
Traits: Tools and Methodology†

Andrew P. Black
OGI School of Science & Engineering,

Oregon Health and Science University, USA

black@cse.ogi.edu

Nathanael Scḧarli
Software Composition Group,

University of Bern, Switzerland

schaerli@iam.unibe.ch

Abstract

Traits are an object-oriented programming language con-
struct that allow groups of methods to be named and reused
in arbitrary places in an inheritance hierarchy. Classes can
use methods from traits as well as defining their own meth-
ods and instance variables. Traits thus enable a new style
of programming, in which traits rather than classes are the
primary unit of reuse. However, the additional sub-structure
provided by traits is alwaysoptional: a class written using
traits can also be viewed as a flat collection of methods,
with no change in its semantics.

This paper describes the tool that supports these two al-
ternate views of a class, called the traits browser, and the
programming methodology that we are starting to develop
around the use of traits.

1. Introduction

The ability to reuse existing code is one of the compelling
strengths of the object-oriented paradigm. Of course, pro-
cedural and functional programming also provide for reuse,
but only in the most limited way: a whole procedure or func-
tion can be called, but it cannot be modified. Inheritance im-
proves on procedural reuse in two ways. First, it provides
for the reuse not just of a single procedure but of a group of
related procedures, called methods, and the state on which
they depend. Second, inheritance allows incremental modi-
fication of the reused component: instead of requiring clair-
voyance on the part of the original programmer in antici-
pating every variation in functionality that the re-user might
require, inheritance allows the re-user to selectively over-
ride parts of the original behaviour.

Because of these advantages, inheritance-based lan-
guages have become dominant. Yet single inheritance is

† This research was partially supported by the National Science Founda-
tion of the United States under awards CDA-9703218, CCR-0098323
and CCR-0313401, and by Swiss National Foundation project 2000-
067855.02. ICSE, pp. 676–686, May 2004, Edinburgh. ©IEEE.

widely recognized as deficient when it comes to reusing be-
haviour in multiple places in an inheritance hierarchy. Mul-
tiple inheritance and mixins have been proposed as solu-
tions to this problem, but a common perception in the lan-
guage design community is that these extensions introduce
more problems than they solve.

We have previously argued that traits remedy the defi-
ciencies of single inheritance without introducing the prob-
lems that beset multiple inheritance and mixins [10]. By
refactoring the Smalltalk collection classes, we have shown
that a mature code base can benefit from traits: the refac-
tored classes contained less code, and yet exhibited more
uniform interfaces [2]. These experiences with traits have
also caused us to realize that support from appropriate tools
is critical, as is a programming methodology that leverages
traits’ theoretical properties and the strengths of the tools.

The contributions of this paper are a description of the
traits browser (section 4), the tool that we have developed
to support programming with traits, and of the programming
methodology that is evolving around it (section 5). We have
attempted to make the paper self-contained by summarizing
what traits are (section 3) and the problem that they solve
(section 2); these sections condense more detailed descrip-
tions that have appeared previously [10].

Although the current implementation of traits is in
Smalltalk, we believe that traits can be applied with equal
benefit to other single inheritance languages such as Java,
and so we have tried to make this paper accessible to those
familiar with object-oriented concepts but unfamiliar with
Smalltalk. Related work is discussed where it is relevant;
previous papers contain a detailed discussion of the relation-
ship of traits to mixins and multiple inheritance [10], and a
comparison of the traits browser to other browsers [9].

2. What is the Problem?

Edsger Dijkstra has written eloquently of “our inability to
do much” [5]. One of the ways in which object-oriented
programming helps us to do more, to cope with the ever-
increasing variety of objects that our programs are asked to

manipulate, is by encouraging the programmer to provide
diverse objects with uniform protocol.

The notion of protocol, also known as interface, is cru-
cial in all object-oriented programs, whether or not the lan-
guage in which they are written has a syntactic construct to
capture it. Uniformity of protocol is encouraged by inheri-
tance, because by default the protocol of a subclass will be
a superset of the protocol of its superclass. But classes that
are not related by inheritance should also, very often, share
the same protocol. Java’sinterface and implements con-
structs allow a programmer to state that two classesshould
share a protocol, but they do nothing to help translate that
desire into code.

To see the value of uniform protocol, consider the enu-
meration protocol in Smalltalk. This protocol is part of the
interface ofCollection and its subclasses, and consists of the
following messages.1

allSatisfy: anySatisfy: associationsDo:
collect: collect:thenSelect: count:
detect: detect:ifNone: detectMax:
detectMin: detectSum: difference:
do: do:separatedBy: do:without:
groupBy:having: inject:into: intersection:
noneSatisfy: reject: select:
select:thenCollect: union:

These messages implement various internal iterators over
the target collection. For example,select: takes a boolean
block (a predicate) as argument and returns a new collec-
tion containing those elements of the target collection for
which the predicate yields true. All of the messages in the
enumeration protocol are understood by all of the classes of
collection; this makes it trivial to write code that is robust
to changes in the specific kind of collection that is eventu-
ally provided.

Now consider the classPath, which represents an or-
dered sequence of points: arcs, curves, lines and splines are
all implemented as subclasses ofPath. The classPath is it-
self a subclass ofDisplayObject, and thus not able to inherit
from Collection. Consequently, althoughPath implements
some of the more basic kinds of collection-like behaviour —
for example, it has methods forselect: andcollect: — it does
not implement the full enumeration protocol.

We first became aware of this deficiency when preparing
a tutorial on Squeak, a dialect of Smalltalk [7]. The code

p := Path fromUser.
r := Rectangle fromUser.
pc := p select: [:each | r containsPoint: each].
pc displayOn: Display.

asks the user to input a series of points that defines aPath p
on the display, and to then define aRectangle r. It then cre-
ates a newPath pc that contains only those points fromp

1 The presence of a colon (:) in a message indicates that an argument
must be provided when the message is sent. Thus, colons in Smalltalk
play the same role as parentheses and commas in C. The Smalltalk
messagetoday printOn: outputStream format: fmt might be repre-
sented in Java or C++ astoday.printOn format(outputStream, fmt).

that are insider. But this code doesn’t work: it produces a
“message not understood” error, becausep, although con-
ceptually a collection of points, is actually aPath and thus
does not understand theselect: message.

Although the user of aPath can program around this de-
ficiency, that ought not to be the user’s responsibility! In-
stead, theimplementorof Path should ensure that it under-
stands the entire collection protocol. But this is an awesome
task: the existing implementation in classCollection can-
not be reused by inheritance, so many methods would need
to be duplicated. In addition to the score of methods miss-
ing from the enumeration protocol, there are a dozen other
protocols that must also be implemented ifPath is to be-
have as a collection.

We have found similar problems in many places in
Squeak. AlthoughisEmpty is defined in 21 classes, only
two of them also definenotEmpty, and only one also de-
fines ifEmpty: and ifNotEmpty: . Thus, the client of these
classes cannot program to a uniform interface, and is sub-
jected to the unnecessary burden of keeping track of exactly
which messages the target object understands. The exam-
ple ofRectangleMorph not implementing all of the protocol
understood byRectangle objects is discussed at length in a
previous paper [2], where we make the point that the reason
for this non-uniformity in protocol is not bad programming,
but bad technology. With single inheritance, the only way
of making the protocols uniform is wholesale code duplica-
tion, which is probably a greater evil than non-uniformity.

Traits provide a simple solution to this dilemma that
avoids duplication of both source and compiled code and
also improves modularity, thus making the classes con-
cerned easier to understand.

3. What are Traits?

A trait is a first-class collection of named methods — an
implementation of a protocol. The purpose of a trait is to
make that protocol implementation reusable in whatever
classes need it. For simplicity, we make the restriction that
the methods must be “pure behaviour,” that is, they cannot
directly reference any instance variables. We will now de-
scribe traits in some detail; readers already familiar with
traits can safely omit this section.

Traits fulfill their purpose by being composed into other
traits and eventually into classes. A trait has no superclass;
the keywordsuper can appear in a trait method, but it re-
mains unbound until the trait is eventually used in a class.

The power and simplicity of traits comes from the com-
position operators that are defined on them. Figure 1 il-
lustrates the sum operation. Here, and in the next two fig-
ures, circles and ellipses depict the operations, and fat ar-
rows show their inputs and outputs. The lilac rectangles are

2

trait

T

+

U

a

a

x

b

a

y

c

a

conflict

d

a

r

composite subclass
definition

C

subclass:

 #D

uses:

 T

var1

b

a

j

d

a

w

i

a

↑

var1

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

sum

+

trait

V

a

a

x

b

a

y

c

a

p

d

a

v

overriding

trait

T

a

a

x

b

a

conflict

c

a

↑

self

 i

inheritance

These diagrams illustrate the three com-
position operations involving traits. The
ellipses depict the operations; the fat
arrows show their inputs and
outputs. The open arrow repre-
sents subclassing. The notation a

a

m

represents a method with name a

and
body

m

.

The

sum

 operation takes two traits

T

 and

U

 as input; the result is
a trait

T+U

 that contains the union of all of the non-conflicting
methods. Where

T

 and

U

 conflict (

e.g.

, at

c

), the resulting
method is an explicit conflict marker.

The

overriding

 operation combines some explicit definitions with
an existing trait. In the figure, the explicit definitions of methods b
and c override those obtained from the trait

T

, and the definition
of d is added. The resulting trait V contains no conflicts because
the definition of b has been overridden.

The

inheritance

 operation is used to create a new subclass D
from an existing superclass C, an existing trait T, and some new,
explicitly given, definitions. Explicit definitions (

e.g.,

 of b) override
those obtained from the trait; definitions in the trait (

e.g.

, of a)
override those obtained from the superclass.

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

composite trait
definition

Trait

named:

 #V

uses:

 T

b

a

y

c

a

p

d

a

v

subclass

D

var0 var1

a

a

x

b

a

j

c

a

↑

self

 i
d

a

w

e

a

k

i

a

↑

var1

class

C

var0

a

a

m

d

a

n

e

a

k

trait

U

c

a

q

d

a

r

Figure 1. The sum operation on traits.

traits2; the notationa 7→ m represents a method with name
a and bodym. The sum traitT + U contains all of the non-
conflicting methods ofT andU. However, if there is acon-
flict, that is, ifT andU both define a method with the same
name, then inT + U that name is bound to a distinguished
conflict method. The+ operation is associative and com-
mutative.

The override operation is shown in figure 2:Trait
named: #V uses: T . . . constructs a new composite trait
V by combining some explicit definitions (in the pale yel-
low rectangle) with the existing traitT. The explicit defini-
tions of methodsb andc override those fromT; the defi-
nition of d is added. Because the overriding definitions are
given explicitly, it is always clear what is being replaced.

Traits are incorporated into classes by means of an ex-
tended form of inheritance. In figure 3, the blue rectan-
glesC andD represent classes. A new subclassD is con-
structed from a superclassC and a trait T in addition
to some explicit local definitions. In Smalltalk we write
C subclass: #D uses: T . . . ; we call D a composite class.
Explicit definitions (e.g., ofb) override those obtained from
T; definitions inT (e.g., of a) override those obtained from
C. If necessary, the bodies of the explicit methods (e.g., w)
and of the trait methods (e.g., x) can usesuper to call meth-
ods inC. In practice, the trait that is used to build a compos-
ite class is often the sum of several more primitive traits.

The aliasing operator@ can be applied to a trait to cre-

2 If you are reading a greyscale copy of this paper, we suggest that you
obtain a coloured version from one of the authors’ web sites.

trait

T

+

U

a

a

x

b

a

y

c

a

conflict

d

a

r

composite subclass
definition

C

subclass:

 #D

uses:

 T

var1

b

a

j

d

a

w

i

a

↑

var1

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

sum

+

trait

V

a

a

x

b

a

y

c

a

p

d

a

v

overriding

trait

T

a

a

x

b

a

conflict

c

a

↑

self

 i

inheritance

These diagrams illustrate the three com-
position operations involving traits. The
ellipses depict the operations; the fat
arrows show their inputs and
outputs. The open arrow repre-
sents subclassing. The notation a

a

m

represents a method with name a

and
body

m

.

The

sum

 operation takes two traits

T

 and

U

 as input; the result is
a trait

T+U

 that contains the union of all of the non-conflicting
methods. Where

T

 and

U

 conflict (

e.g.

, at

c

), the resulting
method is an explicit conflict marker.

The

overriding

 operation combines some explicit definitions with
an existing trait. In the figure, the explicit definitions of methods b
and c override those obtained from the trait

T

, and the definition
of d is added. The resulting trait V contains no conflicts because
the definition of b has been overridden.

The

inheritance

 operation is used to create a new subclass D
from an existing superclass C, an existing trait T, and some new,
explicitly given, definitions. Explicit definitions (

e.g.,

 of b) override
those obtained from the trait; definitions in the trait (

e.g.

, of a)
override those obtained from the superclass.

trait

T

a

a

x

b

a

y

c

a

↑

self

 i

composite trait
definition

Trait

named:

 #V

uses:

 T

b

a

y

c

a

p

d

a

v

subclass

D

var0 var1

a

a

x

b

a

j

c

a

↑

self

 i
d

a

w

e

a

k

i

a

↑

var1

class

C

var0

a

a

m

d

a

n

e

a

k

trait

U

c

a

q

d

a

r

Figure 2. The override operation on traits.

ate a new trait that has an additional name for an existing
method. For example, ifU is a trait that defines methods
for c andd, thenU@{e → c} is a trait that defines meth-
ods forc, d and e. The additional methode has the same
body as the old methodc. Aliases are used to make con-
flicting methods available under another name, perhaps to
meet the requirements of some other trait, or to avoid over-
riding. Note that because the body of the aliased method is
not changed in any way, an alias to a recursive method is
not recursive. Finally, a trait can be constructed byexclud-
ing methods from an existing trait using the exclusion oper-
ator−. Thus,U − {c} has a single methodd. Exclusion is
used to avoid conflicts, or if one needs to reuse a trait that is
“too big” for one’s application.

Associated with each trait is a set ofrequiredmessages,
on which it depends. Any concrete class that uses a trait
must provide methods for all of the required messages.
For example, if the methods in a trait use the expression
self size but the trait itself does not define a methodsize,
thensize will be in the requiresset of the trait. When this
trait is eventually incorporated into a class that is intended
to be concrete,size will have to be defined, perhaps as a
method that fetches the value of an instance variable, or per-
haps as a method that calculates the size.

Because of the way that we define the operations on
traits, the semantics of a method is independent of whether
it is defined in a traitT, or in a class (or a trait) that usesT
as a component. Consequently, provided that all trait con-
flicts have been resolved, it is always possible to convert
a program that uses traits into an equivalent program that

3

composite subclass
definition

C subclass: #D
uses: T

var1

b a j
d a w
i a ↑var1

inheritance

trait

T

a a x
b a y
c a ↑self i

subclass

D

var0 var1

a a x
b a j
c a ↑self i
d a w
e a k
i a ↑var1

class

C

var0

a a m
d a n
e a k

Figure 3. Inheritance using a trait.

uses only ordinary classes, at the cost of possible code du-
plication. We call this processflattening; it is similar to in-
lining of procedures or expansion of macros. Similarly, a
(conflict-free) composite trait can always be flattened into
a simple trait. Flattening is illustrated in figure 4: the com-
posite classcoloredCircle on the left, composed from two
traits and a local definition fordraw, is semantically equiv-
alent to the flat classcoloredCircle on the right, where the
bodies of the corresponding methods are identical.

It is important that flattening never requires the bodies of
the methods to be modified. This permits a complex com-
posite entity to be viewed and edited in multiple ways with-
out re-writing its methods. Given appropriate tools, the pro-
grammer can choose the structured view, a flattened view
in which all the internal structure is elided, or any partially

Figure 4. Flattening.

Figure 5. The traits browser.

structured point in between these extremes. We believe that
the flattening property is crucial in making traits easy to use;
it is another critical difference between traits and mixins.

4. Programming Tools

Although the initial implementation of the trait concept in
Squeak Smalltalk took only a few days of pair program-
ming, it quickly became clear that extensive use of traits
would require tool support. For example, one of the motiva-
tions for traits is the idea that multiple views of a program
are better than one, but this idea can only be realized by
a programming tool that lets the programmer switch from
one view to another without loosing context. Schärli there-
fore built a tool, the traits browser, to make this possible.

An important feature of the browser is that it automati-
cally and interactively categorizes methods intovirtual cat-
egories, which help the programmer to understand how
classes and traits collaborate with each other. As we have
described earlier [9], this is valuable information even when
no traits are involved and the only relationship between
classes is inheritance.

However, as the number of components used to build a
class increases, it becomes increasingly important to know
how these components collaborate with each other. It is
therefore not surprising that the presence of traits not only
gives these virtual categories a more sophisticated meaning,
but also calls for additional categories. These additional cat-
egories result either from dividing existing categories into
more fine-grained subcategories, or from unique features of
trait composition (e.g., conflicting methods).

4.1. Virtual Categories

Figure 5 shows the traits browser. At first glance it looks
like the standard Smalltalk browser3, but some extra fea-

3 The leftmost pane of the ordinary Smalltalk browser and of the traits
browser both contain a classification of classes. Because this classifi-
cation has no relevance to this paper, to save space when making the
figures we reduced the width of this pane so that its contents are un-
readable.

4

tures help the programmer understand the relationships be-
tween components. Let us start by summarizing the features
that the browser supplies when it is used to examine stan-
dard Smalltalk classes.

We have selected classCollection in the second pane in
the top half of the browser window. The third pane, which
in the standard browser contains a manual categorization of
a class’s methods, now contains in addition some automati-
cally maintained virtual categories.

The category-requires-, which is coloured blue includes
all of the messages that the classCollection sends to it-
self but for which it does not define a method. If there
were no such messages, this category would not appear,
but Collection is abstract, and requires several methods,
which are listed in the fourth pane. We have selected
atRandom:, which is consequently displayed in the large
pane at the bottom of the browser. The implementation
shown,self requirement, is a marker method generated by
the browser to indicate thatatRandom: is an unsatisfied re-
quirement.

The next category,-supplies-, lists methods that are
required by some other class (or trait) andprovided
by Collection. There is one method in this category,
adaptToNumber:andSend:, which shows up here because
a FloatArray, a sub-subclass ofCollection, super-sends this
message, and the intervening class,ArrayCollection, does
not define it.

The third category,-overrides-, lists those methods pro-
vided byCollection that override methods inherited from its
superclasses.

A fourth category is not shown in figure 5 because it is
empty. This is the category-sending super-, which contains
all of the methods that make super-sends.

Each of these generated categories has a characteristic
emphasis: blue forrequires, green forsupplies, grey for
overrides, and underlined forsending super. Even when
browsing methods using the ordinary, manually-defined
message categories, the names keep their characteristic em-
phasis. So a supplied method that sends to super will always
be shown in green and underlined. The blue colour-coding
is also applied to the name of the class itself in the second
pane whenever the set of required methods is not empty.
This serves as a reminder that the class is incomplete,e.g.,
it may be an abstract class, or the programmer may still be
working on it.

As one uses the browser, even if one is not using traits,
one becomes accustomed to the subtle hints provided by
these colours and to the instant availability of the virtual cat-
egories. They provide valuable reminders of work that re-
mains to be done and of dependencies between classes that
would otherwise be invisible.

Figure 6. The trait TCollEnumerationUI

4.2. Using the Browser With Traits

The browser displays traits in much the same way as
classes, and the virtual method categories described in the
previous section are also available for traits. In figure 6 we
see how the browser shows the traitTCollEnumerationUI,
which encapsulates part of the enumeration protocol dis-
cussed in section 2. Note that in order to distinguish traits
from classes, the browser displays the trait name in green,
whereas a class name is either black (if the class is concrete)
or blue (if it is abstract). At a glance, the browser shows us
that the traitTCollEnumerationUI requiresonly the methods
do:, emptyCopyOfSameSize anderrorNotFound: in order to
implement all of the methods that it provides. This means
thatTCollEnumerationUI can be added to any class that pro-
vides these three methods. It does not matter whether or not
the candidate class is a subclass ofCollection.

Composite traits are a little more interesting. Figure 7
shows the composite traitTCollEnumerationI. When this
trait is selected, the browser lists its sub-components in the
class pane (second from left). This shows the programmer
the subtraits from whichTCollEnumerationI is composed,
and also makes it possible to view the trait in differ-
ent ways. SelectingTCollEnumerationI shows the flat-
tened view, which contains all the available methods.
Selecting-own- shows only the methods defined explicitly
in TCollEnumerationI, while selectingTCollEnumerationUI
shows the methods reused from this subtrait.

Since multiple subtraits are composed with the com-
mutative sum operation, not with inheritance, the cate-
gories -supplies-and -overrides- have a slightly differ-
ent meaning for traits than for classes. The-supplies-
category contains the methods that are required by a
subtrait and are provided by the currently selected sub-
component. In figure 7 we have selected-own-, and there-
fore the-supplies-category contains the methods required
by the subtraitTCollEnumerationUI and implemented by
TCollEnumerationI itself. Similarly, the category-overrides-
shows the methods that are provided by a subtrait and then
overridden by an “own” method of the composite trait.

5

Figure 7. Composite trait TCollEnumerationI.

In a class built using traits, the-overrides-virtual cate-
gory may contain two kinds of methods: those that override
methods of the superclass and those that override methods
of a subtrait. To make this distinction visible to the program-
mer, the-overrides-category of a composite class consists
of two subcategories:superandtraits. This is also the case
for the other virtual categories.

In addition to the four virtual categories described in sec-
tion 4.1, there is also a fifth virtual category:-conflicts-. This
category applies only to entities composed from traits, and
lists the methods defined by more than one component trait:
these are conflicts that the programmer must resolve.

The “button bar” in the centre of the browser serves the
dual function of showing the programmer which version of
a method is on display, and allowing the selection of another
version. The black border on the-own- button in figure 7
indicates thatTCollEnumerationUI’s own version ofdo: is
on display; clicking the buttonTCollEnumerationUI would
switch the display to the version obtained from that trait.

According to our usual colour scheme, the blue colour
of the buttonTCollEnumerationUI and the green colour of
the button-own- show that the methoddo: is required by
the subtraitTCollEnumerationUI and supplied by the com-
posite trait itself. The buttons are arranged from left to right
according to the precedence that follows from the trait com-
position rules: “own” methods override methods from sub-
traits, which in turn override methods inherited from the su-
perclass. Thus, the leftmost button that is active (i.e., that
is not greyed out) corresponds to the currently applicable
method.

5. Programming Methodology

Most class-based languages overload the class concept with
too many responsibilities. In his thesis [3], Bracha lists no
less than 11 distinct roles for classes. At a coarser granular-
ity, we distinguish 5 roles for classes that are relevant to the
use of traits:

1. conceptual classification of objects,
2. definition of protocols (interfaces) for objects,

3. modularization — the grouping of related methods,
4. reuse (sharing) of implementation, and
5. incremental modification of an existing class.

It is often difficult, and sometimes impossible, to make a
single class hierarchy play all of these roles. Usually, it is
the conceptual relationship between the class hierarchy and
the domain that suffers, because corrupting this relationship
does not immediately break the program. In the case of the
Smalltalk collection classes, Cook has shown how the in-
heritance hierarchy fails to capture the conceptual relation-
ships between the various collections: the conceptual hier-
archy has been subverted to allow greater reuse [4]. For ex-
ample, whereas Dictionaries are conceptually a kind of Up-
datable Collection, they are implemented as a subclass of
Set. The problem with subverting the inheritance hierarchy
in this way is that the code no longer models the domain,
and thus it is likely to be more difficult to understand, and
harder to modify in response to changes in the requirements.

A trait-based programming methodology avoids this
problem. Traits support modularization directly (role 3),
and methods encapsulated in a trait can be reused at any
point in an inheritance hierarchy (4). The inheritance oper-
ation on traits provides for incremental modification of an
existing class and for the reuse of the “delta” (5). Traits con-
cretize the otherwise abstract notion of protocol, and thus
make it much simpler for a number of classes to define the
same interface, whether or not they are related by inheri-
tance (2). This frees the class hierarchy to be used for con-
ceptual classification (1).

In the remainder of this section, we explain in more de-
tail how traits change the programming process and how the
traits browser supports the new process.

5.1. Uniform Protocols

In section 2, we explained why it is so important for dis-
parate classes to understand a uniform protocol. In a con-
ventional class-based language, the only tool available to in-
duce this uniformity is inheritance. If inheritance is used for
another purpose, the programmer must instead construct the
protocols “by hand,” one method at a time. In addition to the
dangers of code duplication, protocols constructed by hand
are unlikely to stay uniform: over time, one of the classes is
likely to be extended while the other is forgotten.

Traits solve this problem by making it possible to con-
struct classes by trait (i.e., protocol) composition as well
as by inheritance. Given perfect foresight, any protocol that
must eventually be supported by disparate classes can be
implemented in a trait, and re-used wherever it is needed.
Unfortunately, mere mortals tend to have difficulty apply-
ing methodologies that rely on perfect foresight. Instead,
we allow programmers to build classes in the conventional
way, implementing protocols by placing methods directly in

6

Figure 8. The trait TRectangle

whichever class needs them. If it becomes apparent that the
same protocol needs to be supported in an additional (and
unrelated) class, we provide a tool that enables the program-
mer to extract the protocol into a trait, and then to use this
trait as a component of both the original and the additional
class.

For the sake of concreteness, we will consider the
Squeak classRectangleMorph. RectangleMorph is a sub-
class of Morph, which is the root of the GUI hierar-
chy in Squeak.RectangleMorph does not understand the
protocol of classRectangle. This is a problem because
RectangleMorph looks like a rectangle, and it also con-
tains within it the state required tobe a rectangle. A user
will reasonably expect it to understand the protocol of a
Rectangle. This requires that 70 additional methods be
added toRectangleMorph.

We can easily create a trait that
contains these 70 methods by ex-
tracting them from classRectangle.
The “yellow button” contextual
menu available in the class list pane
of the browser (shown on the right)
gives access to a number of useful
commands. The menu item “New
trait from class” generates a tem-
plate that we use to build a new trait
from classRectangle and to name
it TRectangle. When we accept the
template, the browser creates copies
of all of Rectangle’s methods, ab-
stracts the references toRectangle’s
two instance variables (origin andcorner), and populates the
trait TRectangle with the new methods. The result is shown
in figure 8.

Notice the effect of theabstract variablerefactoring on
the displayed method: whereas thetruncateTo: method in
classRectangle accessed the instance variablesorigin and
corner directly, the version inTRectangle sends the mes-
sagesself origin andself corner.

The -requires-virtual category ofTRectangle contains

Figure 9. The new class RectangularMorph im-
mediately after its creation.

three methods:origin, corner andspecies. These methods
represent the places where the traitTRectangle must con-
nect to any class in which it is used; they are in effect pa-
rameters of the trait.

Continuing with the example, we again use the yellow
button menu, this time to pull up the template for defining
a new class. This is like the class creation template in or-
dinary Smalltalk, but requests an additional parameter: the
traits to be used as components of the new class.

The state of the browser once this template has been
completed is show in figure 9. The classRectangularMorph
has been created, but its name appears in blue, showing that
it is incomplete,i.e., that some of its requirements are un-
satisfied. When the name of a class is selected, a list of its
components appears indented beneath it in the class pane.
The -own- pseudo-component contains those methods that
are defined directly in the selected class; in figure 9,-own-
is empty, since we have not yet written any methods for
RectangularMorph. The componentTRectangle contains all
of the methods that we placed in the traitTRectagle in
the previous step; it too is blue, showing that it also has
unsatisfied requirements. For each non-empty component,
all of the non-empty virtual method categories-requires-,
-overrides-, -sends-super-, etc.are shown in the method cat-
egory pane.

We can use these virtual categories to find the unsatis-
fied requirements. Moving down to the-requires-category
of TRectangle, we can view and edit theself requirement
marker methods. For example, we can define

corner
↑ self bounds corner

and similarly for origin. These new methods populate
the -own- component of the classRectangularMorph.
This is because we defined the methods while brows-
ing RectangularMorph; if instead we had been browsing
TRectangle, then the methods would have populated that

7

Figure 10. Method corner in RectangularMorph

trait. Once a required method has been defined, the corre-
sponding selector remains in the-requires-category of the
trait, but turns green because it is nowsuppliedby the class
in which the trait is used (see figure 10).

Thespecies requirement ofTRectangle was green from
the first becauseRectangularMorph inherits a species
method fromObject. It is important that satisfied require-
ments remain visible: the list of required methods is a use-
ful aid to understanding the dependencies inside a class,
whether or not they have been satisfied. However, once
all of the requirements have been satisfied, the name
TRectangle changes from blue to black.

The last step in creatingRectangularMorph is to exam-
ine the places where we have overridden methods inherited
from RectangleMorph with methods from traitTRectangle.
These methods are listed in the-overrides-virtual category.
The “button bar” in the browser (see figure 11) lets the pro-
grammer view both the superclass and the trait methods for
the currently selected message. If several traits had been
used as components, there would be a button for each; an
-own-button is also available if the class defines a method
locally. Using these buttons, the programmer can easily
view the various competing methods, and decide which is
appropriate for the new class.

In the RectangularMorph example, most of the over-
rides provided by the trait are appropriate, but=, hash and
printOn: are not. A browser menu (see figure 11) gives us
a choice of two ways to exclude these methods. “Set exclu-
sion” modifies the definition ofRectangularMorph so that
the selected method (=) is excluded from the composition.
If we were to use this menu item three times, for methods
=, hash andprintOn:, the browser would modify the defini-
tion of RectangluarMorph to read as follows.

RectangleMorph subclass: #RectangularMorph
uses: TRectangle − {#=. #hash. #printOn:}
instanceVariableNames: ' '
classVariableNames: ' '
poolDictionaries: ' '
category: ' TraitsPaperExample'

In these three cases, the more appropriate action is tore-
move selector from trait TRectangle. That is, we see that

Figure 11. Method = in RectangularMorph.

these methods should not be in the traitTRectangle at all:
by removing them from the trait, they no longer override the
inherited methods inRectangularMorph.

Note that the browser lets us view and edit our new class
in two ways. By selecting the nameRectangularMorph in
the browser, we can view it as a conventional Smalltalk
class. Alternatively, by selecting its components-own-
and TRectangle, we can view it as a composite entity.
Editing a method, in either view, changes just the class
RectangularMorph: even if the method originally came from
the traitTRectangle, a modified version is created for the
class. Deleting a trait method sets an exclusion, so that the
method is no longer part of the composite class. If instead
the programmer wants to modify the component trait, by
editing or deleting one of its methods, the browser must first
be focussed on the trait.

Now RectangularMorph is complete, but our task is not
yet finished, because we have duplicated all of the meth-
ods that we extracted fromRectangle when we constructed
TRectangle. We must eliminate this duplication by refactor-
ing theRectangle class so that it usesTRectangle.

5.2. Uncovering Hidden Structure

One of the more difficult tasks of program maintenance
is discovering the latent structure hidden in the old code.
The complete protocol of a class is usually the union of
several smaller protocols, but programmers seldom make
these component protocols explicit. The standard Smalltalk
browser allows the programmer to categorize methods into
protocols, but this is mere documentation, and thus often
wrong: getting the categorization right has no immediate
payoff. Java providesinterfaces and theimplements dec-
laration, but their use is optional: it is more common to pro-
gram to the implicit interface of a whole class. The traits
browser has proved to be a powerful tool for modularizing
a class into separate traits, each of which implements a co-
herent protocol.

8

The first major programming task that we undertook
with the browser was the refactoring of the Smalltalk collec-
tion classes into traits [2]. This required us to discover the
various protocols that were understood by the existing col-
lection classes. We developed a methodology that involved
two copies of the browser.

In the first browser we took a class from the existing hi-
erarchy, say,Collection, and extracted a trait from it, which
we calledTempCollection, and which thus contained copies
of all of the methods ofCollection. We then moved (by drag-
ging) the methods fromTempCollection into an appropriate
trait in the second browser. If an appropriate trait did not yet
exist, we created one. For example, we might drag meth-
ods like collect: into a new trait calledTCollEnumeration.
The methodsdo: andspecies would then immediately ap-
pear in the-requires-virtual category, coloured blue.

The immediate updating of the-requires-category pro-
vided valuable feedback about the protocol that we were
constructing. For example, if the methodaddAll: were mis-
takenly dragged intoTCollEnumeration, then add: would
immediately show up in the-requires-category, providing
a strong clue that something was amiss. If necessary, the
menu item “local senders of . . .” let us see why a particu-
lar method was required.

Sometimes we would realize that what we had imag-
ined as one trait was actually two, in which case we would
pause in our work while we split the trait. For exam-
ple, we eventually splitTCollEnumeration into two traits:
TCollEnumerationUI, whose methods will work on unse-
quenced collections, andTCollEnumerationI, which con-
tainsTCollEnumerationUI as a subtrait, but which also in-
cludes some methods (likefindFirst: andfrom:to:do:) that re-
quire the collection to be sequenced, and which thus haveat:
as a additional requirement. Making-requires-visible en-
ables the programmer to see this distinction.

The process of discovering the latent protocols embed-
ded inCollection proceeded until there were no more meth-
ods in TempCollection. At this point we could delete the
temporary trait, confident that all of its methods had found
a home in some trait or other.

If the new traits that are constructed by this pro-
cess are to be reusable, the semantics of each of the
required methods must be clear. The programmer can
document these semantics by converting the automati-
cally generatedself requirement marker method into a
self explicitRequirement method, and adding a comment de-
scribing the required behaviour. The few cases in which
we were unable to understand the required semantics rep-
resented design flaws in the original code. For example,
we have already stated that several of the methods in
TCollEnumerationUI required species. But so did = and
hash! What is going on here is thatspecies is actually
playing two different roles. According to the Blue Book[6],

self species new should return an instance of a collection
“similar to” self . But according to LaLonde and Pugh[8],
species also plays a critical role in equality comparisons:
two collections must be of the samespecies if they are to
be considered=. These two roles are not always compati-
ble, so part of our refactoring was to replace occurrences of
self species new (the first role) with a self-send of the new
messageemptyCopyOfSameSize.

5.3. Traits and Agile Methodologies

In recent years, agile methodologies, in particular Extreme
Programming (XP) [1], have have begun to influence the
software engineering process. Traits and the traits browser
are compatible with several of the XP practices: continu-
ous design, constant refactoring, testing, pair programming,
and collective ownership.

Continuous Design.Extreme programming suggests that
there is no up-front design phase. Instead, design takes place
incrementally throughout the development process: the de-
sign of a program is always subject to change. Traits sup-
port this style of programming because they provide an ad-
ditional way to adapt a program to a design change. Specif-
ically, in addition to refactoring the class hierarchy in the
conventional way, traits allow one to factor out an arbitrary
set of methods and then reuse them wherever it seems most
appropriate.

Traits even allow one to start implementing before any
design exists. This is because traits enable abehaviour-
basedor bottom up strategy that is appropriate when it is
clear that a certain behaviour is needed, but not yet clear in
what class it should be placed. The enumeration behaviour
already discussed is a typical example. Traits let us forge
ahead and define as a trait the coherent set of methods that
captures the appropriate behaviour; we can defer the deci-
sion about where it should be placed in an inheritance hier-
archy to best enable reuse.

Of course, it is still possible to adopt aclass-basedor
top-down strategy: when it is clear that some behaviour has
to be in a class, we can still use all the familiar techniques
of single-inheritance programming. We can just implement
a class, or a small hierarchy of classes, as if traits did not ex-
ist. Later, we can structure the classes by dragging and drop-
ping certain methods into traits. Perhaps this is just for doc-
umentation, but it can also be essential if we eventually see
that one of the classes contains some reusable behaviour
that we would like to share with an unrelated class.

Refactoring is the technology that makes continuous de-
sign feasible: “if you believe that the future is uncertain,
and that you can cheaply change your mind, then putting in
functionality on speculation is crazy” [1, page 57, our em-
phasis]. Refactoring is simplified by the presence of traits,
because they enable us to move a whole group of logically

9

related methods from one class to another with a single edit.
By putting methods into traits, we keep our options open: if
there later turns out to be an abstract superclass that is a
suitable home for such behaviour, then that superclass can
use the trait, and its subclasses can inherit the correspond-
ing behaviour, without making it any harder for other, unre-
lated classes to also use the same behaviour. This flexibility
seems to have no cost in understandability: indeed, we ar-
gue that traitsincreaseunderstandability. This is because
critical behaviour can be made explicit and given a descrip-
tive name.

Testing.Another advantage of traits is that they allow one
to specify tests in a more fine-grained and reusable man-
ner. This is because tests can be associated with traits as
well as with classes, and traits represent a smaller and more
primitive unit of functionality. Even for very simple traits
such as equality, magnitude, or emptiness, tests can be writ-
ten very early, placed in the trait, and then applied to all of
the classes that use the trait.

Pair Programming— two programmers working together
at one keyboard — also proved to be a valuable technique
during our application of traits to the Smalltalk collection
classes. Having such a fine-grained way of implementing
and reusing behaviours made our development cycles short
enough that the implementation and design steps began to
overlap. It was very valuable for us to be able to discuss
the innumerable small design decisions with each other as
soon as they arose. Pair programming also helped to keep
us honest, encouraging us to use traits to perform “mini-
refactorings” as soon as either member of the pair noticed
that an improvement of the code was possible.

Collective ownershipof code becomes even more impor-
tant when programming with traits. In traditional class-
based programming, it is possible to assign responsibility
for individual classes, or for small hierarchies, to differ-
ent programmers. Assigning ownership in this way would
severely limit the utility of traits, because when a trait is ex-
tracted from some other class, it is necessary to refactor that
class so that it uses the new trait. With collective owner-
ship, refactoring any class in the hierarchy is not only per-
mitted but encouraged, so long as thetotal amount of code
is reduced.

5.4. Interaction between Tools and Methodology

We believe that tools and methodologies must be devel-
oped together: the best methodology is little more than pi-
ous hope without supporting tools, and powerful tools can
be powerfully dangerous without a guiding methodology. In
this subsection we explore some of the ways that our tools
encourage the development of sound methodology. Note
that by the term “tools” we include traits as a programming

language feature as well as the traits browser: the program-
ming language is a programmer’s most important tool.

The difference between traits on the one hand and mixins
and multiple inheritance on the other arise from the way in
which we defined the composition operators on traits. These
operations ensure that conflict resolution is always explicit,
and that a composite entity can always be “flattened” into a
simple, unstructured one. We will now explain why we feel
that these properties are so important.

We have previously argued that the complex rules for
conflict resolution that accompany many schemes for mul-
tiple inheritance, and the implicit and “silent” resolution
of conflicts that is characteristic of mixins, are a source of
unexpected behaviour and a major reason that these tech-
nologies are usually avoided [10]. In contrast, when a new
class (or a new trait) is built from two or more component
traits using the associative and commutative+ operation,
any method with different definitions in the components
results in a trait conflict. The browser generates a marker
method with bodyself traitConflict, places the selector in the
virtual category-conflicts-, and colours it red.

It is the programmer’s responsibility to resolve each
of these conflicts explicitly,i.e., to empty the-conflicts-
category. This can be done by modifying the component
traits, by excluding a particular method from the compo-
sition (e.g., using the “set exclusion” menu), or by replac-
ing the marker method with a completely new method that
overrides the conflicting alternatives. The row of buttons
above the code pane helps in this process, because it con-
tains a button for each of the available implementations of
a method. The colour and emphasis of these buttons indi-
cate the status of the corresponding methods, for example,
required methods have blue buttons and excluded methods
have semi-transparent buttons.

Once all of the conflicts have been resolved, the mean-
ing of the program should be clear even to a casual observer,
who does not have to be familiar with complex disambigua-
tion rules.

An interesting situation is when two component traitsA
andB both use traitT as a sub-component, and thus both
define all ofT’s methods. In this case, there are no conflicts
due toT’s methods inA+B, because the definitions inA and
B are identical. It has been argued that this is a mistake, be-
cause it exposes the internal structure ofA andB, but we
do not feel that this is a problem: traits, like classes, are in-
tended as white boxes, not black boxes. However, ifA is
changed (toA′) so thatA′ overrides some ofT’s methods,
then all of the overrides will show up as conflicts inA′+ B,
and must be resolved by the programmer. We feel that this
is timely: the programmer is asked to resolve a conflict as
soon as it appears, when the information necessary to do so
is most likely to be in short-term memory. TreatingA + B as
containing conflicts would require that the conflicts be re-

10

solved before they were real, and thus before the program-
mer had enough information to resolve them correctly. It
seems more likely that the choice would be made arbitrar-
ily; consequently, whenA is changed toA′ the real conflicts
would not be flagged.

The reason that the flattening property is so important is
that we want traits to support two different views of a pro-
gram — a flat or class-based view and a structured or trait-
based view. This means that the programmer can choose
to view a program in a way that hides all of the traits and
presents only conventional Squeak classes. Once again, we
emphasize that this works because of two details of trait
composition:

1. super in a trait method is bound only when the trait is
used to form a subclass, andnot when it is composed
with other traits, and

2. there is no “deep rename” operation on methods; the
alias operation gives a method an additional name,
but does not change its body.

Flattening also makes it reasonable to build a class from
scoresof traits. The user of such a class can ignore the in-
ternal structure: it is no more complex than a class with
the same methods built “from scratch” in conventional
Smalltalk, and can indeed be viewed in an identical way in
our browser. However, the extra internal structure is avail-
able, if and when it is wanted, to assist in understanding
and reuse. In contrast, classes built from mixins cannot be
flattened without changing the semantics of the methods.
In practice, this limits the number of mixins per class to a
handful.

6. Conclusion

As we had hoped, we found traits and the traits browser to
be valuable tools because they provide multiple alternative
views on a program.

However, in addition to this expected benefit on program
understanding, we also found that traits enable us to build
classes in new ways. In essence, traits let us delay making
a decision until we have enough information to make it cor-
rectly: traits promote late binding much better than conven-
tional object-oriented development. What makes it easy to
switch between the trait-full and trait-less styles is the flat-
tening property: the fact that the semantics of a method is
independent of whether it is defined in a traitT, or in a com-
posite entity (a class or another trait) that usesT.

Once a selection of relevant traits had been built up, we
also found that traits raised the level of abstraction at which
we programmed quite significantly. Writing classes became
as simple as identifying the right traits, building a class that
used them, and filling in the instance variables and the meth-
ods that connected the traits to those variables.

This is exactly how we proceeded towards the end of
our refactoring of the collection classes. We combined the
traits; the browser showed us what was missing; we filled in
the missing things and found that the class was workingim-
mediately!

The properties of trait composition are important in mak-
ing this process work. Because the sum operation is com-
mutative, because conflicts have to be resolved explicitly,
and because there is no state, this style of programming
does not usually create buggy code, or code that has too
much state. The browser shows the conflicts, the require-
ments and how the traits are connected to each other. In ad-
dition, it shows all the overrides: provided that the program-
mer checks the overrides and the new methods, the compos-
ite class has to do the right thing.

Acknowledgments.We are indebted to Gilad Bracha for in-
sightful discussions about conflict resolution, and to our
colleagues at OGI and IAM, particularly Stéphane Ducasse
and Roel Wuyts, for their critical evaluation of the traits
browser.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[2] A. P. Black, N. Scḧarli, and S. Ducasse. Applying traits to
the Smalltalk collection hierarchy. InProceedings OOPSLA
’03, pages 47–64, Oct. 2003.

[3] G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. thesis, Dept. of
Computer Science, University of Utah, Mar. 1992.

[4] W. R. Cook. Interfaces and specifications for the Smalltalk-
80 collection classes. InProceedings OOPSLA ’92, ACM
SIGPLAN Notices, volume 27, pages 1–15, Oct. 1992.

[5] E. W. Dijkstra. Notes on structured programming. In E. Di-
jkstra, O.-J. Dahl, and C. A. R. Hoare, editors,Structured
Programming, pages 1–82. Academic Press, Inc., New York,
NY, 1972.

[6] A. Goldberg and D. Robson.Smalltalk 80: the Language and
its Implementation. Addison Wesley, Reading, Mass., May
1983.

[7] M. Guzdial. Squeak — Object Oriented Design with Multi-
media Applications. Prentice-Hall, 2001.

[8] W. LaLonde and J. Pugh.Inside Smalltalk: Volume 1. Pren-
tice Hall, 1990.

[9] N. Scḧarli and A. P. Black. A browser for incremental pro-
gramming. Computer Languages, Systems and Structures,
2004. (In press, special issue on Smalltalk).

[10] N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InProceedings ECOOP
2003, volume 2743 ofLNCS, pages 248–274. Springer Ver-
lag, July 2003.

11

