
Analyzing PL/1 Legacy Ecosystems: An Experience
Report

Erik Aeschlimann, Mircea Lungu, Oscar Nierstrasz
University of Bern

Switzerland
http://scg.unibe.ch/

Carl Worms
Credit Suisse, AG

Switzerland
carl.f.worms@credit-suisse.ch

Abstract—This paper presents a case study of analyzing a
legacy PL/1 ecosystem that has grown for 40 years to support
the business needs of a large banking company. In order to
support the stakeholders in analyzing it we developed St1-
PL/1— a tool that parses the code for association data and
computes structural metrics which it then visualizes using top-
down interactive exploration. Before building the tool and after
demonstrating it to stakeholders we conducted several interviews
to learn about legacy ecosystem analysis requirements. We briefly
introduce the tool and then present results of analysing the case
study. We show that although the vision for the future is to have
an ecosystem architecture in which systems are as decoupled
as possible the current state of the ecosystem is still removed
from this. We also present some of the lessons learned during
our experience discussions with stakeholders which include their
interests in automatically assessing the quality of the legacy code.

I. INTRODUCTION

Software systems do not exist in isolation but are rather
parts of larger ecosystems in which multiple software systems
interact and co-evolve together. The development and main-
tenance of these ecosystems entails new challenges that are
partly due to scale. Nevertheless, some of the static analysis
techniques that have been used at the individual system level
can also be applied on entire ecosystems [13].

Large commercial software ecosystems have rarely been
empirically studied but instead researchers have recently fo-
cused on the analysis of open-source software: from the
empirical study of their evolution patterns [25], to categorizing
the information needs of software developers working in such
open-source ecosystems [7], [8].

In this paper we approach a different type of ecosystem: a
large, multi-language, enterprise system that grew over many
decades. The system is composed of hundreds of applications
that collaborate and co-evolve in parallel while being devel-
oped by multiple teams working in distributed contexts. We
apply traditional reverse engineering techniques on its source
code, and report on the results. However, to keep the work
manageable we only analyze those systems that are written in
PL/1. The contributions of this paper are:

1) Presenting requirements for analysis tools aimed at
large-scale industrial legacy ecosystems

2) Introducing a tool that supports the analysis and visual-
ization of PL/1 ecosystems

3) Analyzing a real-world large-scale legacy ecosystem and
providing insight into its magnitude, complexity, and
associated problems

II. A BRIEF OVERVIEW OF PL/1

PL/1 is a third-generation procedural programming lan-
guage that was created in the 1970’s by combining features of
Fortran and Cobol into a single language. Fortran was chosen
due to its strength for scientific computing and Cobol for its
qualities with respect to building business applications.

Figure 1 shows a typical PL/1 fragment. Because PL/1
was developed in the days of punched cards there are still
limitations concerning the layout of the code. Each line of
code is at most 80 characters long and only positions 2 to 73
are considered by the compiler. The first position is used for
steering-signs for the printer and the last 8 positions are used
to assign line numbers to the code.

 PGM001: PROCEDURE OPTIONS (MAIN); 001
002

/* This program writes 'HELLO WORLD!' */ 003
004

DCL FLAG BIT(1) INIT('1'b); 005
DCL %include VARIABLE;; 006

007
GOTO LOOP1; 008

009
PUT SKIP DATA(TEXT); 010

011
 LOOP1: DO WHILE (FLAG = '1'b); 012
 PUT SKIP DATA(TEXT); 013

FLAG = '0'b; 014
 END LOOP1; 015

016
CALL EXTERNAL_PROCEDURE; 017

018
 END PGM001; 019

PGM001.PGM

 TEXT CHAR(12) INIT('HELLO WORLD!') 901

VARIABLE.INCL

Fig. 1. PL/1 program

Certain aspects of PL/1 are important to understand later
sections of this paper:

• Procedures. Line 001 of Figure 1 uses the procedure
statement and the keyword ‘MAIN’ to define this file as a
main program. There are three types of code files: Main
programs are able to run on their own. Subprograms are
external procedures that can only be called by another

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany
Practice Track

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

441

program. Include files contain code fragments that are
inserted into the program files during a preprocessing
step.

• Comments. Line 003 shows a PL/1 comment. In addition
to the documentation of the intent of a program, com-
ments are especially important to communicate informa-
tion that cannot easily be read in the code, like external
programs, used files or used databases.

• Variable Declarations. Line 5 shows a variable declara-
tion. Because the length of a line is limited in PL/1, there
are a lot of variable names in the source code base that
are shorter than four characters. Furthermore, in early
systems, scrolling from one page to another could take
several seconds, so engineers were encouraged to put as
much information as possible into one page and so the
variable names became very short.

• Includes. Line 006 illustrates the include preprocessor
statement. During preprocessing the code fragment from
file VARIABLE.INCL replaces the include statement.
The code fragment in the include file does not have to
be a complete PL/1 statement.

• Gotos. Line 008 shows the goto statement used to jump to
a label within the code. Although gotos were heavily used
in legacy PL/1 code, they are considered bad practice
today [5].

• Calls. Line 017 illustrates the call statement used in PL/1
to invoke external programs.

The PL/1 compiler underwent a major revision seven years
ago with no backward compatibility, so the company had
to migrate the complete PL/1 codebase to the new compiler
version with the help of offshore companies. This migration
was also used as an opportunity for some redesign, like
replacing assembler code with standard functions for date/time
conversion as well as some minor code redesign (e.g., goto
replacement)

III. A PL/1 ECOSYSTEM

We have been granted access to a complex legacy ecosystem
consisting of hundreds of applications written in several pro-
gramming languages and multiple technologies. It had evolved
for over 40 years to support the back-end business processes
of a large banking company.

In this work we focus our attention on the PL/1 part
although approaches to program understanding for multi-
language systems have been proposed before [10], [22]. The
hundreds of PL/1 applications interact with each other via
services or static dependencies. They have a certain degree of
independence in their evolution [13], [17] and are composed
of multiple programs.

In total they consist of 30 MLOC before preprocessing
and 130 MLOC after. We perform static analysis of these
systems and we limit our analysis to the source code before
preprocessing. This limitation does not change the soundness
of the analysis because the metrics discussed in this paper are
not strongly affected by the preprocessor statements.

There are only a few PL/1 applications that run in isolation
on the mainframe; the standard architecture is that at least
the presentation layer and if possible even part of the business
logic is implemented in Java and the interface to the mainframe
modules is done via CORBA/Web services.

Due to the fact that there is an ample number of applications
and that only recent versions of the PL/1 compiler support
the structuring of programs into packages, developers had
to devise ad hoc methods to structure the code base. Thus
the applications have been categorized into sub-domains and
domains. Each of these domains contains up to a dozen
subdomains and each of the subdomains contains multiple
applications that logically belong together.

Fig. 2. The applications in the ecosystem are organized in a hierarchy with
two levels

Figure 2 illustrates the four levels into which the source
code is structured. At the top level there are about 30 domains.
The domains and subdomains emulate a package system that
has only recently been incorporated into PL/1.

Evolving such a large legacy code base involves particular
challenges that we expected would be supported by specific
tools for monitoring its evolution. However, we learned that
there were not many tools that provide the big picture to
support the evolution process.

IV. ECOSYSTEM ANALYSIS REQUIREMENTS

We conducted several free form interviews with employees
aiming to identify their needs and wishes concerning tool
support for analyzing the PL/1 ecosystem.

To conduct the interviews the first author of this paper
interviewed people covering diverse roles in the company:
domain architects, solution architects, requirement engineers,
software engineers and software testers. These people have
been working with the existing environment for years and are
accustomed with the existing processes.

The interviews led us to several requirements for analysis
tools:
R1. Produce high-level views of the entire code base. Tool

support for presenting a 50,000 foot view of the entire

442

code-base is missing. All of the interviewed employees
use standard mainframe tools to analyse the code, like
cross-reference tools, performance measuring tools and
dump analysis tools. None of these tools features graph-
ically visualized output showing the big picture of the
ecosystem.
The interviewees provided various reasons why they
need a big overview of the system: some architects
want a high-level overview of the domains for discussion
purposes. Some engineers need tools to create high-level
diagrams for documentation purposes. Finally, testers
need tools to identify parts of the system that should
be tested more intensively.

R2. Provide code quality information. The quality of the
different parts of the codebase is a cross-cutting concern
for the stakeholders. Again, just like in the case of
the previous requirement, the rationale for the need of
quality information is reported differently by different
stakeholders: the testers want to optimize the focus of
the tests; the architects want to know which parts of the
system must be redesigned, and management needs to
know how to allocate the restructuring effort.

R3. Support ecosystem restructuring. Due to the lack of a
global view on the PL/1 application landscape, strong,
undesired, coupling relationships evolved between the
domains and subdomains during the evolution of the
ecosystem.
A long-term goal of the company is to decouple the
individual systems and sub-systems and increase the
independence and potential of the different applications
to evolve independently. This would simplify the re-
placement of whole subsystems with alternatives written
in more popular languages or third party products.

These three requirements have not been corroborated with
other companies and although we suspect that they are not
specific to the company of our study or to PL/1 ecosystems, we
have no proof. It remains for the future or for other researchers
to gather requirements from other companies.

On the other hand, we observe that these requirements are
quite specific to industrial legacy systems as we have seen
in another recent study which shows that developers in open
source systems have different information needs, which steams
from different motivations such the desire to keep up with
evolving upstream and downstream systems [7].

V. THE ST1-PL/1 INFRASTRUCTURE

To address the requirements presented in the previous
section we created a tool called St1-PL/1 by customizing
components of the Moose analysis framework [20].

The architecture of the tool is an instance of the classical
Extract-Abstract-View reverse engineering reference architec-
ture [6]. Data about source code artefacts is extracted into
a software repository and then, using various analysis tech-
niques, abstracted to provide a more condensed view of the
analyzed system. Abstractions of the system are viewed by
appropriate visualization means.

In the following we briefly present the individual compo-
nents and discuss some particular choices we made to adapt
the infrastructure to our case study. We discuss in turn the
following three components:

1) A model extractor based on island grammars [18] is built
with the PetitParser framework [24].

2) A meta-model that is an extension of FAMIX is pop-
ulated with information extracted from the source code
and other external sources of information.

3) Graph analysis and visualization tools are built to work
on top of this meta-model.

A. The Model Extractor

To extract the information required by the meta-model we
had to parse the source code as well as external sources of
information like the ones mentioned in section III. For the
code we used PetitParser, a parser framework based on PEGs
(parsing expression grammars) [24]. Since we only need to
identify specific code parts, we did not implement a complete
PL/1 parser but we focused on the statements we needed by
using an island parser [18].

AA1000_PLB ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
AA2000_PLB ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
AA3000_PLB ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
YAAU1_PLU ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
YAAU2_PLU ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
YAAU3_PLU ICTO-218 PL/I - Helper - PLIH PLIH Enterprise Base Solutions [BAS] Generic Application Services [GASV]
EE1000_PLO ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
EE2000_PLO ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
EE3000_PLO ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
YEEU1_PLG ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
YEEU2_PLG ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
YEEU3_PLG ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
YEEU4_PLG ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]
YEEU5_PLG ICTO-4281 Business Unit Services BUSV Enterprise Base Solutions [BAS] Business-Object Based Services [BOSV]

Fig. 3. An external file contains the mapping between the programs and their
external organization

An external application on the mainframe manages the
mapping between individual programs and the higher level
abstractions in the ecosystem organization such as domains
and subdomains. We thus extracted this information to produce
the metadata needed for our approach from an external file
that provides a list of all programs and their accompanying
applications, subdomains and domains. Figure 3 shows a
fragment of the extracted hierarchy data.

B. The Meta-model

In order to leverage the Moose analysis platform and the
tools it offers, we extended FAMIX [29] (Moose’s metamodel)
with entities required for analyzing a PL/1 ecosystem. In
particular we had to extend the original meta-model to be able
to model the hierarchical organization of the applications in
our case study.

Figure 4 illustrates the extended meta-model. The elements
in the figure are:

• FAMIX classes, shown in white.
• PL/1 specific classes, in blue.
• Attributes added to standard FAMIX entities are shown

in grey.
• Ecosystem-specific entities indicating structural levels are

yellow.

443

Fig. 4. Meta-model of PL/1 Ecosystem

The meta-model is lightweight and was sufficient for our
purposes. However, for a more detailed analysis one can use
one of the other existing PL/1 meta-models, such as the one
of Hugo Bruneliere1.

C. The Analysis

St1-PL/1 supports several types of analysis: metrics, inter-
active visualization, and graph analysis.

We compute metrics that can be derived from our meta-
model but also retrieve metrics from other sources in the
company. The metrics used in later parts of this article are:

1) LOC — the number of line breaks in an entity. Com-
ments and empty lines therefore also affect the result.

2) FAN-IN, FAN-OUT — sums up all incoming and re-
spectively outgoing calls to an entity.

3) GOTO — the number of goto statements in an entity.
The usage of the statement is discouraged but they are
known to still exist in the code.

4) FP — function points. We obtain this information from
an external document available in the company.

To calculate metrics for enclosing entities, the tool sums up
the values of all contained entities.

The visualizations are prepared with Quicksilver2, a port
of our previous Softwarenaut [15] visualization tool to Pharo
Smalltalk3. The tool is interactive and supports an “overview,
zoom, details on demand”[26] exploration approach in the
tradition of classical reverse engineering tools such as Rigi
and Shrimp [19], [28].

VI. THE ANALYSIS

In this section we report on the analysis performed using
St1-PL/1. We do not discuss the parsing and model building
parts but instead focus on the analysis. We start by presenting
a top-down exploration session and continue with providing
a series of network theoretical measurements on the studied
ecosystem.

1http://www.emn.fr/z-info/atlanmod/index.php/Ecore
2http://scg.unibe.ch/research/quicksilver
3http://pharo-project.org

A. Top-Down Exploration

Fig. 5. Visualization of the whole PL/1 ecosystem showing call relationships
between domains and highlighting function points

To begin our analysis we visualize the relationships between
the domains and the amount of functionality in each of the
domains (R1) with St1-PL/1. Figure 5 presents the overview
of the domains and their relationships. Here we detail several
of the construction principles:

• Polymetric views. Each of the 25 standalone squares
represents an individual domain. The area of each square
is proportional to the LOC of the domain as aggregated
from the program level.

• Dependency Graphs. The arrows between the top-level
squares represent the calls between the domains. The size
of each arrow is proportional to the number of calls that
are made between two corresponding domains.

• Tree Maps. The figures for each of the domains are
drawn using a space-filling technique similar to tree-maps
[9] which shows the contained entities all the way to
the program level. The surfaces of these entities are also
proportional to their corresponding LOC.

• Highlighting. The blue color-saturation of the individual
programs is proportional to the number of contained
function points. Since the human eye cannot distinguish
between too many shades of blue, we map all the values
to five distinct shades that correspond to quartiles.

Size and functionality
The figure shows that the domains vary in size significantly

from the smallest (N25), which has 17 KLOC, to the largest
(N16), encompassing 4.6 MLOC.

Inside the domains, the applications are visible as clusters
of programs. Some domains contain only one large application
(e.g., N24) while others contain a large number of applications
(e.g., N16). One can select an individual (domain, subdomain,
application) and learn about its interaction with the rest of the
ecosystem.

Coupling
The figure shows a large number of dependencies between

the domains. Given the requirement for restructuring the

444

ecosystem and decoupling the domains (R3) the figure hints
at the challenges of the task ahead and at the need for an
incremental strategy.

However, besides the generally large number of dependen-
cies the figure also shows that the number of connections
between the domains varies widely, from domain N24 which
is almost completely isolated to domain N1 which is strongly
connected to the rest of the ecosystem.4

The dependency marked with (SA) illustrates a strong
relationship between the two associated domains. Using the
tool one can inspect an individual dependency and learn the
reasons for its existence: does it exist because of many calls to
a narrow API or due to a large palette of exposed functions?

Interaction in St1-PL/1

Given the importance of domain N1 we decide to zoom in
and learn about the quality of the code inside it (R2). As one
of the aspects of quality we check the compliance with coding
style guidelines, particularly the usage of GOTO instructions
which the guidelines strongly discourage.

Fig. 6. Visualizing the usage of GOTO inside the domain N1

Figure 6 shows the view that we obtain by interactively
zooming into N1 with St1-PL/1. In the figure, every program
that contains GOTO statements is highlighted in red. One can
see that the domain marked (G) in the top-right corner is a
candidate for further inspection.

B. Network Analysis

To better understand the nature and complexity of our
case study we complement the description of our interactive
analysis with a network theoretical analysis of the case study
facilitated by St1-PL/1. Network analysis has been applied to
software for various purposes including predicting modules
that are prone to have defects in the future [31]. The reported
results will be of interest and a reference point to researchers
and managers of large legacy ecosystems.

4By applying the page rank algorithm on the domain dependency graph
we learn that domain N1 ranks the highest. We validate with one of the
stakeholders that the domain actually is a critical one in the company.

Graph-Level Indices

The domain, subdomain, application, and program graphs
are directed graphs, so we can analyze them as such. We start
by computing the density of each of the graphs.

The density of a graph is defined as the ratio between the
existing number of edges and the maximal possible number of
edges. Its value ranges from 0 to 1, where the complete graph
has a density of 1.

TABLE I
INDICES GAINED ON GRAPH LEVEL (GLI’S)

Level Node Count Density
Domain 25 0.463
Subdomain 75 0.208
Application 229 0.06
Program 16819 0.000189

Table I shows a high density at the domain and subdomain
levels. At the application level where the basic units of our
ecosystem live we observe a density of 6%. Weak coupling
between the applications is good, but it could also mean that
reusable code is not centralized enough into infrastructure
applications.

Node-Level Indices

Information about the relative importance of nodes and
edges in a graph is computed through centrality metrics.
Previous work in reverse engineering has shown that centrality
measures can support detecting the critical software compo-
nents [23].

We compute the centrality of the nodes at the different
abstraction levels in the ecosytem with four measures: degree
centrality, indegree, outdegree, and PageRank. The degree of
a node is defined by the sum of all incoming and outgoing
connections. Indegree only counts incoming and outdegree
only counts outgoing connections of the node. PageRank
weights the incoming links based on the importance of their
source.

TABLE II
INDICES GAINED ON LEVEL DOMAIN

N1 N2 N3 N4 N5 N6 N7 N8 N9
PR 0.08 0.067 0.06 0.057 0.057 0.056 0.054 0.05 0.05
Deg 35 36 19 34 18 17 32 30 30
Out 15 20 0 17 0 0 16 14 15
In 20 16 19 17 18 17 16 16 15

N10 N11 N12 N13 N14 N15 N16 N17
PR 0.05 0.047 0.04 0.039 0.038 0.037 0.034 0.03
Deg 28 29 24 12 22 17 23 25
Out 14 15 13 2 12 6 15 18
In 14 14 11 10 10 11 8 7

N18 N19 N20 N21 N22 N23 N24 N25
PR 0.03 0.025 0.02 0.018 0.012 0.012 0.012 0.012
Deg 17 22 11 16 9 4 2 0
Out 12 17 7 13 9 4 2 0
In 5 5 4 3 0 0 0 0

Table II shows these measurements for the domain depen-
dency network. The nodes are ranked in decreasing order
of their importance as measured by their PageRank. We
see several domains with a high PageRank. For example
domain N1 (also highlighted in Figure 5 and discussed earlier)

445

groups infrastructure applications that provide basic functions
to numerous other systems in all the domains. Several other
infrastructure domains have zero outdegree. However, there is
no domain that dominates the others based on PageRank – the
functionality is balanced.

Fig. 7. Centrality measures for applications

Fig. 8. Centrality measures for individual programs

Figure 7 and Figure 8 show the distribution of centrality in
the ecosystem at the application and program level. We see
that as the number of vertices in the graph increases (as listed
in Table I) the degree spectrum also increases.

We make several observations:
• A large number of applications (more than 60) are not

captured in the application dependency graph as they
have a degree of zero. We do not know whether they are
completely isolated from the rest of the ecosystem, or if
they are interacting through other means (e.g., services,
database, etc.).

• Most of the applications have a centrality degree some-
where under twenty. Thus, at the application level one can
see an ecosystem where the behavior is well distributed
between the applications.

• For programs the outdegree is always somewhat higher
than the indegree and over 70% of the programs have a

degree smaller than 5. This is a sign that reuse can be
improved at the program level.

• Utility programs exist that have an indegree of several
hundreds.

VII. DISCUSSION

A. Second round of interviews

We organized the second round of interviews after im-
plementing St1-PL/1. This time we also showed the tool to
company employees involved in the design of the development
process to find out what they think about it. From these second
interviews we learned that the stakeholders see benefits in
starting with a global view of the domains and the possibility
of zooming in to show parts of the ecosystem at the subdomain
and application level.

We observed that allowing the respondents to see the tool
in action lead them to have new insights into what is possible
and what is desirable, and we learned about new requirements
that were not present in the first round of interviews:
R4. Automatically detecting parts of the ecosystems that

need redesign. The stakeholders defining development
processes are interested in learning where to focus the
redesign processes. An approach that would automati-
callypinpoint candidate applications or domains would
be valuable. It could draw inspiration from the work
on quality and metrics of Lanza and Marinescu [12]
by combining multiple system metrics into higher-level
detection strategies.

R5. Runtime analysis and visualization. The stakeholders
would value information about the runtime behavior of
the analyzed systems and the connections between the
different technologies as a complement to the static view
that the ST1PL/1 infrastructure presents.
There is a rich portfolio of work on which such tools
can draw on in visualizing multiple systems running in
parallel including the work on Zinsight of De Pauw [3].

R6. Multiple dependency types. There was a strong con-
sensus amongst the stakeholders that an overview tool
should integrate multiple types of dependencies, not
just calls. Examples are join dependencies on the same
database table, CORBA, message queues, files, etc.

These new requirements remain to be addressed in future
versions of St1-PL/1.

B. Lessons learned

There are some challenges and lessons learned in the course
of this project:

• By leveraging existing tools we could move quite quickly.
We were able to build our analysis infrastructure with-
out much effort by customizing existing frameworks,
especially the parsing infrastructure of PetitParser and
visualization of Quicksilver.

• When building tools for legacy ecosystems one must be
aware of obsolete practices. The existing automatic code
review tools cannot enforce the absence of GOTO since

446

it is part of the legacy code, even if nowadays this is a
discouraged practice.

• When working with large amounts of data, performance
is an issue. Due to some of the limitations of the
infrastructure we relied on and the fact that we could
not choose the machine on which to run the analysis, the
parsing part of the analysis took many hours.

C. State of the Tools in Industry

The company that provided us with the case study uses
IBM-specific tools for their PL/1 development. XREF for
example provides a list of programs, that are affected by
changes to a subprogram (an external subroutine). This tool
does not deliver complete information about the organization
of the listed programs. Recently, Panorama5, a third-party
application that computes many metrics of the ecosystem
and also creates some visualizations has been used in the
company. It computes metrics of the ecosystem and creates
visualizations. Its main usage is in searching the code base
with a short response time.

Neither Panorama nor the other tools offer the top-down
approach we are working on, and we envision our St1-PL/1
to be used as a complement to it. The operating system on
the mainframe provides some searching tools that are very
efficient in searching a large amount of text. But the results
of these tools are only text-based and there is no possibility
to visualize them.

VIII. RELATED WORK

The work presented in this paper is related to reverse
engineering, large scale software analysis and visualization.

The general context in which St1-PL/1 is used is re-engin-
eering. Thus the work of Demeyer et al. [4] is highly relevant
even if it is targeted at analyzing OO systems. An even more
relevant work is the approach presented by DeLucia et al.
showing the migration of legacy systems towards OO systems
[2].

The idea of automatically aggregating dependencies from
the lower level artefacts was first used by Muller in Rigi [19].
Rigi visualizes the data as hierarchical typed graphs and
provides a Tcl interpreter for manipulating the graph data.
The reconstruction process is based on a bottom-up process of
grouping software elements into clusters by manually selecting
the nodes and collapsing them. The same idea was then used
in other tools such as Shrimp [27].

By combining polymetric views [11] with treemaps our
visualization can convey the same type of information as
CodeCity [30]. However, the advantage of our visualization
is that it also provides information also about dependencies.

One ingenious mode of visualizing relationships between
nodes organized in a hierarchy is that of Cornelisen et al. who
use a circular bundle view that projects the system’s structure
in terms of hierarchical elements and relationships on a circle
[1]. We consider using such a visualization in the future.

5http://www.itp-panorama.com

Ossher et al. resolve dependencies between projects in
order to obtain a successful build of a target project in a
Java repository of systems [21]. In our previous work we
analyze and detect static relationships between the systems
in a Smalltalk ecosystem [16].

Also we have developed a tool for visualizing the evolution
of object oriented software ecosystems and project repositories
that we dubbed the Small Project Observatory [14]. The infras-
tructure in this paper is targeted towards procedural languages
instead, and does not leverage evolutionary information that
was not available.

IX. CONCLUSIONS

In this paper we have presented an experience report on
analyzing a large PL/1 legacy ecosystem hosted in an industrial
setting. We have presented requirements for legacy ecosystem
analysis tools which were elicited by running interviews with
stakeholders in the industrial setting in which the case study
ecosystem functions. We have then presented a tool named
St1-PL/1 which implements some of these requirements by
providing a top-down visual exploratory approach on the
ecosystem. By applying the tool on the case study ecosystem
we have illustrated that it can be successfully used for analyz-
ing large PL/1 ecosystems. However, after showing the tool
to stakeholders we learned of new requirements that would
potentially increase its and other similar tools’ usefulness.
Implementing these requirements remains as future work as
well as taking into account the preprocessor statements for
the static analysis.

X. ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). We thank our colleagues
from Credit Suisse IT in Switzerland who contributed to
this work through interviews and through their expertise on
IT Panorama. We also thank CHOOSE, the special interest
group for Object-Oriented Systems and Environments of the
Swiss Informatics Society, for its financial contribution to the
presentation of this paper.

REFERENCES

[1] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J.
van Wijk, and Arie van Deursen. Understanding execution traces using
massive sequence and circular bundle views. In Proceedings of the 15th
International Conference on Program Comprehension (ICPC), pages
49–58. IEEE Computer Society, 2007.

[2] A. De Lucia, G.A. Di Lucca, A.R. Fasolino, P. Guerra, and S. Petruzzelli.
Migrating legacy systems towards object-oriented platforms. In Software
Maintenance, 1997. Proceedings., International Conference on, pages
122–129, 1997.

[3] Wim De Pauw and Steve Heisig. Zinsight: a visual and analytic
environment for exploring large event traces. In Proceedings of the
5th international symposium on Software visualization, SOFTVIS ’10,
pages 143–152, New York, NY, USA, 2010. ACM.

[4] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann, 2002.

[5] Edsger W. Dijkstra. Go to statement considered harmful. Communica-
tions of the ACM, 11(3):147–148, March 1968.

447

[6] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter.
Gupro - generic understanding of programs. Electronic Notes Theo-
retical Computer Science., 72(2), 2002.

[7] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz.
Categorizing developer information needs in software ecosystems. In
Proceedings of the 1st Workshop on Ecosystem Architectures, pages 1–
5, 2013.

[8] Slinger Jansen. How quality attributes of platform architectures influence
software ecosystems. In Proceedings of the 1st Workshop on Ecosystem
Architectures, 2013. To Appear.

[9] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling
approach to the visualization of hierarchical information structures. In
VIS ’91: Proceedings of the 2nd conference on Visualization ’91, pages
284–291, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[10] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program comprehension
in multi-language systems. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’98), WCRE ’98, pages 135–, Washington,
DC, USA, 1998. IEEE Computer Society.

[11] Michele Lanza. CodeCrawler — a lightweight software visualization
tool. In Proceedings of VisSoft 2003 (2nd International Workshop on
Visualizing Software for Understanding and Analysis), pages 51–52.
IEEE CS Press, 2003.

[12] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[13] Mircea Lungu. Reverse Engineering Software Ecosystems. PhD thesis,
University of Lugano, November 2009.

[14] Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Romain Robbes. The
Small Project Observatory: Visualizing software ecosystems. Science of
Computer Programming, Elsevier, 75(4):264–275, April 2010.

[15] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. Evolutionary and
collaborative software architecture recovery with Softwarenaut. Science
of Computer Programming (SCP), 2012.

[16] Mircea Lungu, Romain Robbes, and Michele Lanza. Recovering inter-
project dependencies in software ecosystems. In ASE’10: Proceedings
of the 25th IEEE/ACM International Conference on Automated Software
Engineering. ACM Press, 2010.

[17] David G. Messerschmitt and Clemens Szyperski. Software Ecosystem:
Understanding an Indispensable Technology and Industry. The MIT
Press, 2005.

[18] Leon Moonen. Generating robust parsers using island grammars. In
Elizabeth Burd, Peter Aiken, and Rainer Koschke, editors, Proceedings
Eight Working Conference on Reverse Engineering (WCRE 2001), pages
13–22. IEEE Computer Society, October 2001.

[19] H. A. Müller and K. Klashinsky. Rigi — a system for programming-in-

the-large. In ICSE ’88: Proceedings of the 10th international conference
on Software engineering, pages 80–86. IEEE Computer Society Press,
1988.

[20] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of
Moose: an agile reengineering environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05), pages 1–
10, New York, NY, USA, September 2005. ACM Press. Invited paper.

[21] J. Ossher, S. Bajracharya, and C. Lopes. Automated dependency
resolution for open source software. In Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on, pages 130 –140, may
2010.

[22] Fabrizio Perin. Reverse Engineering Heterogeneous Applications. Phd
thesis, University of Bern, November 2012.

[23] Fabrizio Perin, Lukas Renggli, and Jorge Ressia. Ranking software
artifacts. In 4th Workshop on FAMIX and Moose in Reengineering
(FAMOOSr 2010), 2010.

[24] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz.
Practical dynamic grammars for dynamic languages. In 4th Workshop
on Dynamic Languages and Applications (DYLA 2010), Malaga, Spain,
June 2010.

[25] Romain Robbes, Mircea Lungu, and David Roethlisberger. How do
developers react to API deprecation? The case of a Smalltalk ecosystem.
In Proceedings of the 20th International Symposium on the Foundations
of Software Engineering (FSE’12), pages 56:1 – 56:11, 2012.

[26] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In IEEE Visual Languages, pages 336–343,
College Park, Maryland 20742, U.S.A., 1996.

[27] Margaret-Anne Storey, Casey Best, and Jeff Michaud. SHriMP Views:
An interactive and customizable environment for software exploration.

In Proceedings of International Workshop on Program Comprehension
(IWPC ’2001), 2001.

[28] C. Stork, V. Haldar, and M. Franz. Generic adaptive syntax-directed
compression for mobile code, 2000.

[29] Sander Tichelaar. Modeling Object-Oriented Software for Reverse
Engineering and Refactoring. PhD thesis, University of Bern, December
2001.

[30] Richard Wettel and Michele Lanza. CodeCity. In Proceedings of
WASDeTT 2008 (1st International Workshop on Advanced Software
Development Tools and Techniques), 2008.

[31] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects
using network analysis on dependency graphs. In Proceedings of the
30th international conference on Software engineering, ICSE ’08, pages
531–540, New York, NY, USA, 2008. ACM.

448

