

e

A Tour of Hybrid

A Language for Programming with Active Objects*

Oscar Nierstrasz†

Abstract
Object-oriented programming is a powerful paradigm for organizing software into reusable components. There have been
several attempts to adapt and extend this paradigm to the programming of concurrent and distributed applications. Hybrid
is a language whose design attempts to retain multiple inheritance, genericity and strong-typing, and incorporate a notion
of active objects. Objects in Hybrid are potentially active entities that communicate with one another through a message-
passing protocol loosely based on remote procedure calls. Non-blocking calls and delay queues are the two basic mecha-
nisms for interleaving and scheduling activities. A prototype implementation of a compiler and run-time system for Hybrid
have been completed. We shall review aspects of the language design and attempt to evaluate its shortcomings. We conclud
with a list of requirements that we pose as a challenge for the design of future concurrent object-oriented languages.

*.In Advances in Object-Oriented Software Engineering, ed. D. Mandrioli and B. Meyer, Prentice-Hall, 1992, pp. 167-182.

†.Author’s current address: Institut für Informatik und angewandte Mathematik (IAM), University of Berne , Länggassstrasse 51,
CH-3012 Berne, Switzerland. Tel: +41 (31) 631.4618. E-mail: oscar@iam.unibe.ch. WWW: http://www.iam.unibe.ch/~oscar.
cy
ra-

ent
 in-

he
 We
n
 of
ri-

 be
ust

of
t

-

nd
th-

sic
le
ren-

t-
cts

 tra-
nal
1 Introduction

An increasing number of today’s software systems can be best
described as “open systems,” that is, systems that evolve to
keep up with changing requirements and available technology.
Open systems are frequently physically distributed, and may
run on a heterogeneous collection of machines. Object-orient-
ed programming is one of very few approaches that shows
promise as a better way to develop open systems. There are two
important reasons for this:

• Encapsulation of data and operations into software “ob-
jects” improves the maintainability of complex systems
by decomposing them into manageable pieces with well-
defined functionality. Object-oriented programming can
thus be seen as a logical continuation of structured and
modular programming.

• Instantiation, class inheritance and genericity enhance
software reusability and encourage the careful design of
truly reusable object classes. Object-oriented program-
ming in combination with good object design can there-
fore improve the adaptability of open systems by shifting
the emphasis from reprogramming to reuse and reconfig-
uration.

We claim that object-oriented programming can help us not
only to cope with the complexity and evolution of open sys-
tems, but that it can also serve as a good paradigm for the pro-
gramming of distributed and concurrent open systems. The key
idea is that an object can be viewed as an entity that provides its
clients with a service; when that object is servicing a request, it
may do so in parallel with other activities taking place in the
system. Such an object is said to be “active.” Active objects
may be physically distributed, their precise location perhaps
unknown to clients.

Hybrid is an experimental object-oriented programming
language that attempts to integrate three distinct notions of ob-
jects:

1. objects as instances of reusable object classes
2. objects as typed entities

3. objects as independent active entities

The main innovation in the language is the concurren
model, which provides for a uniform message-passing pa
digm for communication between active objects consist
with strong-typing, and supports mechanisms for creating,
terleaving and scheduling threads of control.

In this paper we will discuss the problem of extending t
object-oriented paradigm to accommodate active objects.
will provide an overview of Hybrid, paying particular attentio
to its concurrency model. We conclude with an evaluation
the language, a list of requirements for concurrent object-o
ented language design, and topics for further research.

2 Objects and Threads
The minimal requirements for a programming language to
accepted as being “object-oriented” are that the language m
support objects, classes and inheritance [16] where:

1. an object has a hidden representation (typically a set
instance variables) and a visible interface (typically a se
of operations, whose implementation – or methods – may
vary from object to object),

2. an object class defines the shared behaviour (i.e., in
stance variables and methods) of a set of objects, and

3. class inheritance can be used to define new classes (sub-
classes) that inherit the behaviour of existing classes, a
may augment it with new instance variables and me
ods.

Modern object-oriented languages often add to this ba
list by providing some combination of strong-typing, multip
inheritance, genericity (i.e., parameterized classes), concur
cy control mechanisms, and persistent objects.

At first glance, incorporating concurrency into an objec
oriented language seems straightforward, after all, obje
communicate by “message-passing.” However, objects are
ditionally viewed as being passive entities with an operatio

A Tour of Hybrid — Oscar Nierstrasz 2

is by

s
. An

nisa-

he
ting
.

-
m-

ated

ob-
ur-
ncy

pe

of
ay
rn
d-
 set

te
i.e.,
 de-
tion

on-

a-
pe.

-

 a
ith

l-
interface, whereas communicating processes are seen as active
entities with a stream or message-oriented interface. In fact, if
we look at existing concurrency mechanisms as they might ap-
ply to objects, we see that they can be classified into two world
views:

1. Active entities (processes) share and manipulate passive
objects.

2. Active objects communicate and synchronize by mes-
sage-passing.

This distinction is analogous to that made by Andrews and
Schneider [2] who classify approaches as being either proce-
dure-oriented or message-oriented.

We propose that these approaches be unified by thinking in-
stead in terms of objects and threads. Objects are “real” in the
sense that they have state and behaviour, whereas threads are
virtual, being simply execution traces. Any object is “active”
whenever a thread enters it. In the first scenario above, passive
objects become active when processes (threads) access them.
In the second scenario, objects create or pass on threads by
sending messages, and objects become active when they accept
messages. If an object becomes idle whenever it sends a mes-
sage, then the threads correspond exactly to the message-pass-
ing traces.

If we compare various concurrency control mechanisms
with respect to this reference model of objects and threads, we
can gain some insight into the real differences between them.
Criteria for comparison include:

• the granularity of the objects,

• the number of threads that may be simultaneously active
within an object (single thread objects are “atomic”),

• how a thread is defined,

• how threads are created and destroyed,

• how long threads may be,

• how threads are synchronized (how does an object decide
which thread may enter it).

It should be emphasized that what exactly a thread is will be
open to interpretation for any given language model. For exam-
ple, in actor systems [1], threads are arguably the length of a
single message-passing event. In real actor applications, how-
ever, it is undoubtedly more useful to conceptually group
chains of events into longer threads. (After all, this is what the
programmer does!)

We further propose that the notion of a thread is extremely
important as a programming concept for structuring concurrent
computations, and that concurrency control mechanisms
should be built upon that notion. (As a disclaimer, we acknowl-
edge that this may not hold for specialized applications where
massive parallelism is required.) In the case of object-oriented
programming, where the paradigm of an object as “server” ac-
cessible by message passing prevails, a thread corresponds by
default to a “remote procedure call” trace (i.e., a balanced se-
quence of call and return messages).

With Hybrid, we chose to adopt message passing as the par-
adigm for communication (whether or not “real” message pass-
ing takes place in the implementation). Single-thread “atomic”
objects are called domains, and may be defined by the program-

mer to be as large or as small as desired. Thread creation
invocation of a special reflex operation, which determines the
resulting chain of call and return messages. A thread is alway
either present in an executing object, or frozen in a message
object becomes active by accepting a message. Synchro
tion and interleaving of threads is accomplished by the delay
queue and delegation mechanisms described in §4.

We shall now at Hybrid in some detail before returning at t
end of this paper to some of the requirements for incorpora
concurrency mechanisms into an object-oriented language

3 An Overview of Hybrid
An application written in Hybrid consists of a collection of co
operating active objects, possibly distributed amongst a nu
ber of separate object environments. An object may be cre
either as an independent “top-level” object, called a domain, or
it may be a dependent “part” (instance variable) of another
ject within a domain. Domains define the granularity of conc
rency, and so are comparable to monitors [3]. (The concurre
model is further described in §4.)

Every object in Hybrid is an instance of an object type. Ty
definitions have the following general form:

type typeName parameters:
typeSpec;

private
realization

The typeSpec describes the public interface to instances
the type. The interface is typically a set of operations that m
be invoked (including the specification of argument and retu
types), but may also include “visible instance variables.” In a
dition to named operations, one may define and overload a
of infix and prefix operators recognized by the language.

The realization part of a type definition describes the priva
instance variables, the implementation of the operations (
the methods), and any private operations. Type parameters
fined in the interface may be used anywhere in the specifica
or realization as though they were bound to actual types.

3.1 Type specifications
Type specifications are described using a number of type c
structors, the most general of which is abstract, which requires
the programmer to explicitly provide the list of public oper
tions and visible instance variables associated with the ty
For example,

type buffer of itemType:
abstract {

put: itemType ->;
get: -> itemType;

};
defines the interface to a generic type buffer supporting the op-
erations put and get. (The realization is not shown.) The argu
ment type of put and the return type of get are that of the param-
eter itemType. Another object that requires an instance of
buffer must bind the parameter to an actual type (i.e., one w
a realization).

Abstract types may also define a set of infix and prefix oper-
ators, and may overload the indexing operator denoted by
square brackets ([]). Operators are constructed from a fixed a

A Tour of Hybrid — Oscar Nierstrasz 3

ent
the
 of

n

 ap-
ast
ects
er-
he

ple
lon.
ed in

c-

ops

ob-
ex-

ex-
red
l,

e.
 that
ion,
phabet of operator symbols. The language distinguishes be-
tween priority operators (namely *, / and %), relational opera-
tors terminating in a question mark (?) and yielding a Boolean
value, assignment operators terminating in an equal sign (=),
and parsed right-to-left, and all other operators, parsed left-to-
right.

The other constructors are inherits, for defining subtypes
that inherit operations from multiple parents, enum for defining
enumerated types, oid for defining object identifiers, array for
defining homogeneous arrays, and record and variant for defin-
ing records and variant types. A type may also be defined as a
range of integer values (ranges of values from enumerated
types are not presently supported).

For all of the type constructors except abstract, the realiza-
tion is typically omitted, since it can be inferred from the
typeSpec. For example, the realization of an array is automati-
cally supplied by the compiler. In the case of the inherits con-
structor, the methods and instance variables inherited from par-
ents may be overridden by the subtypes.

One may also define abstract types with incomplete or emp-
ty realizations, but these types (called virtual types) cannot be
instantiated. A subtype inheriting from a virtual type is also vir-
tual, unless it supplies the missing methods in its realization.

The interface to an object is its effective type. The actual
type of an object is determined by its realization. A type T1 con-
forms to another type T2 if it supports at least the same inter-
face, i.e., if it supports at least the same set of operations with
the same specifications. We say that T1 is a subtype of T2, even
if it does not inherit anything from T2. Inheritance is therefore
purely a code reusability mechanism in Hybrid, and only acci-
dentally establishes a subtype relationship.

Effective types and subtypes are used to determine whether
expressions are type-correct. With dynamic binding, actual
types may not be known till run-time.

3.2 Expressions

Expressions have the general form: <target> <operation>
<arguments>

The target and arguments may themselves be subexpres-
sions. The actual form of the expression may vary, depending
on whether the operation is named by an identifier, or by one of
the infix or prefix operators. The former looks like:

b.put(value)

whereas the latter may be as complicated as:
n := a * ++b + c

which would be parsed as:
n := ((a * (++b)) + c)

Note that variable binding is different from assignment. As-
signment operators are defined by the methods of an object
type, whereas the binding operator (<-) binds variable names to
values. For example, in the expression:

a := b <- c

the name b will be bound to a copy of the object instance cur-
rently named by c. Then the instance named by a will execute a
method corresponding to the operator := with the argument
named by b. Presumably (but not necessarily), a will try to

make itself look like b. In this example, b is dynamically re-
bound, whereas a is not.

Expressions are type-correct if operation invocations are
consistent with the effective types of the target and argum
subexpressions. Variables may be dynamically bound to
value of any expression that conforms to the declared type
the variable.

Type casting is required to change the effective type of a
expression to a more general type. For example, consider:

scratchPad.insert(s:graphicalObject)
where s is a variable of type spline, and the insert operation of
the scratchPad expects a graphicalObject argument. Then type-
casting will tell the compiler to verify that spline is a subtype of
graphicalObject.

In the implementation, this step also guarantees that the
propriate method lookup table will exist so that the type-c
object can efficiently respond to messages intended for obj
of the type it conforms to. Once type-casting has been p
formed, there is only a small, fixed overhead in looking up t
method for, say, a display operation.

3.3 Statements
Statements, unlike expressions, have no type or value. A sim
statement consists of an expression followed by a semi-co
Compound statements are a series of statements enclos
braces ({ ... }), and may include local (automatic) variable de
larations.

Hybrid has both an if statement and a switch statement for se-
lectively executing code. Repetition is provided by a loop state-
ment, which may be repeated with a continue statement, or ex-
ited with a break statement. A block is similar to a loop, except
that it can only be exited, not repeated. In case of nested lo
or blocks, a label may be supplied to either break or continue.

Hybrid also supports a check statement for disambiguating
variant types at run-time, and for determining whether an
ject actually belongs to a subtype of its effective type. For
ample:

var x : graphicalObject ;
...

check (g :? spline) {
...

}
else { # complain ... }

will determine if the actual type of the current value bound tog
conforms to the more specific type spline. Upon success of the
check statement, g will be re-declared to be of type spline for
the body of the compound statement that follows.

The return statement is used to terminate a method. The
pression supplied to it must conform to the method’s decla
return value. The end statement terminates a thread of contro
and may only occur within the method of a reflex (see below).

A more detailed description of Hybrid exists in [8].

4 Communication and Concurrency
in Hybrid

Objects are active while they are responding to a messag
Since all objects are instances of object types, this means
objects are active when responding to an operation invocat

A Tour of Hybrid — Oscar Nierstrasz 4

er-
ere
able
l-

l be

iate
n-
 be
he
le-
nly
d to

ur-
t
ng
or when they themselves receive a response to request they
have issued.

The basic model of communication is that of remote proce-
dure calls. Messages between objects are generally either call
messages, requesting an object to execute one of its methods, or
return messages sent after the successful completion of a meth-
od. (Exceptions were envisaged as a necessary alternative to re-
turn messages, but were not included in the initial language de-
sign.) We can therefore trace a thread of control, called an ac-
tivity, as a sequence of call and return messages between
objects, whether they communicate within a domain or be-
tween domains.

New activities are created by invoking a special kind of op-
eration called a reflex. When a reflex is invoked, a start message
is sent to the object, and accepted as soon as the object’s domain
is idle. Since reflexes do not return anything, the effect is to ini-
tiate a new activity. The method for a reflex is terminated by an
end statement.

Messages may be delivered either synchronously, when
communication is between objects within the same domain, or
asynchronously, when communicating objects are indepen-
dent. A call to a remote object is made through an object identi-
fier (i.e., of type oid), which takes care of delivering the mes-
sage. When an object sends a call message to a remote target,
the object’s domain ordinarily blocks until a response is re-
ceived. (Recursive calls, related to the blocking activity, are
permitted.) An activity can always be viewed as being at a
unique location, either within an object executing a method, or
buffered in a message queue. Similarly, domains can always be
viewed as being in one of three states: idle, running, or blocked.

Two additional mechanisms are required in order to be able
to program interesting active objects. Delay queues are used to
schedule activities when there are operations that cannot al-
ways be immediately performed. A simple example is a get
from an empty buffer. These operations are declared as using a
named delay queue, and the object manages the queue of buff-
ered messages by opening and closing the queue during the ex-
ecution of other methods. The delay queue is typically used to
represent either the availability of a resource, or the status of an
awaited condition, much in the same way that condition vari-
ables are used in monitors. The main difference is that opening
or closing a delay queue does not entail an immediate transfer
of control, as is the case with waits and signals [3].

Delegation is a mechanism for interleaving activities. An
expression of the form:

delegate(target op args)
will always be evaluated by asynchronous message-passing,
and will leave the calling domain idle, that is, free to accept
messages related to other activities. The context of the delegat-
ed expression is saved, and later resumed when the return mes-
sage is eventually received. Delegation is typically needed for
objects that manage multiple activities, such as an “administra-
tor” object that forwards tasks to a set of “worker” objects.
Aside from interleaving of activities, delegated expressions be-
have just like non-delegated expressions.

In Figure 1 we see how to schedule requests for a resource
by using a delay queue to represent the precondition for ser-

vice. An item object keeps track of the number of items of a c
tain kind that are in stock. It will service orders as long as th
are at least some items in stock, even though it may not be
to completely fill an order. (A “filled” order has at least one a
located item.) Whenever an item is out of stock, requests wil
delayed.

Figure 2 shows part of the definition of a clerk object that
looks up item names, and forwards orders to the appropr
item object. Since clerk objects may process several orders co
currently, and should not be blocked if an item happens to
out of stock, the order request is forwarded by delegation. T
context of the current activity is saved at the point where de
gation occurs, and is resumed when the order is filled. O
when the return message is received will a value be assigne
the variable filled.

Note that it is also possible to design an item object that will
only return completely filled orders by introducing a backorder
object that waits for the number of items required for the c
rent back order. When the item object detects that it canno
completely fill an order, it delays all future requests (by closi
its avail queue), tells the backorder object how many items to

type item : abstract { ... }
private {
var n : integer ; # = no. of items in stock

order: (r: integer) -> integer ;
uses avail ; # open iff n>0

{
if (r <? n) {

n -= r ; # fill the order
}
else {

r := n ; # fill as much as we can
n := 0 ;
avail.close() ; # delay future orders

}
return(r) ;

}

add: (s: integer) -> ;
{

n += s ;
avail.open() ; # assumes s>0

}

} # end of item

Figure 1 Resource management using a delay queue.

type clerk : abstract { ... }
private {
var item_list : list [string] of item ; # lookup table
process_orders : (f: order_form) -> ;
{

...
order, but don’t block:
filled := delegate(item_list[item_name].order(r)) ;
...

} } # end of clerk

Figure 2 Administration by delegation.

A Tour of Hybrid — Oscar Nierstrasz 5

-

and
ted
ni-
 Hy-
er

port
nd

nd
im-
the
he
as.
n-

y-

ng
he
927

5].

 an
im-
rob-
rent
m-

or-
ri-
ch-
 in-
age.
 or-
me.
g,

that
s.
be-
nde-

to-
ro-
to
 to
 the
uld
wait for, and delegates the current request to the backorder ob-
ject, notifying it whenever new items arrive.

The operational semantics of delegation and delay queues
are discussed in [9]. Other examples are given in [10].

5 Implementation

The Hybrid execution model is that of a distributed collection
of object environments, each of which provides support for per-
sistent active objects and for communication between objects
in different environments. The prototype implementation is
currently restricted to a single object environment, but with
support for multiple users.

The Hybrid object manager effectively functions as an “ob-
ject server” for users’ client processes. In the sample applica-
tions implemented using the prototype, the user processes are
responsible for connecting to object manager, and for manag-
ing the user interaction objects (e.g., windows). Objects in the
client’s environment have corresponding “shadow” objects in
the Hybrid object environment, which forward messages to the
client.

The object manager is implemented as a single Unix process
that manages the workspace of active objects. Persistence is
provided by storing the workspace in a file. The workspace is
therefore limited by the size of virtual memory. Pseudo-con-
currency is provided by light-weight processes implemented
using a coroutine extension to the C language.

The system consists of three main components, the Hybrid
compiler, the type manager, and the run-time system. After
considering the alternatives, it appeared that the fastest and
most flexible way to implement the compiler was to use the C
programming language as a high-level “assembler.” Dynamic
linking was not considered a high-priority item for the proto-
type, so the present implementation does not integrate the Hy-
brid compiler into the object manager. We therefore distinguish
between the compile-time and run-time views of the system.

Hybrid type definitions are translated to C, compiled into
run-time libraries, and linked in with the object manager. The
type manager keeps track of a database of all information con-
cerning object types, other than the actual executable code for
the methods. The type database is stored directly in the persis-
tent workspace. The type manager provides the mechanisms
for the realization of multiple inheritance, code reusability,
type parameterization, overloading and version management.
The compiler communicates with the type manager in order to
verify type-correctness of new type definitions, and generates
information concerning new types to be stored in the type data-
base for later use.

The system implements Hybrid activities as light-weight
processes, and domains as shared, passive monitor-like ob-
jects. Since the target environment of the prototype was basi-
cally a shared memory with pseudo-concurrent processes, this
approach was more natural (and efficient) than trying to direct-
ly simulate message-passing. The message-passing semantics
of Hybrid’s concurrency constructs are nevertheless preserved.
In order to extend this approach to work in a distributed envi-
ronment, we would require several light-weight processes to

implement a Hybrid activity (i.e., one per environment in
volved in a computation).

The run-time system mediates between active objects
the client processes. Communication with clients is suppor
by providing special object types that know how to commu
cate with the outside world. These types, as well as all basic
brid types, exist in the run-time type library. The type manag
is responsible for the method lookup tables needed to sup
dynamic binding, and for the information needed to create a
delete objects.

A skeleton parser (i.e., recognizer and pretty-printer) a
the routines for managing the persistent workspace were
plemented by Oscar Nierstrasz. The Hybrid compiler and
type manager were implemented by Dimitri Konstantas. T
run-time system was implemented by Michael Papathom
The total implementation effort comprised roughly two ma
years over the period from March 1987 to May 1988.

The source code lines of the major components of the H
brid prototype are of the following sizes:

Compiler 18,102 lines
Type Manager 10,016 lines
Thread Manager 5,497 lines
Basic User Interface 5,426 lines
Run-time Type Manager Interface 1,882 lines
Persistent Workspace Module 1,969 lines

In addition, there were two smaller components deali
with user interface and initialization that were needed for t
test applications. The total size of the source code is 44,
lines of C code.

A detailed report on the implementation can be found in [

6 Observations
Although the Hybrid project has thus far demonstrated that
object-oriented approach to concurrency is both viable and
plementable, we also feel, however, that there are several p
lems to be solved before we can arrive at a realistic concur
object-oriented language that will be appropriate for progra
ming open systems.

The first problem we encountered was the lack of useful f
malisms for defining the semantics of a concurrent object-o
ented language. The semantics of Hybrid’s concurrency me
anisms were defined semi-formally, using an ad hoc model,
dependently of type model and other aspects of the langu
The net effect was that interference between supposedly
thogonal mechanisms was discovered rather late in the ga
For example, delegation may interfere with dynamic bindin
since interleaving activities are free to execute methods
will re-bind instance variables participating in other activitie
These problems are reported in [14] and [15]. Interference
tween concurrency mechanisms and inheritance has been i
pendently reported by Kafura and Lee [4].

Related to this problem was the lack of good tools for pro
typing languages. The implementation effort required for p
totyping Hybrid was far too great to allow the language
evolve together with its implementation. (This is analogous
the evolution problem posed by open systems mentioned in
introduction.) In retrospect, a more promising approach wo

A Tour of Hybrid — Oscar Nierstrasz 6

oic-

ith

re-

so,

. In
rk
 set
ev-
oti-
 as

s as
in,
o-

n-
PC
m-
el
ov-
cur-
ctly
l-
tain
ad-
rol
” in
era-
f

 way
ned,
ost

 is-

-

ro-
r-
ak
ly

ges
led.
atic
n
fini-
en
pe
r-
 the
h
mo-
 dy-
n be
be to define Hybrid’s semantics by mapping its language con-
structs to a formal, executable notation for describing concur-
rent behaviours, as outlined in [12].

One difficult design decision in any object-oriented lan-
guage is what the first class values of the language shall be. The
principle of homogeneity present notably in Smalltalk is that
“everything” should be an object, in particular, object classes
and, in certain cases, executable code (i.e., Smalltalk’s “block
expressions”). The importance of classes being objects should
not be underestimated in the context of open systems: it is cru-
cial that systems be able to evolve while they are running. In or-
der to be able to instantiate objects of new or modified classes,
it must be possible within the language to communicate with a
class object that was not known at compile time.

In Hybrid, we attempted to apply the principle of homoge-
neity, but found that certain kinds of objects, notably delay
queues and primitive objects like integers, could not be instan-
tiated and manipulated in the same way as programmer-defined
objects.

By far the most serious omission in Hybrid was the lack of
an exception handling mechanism. The omission was inten-
tional, not because we felt it was an unimportant issue, but rath-
er because we believed it would be easier to evaluate exception
handling approaches once we had experience with a running
prototype. In fact, exception handling is essential if concurren-
cy and strong-typing are to be meaningfully integrated into a
useful object-oriented programming language. If we accept the
view that any object is essentially an entity that provides a ser-
vice to client objects, and that an object type is a description of
the contract between the client and the server object with re-
spect to these services, then without exceptions as an integral
part of that contract, there is no way for an object to notify its
client when the contract cannot be honored. For realistic con-
current applications, it must be possible for clients to catch and
handle exceptions.

It is not our goal to survey exception handling mechanisms
here. Nevertheless, we shall briefly list some of the require-
ments that a reasonable scheme would have to meet to satisfy
our needs:

• Any operation may fail, raising an exception.

• The exceptions that may be raised are part of the type of
an operation. Exceptions are themselves typed.

• Clients may define their own handlers, or inherit those of
their own clients. There is always a default handler.

• Exception-handling should be no more expensive than
message-passing (or procedure calls).

• The responsibility of a handler is to repair damage, not to
provide an alternative execution path. (See also [6].)

• Methods should not have to depend upon exceptions to
implement control flow. (It should always be possible to
write code that does not require an exception to imple-
ment, say, loop termination.)

Since exception handling indicates a break from the normal
flow of control, and should occur exceptionally (!), economy
rather than generality should be a design criterion. Mecha-

nisms should be motivated by real examples. The design ch
es include such questions as:

• Should exceptions have optional values associated w
them (i.e., to inform the client what went wrong)?

• What actions may be taken by a handler (e.g., retry,
sume, abort/re-raise, return, ...)?

• Can exceptions be raised within a handler, and, if
what happens?

A related problem is that of signaling, though in this case it
is less clear how a satisfactory solution may be arrived at
some concurrent applications it is convenient to split up wo
amongst a number of cooperating objects. If, for example, a
of objects are working in parallel to solve a problem using s
eral different approaches, the first to succeed may need to n
fy the others that the job is finished. Signals could be viewed
a kind of exception, but it seems more natural to view signal
a special kind of “express” message, as in ABCL/1 [17]. Aga
we feel that proposals for new mechanisms should be well-m
tivated both by economy of function and by real examples.

Yet more difficult is the problem of how to encapsulate co
current behaviour. Even though the abstraction of an R
thread is extremely useful for structuring most concurrent co
putations, its limitations are only too obvious when higher lev
abstractions are called for. Concurrent subactivities and rec
erable atomic transactions are two examples of useful con
rent control abstractions that are unpleasant to program dire
using Hybrid’s delay queue and delegation primitives. A
though the object paradigm serves well to encapsulate cer
kinds of concurrent behaviours (e.g., triggers, workers and
ministrators, etc.), it fails to capture encapsulation of cont
abstractions. A transaction cannot be viewed as an “object
the usual sense, since it does not support an interface of op
tions. A satisfactory solution would allow for the addition o
new control abstractions to the language, much in the same
that programmers may add new object classes. Well-desig
reusable control abstractions would eliminate the need for m
programmers to have to deal with low-level synchronisation
sues.

Finally, we note that Hybrid, like most programming lan
guages, does not scale well. By this we mean that programming
languages are typically classified as being either good for “p
totyping” or for production, but not both. The division is gene
ally made along the lines of dynamic vs. static binding, we
vs. strong typing, and interpretation vs. compilation. The on
concession to scaling that is commonly made is in langua
like Lisp and Pascal that may be either interpreted or compi
Languages like Simula and C++ offer a choice between st
and dynamic binding through the use of the “virtual” functio
declaration, but such decisions are frozen in the class de
tion. No language that we know of offers a choice betwe
weak and strong typing (or between run-time and static ty
checking). We believe that scaling will be increasingly impo
tant in the development of open systems, not only to ease
transition from prototyping to production development (whic
can be accomplished by other means), but mainly to accom
date varying needs and system evolution. Both static and
namic binding of the same object classes and operations ca

A Tour of Hybrid — Oscar Nierstrasz 7

for
,

ird
.

-

-

-

 In-

at-

3,

ro-

-

cy

-

,”

simultaneously required by different applications, the first for
efficiency reasons and the second for genericity. Although stat-
ic type-checking is generally desirable, for evolving and open
systems it is not practical to require all applications to be stati-
cally type-checked, since there will be no way for existing ob-
jects to communicate with new ones without re-compilation.

7 Conclusions

We have argued that a reference model of “objects and threads”
should be used to guide the development of concurrent object-
oriented programming languages, and we have shown how this
model manifests itself in Hybrid an experimental language for
programming with active objects. Although we can claim par-
tial success with Hybrid, we are still a long way from raising the
level of concurrent programming to the same degree that ob-
jects raise the level of sequential programming. We can sum-
marize our conclusions in the following list of requirements for
concurrent, object-oriented programming languages:

• A computational model for concurrently executing ob-
jects is needed for properly defining the semantics of new
languages. Better tools for prototyping languages are
needed to support research in this direction. We have de-
veloped an executable notation for specifying concurrent
behaviour, which is based on process calculus [7], and
we are using this notation to explore various semantic
models for active objects [12].

• A mechanism for encapsulating concurrent control ab-
stractions should be supported. Object classes do not al-
ways provide the best mechanism for encapsulating con-
current behaviour [13].

• Concurrency control mechanisms and object-oriented
features can interfere in unexpected ways [14], [15]. For-
mal approaches appear promising as a means to better in-
tegrating concurrency and object-orientation.

• A realistic programming language must support excep-
tion handling for active objects.

• Signals (express messages) should be supported.

• A choice between dynamic and static binding of vari-
ables and operations should be offered for all object
classes.

• A choice between run-time and static type-checking
should be offered to support the evolution of open appli-
cations.

Acknowledgements

A shorter version of this paper has previously appeared as [11].
The author would like to thank the Centre de Recherche en In-
formatique de Nancy (CRIN) for their permission to re-use this
material.

References
[1] G.A. Agha, ACTORS: A Model of Concurrent Computation in

Distributed Systems, The MIT Press, Cambridge, Massachu-
setts, 1986.

[2] G.R. Andrews and F.B. Schneider, “Concepts and Notations
Concurrent Programming,” ACM Computing Surveys, vol. 15
no. 1, pp. 3-43, March 1983.

[3] C.A.R. Hoare, “Monitors: An Operating System Structuring
Concept,” CACM, vol. 17, no. 10, pp. 549-557, Oct 1974.

[4] D.G. Kafura and K.H. Lee, “Inheritance in Actor Based Con-
current Object-Oriented Languages,” Proceedings of the Th
European Conference on Object-oriented Programming, pp
131-145, Cambridge University Press, Nottingham, July 10
14, 1989.

[5] D. Konstantas, O.M. Nierstrasz and M. Papathomas, “An Im
plementation of Hybrid, a Concurrent Object-Oriented Lan-
guage,” in Active Object Environments, ed. D.C. Tsichritzis, pp.
61-105, Centre Universitaire d’Informatique, University of
Geneva, June 1988.

[6] B. Meyer, Object-oriented Software Construction, Prentice
Hall, 1988.

[7] R. Milner, Communication and Concurrency, Prentice-Hall,
1989.

[8] O.M. Nierstrasz, “Hybrid – A Language for Programming with
Active Objects,” in Objects and Things, ed. D.C. Tsichritzis,
pp. 15-42, Centre Universitaire d’Informatique, University of
Geneva, March 1987.

[9] O.M. Nierstrasz, “Triggering Active Objects,” in Objects and
Things, ed. D.C. Tsichritzis, pp. 43-78, Centre Universitaire
d’Informatique, University of Geneva, March 1987.

[10] O.M. Nierstrasz, “Active Objects in Hybrid,” ACM SIGPLAN
Notices, Proceedings OOPSLA ’87, vol. 22, no. 12, pp. 243
253, Dec 1987.

[11] O.M. Nierstrasz, “A Tour of Hybrid,” in Les Mardis Objets du
CRIN, CRIN 89-R-072, ed. G. Masini, A. Napoli, D. Colnet, D.
Léonard, K. Tombre, pp. 237-248, Centre de Recherche en
formatique de Nancy, Vandoeuvre-lès-Nancy, 1989.

[12] O.M. Nierstrasz, “A Guide to Specifying Concurrent Behav-
iour with Abacus,” in Object Management, ed. D.C. Tsichritzis,
pp. 267-293, Centre Universitaire d’Informatique, University
of Geneva, July 1990.

[13] O.M. Nierstrasz and M. Papathomas, “Viewing Objects as P
terns of Communicating Agents,” ACM SIGPLAN Notices,
Proceedings OOPSLA/ECOOP ’90, vol. 25, no. 10, pp. 38-4
Oct 1990.

[14] M. Papathomas, “Concurrency Issues in Object-Oriented P
gramming Languages,” in Object Oriented Development, ed.
D.C. Tsichritzis, pp. 207-245, Centre Universitaire d’Informa
tique, University of Geneva, July 1989.

[15] M. Papathomas and D. Konstantas, “Integrating Concurren
and Object-Oriented Programming – An Evaluation of Hy-
brid,” in Object Management, ed. D.C. Tsichritzis, pp. 229-
244, Centre Universitaire d’Informatique, University of Gene
va, July 1990.

[16] P. Wegner, “Dimensions of Object-Based Language Design
ACM SIGPLAN Notices, Proceedings OOPSLA ’87, vol. 22,
no. 12, pp. 168-182, Dec 1987.

[17] A. Yonezawa, J-P Briot and E. Shibayama, “Object-Oriented
Concurrent Programming in ABCL/1,” ACM SIGPLAN Notic-
es, Proceedings OOPSLA ’86, vol. 21, no. 11, pp. 258-268,
Nov 1986.

	A Tour of Hybrid
	1�� Introduction
	2�� Objects and Threads
	3�� An Overview of Hybrid
	3.1�� Type specifications
	3.2�� Expressions
	3.3�� Statements

	4�� Communication and Concurrency in Hybrid
	5�� Implementation
	6�� Observations
	7�� Conclusions

