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Supporting Software Reuse in

Concurrent Object-Oriented Languages:

Exploring the Language Design Space1

Michael Papathomas
Oscar Nierstrasz2

Abstract
The design of programming languages that cleanly integrate concurrency constructs and object-
oriented features that promote software reuse is an open problem. We describe a design space tha
characterizes approaches to object-oriented concurrency in terms of a number of language design
choices concerning the relationship between objects and concurrency. We identify requirements
for software reuse and, with the help of an example that illustrates several of these requirements,
explore the design space in order to evaluate which design choices interfere with reuse and which
appear to adequately support it. We conclude by highlighting open research issues which, we be-
lieve, are essential for achieving effective reuse of concurrent software.

1. Introduction

The potential for interference between concurrency constructs and object-oriented mech
supporting reuse has been noted recently by a number of independent researchers [8], [1
[32]. Whereas one might (naively) expect issues of concurrency to be orthogonal to those
capsulation and reuse, it turns out that objects whose implementations make use of conc
constructs are less likely to be extendible or reusable within new contexts without consid
overhead [28].

Our experience [29] designing and developing a COOPL, called Hybrid [24], has s
that some of the key questions concerning reuse are as follows:

• How easy is it to reuse objects developed in other applications? Is it necessary to 
stand the implementation of an object to correctly reuse it in a new context?

• To what extent is it possible to modify an object’s implementation without affecting
rest of the application? Which implementation choices may be made freely withou
cern for clients’ behaviour?

• Under what circumstances will an application’s interaction structure be generic en
that it can be reused to produce new applications by “plugging in” independently d
oped objects and subsystems?

• Are the primitives for concurrency, communication and synchronization compa
with object-oriented reuse mechanisms such as class inheritance, late binding a

1. In Object Composition, ed. D. Tsichritzis, Centre Universitaire d’Informatique, University of Geneva,
June 1991, pp. 189-204.

2. Authors address: Centre Universitaire d’Informatique, 12 rue du Lac, CH-1207 Geneva, Switzerlan
E-mail: {michael, oscar}@cui.unige.ch. Tel: +41 (22) 787.65.80. Fax: +41 (22) 735.39.05.
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rameterization? Is incremental modification of object classes difficult or imposs
when concurrency is at stake?

Although a number of specific instances of interference between concurrency cons
and object-oriented features supporting reuse have been identified and remedies have b
posed, there exists as yet no general framework for evaluating language design with res
support for reusability. As a step towards such a framework, in §2 we propose a design
that expresses language design choices in terms of the relationship between objects and
rency. In §3 we identify a set of informal requirements for supporting reuse and we introd
generic “administrator” example that illustrates the reuse issues. Language design choi
evaluated in §4 with respect to these requirements. We conclude with some remarks o
problems concerning software composition in a concurrent setting.

2. A Design Space for Concurrent OOPLs

We seek to evaluate language design choices with respect to the degree to which softwa
is supported. In particular, we wish to understand how choices of concurrency constructs
the reusability of objects. As such, our classification scheme concentrates on the relations
tween objects and concurrency. We shall consider the following aspects:

• Object Models: how is object consistency maintained in the presence of concurren

• Internal Concurrency: can objects manage multiple internal threads?

• Client-Server Interaction: how much freedom and control do objects have in send
and receiving requests and replies?

In the presentation of the design space, it will become apparent that these aspects are no
independent: certain combinations of choices are contradictory and others are redundan
expressive power.

2.1 Concurrent Object Models

We shall first consider whether or not objects are provided with a default means of prot
internal consistency in the presence of concurrent requests. There are three main appro

• The Orthogonal Approach: Concurrent execution is independent of objects. Synchroniza
constructs such as semaphores in Smalltalk-80 [12], “lock blocks” as in Trellis/Owl [2
monitors as in Emerald [6] must be judiciously used for synchronizing concurrent invoca
of object methods. In the absence of explicit synchronization, objects are subject to th
vation of concurrent requests and their consistency may be violated.

• The Homogeneous Approach: All objects are considered to be “active” entities that ha
control over concurrent invocations. The receipt of request messages is delayed until 
ject is ready to service the request. There is a variety of constructs that can be used b
ject to indicate what method invocation it is willing to accept next. In POOL-T[2] this is s
ified by executing an explicit accept statement. In Rosette [32] an enabled set is used for spec-
ifying which set of messages the object is willing to accept next.
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• The Heterogenous Approach: Both active and passive objects are provided. Passive ob
do not synchronize concurrent requests. Examples of such languages are Eiffel // [10][2
the language ACT++[17]. Both languages ensure that passive objects cannot be invok
currently by requiring that they be used only locally within single-threaded active objec

Although most COOPLs fall clearly within one of these three categories, there are a num
limit cases. For example, Argus appears to support a heterogeneous model since it provid
guardians (active objects) and clusters (passive objects), but the synchronization of multip
threads within guardians corresponds to the orthogonal model.

2.2 Internal Concurrency

Wegner [36] classifies concurrent object-based languages according to whether objects
ternally sequential, quasi-concurrent or concurrent:

• Sequential Objects possess a single active thread of control. Objects in ABCL/1 [37] 
POOL-T and Ada tasks [1] are examples of sequential objects.

• Quasi-Concurrent Objects have multiple threads but only one thread may be active at a t
Control must be explicitly released to allow interleaving of threads. Hybrid domains[24
monitors [15] are examples of such objects.

• Concurrent Objects do not restrict the number of internal threads. New threads are cre
freely when accepting requests. Ada packages and POOL-T units resemble concurrent object
(though they are not first class objects). Languages like Smalltalk-80 that adopt the or
nal object model also support concurrent objects in the sense that a new local thread i
tively created whenever a method is activated in response to a message.

We may further distinguish between concurrent objects that are capable of controllin
activation of multiple concurrent threads and those that cannot. For example, in the lan
SINA [33] a new concurrent thread may be created for the execution of method belongin
select subset of the object’s methods only if the currently active thread executes the detach prim-
itive. The next and become primitives in Rosette and ACT++ can be used to achieve a sim
effect, with the additional restriction that concurrent threads may not share the object’s
since they execute on different “versions” of the object. In Guide [19], an object is asso
with a set of activation conditions that specify which methods may be executed in para
internally concurrent threads.

2.3 Client-Server Interaction

In order to compare and contrast approaches to communication and synchronization, w
all concurrent object-oriented systems as collections of message-passing objects. By view
principal communication mechanism between objects as message passing we may focu
interaction between objects playing client or server roles rather than on low-level issue
cerning the interleaving and scheduling of threads of control within an object system. Th
allow us to consider more easily issues of reuse from the perspective of clients and serv
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Initially, we may distinguish between languages providing one-way message passing
itives and those providing higher-level primitives that enforce balanced sending of reque
reply messages.

• One-way Message Passing: the handling of request and reply messages must be explicitl
programmed. Objects are not obliged to obey a request/reply protocol. Message passi
be synchronous or asynchronous.

• Request/Reply: communication primitives guarantee that requests will be eventually mat
by replies. These primitives vary in the flexibility in sending and receiving messages th
fer to clients and servers. Some approaches make use of “proxy” objects to disassoc
sending or receiving of messages from the current thread of control. Examples are future vari-
ables[37] and CBoxes[38].

The degree of control that can be exercised by objects in the client and server roles
us to further refine this initial classification. We specifically consider reply scheduling, which
concerns the degree of flexibility the client has in accepting a reply, and request scheduling,
which concerns the control the server can exercise in accepting a request.

2.3.1 The Client’s View

From the client’s point of view, there are three important issues concerning reply schedu

• Interleaving activities: Can the current thread continue after issuing the request? Alterna
ly, can another thread be active while the calling thread waits?

• Reply address: How and where is the reply to be sent? Flexible control over the reply d
nation can reduce the amount of message passing required.

• Getting the reply: What mechanisms are supported for matching replies to requests?
does the client synchronize itself with the computation and delivery of the reply?

As above, we distinguish between one-way message passing communication primitiv
primitives supporting a request/reply protocol. Further flexibility in handling multiple requ
and replies is obtained either by introducing proxies (i.e., external concurrency) or by introduc
ing internal concurrency (or by a combination of these two):

Internal Concurrency

 

SEQUENTIAL 

Single thread of control 

ABCL/1, POOL-T

QUASI-CONCURRENT

There are several logical threads but
only one at a time. Thread interleaving
occurs at programmer defined places

Hybrid, monitors

CONCURRENT

There may be several threads of
control active within an object.

CREATION OF THREADS IS
CONTROLLED BY THE OBJECT

SINA, Act++

UNCONSTRAINTED
CREATION OF THREADS
             ⇒
ORTHOGONAL OBJECT MODEL

Smalltalk-80, Ada packages
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One-way Message Passing

Whether communication is synchronous, as in CSP [16] or PROCOL [34], or asynchrono

in actor languages, clients are free to interleave activities while there are pending reques

ilarly, replies can be directed to arbitrary addresses since the delivery of replies must be 

itly programmed.

 The main difficulty with one-way message passing is getting the replies. The client a

server must cooperate to match replies to requests. As we shall see in §4, the additional 

ity and control provided by one-way message passing over request/reply based approac

only be properly exploited if objects (i.e., servers) are implemented in such a way that the

destination can always be explicitly specified in a request.

Remote Procedure Call

With RPC the calling thread of the client is blocked until the server accepts the request, pe

the requested service and returns a reply. Most object-oriented languages support this 

interaction, though “message passing” is generally compiled into procedure calls.

Sequential (single-thread) RPC lacks flexibility in that clients are not able to submit m

ple requests in parallel, since the client must wait for each reply in turn, and in that the 

must reply to the client. (See also [20]). Although it is trivial to obtain a reply, it is not pos

to interleave activities or to specify reply addresses.

Quasi-concurrent and concurrent clients obeying an RPC protocol are able to inte

concurrent activities either by transferring control to another request, as is possible with tdel-

egated call mechanism of Hybrid [24], or by means of an explicit construct for initiating mu

ple concurrent threads as in SR [5].

Client/Server Interaction

ONE-WAY MESSAGE PASSING

Higher-level protocols must be ex-
plicitly programmed

PROCOL, CSP

REQUEST/REPLY

Balanced requests and
replies are supported.

PROXIES

Sending requests and receiving replies may
be delegated, as with CBoxes and futures

ABCL/1, ConcurrentSmalltalk, Eiffel //

RPC

Sending a request blocks the
current thread until a reply is
received.

QUASI-CONCURRENT RPC

Threads may be interleaved

Hybrid

SEQUENTIAL RPC

No other threads may be active
while a request is pending.

POOL-T, Ada tasks

CONCURRENT RPC

Threads may be internally concurrent.

SINA, SR
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Proxies

An alternative means to providing the client with more control in sending and receiving re
is to introduce proxies. The main idea is to delegate the responsibility of delivering the req
and obtaining the reply to a proxy. (The proxy need not be a first-class object, as is the ca
future variables [37].) The actual client is therefore free to switch its attention to another act
in the mean time. The proxy itself may also perform additional computation or call mu
servers. Clearly, proxies work by manipulating the reply address to a request.

If necessary, the reply is obtained by the original client by an ordinary (blocking) req
This approach, variants of which are supported by several languages [10][37][38], mainta
benefits of an RPC interface and the flexibility of one-way message passing. In contrast 
way message passing, however, there is no difficulty in matching replies to requests.

A closely related approach is to combine RPC with one-way message passing. In AB
for example, an object that externally has an RPC interface may internally use lower leve
sage passing primitives to reply by sending an asynchronous message to the client or to it
The use of such facilities is further discussed in §4.

2.3.2 The Server’s View

From the server’s point of view the main concern is whether requests can be conditiona
cepted1. When a request is sent the server may be busy servicing a previous request, wa
self for another request to be fulfilled, or idle, but in a state that requires certain request
delayed. We distinguish initially between conditional and unconditional acceptance of req
Conditional acceptance can be further discriminated according to whether requests are
uled by an explicit acceptance, by activation conditions or by means of reflective comput

Unconditional acceptance of requests implies an orthogonal object model and is chara
ized by the absence of synchronization with respect to the server’s state.

With explicit acceptance, requests are scheduled by means of an explicit “accept” s
ment executed in the body of the server. Accept statements vary in their power to specify
messages to accept next. Acceptance may be based on message contents (i.e., opera
and arguments) as well as the object’s state. Languages that use this approach are Ada
1, Concurrent C, Eiffel //, POOL-T and SR. With this approach objects are typically si
threaded, though SR is an exception to this rule.

With activation conditions, requests are accepted on the basis of predicate over the me
contents and the object’s state. The activation condition may be partly implicit, such as th
condition that there be no other threads currently active within the object. An important is
whether the conditions are expressed directly on a particular representation of the object
or if they are expressed in more abstract terms. In Guide, for example, each method is as
with a condition that references the object’s instance variables, whereas in ACT++ the con
for accepting a message is that the object be at an appropriate abstract state which abstracts from

1. A secondary issue is whether further activity related to a request may continue after the reply has b
sent as in the Send/Receive/Reply model [11], but this can also be seen as concern of internal concurr
where follow-up activity is viewed as belonging to a new thread.
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the state of a particular implementation. Another approach is to specify the legal seque
message acceptance by means of a grammar, as in path expressions and PROCOL [34

With reflective computation the arrival of a request triggers a method of the server’s meta-
object. The meta-object directly then manipulates object-level messages and mailboxes
jects. This approach is followed by the language ABCL/R [35] and it is also illustrated in A
[9] where some reflective facilities of the Smalltalk-80 system are used to intercept mes
sent to an object and synchronize their execution in a way that simulates message exec
actor-based languages. Other languages also adopt a reflective model, however the sy
zation is not expressed procedurally in the program of a meta-object. 

3. Language Design Requirements for Reusability

The following requirements are motivated by the principle that reusable object classes 
make minimal assumptions about the behaviour of applications that will use them.

1. Mutual Exclusion: The internal state of objects should be automatically protected f
concurrent invocations so that it will be possible to reuse existing objects in concu
applications without modification.

2. Request Scheduling Transparency: An object should be able to delay the servicing 
requests based on its current state and on the nature of the request. This should be
plished in a way that is transparent to the client. Solutions that require the coopera

Request Scheduling

UNCONDITIONAL

No Synchronization with
the state of the target

ADA packets, Smalltalk-
80, Emerald, Trellis/Owl.

EXPLICIT ACCEPTANCE

The execution of the opera-
tion is synchronized with an
“accept” statement explicitly
executed by the target.

ADA tasks, ABCL/1, 
POOL-T, Eiffel//.

ACTIVATION CONDITIONS

Explicit or implicit conditions on
the target’s state determine when a
the execution of an operation may
take place.

The arrival of a message at the target
triggers a reflective computation in the
associated meta-object. This determines
whether the requested operation should
be executed.

ABCL/R, ACTALK

 REFLECTIVE COMPUTATION

ABSTRACT –
REPRESENTATION
SPECIFIC

REPRESENTATION
INDEPENDENT 

Conditions are expressed in terms of ab-
stract properties of the object and do not
refer to the particular implementation

ACT++, ROSETTE, PROCOL,
PATH EXPRESSIONS

Condition are expressed directly
on the hidden object state.

GUIDE, Hybrid, SINA

ACCEPTANCE CONDITIONAL
ACCEPTANCE
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the client are not acceptable from the point of view of reusability since the client
cannot be written in a generic fashion.

3. Internal Concurrency: The concurrency constructs should allow for the implementa
of objects that service several requests in parallel or are internally parallel for incr
execution speed. This should be supported in a way that does not affect the clients
sequential implementations of objects may be replaced by parallel ones. By the sa
ken it should also be easy to coordinate the execution of already existing objects.

4. Reply Scheduling Transparency: A client should not be forced to wait until the servin
object replies. In the mean time it may itself accept further requests or call other o
in parallel. It is also useful to specify that replies are to be sent to a proxy. (This is r
to the problem of coping with remote delays [20], though we additionally consider tha
the client may initiate multiple requests in parallel.) Request scheduling by the 
should not require the cooperation of the server since this would limit the ability to 
bine independently developed clients and servers.

5. Compositionality and Incremental Modification: Existing object classes should be r
usable within new contexts without modification. Additionally, mechanisms for in
mental modification of classes such as inheritance must be designed with special c
eration given to concurrency to allow existing code to cooperate gracefully with mo
cations and extension [17], [32].

In order to compare the design choices and their combinations with respect to the re
quirements, we shall refer to an instance of a “generic” concurrent program structure: the admin-
istrator inspired by [11]. The administrator is an object that uses a collection of “worker” ob
to service requests. An administrator application consists of four main kinds of componen
clients issue requests to the administrator and get back results. The administrator accepts re-
quests from multiple concurrent clients and decomposes them into a number of subreque
workload manager maintains the status of workers and pending requests. Workers handle the
subrequests and reply to the administrator. The administrator collects the intermediate 
and computes the final results to be returned to clients. 

The administrator is a very general framework for structuring concurrent applications
example, workers may be very specialized resources or they may be general-purpose c
servers. The workload manager may seek to maximize parallelism by load balancing or 
allocate jobs to workers based on their individual capabilities.

clients 

administrator

workersworkload manager
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The following aspects of the example are specifically related to reuse:

• Mutual Exclusion: (i) workload manager reuse – the workload manager must be prote
from concurrent requests by the administrator (and its proxies); (ii) worker reuse – wo
should similarly be protected as arbitrary objects may be used as workers;

• Request Scheduling Transparency: (iii) client reuse – the administrator must be able to int
leave (or delay) multiple client requests, but the client should not be required to take s
action if the serving object happens to be implemented as an administrator;

• Internal Concurrency: (iv) client/worker reuse – the administrator should be open to con
rent implementation (possibly using proxies) without constraining the interface of eithe
ents or workers;

• Reply Scheduling Transparency: (v) worker reuse – it must be possible for the administra
to issue requests to workers concurrently without special action by workers;

• Compositionality: (vi) administrator reuse – the administrator should be programmed in 
a way that it can be reused by substituting only the part responsible for decomposing re
and composing replies (parameterization, inheritance, or other techniques may be ap
ate).

There are other aspects of language design, apart from the concurrency features, th
the creation and use of reusable administrator applications, such as the support for gener
rametrized classes and the support for dynamic binding. In our discussion however we c
trate on issues that are more specific to the concurrency features of languages and igno
issues which would also arise in sequential languages.

4. Exploring the Language Design Space

In order to explore and evaluate the COOPL design choices we have selected, we shall c
in turn (i) object models, (ii) client/server interaction and internal concurrency, (iii) admini
tor reusability. Throughout, we shall refer to the reusability requirements of §3 and we will 
use of the administrator example to illustrate specific points.

4.1 Concurrent Object Models

By the requirement of mutual exclusion, we can immediately discount the orthogonal o
model as it provides no default protection for objects in the presence of concurrent reques
reusability of workers and workload managers is clearly enhanced if they will function corr
independently of assumptions of sequential access.

The heterogeneous model is similarly defective since one must explicitly distinguis
tween active and passive objects. A generic administrator would be less reusable if it wou
to distinguish between active and passive workers. Similarly worker reusability is weake
we can have different kinds of workers.

The homogeneous object model is the most reasonable choice with respect to reusab
No distinction is made between active and passive objects.
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Note that it is not clear whether the performance gains one might expect of a heterog
model are realizable since they depend on the programmer’s (static) assignment of objec
tive or passive classes. With a homogeneous approach, the compiler could conceivabl
such decisions based on local consideration – whether a component is shared by other
rently executing objects is application specific and should be independent of the object ty

4.2 Client/Server Interaction

As reusability is clearly enhanced when objects obey a standard protocol, we shall suppo
objects generally conform to a request/reply interface. If we provide an object model with
munication primitives supporting only sequential RPC, we quickly discover that this is
enough to satisfy the requirements of the administrator. In particular, a sequential RPC 
istrator will not be able to interleave multiple clients’ requests as it will be forced to reply
client before it can accept another request. The only “solution” under this assumption re
the cooperation of the client, for example: the administrator returns the name of a “reque
dler” proxy to the client, which the client must call to obtain the result (the request handle
make use of further “courier” proxies to call the workers). In this way the administrator i
mediately free to accept new requests after returning the name of the request handler.

We must either relax the sequentiality constraint or the strict RPC protocol. The pos
ties are: (i) one-way message passing, (ii) explicit request/reply scheduling primitives (w
without proxies), and (iii) internal concurrency. Let us consider each of these from the ad
trator’s viewpoint.

4.2.1 Administrator Request Scheduling

One-Way Message Passing

An extreme solution in the direction of relaxing RPC is to support one-way synchronous or
chronous message passing. In this case the administrator is free to accept messages an
them in the order it likes. One-way message passing has however some disadvantages.

A concurrent client may issue several requests to the administrator before it gets a re
this case it is important for the client to know which reply corresponds to which reques
replies returned in the same order as requests? In the case of synchronous message p
additional difficulty is that the administrator may get blocked when it sends the reply unt
client is willing to accept it. Requiring the client to accept the reply imposes additional req
ments on the client and makes reuse more difficult. Either a different mechanism has to b
ported for sending replies or proxies have to be created.

Explicit Request/Reply Scheduling

It is also possible to relax the RPC style of communication without going all the way to su
one-way message passing as the main communication primitive. This has the advantag
is possible to present an RPC interface to clients and, at the same time, obtain more fle
for processing requests by the administrator. This possibility is illustrated by ABCL/1 
which permits the pairing of RPC interface at the client side with one way asynchronous
sage passing at the administrator’s side. Moreover the reply message does not have to b
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the administrator object. This provides even more flexibility in the way that the adminis
may handle requests. The following segment of code shows how this is accomplished.

 The RPC call at the client side looks like:

result := [ administrator <== :someRequest arg1 ... argn] ...

A message is sent to the administrator to execute the request someRequest with arguments arg1,

... ,argn. The client is blocked until the reply to the request is returned and the result is sto
the client’s local variable result.

At the administrator’s side the client’s request is accepted by matching the message p

(=> :someRequest arg1 ... argn @ whereToReply 
.... actions executed in response to this request ... )

When the administrator accepts this request, the arguments are made available in t
variables arg1,...,argn and the reply destination of the request in the local variable whereToReply.
The reply destination may be used as the target of a “past type” asynchronous messag
turning the reply to the client. As a reply destination may also be passed around in mess
is possible for another object to send the reply message to the client. This action would loo

[ whereToReply <== result ]

where whereToReply is a local variable containing the reply destination, obtained by the mes
acceptance statement shown above, and result is the result to the client’s request.

Internal Concurrency

Another way for allowing the administrator to process several concurrent requests is to s
multiple concurrent or quasi-concurrent threads. In Hybrid, for example, the administrato
issue requests to workers by delegated calls, thus temporarily suspending the calling thread a
freeing the administrator to accept new requests from clients. In such a case a thread is 
handling each request. RPC-like communication can be used with clients since new thre
be created for processing requests even if the reply to other requests has not yet been r

4.2.2 Administrator Reply Scheduling

There are three main ways for the administrator to invoke the workers in parallel: (i) one
message passing, (ii) proxies, and (iii) internal concurrency.

One-Way Message Passing

A difficulty with using one-way messages is getting the replies from workers. As there ar
eral workers that are invoked in parallel and potentially concurrent invocations of single w
it is difficult for the administrator to tell which reply is associated with which request.

A solution to this problem is, for each request, to create a proxy which carries out t
quest. The proxy may then send a message to the administrator containing the worker
plus some extra information used for identifying the request. This solution has the advanta
the administrator will be triggered by the reply when it is available.

Another solution is for the administrator at some later time to call this object to obtai
result. In this case there can be a problem if the administrator blocks to obtain a result tha
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yet ready and thus ignores new client requests. This problem may be solved by introdu
non-blocking primitive for accepting requests, but reduces into polling the arrival of req
and replies. Polling could be avoided by a guarded command constructs where the guard
express both the acceptance of requests and arrival of replies.

Proxies

The administrator can call multiple workers in parallel by creating a number of “courier” pro
responsible for calling the workers and collecting the replies. The couriers may then be 
to another object responsible for composing the final result.

Future variables [37] and CBox [38] mechanisms provide functionality which is some
similar to courier objects. Future variables, however, are not first class objects and so are
flexible since they cannot be sent in messages to other objects.

Internal Concurrency

In this case a construct is provided for the creation of concurrent or quasi-concurrent thr
worker can be called by each of these threads in an RPC fashion. With quasi-concurrent t
a call to a worker should trigger the execution of another thread. Such constructs are pr
in the original design of Hybrid [24] and in SR [5]. In SR the code segment of the adminis
that is used for issuing requests to workers in parallel would look like this:

. co result1 := w1.doWork(...) -> loadManager.terminated(w1)
// result2 := w2.doWork(...) -> loadManager.terminated(w2)
oc
globalResult := computResult(result1,result2);
...

With such an approach it is not necessary to artificially decompose the administrator into
tiple objects and proxies to obtain parallelism.

It should be noted that supporting multiple threads in this way is a different issue than
threads for servicing multiple client requests. For instance with the language SINA [33] it i
sible to use several concurrent threads within an object for processing requests; there is n
means, however, for one of these threads to create more threads for calling the worker
in parallel. This is done indirectly by creating a courier object, as described above. It is the
not necessarily redundant to support both multiple threads and non-blocking commun
primitives.

4.3 Administrator Reusability

 We have concentrated thus far on reuse of objects without modification. For this it is cle
objects should support standard request/reply interfaces or other standard protocols. P
of interference between concurrency and inheritance have been previously pointed by o
searchers [17], [32], so we will only summarize and indicate some current trends.

Interference between existing code to be reused (e.g., superclasses) and incremen
ifications (e.g., subclass extensions) is due to (i) the difficulty of the additional code to syn
nize with the existing code and (ii) the difficulty of the existing synchronization code to be 
to modifications yet to be defined. Kafura and Lee therefore propose an approach to syn
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zation based on explicit abstract states [17], though this approach does not adequately sup
request scheduling since activation conditions may not depend on message contents.

The main point, however, is that we lack good abstractions for incremental modifica
to object classes. The message-passing interface should not be viewed in the same wa
inheritance interface seen by subclasses [31]. Current work in this area attempts to “unb
the mechanisms for software composition either in terms of software templates or “ha
[30] or by decomposing inheritance into more primitive mechanisms [7], [14].

4.4 Summary

We can make the following initial observations concerning our exploration of reuse issue

• Homogeneous object models promote reuse: concurrent applications can safely reuse obje
developed for sequential applications; efficiency need not be sacrificed.

• Sequential objects with strict RPC are inadequate: request scheduling can only be imple
mented by sacrificing the RPC interface; the solution is to either permit internal concur
or to relax the strict RPC protocol.

• One-way message passing is expressive but undesirable: since higher-level request-reply pro
tocols must be explicitly programmed, development and reuse of objects is potentially
error-prone.

• Acceptance of concurrent requests is well-handled either by internal concurrency or b
plicit request/reply scheduling. 

• Issuing concurrent requests is well-handled by one-way message passing, by proxies o
ternal concurrency: the combination of both internal concurrency and non-blocking com
nication primitives may be appropriate for handling the separate issues of accepting an
ing concurrent requests.

• Parallelism is better supported by internal concurrency than by distribution: increasing par-
allelism by decomposing an object into concurrent subobjects and proxies introduces 
dependencies between the parts; explicit mechanisms for managing concurrent thread
to encourage better the design of reusable objects.

5. Conclusion and Future Directions

We have proposed and presented a design space for concurrent OOPLs that can be use
pare and evaluate various language design choices with respect to their support for softw
usability. The design space distinguishes between (i) object models that provide varying degrees
of concurrency control to objects, (ii) the degree of internal concurrency available to objects,
and (iii) the flexibility and control objects can exercise during client/server interactions.

We have also identified a set of basic reusability requirements for concurrent ob
namely (i) a default level of mutual exclusion enhances server reusability, (ii) request scheduling
transparency enhances client reusability by hiding server synchronization, (iii) internal concur-
rency should be transparent to both clients and servers, (iv) reply scheduling transparency en-
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hances server reusability by hiding client synchronization, and (v) special consideration m
given to inheritance and other mechanisms for composition and incremental modification of re-
usable classes to avoid interference with concurrency constructs.

With the help of the example of an “administrator” framework that illustrates most of t
reuse issues, we have explored the design space and drawn some initial conclusions. In
lar, a homogeneous object model supporting an explicit request/reply protocol with intern
quest/reply scheduling together with constructs for managing multiple concurrent threa
pears to encourage reuse better than other alternatives. Our observations are summarize

Our classification is far from exhaustive. In particular, we have emphasized imperativ
proaches to COOPL design, whereas declarative approaches based on logics appear to o
tain advantages with respect to abstraction of interface and implicit vs. explicit concurren
[18], [21]. We have also been rather abstract in the presentation of our example. We fe
requirements for reusability should ultimately be based on practical experience in the de
ment of reusable frameworks for concurrent applications. A standard set of test cases illus
both expressiveness and reuse requirements is needed.

The most difficult open problem with respect to reuse of concurrent software is conc
with composition and incremental modification. At the level of language mechanisms a promis-
ing approach is to unbundle mechanisms like inheritance [7], [14] and think explicitly in term
of composition of software “patterns” [25], [26]. At the abstraction level, however, we lack 
formalisms for reasoning about the abstract behaviour of concurrent objects. A step in t
rection is to develop a notion of “plug compatibility” for the composition of objects based o
interactions between servers and clients [27]. The specification of the behavioural “con
[13] between collections of cooperating objects is a promising approach.

Finally, the earnest evaluation of language design choices depends on the ability to f
ize the semantics of various language constructs and the ability to rapidly prototype and 
alternatives. We have developed a platform for the executable specification of COOPL
[26] and we are proceeding with the study and evaluation of language designs.
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