A Landscape for Object-
Oriented Application Development,” Proceedings, Esprit 1990
Conference, Kluwer Academic Publishers, Dordrecht, NL,
1990, pp. 31-51.

[2] B.J. Cox, “Planning the Software Industrial Revolution,” IEEE
Software, vol. 7, no. 6, Nov. 1990, pp. 25-33.

[3] L.P. Deutsch, “Design Reuse and Frameworks in the Smalltalk-
80 System,” in Software Reusability, Vol. II, (eds. T.J. Bigger-
staff and A.J. Perlis) ACM Press, 1989, pp. 57-71.

[4] S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz and X. Pinta-
do, “Class Management for Software Communities,” Commu-
nications of the ACM, vol. 33, no. 9, Sept. 1990, pp. 90-103.

[5] S. Gibbs, “Composite Multimedia and Active Objects,” Pro-
ceedings OOPSLA’91, ACM SIGPLAN Notices, vol. 26, no.
11, Nov. 1991, pp. 97-112.

[6] J.L. Green, “The Evolution of DVI System Software,” Commu
nications of the ACM, vol. 35, no. 1, Jan 1992, pp. 52-67.

[7] D.G. Kafura and K.H. Lee, “Inheritance in Actor Based Con-
current Object-Oriented Languages,” in Proceedings ECOOP
’89, Cambridge University Press, Nottingham, July 10-14,
1989, pp. 131-145.

[8] D. Konstantas, O. Nierstrasz and M. Papathomas, “An Imple
mentation of Hybrid, a Concurrent Object-Oriented Lan-
guage,” in Active Object Environments, ed. D.C. Tsichritzis,
Centre Universitaire d’Informatique, University of Geneva,
June 1988, pp. 61-105.

[9] M.D. McIlroy, “Mass Produced Software Components,” in
Software Engineering, ed. P. Naur and B. Randell, NATO Sci-
ence Committee, Jan 1969, pp. 138-150.

[10] O. Nierstrasz, “Active Objects in Hybrid,” Proceedings OOP
LA ’87, ACM SIGPLAN Notices, vol. 22, no. 12, Dec 1987, pp
243-253.

[11] O. Nierstrasz and M. Papathomas, “Viewing Objects as Pat
terns of Communicating Agents,” Proceedings OOPSLA/
ECOOP ’90, ACM SIGPLAN Notices, vol. 25, no. 10, Oct
1990, pp. 38-43.

[12] O. Nierstrasz, D. Tsichritzis, V. de Mey and M. Stadelmann,
“Objects + Scripts = Applications,” Proceedings, Esprit 1991
Conference, Kluwer Academic Publishers, Dordrecht, NL,
1991, 534-552.

[13] O. Nierstrasz, “Towards an Object Calculus,” in Proceedings of
the ECOOP ’91 Workshop on Object-Based Concurrent Com
puting, ed. M. Tokoro, O. Nierstrasz, P. Wegner, A. Yonezaw
LNCS, Springer-Verlag, Geneva, Switzerland, July 15-16,
1991, to appear.

[14] R.K. Raj and H.M. Levy, “A Compositional Model for Soft-
ware Reuse,” in Proceedings ECOOP ’89, Cambridge Univer-
sity Press, Nottingham, July 10-14, 1989, pp. 3-24.

[15] D. Tsichritzis and S. Gibbs, “Virtual Museums and Virtual Re
alities” Proc. Intl. Conf. on Hypermedia & Interactivity in Mu-
seums, Archives and Museum Informatics Technical Report
no. 14, Pittsburgh, October 14-16, 1991, 17-25.

[16] D. Tsichritzis, O. Nierstrasz and S. Gibbs, “Beyond Objects
Objects,” IJICIS, vol. 1, no. 1, 1992, to appear.

[17] P. Wegner, “Capital-Intensive Software Technology,” IEEE
Software, vol. 1, no. 3, July 1984.

[18] P. Wegner, “Dimensions of Object-Based Language Design
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol. 22,
no. 12, Dec 1987, pp. 168-182.

	Component-Oriented Software Development
	Introduction
	Language Feature Integration
	Application Development Tools
	Multimedia Frameworks
	Conclusions
	References

