
Meta-Driven Browsers

Alexandre Bergel1, Stéphane Ducasse2, Colin Putney3, Roel Wuyts4

1 DSG, Trinity College Dublin, Ireland,
2 Language and Software Evolution – LISTIC, Université de Savoie,

3 Wiresong,
4 Lab for Software Composition and Decomposition, Université Libre de Bruxelles,

Advances in Smalltalk
Proceedings of 14th International Smalltalk Conference (ISC 2006),

LNCS, vol. 4406, Springer, 2007, pp. 134-156

Abstract. Smalltalk is not only an object-oriented programming lan-
guage; it is also known for its extensive integrated development envi-
ronment supporting interactive and dynamic programming. While the
default tools are adequate for browsing the code and developing applica-
tions, it is often cumbersome to extend the environment to support new
language constructs or to build additional tools supporting new ways of
navigating and presenting source code. In this paper, we present the Om-
niBrowser, a browser framework that supports the definition of browsers
based on an explicit metamodel. With OmniBrowser a domain model
is described in a graph and the navigation in this graph is specified in
its associated metagraph. We present how new browsers are built from
predefined parts and how new tools are easily described. The browser
framework is implemented in the Squeak Smalltalk environment. This
paper shows several concrete instantiations of the framework: a remake
of the ubiquitous Smalltalk System Browser, and a coverage browser.

Keywords: Tools, MetaModeling, UI, Browsers, Squeak

1 Introduction

Smalltalk is an object-oriented language featuring a complete development envi-
ronment supporting interactive and dynamic programming [GR83,Gol84]. While
the default environment already supports advanced ways of navigating source
code and fluid development since the eighties, new browsers have been devel-
oped over the years: the Refactoring Browser [FBB+99,RBJO96,RBJ97] which
was the first system browser supporting refactoring, the StarBrowser [WD04]
which supports smart groups, a browser for incremental development support-
ing visual feedback of undefined methods [SB04] and the Whiskers browser that
shows multiple methods at the same time maximizing the screen space. Strong-
Talk, a more exotic Smalltalk version featuring optional typing, offered a glyph
based browsing environment.

II A. Bergel, S. Ducasse, C. Putney and R. Wuyts

The problem when building all of these browsers is that they are always
rebuilt from scratch because there hardly exists any domain models or frame-
works for building such development tools. In fact, the current browsers in
most Smalltalk environments are hard to extend for two reasons: (a) they are
monolythic applications that are not really meant to be included elsewhere, and
(b) the navigation and interaction of the end-user with the browsers is typically
hardcoded in the browser UI elements, and is therefore hard to change or extend.

Note that some Smalltalk environments allow one to embed applications
within each-other. VisualWorks for example has a notion of subcanvases which
can be used to that end. This helps to reduce the problem (a) in the previous
paragraph, but not problem (b) of the hardcoding of the the navigation and
interaction in the browser UI elements. Other browsers are designed with a
certain amount of customizability in mind, and are therefore easier to extend,
but even those lack explicit descriptions of the navigation.

As was already reported by Steyaert et al. [SLMD96], we conclude that cur-
rent visual application builders and application frameworks do not live up to
their expectations of rapid application development or non-programming-expert
application development. They fall short when compared to component-oriented
development environments in which applications are built with components that
have a strong affinity with the problem domain (i.e., being domain-specific).

In this paper we present OmniBrowser, a framework to define and compose
new browsers. In OmniBrowser framework, a browser is a graphical list-oriented
tool to navigate and edit an arbitrary domain. The most common representative
of this category of tools is the Smalltalk system browser, which is used to nav-
igate and edit Smalltalk source code. In OmniBrowser framework, a browser is
described by a domain model and a metagraph which specifies how the domain
space is navigated through. Widgets such as list menus and text panels are used
to display information gathered from a particular path in the metagraph. Al-
though widgets are programmatically composed, the OmniBrowser framework
framework supports their interaction.

The contributions of this article are: the description of a metadriven frame-
work to build system browsers and the application of the framework to build
some tools. In Section 2 we describe difficulties and challenges to define states
and flow between those states for a graphical user interface. In Section 3 we
present the key entities of OmniBrowser framework. In Section 4 we present
the OmniBrowser-based system browser and in Section 5 we describe the cover-
age code browser. In Section 6 we discuss about properties of the OmniBrowser
framework. In Section 7 we provide an overview of related work. In Section 8 we
conclude by summarizing the presented work.

2 Defining and Maintaining the State of a Graphical
User Interface

In this section we stress some of the problems encountered when building com-
plex tools such as an advanced code editor.

Meta-Driven Browsers III

The state of a graphical user interface (GUI) is defined as a collection of the
states of the widgets making up the interface. The state of a widget refers to the
state the widget is in. It is modified whenever an end-user performs an action on
this widget such as clicking a button or selecting an entry in a menu. Therefore,
a GUI has a high number of different states. Asserting the validity for each of
these states is crucial to avoid broken or inconsistent interfaces.

Given the potential high number of different states of a GUI, asserting the
validity of a GUI is a challenging task. Let’s illustrate this situation with the
Smalltalk system browser, a graphical tool to edit and navigate into Smalltalk
source code.

A B C D

E

F

Fig. 1. The traditional Smalltalk System Browser roughly depicted.

Figure 1 depicts the different widgets of a traditional Smalltalk class system
browser (see Figure 7 for a real picture). Without entering into details, A, B,
C and D are lists that show class categories (groups of classes), classes, method
protocols (groups of methods) and methods. E is a radio button composed of
three choices and F is a text pane.

Pane A lists the categories in the system. Selecting a category in this list,
makes the classes in that category appear in pane B. Selecting a class results
in the protocols for that class being shown in pane C, and selecting a protocol
lists the method names in pane D. Switch E controls whether the class or the
metaclass is being edited, and therefore whether the protocols and methods
shown are instance level or class level methods. Pane F is a text pane that gives
feedback on whatever is selected in the top panes, always displaying the most
specific information possible. For example, when a user has selected a method
in a protocol in a class in a certain category, pane F shows the definition of that
method (and not the definition of the class of that method).

The description of how the browser works shows a number of navigation
invariants that need to be kept when implementing the browser. For example,
the selections goes from left to right: it is not possible to have methods listed in
pane E with pane D being empty.

Invariants such as the one given above need to be implemented and checked
when building a browser. So we are dealing with writing an application that deals
with a potentially very big number of states in which only certain transitions
between states need to be allowed (the ones that correspond to navigations the

IV A. Bergel, S. Ducasse, C. Putney and R. Wuyts

user of the browser is allowed to do). Whenever a user clicks on widgets that
make up the GUI of the browser, the state of one or more widgets is changed, and
possibly new navigation possibilities are open up (being able to select a method
name, for example) while other ones will no longer be possible (not being able
to select a method name when no protocol is selected). To deal with the fact
that a widget can be in an inconsistent state, developers often rely on guards:
the method performing an action in reaction of an user action always checks
whether the state is actually correct or not nil.

In addition the state management is often spread over the UI elements. This
leads to code with complex logic (and often bogus). In addition it makes tool
elements difficult to extend and reuse in different context.

The problem when building a browser is in representing the mapping from
the intended navigation model to the domain model and widgets. Even though
graphical framework like MVC [Ree79,Ree] and Coral [SM88] offer ways to mod-
ularize the model and the graphical user interface, they do not provide means (i)
to preserve consistency of the interface by restricting unexpected state transition
to happen and (ii) to keep the widgets synchronized with each other [KP88].

In the next section, we describe a new framework to design browsers where the
domain model is distinct from the navigation space. This latter being described
by a metagraph. The state of a browser is defined by a path in this metagraph.

3 Defining a Browser: a Graph and a Metagraph

The domain of the OmniBrowser framework is browsers, applications with a
graphical user interface that are used to navigate a graph of domain elements.
When instantiating the OmniBrowser framework to create a browser for a par-
ticular domain, the domain elements need to be specified, as well as the desired
navigation paths between them.

The OmniBrowser framework is structured around (i) an explicit domain
model and (ii) a metagraph, a state machine, that specifies the navigation in
and interaction with the domain model. The user interface is constructed by the
framework, and uses a layout similar to the Smalltalk System Browser, with two
horizontal parts. The top part is a column-based section where the navigation
is done. The bottom half is a text pane.

Section 3.1 explains the major classes that make up the OmniBrowser frame-
work. Section 3.2 shows a concrete instantiation to build a file browser. Sec-
tion 3.3 goes in some more detail and describes the core behavior of the frame-
work. Section 3.4 explains how the widgets are glued together.

3.1 Overview of the OmniBrowser framework

The major classes that make up the OmniBrowser framework are presented in
Figure 2, and explained briefly in the rest of this section.
Browser. A browser is a graphical tool to navigate and edit a domain space.
This domain has to be described in terms of a directed cyclic graph (DCG). It is

Meta-Driven Browsers V

Actor

actionsForNode:
actionsForParent:

Node

name
text
definition

Browser
dispatcher
panels

MetaNode
displaySelector
edges
childAt:put:
addActor:
displaySelector:

Filter

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Browser class

defaultMetaNode
defaultRootNode
open
title

defaultMetaNode

defaultRootNodemetaNodeactors

filterClass

Omnibrowser core framework

ModalFilter

Definition

accept:notifying:
text
text:

Fig. 2. Core of the OmniBrowser framework.

cyclic because for example file systems or structural meta models of programming
language (i.e., packages, classes, methods...) contain cycles, and we need to be
able to model those. The domain graph has to have an entry point, its root. The
path from this root to a particular node corresponds to a state of the browser is
defined by a particular combination of user actions (such as menu selections or
button presses). The navigation of this domain graph is specified in a metagraph,
a state machine describing the states and their possible transitions.
Node. A node is a wrapper for a domain object, and has two responsibilities:
rendering the domain object, and returning domain nodes. Note that how the
domain graph can be navigated is implemented in the metagraph.
Metagraph. A browser’s metagraph defines the way in which the user may tra-
verse the graph of domain objects. A metagraph is composed of metanodes and
metaedges. A metanode references a filter (described below) and a set of actors.
The metanode does not have the knowledge of the domain nodes, however each
node is associated to a metanode. Transitions between metanodes are defined
by metaedges. When a metaedge is traversed (i.e., result of pressing a button or
selecting an entry list), siblings nodes are created from a given node by invoking
a method that has the name of the metaedge.
Actor. An actor is a basic unit of domain-related functionality. Actors are
attached to metanodes, and supply the actions used to interact with objects
wrapped by nodes. For instance, actors are used to build context menus and
buttons in the browser.
Action. An Action represents a Command [ABW98] for manipulating, inter-
acting and navigating with the graph domain. Actions can be made available
through menus or buttons in the browser. They carry information on how they

VI A. Bergel, S. Ducasse, C. Putney and R. Wuyts

should be presented to the user and are responsible for handling exceptions that
can occur when they are triggered. Actions are created by actors.
Filter. The metagraph describes a state machine. When the browser is in a state
where there are two transitions available. The user is the one that decides which
transition to follow. To allow that to happen OmniBrowser framework displays
the possibilities to the user. From all the possible transitions, OmniBrowser
framework fetches all the nodes that represent the states the user could arrive
at by following those transitions and list them in the next column. Note that
the transition is not actually make yet, and the definition pane is still displaying
the class definition. Once a click is made, the transition actually happens, the
pane definition is updated (and perhaps other panes such as button bars) and
it gathers the next round of possible transitions.

A filter provides a strategy for filtering out some of the nodes from the display.
If a node is the starting point of several edges, a filter is needed to filter out all
but one edges to determine which path has to be taken in the metagraph.
Definition. While navigating in the domain space, information about the se-
lected node is displayed in a dedicated textual panel. If edition is expected by
the browser user, then a definition is necessary to handle commitment (i.e., an
accept in the Smalltalk terminology). A definition is produced by a node.

3.2 A Simple Example: A File Browser

To illustrate how the OmniBrowser framework is instantiated, we describe the
implementation of a simple file browser supporting the navigation in directories
and files [Hal05].

Figure 3 shows the file browser in action. A browser is opened by evaluat-
ing FileBrowser open in a workspace. The navigation columns in the case of a
file browser are used to navigate through directories, where every column lists
the contents of the directory selected in its left column, similar to the Column
View of the Finder in the Mac OS-X operating system. Note that we can have
an infinite numbers of pane navigating through the file system. The horizontal
scrollbar lets the user browse the directory structure. A text panel below the
columns displays additional properties of the currently selected directory or file
and provides means to manipulate these properties.
Node definitions. Nodes wrap objects of the browsed domain. First the class
FileNode a subclass of Node is created which represents a file. A file node is
identified by a full path name, stored in a variable. The name of the node is
simply the name of the file selected:

FileNode�name
ˆ (FileDirectory directoryEntryFor: path) name.

A text containing information about the selected file is returned by the
method text:

FileNode�text

Meta-Driven Browsers VII

Fig. 3. A minimal file browser based on OmniBrowser.

ˆ ’First 1000 characters: ’, String cr,
((FileStream readOnlyFileNamed: path) converter: Latin1TextConverter new;

next: 1000) asString

A directory node is a kind of file that contains directories and files. The
methods files and directories are defined on the class DirectoryNode.

DirectoryNode�directories
| dir |
dir := FileDirectory on: path.
ˆ dir directoryNames collect: [:each |

DirectoryNode new path: (dir fullNameFor: each)]

DirectoryNode�files
| dir |
dir := FileDirectory on: path.
ˆ dir fileNames collect: [:each |

FileNode new path: (dir fullNameFor: each)]

VIII A. Bergel, S. Ducasse, C. Putney and R. Wuyts

The implementation shows the two responsibilities of a node: rendering itself
(implemented in the text method), and calculating the nodes reachable from a
node (in the directories and files methods).
Action Definitions. The user can perform some actions on selected files. Those
are implemented in the class FileActor which inherits from Actor. Action are
commands with user-interface information such as icon.

FileActor�actionsForNode: aNode
ˆ {OBAction

label: ’remove’
receiver: self
selector: #removeFile:
arguments: {aNode}
keystroke: $x
icon: MenuIcons smallCancelIcon.

OBAction
label: ’rename’
receiver: self
selector: #renameFile:
arguments: {aNode}}

FileActor�removeFile: aNode
”Remove the file designed by aNode”
...

FileActor�renameFile: aNode
”Rename the file designed by aNode”
...

Metagraph Definition. Figure 4 shows a metagraph describing a filesystem.
Two metanodes, Directory and File, compose this metagraph. The navigation be-
tween these nodes is defined by two transitions, files and directories. The starting
point in a metagraph is designated by a root metanode.

The metagraph is implemented in the class FileBrowser. The methods de-
faultMetaNode and defaultRootNode are defined on the class side of FileBrowser.
These methods define the metagraph and gives the root node, respectively:

FileBrowser class�defaultMetaNode
”returns the directory metanode that acts as the root metanode”

| directory file |
directory := OBMetaNode named: ’Directory’.

file := OBMetaNode named: ’File’.
file addActor: FileActor new.

Meta-Driven Browsers IX

File

Directory

#files

N metanode

is an ancestor of

#directories

N object node
/

/temp pic1.jpg

pic2.jpg pic3.jpg

transition

(a) Instantiated domain (b) Metagraph

N root metanode

Fig. 4. A filesystem (as a graph) (a) and its corresponding metagraph (b).

directory
childAt: #directories put: directory;
childAt: #files put: file;
addActor: FileActor new.

ˆ directory

FileBrowser class�defaultRootNode
ˆ DirectoryNode new path: ’/’

When one of the two #directories and #files metaedges is traversed, the name
of this metaedge is used as a message name sent to the metanode’s node.

3.3 Core Behavior of the Framework

The core of the OmniBrowser framework is composed of 8 classes (Figure 2).
We denote the Smalltalk metaclass hierarchy by a dashed arrow.

The metaclass of the class Browser is Browser class. It defines two abstract
methods defaultMetaNode and defaultRootNode. These methods are abstract,
they therefore need to be overridden in subclasses. These methods are called
when a browser is instantiated. The methods defaultMetaNode and defaultRootN-
ode returns the root metanode and the root domain node, respectively. A browser
is opened by sending the message open to an instance of the class Browser.

The navigation graph is built with instances of the class MetaNode. Transi-
tions are built by sending messages childAt: selector put: metanode to a MetaNode
instance. These has the effect to create a metaedge named selector leading away
the metanode receiver of the message and metanode.

X A. Bergel, S. Ducasse, C. Putney and R. Wuyts

Actor

actionsForNode:
actionsForParent:

Node

name
text
definition

Browser
dispatcher
panels

MetaNode
displaySelector
edges
childAt:put:
addActor:
displaySelector:

FileNode
path
name
text

Filter

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Browser class

defaultMetaNode
defaultRootNode
open
title

DirectoryNode

directories
files
fullName
text

FileActor

actionsForNode:
removeFile:
renameFile:

FileBrowser
FileBrowser

class

defaultMetaNode
defaultRootNode
title

defaultMetaNode

defaultRootNodemetaNodeactors

filterClass

Omnibrowser core framework

File browser

instance of

ModalFilter

Definition

accept:notifying:
text
text:

Fig. 5. Core of the OmniBrowser framework and its extension for the file
browser.

At runtime, the graph traversal is triggered by user actions (e.g., pressing a
button or selecting a list entry) which sends the metaedge’s name to the node
that is currently selected. Actors are attached to a metanode using the method
addActor:. The rendering of a node is performed by invoking on the domain node
the selector stored in the variable displaySelector in the metanode.

The class Actor is normally instantiated by metanodes and is used to define
node related actions. The method actionsForNode: may be overridden in sub-
classes to answer an ordered collection of actions. The method actionsForParent:
is used to specify actions that are independent from any nodes. These actions
are typically shown on a menu when no node is selected.

The class Node represents an element of the domain graph. Each node has
a name. This name is used when lists of nodes are displayed in the navigation
columns of the browser. When a node is selected in a list, information related to
this node needs to be displayed in the bottom text pane. When the node is not

Meta-Driven Browsers XI

supposed to be edited, the message text is sent to it, returning a string displayed
in the bottom pane. When it is editable, it is sent the message definition which
needs to return an instance of a subclass of Definition. Note that the nodes do
not need to be configured to be editable or not. When they implement a method
definition, this will be used and the node will be editable. If that method is not
present, then the method text is used.

When the browser is in a state where several transitions are available, it dis-
plays the possibilities to the user. From all the possible transitions, OmniBrowser
framework fetches all the nodes that represent the states the user could arrive at
by following those transitions and list them in the next column. Once a selection
is made, the transition actually happens, the pane definition is updated and the
process repeats.

As explained before, a filter or modal filter can be used to select only a num-
ber of outgoing edges when not all of them need to be shown to the user. This
is useful for instance to display the instance side, comments, or class side of a
particular class in the classic standard system browser (cf. Section 4). Class Filter
is responsible for filtering nodes in the graph. The method nodesForParent: com-
putes a transition in the domain metagraph. This method returns a list of nodes
obtained from a given node passed as argument. The class Filter is subclassed
into ModalFilter, a handy filter that represents transitions in the metagraph that
can be traversed by using a radio button in the GUI.

3.4 Glueing Widgets with the Metagraph

From the programmer point of view, creating a new browser implies defining
a domain model (set of nodes like FileNode and DirectoryNode), a metagraph
intended to steer the navigation and a set of actors to define interaction and
actions with domain elements. The graphical user interface of a browser is au-
tomatically generated by the OmniBrowser framework. The GUI generated by
OmniBrowser framework is contained in one window, and it is composed of 4
kinds of widgets (lists, radio buttons, menus and text panes).

The layout of a browser can be redefined and use other widgets then the ones
described above, but those are then not used by the metagraph. For instance,
the OmniBrowser framework-based system browser uses a toolbar widget that
allows a user to launch other kind of browsers like the variable and hierarchy
browsers. We will not describe how to use other widgets, as this is outside the
scope of this paper.
Lists. Navigation in OmniBrowser framework is rendered with a set of lists and
triggered by selecting one entry in a list. Lists displayed in a browser are ordered
and are displayed from left to right. Traversing a new metanode, by selecting a
node in a list A, triggers the construction of a set of nodes intended to fill a list
B. List B follows list A.

The root of a metagraph corresponds to the left-most list. The number of
lists displayed is equal to the depth of the metagraph. The depth of the system
browser metagraph (Figure 9) is 4, therefore the system browser has 4 panes
(Figure 7). Because the metagraph of a filesystem may contain cycles (i.e., a

XII A. Bergel, S. Ducasse, C. Putney and R. Wuyts

directory may contain directories, as shown in Figure 4), the number of lists in
the browser increases for each directory selected in the right-most list. Therefore
a horizontal scrollbar is used to keep the width of the browser constant, yet
displaying a potentially infinite number of lists in the top half.
Radio buttons. A modal filter in the metagraph is represented in the GUI
by a radio button. Each edge leading away from the filter is represented as a
button in the radio button. Only one button can be selected at a time in the
radio button, and the associated choice is used to determine the outgoing edges.
For example, the second list in the system browser contains the three buttons
instance, ? and class as shown the transition from the environment to the three
metanodes class, class comment and metaclass in Figure 7.
Menus. A menu can be displayed for each list widget of a browser. Typically
such a menu displays a list of actions that can be executed by a browser user.
These actions enable interaction with the domain model, however they do not
allow further navigation in the metagraph.

Fig. 6. Example of menu in the OmniBrowser framework system browser.

Figure 6 shows an example of a menu offering actions related to a class. These
correspond to the list of actions returned by the method actionsForNode: in the
class ClassActor.
Text pane. When a node is selected in a list, some information related to this
node is displayed in a text pane. Committing a change in the text pane sends
the message accept: newText notifying: aController to the definition shown in this
pane. A browser contains only one text pane.

Meta-Driven Browsers XIII

4 The OmniBrowser-based System Browser

In this section we show how the framework is used to implement the traditional
class system browser.

4.1 The Smalltalk System Browser

The system browser is probably the most important tool offered by the Smalltalk
programming environment. It enables code navigation and code editing. Figure 7
shows the graphical user interface of this browser, and how it appears to the
Smalltalk programmer.

Fig. 7. OmniBrowser framework based Smalltalk system browser.

This browser just replicates the traditional four panes system browser dis-
cussed in Section 2. The system browser is mainly composed of four lists (upper
part) and a panel (lower part). From left to right, the lists represent (i) class
categories, (ii) classes contained in the selected class category, (iii) method cat-
egories defined in the selected class to which the – all – category is added, and
(iv) the list of methods defined in the selected method category. On Figure 7,

XIV A. Bergel, S. Ducasse, C. Putney and R. Wuyts

the class named Class, which belongs to the class category Kernel-Classes is se-
lected. Class has three methods categories, plus the – all – one. The method
templateForSubclassOf:category contained in the instance creation method cate-
gory is selected.

The lower part of the system browser contains a large textual panel display
information about the current selection in the lists. Selecting a class category
makes the render display a class template intended to be filled out to create a new
class in the system. If a class is selected, then this panel shows the definition of
this class. If a method is selected, then the definition of this method is displayed.
The text contained in the panel can be edited. The effect of this is to create a
new class, a new methods, or changing the definition of a class (e.g., adding a
new variable, changing the superclass) or redefining a method.

In the upper part, the class list contains three buttons (titled instance, ? and
class) to let one switch between different “views” on a class: the class definition,
its comment and the definition of its metaclass. Just above the panel, there is a
toolbar intended to open more specific browsers like a hierarchy browser and a
variable access browser.

4.2 System Browser Internals

The Omnibrowser-based implementation of the Squeak system browser is com-
posed of 19 classes (2 actors, 2 classes for the browser, 3 classes for the defini-
tions of classes, methods and organization, 10 classes defining nodes and 2 utility
classes with abstractions to help link the browser and the system). 220 methods
are spread over these 19 classes. Figure 8 shows the classes in OmniBrowser
framework that need to be subclassed to produce the system browser. Note that
the two utility classes are not represented on the picture.

Compared to the default implementation of the Squeak System Browser this
is less code and better factored. In addition other code-browsers can freely reuse
these parts.

Figure 9 depicts the metagraph of the system browser. The metanode envi-
ronment contains information about class categories. The filter is used to select
what has to be displayed from the selected class (i.e., the class definition, its
comment or the metaclass definition). A class and a metaclass have a list of
method categories, including the – all – method category that shows a list of
methods.
Widgets notification. Widgets like menu lists and text panels interact with
each other by triggering events and receiving notifications. Each browser has a
dispatcher (referenced by the variable dispatcher in the class Browser) to conduct
events passing between widgets of a browser. The vocabulary of events is the
following one:

– refresh is emitted when a complete refresh of the browser is necessary. For
instance, if a change happens in the system, this event is triggered to order
a complete redraw.

– nodeSelected: is emitted when a list entry is selected with a mouse click.

Meta-Driven Browsers XV

Omnibrowser core framework

System browser

Category
Actor

Class
Actor

Code
Browser

System
Browser

Class
Definition

Method
Definition

Organization
Definition

Code
Node

ClassAware
Node

ClassComment
Node

ClassNode

MetaClassN
ode

Method
CategoryNode

AllMethod
CategoryNode

Method
Node

ClassCategory
Node

Environment
Node

BrowserNode ActorDefinition

Fig. 8. Extension of OmniBrowser framework to define the system browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment

Fig. 9. Metagraph of the system browser.

– nodeChanged is emitted when the node that is currently displayed changes.
This typically occurs when one of buttons related to the class is selected.

XVI A. Bergel, S. Ducasse, C. Putney and R. Wuyts

For example, if a class is displayed, pressing the button instance, class or
comment triggers this event.

– okToChangeNode is emitted to prevent loose some text edition why changing
the content of a text panel if this was modified without being validated.
This happens when first a user writes the definition of a method, without
accepting (i.e., compiling) it, and then another method is selected.

Each graphical widget composing a browser are listeners and can emit events.
Creation and registration of widgets as listeners and event emitters is completely
transparent to the end user.
State of the browser. Contrary to the original Squeak system browser where
each widget state is contained in a dedicated variable, the state of a OmniBrowser
framework-based browser is defined as a path in the metagraph starting from
the root metanode. Each metanode taking part of this path is associated to
a domain node. This preserves the synchronization between different graphical
widgets of a browser.

5 The Coverage Browser

The coverage browser is an extension to the system browser to show the coverage
of code by unit tests. It extends the system browser in two ways. First of all it
appends the percentage of elements covered by tests to the elements in the lists
making up the browser. Secondly it adds a fifth pane that lists the unit tests
that test a selected method. A screenshot is shown in Figure 10. It shows us
that 39% of the class UUID is covered by tests, and that the method initialize is
covered at 100% by the tests shows in the right-most pane. One of these test is
testCreation.

Fig. 10. Screenshot of the coverage browser.

Meta-Driven Browsers XVII

Coverage browser

Omnibrowser core framework

System browser

Coverage
Browser

Code
Node

ClassAware
Node

Method
Node

BrowserNode ActorDefinition

Coverage
MethodNode

Coverage
MethodNode

Coverage
ElementNode

Coverage
EnvironmentNode

CoverageSet
Node Coverage

Actor

ElementActorEnvironmentActor

System
Browser

Code
Browser

MethodNode
Actor

CoverageSet
Actor

Fig. 11. Extension of Omnibrowser and system browser to define the coverage
browser.

The coverage browser is composed of 11 classes (1 class for the browser, 5
actors and 5 nodes). Figure 11 illustrates how classes in OmniBrowser and in
the system browser are extended to define this new browser. The metagraph is
depicted in Figure 12 and is identical to the system browser except with a new
Method Coverage metanode. The depth of the graph, which is 5, is reflected in
the number of list panes the browser is composed of.

6 Evaluation and Discussions

Several other browsers such as a browser specifically supporting traits [DNS+06]
have been developed using OmniBrowser framework demonstrating that the
framework is mature and extensible [RJ97]. Figure 13 shows some browsers that
are based on OmniBrowser framework. We now discuss the strengths and limi-
tations of the OmniBrowser framework.

XVIII A. Bergel, S. Ducasse, C. Putney and R. Wuyts

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment Method
Coverage

Fig. 12. Metagraph for the coverage browser.

Code
Browser

Hierarchy
Browser

Inheritance
Browser

List
Browser

Implementor
Browser

Reference
Browser

Sender
Browser

Variables
Browser

System
Browser

Version
Browser

Browser

Fig. 13. Some code browsers developed using OmniBrowser framework.

6.1 Strengths

Ease of use. As any good framework, extending it following the framework
intention make it easy to specify advanced browsers. The fact that the browser
navigation is explicitly defined in one place lets the programmer understanding
and controlling the tool navigation and user interaction. The programmer does
not have the burden to explicitly create and glue together the UI widgets and
their specific layout. Extra decorating widgets such as extra-menu is possible
and defined independently. Still the programmer focuses on the key domain of
the browser: its navigation and the interaction with the user.
Explicit state transitions. Maintaining coherence among different widgets
and keeping them synchronized is a non-trival issue that, while well supported
by GUI frameworks, is often not well used. For instance, in the original Squeak
browser, methods are scattered with checks for nil or 0 values. For instance,

Meta-Driven Browsers XIX

the method classComment: aText notifying: aPluggableTextMorph, which is called
by the text pane (F widget) to assign a new comment to the selected class (B
widget), is:

Browser�classComment: aText notifying: aPluggableTextMorph
theClass := self selectedClassOrMetaClass.
theClass

ifNotNil: [...]

The code above copes with the fact that when pressing on the class comment
button, there is no warranty that a class is selected. In a good UI design, the
comment class button should have been disabled however there is still checks
done whether a class is selected or not. Among the 438 accessible methods in
the non Omnibrowser-based Squeak class Browser, 63 of them invoke ifNil: to
test if a list is selected or not and 62 of them invoke ifNotNil:. Those are not
isolated Smalltalk examples. The code that describes some GUI present in the
JHotDraw [JHo] contains the pattern checking for a nil value of variables that
may reference graphical widgets.

Such as situation does not happen in OmniBrowser framework, as meta-
graphs are declaratively defined and each metaedge describes an action the user
can perform on a browser, states a browser can be in are explicit and fully
described.
Separation of domain and navigation. The domain model and its navigation
are fully separated: a metanode does not and cannot have a reference to the
domain node currently selected and displayed. Therefore both can be reused
independently.

6.2 Limitations

Hardcoded flow. As any framework, OmniBrowser framework constraints the
space of its own extension. OmniBrowser framework does not support well the
definition of navigation not following the left to right list construction (the result
of the selection creates a new pane to the right of the current one and the
text pane is displayed). For example, building a browser such as Whiskers that
displays multiple methods at the same time would require to deeply change the
text pane state to keep the status of the currently edited methods.
Currently selected item. The OmniBrowser framework does not easily sup-
port the building of advanced browsing facilities such as the one of the Visual-
Works standard browser. In VisualWorks, it is possible to select a package, then
select one class of this package and as third step see the inheritance hierarchy of
this class within the context of the previously selected package. The problem is
that conceptually the selected item is not part of the state representation. It is
possible using UI events passing among the widgets to implement

XX A. Bergel, S. Ducasse, C. Putney and R. Wuyts

7 Related Work

MVC. The Model-View-Controller [KP88,Ree,Ree79] promotes a distinction
between three important roles (namely data, output and interaction) that should
be reflected in the design of a user interface framework. Those roles were reflected
in three abstract superclasses: Model, View, Controller. Still for system browsers,
developers consider the model as the entities of the domain and do not have
explicit or meta entities describing the navigation within the domain model. Note
also that a controller in MVC captures the interaction of users with a widget,and
passes this information to the model. The level of abstraction, however, is lower
than what is offered by the Actor in the OmniBrowser framework, which is not
programmed in terms of a widget but in terms of the domain entities.
HotDraw. The state transitions between the possible tools in HotDraw [Joh92]
are driven by an explicit state machine and follow an explicit transition structure.
There is a graphical editor (constructed with HotDraw itself) to construct the
view and edit the state machine. The goal of the state machine is similar to
the goal of the metagraph in the OmniBrowser framework: to make navigation
explicit. In HotDraw, however, the events to go from one state to another are
taken from a limited set of possible actions such as mouse over.
HyperCard. Conceptually, a HyperCard [Goo98] application is a stack of cards.
Each card contains some information and links to other cards in the same or
other stacks. The information on the cards is shown using text and graphics.
The links to other cards are presented as buttons, typically completed with an
icon representing the destination card. A user of HyperCard browses the cards
of a stack using the link button. Only one card of a stack is displayed at a time.
Clicking a link button results in the display of the destination card. When a
stack has not only information to be displayed, but also has to exhibit an active
behavior, the stack designer has to develop cards by means of a scripting level,
on which programming in the dedicated language HyperTalk is supported. Still
there is not as such a metagraph describing the navigation of a domain graph.
ApplFLab. Steyaert et al. defined the notion of reflective application buil-
der [SHDB96] with as explicit goal to be able to construct and reuse (parame-
trizable) user interface components. ApplFLab was used to construct several
domain specific user interfaces, including browsers in development environments
[Wuy96].

ApplFLab structures a software program using four distinct kinds of compo-
nents:

– a user interface component controls the display and the user interaction of
a particular piece of information, supplied by the domain model. Note that
this component is parametrized by the domain model, and therefore can be
reused across different domains.

– an application model manages the global behavior of group of interface com-
ponents. It is responsible for the user interface logic and controls user inter-
face. A same application model can be reused on different domain models
and a domain model can have several application models in parallel.

Meta-Driven Browsers XXI

– a domain model models the overall functionality of the problem domain and
maintains user interface independent constraints.

– a set of aspects is needed to separate the domain model from the user inter-
face component.

Interaction between these four components is based on emitting events and
being notified. There are three kinds of event: display, notify and control.

The advantage of ApplFLab lies in its notion of parametrized user interface
component. A user interface component consists of a GUI description, and pa-
rameters to link the component to the domain or to specify other information
when it is used in an application. The components are plugged together to form
applications. One could for example build a list component, and parametrize
it with categories, classes, protocols and selectors to get the four top elements
that make a System Browser (as shown in Section 4.1). Combine it with a Text
component and the System Browser is complete.

While both ApplFLab and the OmniBrowser make it easy to build browsers,
there are some differences. The OmniBrowser is a domain specific approach for
building browsers, while ApplFLab is general. So when using ApplFLab to build
browser, browser specific components need to be built first, for example to get
the left-to-right selection behavior that is built-in with OmniBrowser. ApplFLab
also had a steeper learning curve, since building a good reusable component (be
it a visual one or a regular one) remains fairly difficult. On the other hand,
OmniBrowser offers more built-in behavior which makes it easier to use but also
forces certain behavior that might not always be wanted.
ThingLab. Freeman-Benson and Maloney [FB89] wrote ThingLab II, an object-
oriented constraint system for direct manipulation user interface implemented in
Smalltalk-80. In ThingLab II, user-manipulable entities are collections of objects
know as Things. ThingLab II provides a large number of primitive Things equiv-
alent to the operations and data structures provided in any high-level language:
numerical operations, points, strings, bitmaps, conversion, etc.

A thing is constructed from things objects and constraint objects. Higher-
level things can be built out of the lower-level ones. Constraints are either satis-
fied or they are not satisfied, and they are simple declarative declarations that do
not hold state. Browser navigation can be expressed by constraints between the
different elements that composed a browser. But there is no explicit distinction
between the domain and its navigation.

8 Conclusion

Smalltalk is known for its advanced development environment, featuring ad-
vanced browsers that let developers navigate and change code relatively easily.

Building browsers, however, is a daunting task. The main problem is that
every navigation action performed by a user in a widget changes the state of
that (and possibly other) widgets. Given the high number of possible navigation
actions, the complexity of managing the navigation by managing the states of
the browser is a very complex task. This can be seen in most current browser

XXII A. Bergel, S. Ducasse, C. Putney and R. Wuyts

implementations, which are complex and hard to extend because the navigation
is implicitly encoded in the management of the state of the widgets.

To make it easier to build and extend browsers, this paper introduces a frame-
work for building browsers that is based on modeling user navigation through
an explicit graph. In this framework, browsers are built by modeling the domain
with nodes, expressing the navigation with a metagraph and describing the in-
teraction between the browser and the domain through actors. The framework
uses these descriptions to construct a graphical application. The top half of the
application uses lists that allow the user to navigate the described domain. The
bottom half of the pane allows to visualize and edit nodes selected in the top
half.

The framework is implemented in Squeak Smalltalk through the OmniBrowser
framework. The paper showed three concrete instantiations of the framework:
a file browser to navigate a file system,a reimplementation of the ubiquitous
Smalltalk System Browser, and a code coverage browser. There are more in-
stantiations of the browser that we have not discussed in this paper but that
are available. The validation shows that the goals of the frameworks are met.
Building the System Browser with the OmniBrowser framework shows that the
code is lots simpler. The Code Coverage browser shows that it is easy to extend
an existing browser.

For future work we plan to enhance the OmniBrowser framework with the
ability to have multiple text panes to be part of a browser. We also plan to extend
the framework to support more and richer widgets (such as toolbars and flaps).
Last but not least we want to investigate how we can extend the metagraph to
look at other ways of navigating it.
Acknowledgment. We would like to thank Niklaus Haldimann and Stefan
Reichnart for their use of the OmniBrowser framework.

We gratefully acknowledge the financial support of the french ANR project
“Cook: Réarchitecturisation des applications industrielles objets” (JC05 42872)
and of Science Foundation Ireland and Lero — the Irish Software Engineering
Research Centre.

References

ABW98. Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

DNS+06. Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and
Andrew Black. Traits: A mechanism for fine-grained reuse. ACM Transac-
tions on Programming Languages and Systems, 28(2):331–388, March 2006.

FB89. Bjorn N. Freeman-Benson. A module mechanism for constraints in
Smalltalk. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, vol-
ume 24, pages 389–396, October 1989.

FBB+99. Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.

Gol84. Adele Goldberg. Smalltalk 80: the Interactive Programming Environment.
Addison Wesley, Reading, Mass., 1984.

Meta-Driven Browsers XXIII

Goo98. Danny Goodman. The Complete HyperCard 2.2 Handbook. iUniverse, 1998.
GR83. Adele Goldberg and David Robson. Smalltalk 80: the Language and its

Implementation. Addison Wesley, Reading, Mass., May 1983.
Hal05. Niklaus Haldimann. A sophisticated programming environment to cope with

scoped changes. Informatikprojekt, University of Bern, December 2005.
JHo. Jhotdraw: a java gui framework for technical and structured graphics. http:

//www.jhotdraw.org.
Joh92. Ralph E. Johnson. Documenting frameworks using patterns. In Proceedings

OOPSLA ’92, volume 27, pages 63–76, October 1992.
KP88. G. E. Krasner and S. T. Pope. A cookbook for using the model-view-

controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26–49, August 1988.

RBJ97. Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–263,
1997.

RBJO96. Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An auto-
mated refactoring tool. In Proceedings of ICAST ’96, Chicago, IL, April
1996.

Ree. Trygve M. H. Reenskaug. The model-view-controller (mvc) – its past and
present. JavaZONE, Oslo, 2003.

Ree79. Trygve M. H. Reenskaug. Models - views - controllers, December 1979.
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf.

RJ97. Don Roberts and Ralph E. Johnson. Evolving frameworks: A pattern lan-
guage for developing object-oriented frameworks. In Pattern Languages of
Program Design 3. Addison Wesley, 1997.

SB04. Nathanael Schärli and Andrew P. Black. A browser for incremental pro-
gramming. Computer Languages, Systems and Structures, 30:79–95, 2004.

SHDB96. Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Niels Boyen. Re-
flective user interface builders. In Chris Zimmerman, editor, Advances in
Object-Oriented Metalevel Architectures and Reflection, pages 291–309. CRC
Press — Boca Raton — Florida, 1996.

SLMD96. Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse Con-
tracts: Managing the Evolution of Reusable Assets. In Proceedings of OOP-
SLA ’96 (International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications), pages 268–285. ACM Press, 1996.

SM88. Pedro Szekely and Brad Myers. A user interface toolkit based on graphi-
cal objects and constraints. In Proceedings OOPSLA ’88, ACM SIGPLAN
Notices, volume 23, pages 36–45, November 1988.

WD04. Roel Wuyts and Stéphane Ducasse. Unanticipated integration of develop-
ment tools using the classification model. Journal of Computer Languages,
Systems and Structures, 30(1-2):63–77, 2004.

Wuy96. Roel Wuyts. Class-management using logical queries, application of a re-
flective user interface builder. In I. Polak, editor, Proceedings of GRONICS
’96, pages 61–67, 1996.

http://www.jhotdraw.org
http://www.jhotdraw.org
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

	Meta-Driven Browsers
	Alexandre Bergel, Stéphane Ducasse, Colin Putney, Roel Wuyts

