
Enriching Reverse Engineering with
Annotations?

Andrea Brühlmann, Tudor Gı̂rba, Orla Greevy, Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Much of the knowledge about software systems is implicit,
and therefore difficult to recover by purely automated techniques. Archi-
tectural layers and the externally visible features of software systems are
two examples of information that can be difficult to detect from source
code alone, and that would benefit from additional human knowledge.
Typical approaches to reasoning about data involve encoding an explicit
meta-model and expressing analyses at that level. Due to its informal na-
ture, however, human knowledge can be difficult to characterize up-front
and integrate into such a meta-model. We propose a generic, annotation-
based approach to capture such knowledge during the reverse engineering
process. Annotation types can be iteratively defined, refined and trans-
formed, without requiring a fixed meta-model to be defined in advance.
We show how our approach supports reverse engineering by implement-
ing it in a tool called Metanool and by applying it to (i) analyzing archi-
tectural layering, (ii) tracking reengineering tasks, (iii) detecting design
flaws, and (iv) analyzing features.

1 Introduction

Most reverse engineering techniques focus on automatically extracting infor-
mation from the source code without taking external human knowledge into
consideration. More often than not however, important external information is
available (e.g., developer knowledge or domain specific knowledge) which would
greatly enhance analyses if it could be taken into account.

Only few reverse engineering approaches integrate such external human knowl-
edge into the analysis. For example, reflexion models have been proposed for ar-
chitecture recovery by capturing developer knowledge and then manually map-
ping this knowledge to the source code [1,2]. Another example is provided by
Intensional Views which make use of rules that encode external constraints and
are checked against the actual source code [3].

In this paper we propose a generic framework based on annotations to en-
hance a reverse engineered model with external knowledge so that automatic
analyses can take this knowledge into account. A key feature of our approach

? Models 2008, Krzysztof Czarnecki, et al. (Eds.), LNCS, vol. 5301, Springer-Verlag,
2008, pp. 660-674.

http://scg.unibe.ch/

2 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

is that the types of supported annotations need not be fixed in advance. A
developer can introduce new types of annotations at any time, and refine or
transform the existing types in a flexible way. For example, using the reflexion
model approach to analyze how a system is split into architectural layers, the
reverse engineer can define the notion of a layer, instantiate this concept for the
different layers that can be found in the code and then attach the specific layers
to code entities.

Annotations are intended to augment reverse engineering analyses by pro-
viding additional information otherwise absent from the source code. This infor-
mation is then available to refine the results of queries, visualizations, and other
automated tasks.

We have built a prototype, called Metanool, that demonstrates our approach,
and we have integrated it into the Moose reengineering environment [4]. Our ap-
proach is inspired by Adaptive Object-Models and it is applied in the context of
reverse engineering [5]. We argue that the approach is quite general, and could be
easily integrated into any reverse engineering tool or development environment
based on explicit meta-models of software. We believe that such a mechanism to
facilitate the incorporation of external knowledge should be an integral part of
every reverse engineering tool suite.

Metanool’s annotations are similar to Java annotations [6] in the sense that
they are meta-described, hence can be examined by the run-time system, but the
two differ in several important ways: (1) Metanool annotations can be changed
at runtime, (2) they can be manipulated from the user interface, and (3) they
can be attached to any object.

We have applied Metanool to a number of different experimental use cases to
assess the usefulness of our approach to reverse engineering. In one experiment
we used Metanool to encode manually detected architectural layers of jEdit, and
then used this information to check for violations of architectural constraints.
In another experiment, annotations were used to directly encode the architec-
tural constraints themselves. In a very different use case, we used annotations
to express and manage pending reverse engineering tasks. Two further use cases
entailed augmenting automated design flaw detection with annotations to manu-
ally flag false negatives and false positives, and augmenting feature analysis with
developer knowledge of available features. Although these experiments are only
anecdotal in nature, they serve well to illustrate the usefulness of the approach.

In the next section we illustrate our approach as it is manifested by the
Metanool tool. In Section 3 we outline the implementation and the meta-model
of Metanool. Section 4 presents four example use cases for our approach, thus
illustrating how Metanool annotations can effectively enrich the reverse engineer-
ing process. In Section 5 we compare our approach with related work, and in
Section 6 we conclude with remarks on future work.

Enriching Reverse Engineering with Annotations 3

2 Metanool by example

To provide a flavor of the reverse engineering use cases we solve, in this section
we illustrate our approach by showing how to use our Metanool infrastructure
to annotate a reverse engineered model of a software system. In this exam-
ple, Metanool is used together with the Moose reengineering environment [4]. A
model describing the static structure of jEdit [7] has been loaded into Moose, and
Metanool is then used to enrich this model with external knowledge expressed
by means of annotations. Here we imagine a developer identifying the architec-
tural layers and determining which packages belong to which layer. Finally this
enriched model is used to generate a report.

2.1 Adding an annotation

Figure 1 shows the Moose Browser presenting a model of jEdit, which has been
loaded by parsing the jEdit source code. The figure shows that we have selected
the org.gjt.sp.jedit.gui package (or namespace) (1).

Fig. 1. A Moose model of jEdit.

On the right hand side, we have the Metanool annotations tab open for
this package (2). It contains the list of annotations (3). There are already two
annotations called comment and cool.

To create a new annotation, we enter the name, for example layer and assign
a type to it, e.g., String at the bottom of the annotations tab (4). As a result,
our newly created annotation appears in the annotations list, where we can edit
its value (see Figure 2). The annotation is added to all elements that have the
same type as the selected element (by default, the value of the annotation is
nil). As a consequence, in our example, we can now edit the layer names for all
namespaces.

4 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

Fig. 2. A new annotation.

2.2 Refining an annotation type

A key feature of our approach is that annotation types can be changed easily at
any time, even when values have already been assigned. After annotating some
of the jEdit packages, it occurs to us that usability would be improved by adding
a drop down menu with the list of known layers.

after conversion

Fig. 3. Converting an annotation type to an enumeration.

In this case, we choose “Be enumeration” from the menu. This searches for all
layer names that are already specified and transforms the type of the annotation
into an enumeration of these names.

2.3 Creating a report

Finally, we can use the information from the annotated model to generate re-
ports. For example, in Figure 4 we show a possible visualization that would be
included in such a report. The visualization, generated using Mondrian [8], a
scriptable visualization engine, shows the namespace (small squares) organized
in layers. The Mondrian code to the left illustrates (in bold) how we take the
'layer' annotation into account to group the namespaces.

3 Metanool meta-model and implementation

In this section we present the meta-model that Metanool uses to represent an-
notations, and we outline how Metanool uses this meta-model to manage and
manipulate annotations.

Enriching Reverse Engineering with Annotations 5

namespacesByLayers := namespaces groupedBy: [:each |
 each annotations named: 'layer'.
].

view := ViewRenderer new.

view umlPackageShapeWithLabel.
view nodes:namespacesByLayers forEach: [:eachAssociation |
 view nodes: eachAssociation.
 view horizontalLineLayout.
].
view verticalLineLayout.

view open

Fig. 4. Visualizing the layers with a Mondrian script.

3.1 Metanool meta-model

Figure 5 illustrates the annotation meta-model by means of a simple example.
The example shows an small excerpt of the objects (e.g., :FAMIX.Namespace),
classes (e.g., FAMIX.Namespace) and meta-descriptions (e.g., EMOF.Class) that
were involved in the scenario from Section 2. In Moose, each object is attached
to an EMOF meta-description [9]. We extended this model by allowing each
object to have annotations, which in turn are extensions of EMOF.Property.
The available annotations are encoded in AnnotationDescription objects that are
attached to the meta-descriptions.

1

name = 'Namespace'

:EMOF.Class

EMOF.Class

FAMIX.Namespace

name = 'jedit.gui'

:FAMIX.Namespace

Metanool.AnnotationDescription

name = 'layer'
type = String
multiplicity = 1

:Metanool.AnnotationDescription

'gui':String

Metanool.Registry

* EMOF.Property

1

1

M1

M2

M3

Fig. 5. Metanool core structure.

In this example, we see that the jedit.gui namespace is an instance of the
FAMIX.Namespace class. This class is meta-described by an instance of EMOF.
Class named 'Namespace'. It has one AnnotationDescription, which specifies that
annotations of FAMIX.Namespace objects may have single-valued 'layer' annota-
tions of type String.

6 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

Annotations are represented as associated properties. In this case the 'jedit.
gui' namespace has the layer annotation 'gui'. Annotation descriptions are reg-
istered in a global registry named Metanool.Registry.

3.2 Representing and manipulating annotations

As we have seen, each annotation has a name, a type and a multiplicity. In
our implementation, the allowable types include not only all classes of the host
programming language (in this case Smalltalk), but we also allow enumerations
of values of a given class. In order for the annotation editor to allow users to
conveniently set the values for annotations, the corresponding Smalltalk class
should be extended with a dedicated GUI method. In lieu of this, values can
also be set programmatically for arbitrary types.

As exemplified in Section 2.2, Metanool allows the user to modify the an-
notation descriptions in different ways. First of all, the type can be changed.
This is, of course, not problematic when no values have been stored for this
annotation. But it is useful to have this flexibility later during analysis if the
structure of a human knowledge concept emerges over time. When the type needs
to be changed, Metanool takes all existing values and tries to transform them
to fit the newly defined type. For example, when changing a simple type to an
enumeration, Metanool will create an enumeration from all existing values.

An annotation can also be transformed into an enumeration: in this case, all
existing values of this annotation are collected into a set which is then defined
to be the type of the annotation. The reverse operation is also possible: the new
type is determined by taking the most specific common superclass of all the
enumeration elements.

We also allow the multiplicity of an annotation to be modified after it has
been defined. An annotation can easily be made multi-valued at any time, and
almost as easily be made single-valued again. Going from multi-valued to single-
valued will result in loss of information if multiple values need to be dropped.
Metanool prompts the user which values to keep.

3.3 Programmatically manipulating annotations

Annotations can also be created and edited programmatically from the host
language. The following lines show the code to create a layer annotation and edit
it in Smalltalk. It also exemplifies the relations between annotation descriptions
and their values:

layerDescription := AnnotationDescription name: 'layer' type: String.
FAMIX.Namespace annotationDescriptions add: layerDescription.

namespaceA annotations named: 'layer' put: 'ui'.
namespaceB annotations named: 'layer' put: 'data'.

Values can be read from annotations as follows:

namespaceA annotations named: 'layer'.

Enriching Reverse Engineering with Annotations 7

Further details of Metanool can be found in Brühlmann’s Masters thesis [10].

4 Reverse engineering with annotations

We now illustrate the usefulness of annotations for reverse engineering by pre-
senting four typical use cases. First, in subsection 4.1 we show how annotations
can be used to check architectural constraints by encoding either the layers or
the constraints themselves. Next, in subsection 4.2 we show how a specialized an-
notation type with its own GUI can easily be added to represent pending tasks.
In subsection 4.3 we show how false negatives and false positives can be tagged
as annotations to refine the results of automated design flaw detection. Finally,
in subsection 4.4 we show how implicit knowledge about internal features can
be used to enrich and refine the results of feature analysis.

4.1 Checking architectural constraints

Software companies often define a standard architecture for a set of applica-
tions. As new applications are developed or existing applications evolve, they
should be checked for compliance with architectural constraints. Unfortunately
architectures are typically not explicit in the source code. Packages are generally
used to group classes according to their particular role or function in the system.
However there may be multiple packages associated with an architectural layer,
or a package may even be associated with multiple layers. In the absence of a
dedicated language construct to express architectural layering, annotations pro-
vide an ideal way during analysis of a system to associate packages with layers.
An analysis of the call graph can then make use of the layering annotations to
check the architectural constraints [2].

We present two ways to encode layering knowledge with annotations. In
the first case we number layers and annotate packages according to their layer
number. In the second case we name the layers, and directly encode the desired
accessibility constraints as annotations. In both cases we then visualize the pack-
ages and their access relations, coloring with red forbidden calls and with blue
allowed calls.

Numbered layers. In this use case, we took the work of Patel et al. who
previously analyzed jEdit and classified its packages according to 14 layers [11].

We defined a single-valued annotation description named layerNumber of type
Integer and then encoded knowledge about the 14 layers by annotating each
package with the layer numbers. Figure 6 shows a Mondrian visualization of the
14 layers depicting allowed calls (i.e. going downwards) with blue, call violation
(i.e. going upwards) in red, and not qualified calls in gray. The code of the
visualization is similar to the one from Figure 4.

8 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

Fig. 6. jEdit in 14 layers with access violations in red.

Named layers with explicit constraints. Another approach is to add a
String annotation to each package, containing the name of its layer, e.g., gui,
model, persistence etc. Relations between these layers specify whether calls of
components from one layer to another are allowed or forbidden. These relations
are also expressed using annotations. We create two annotation descriptions and
attach them to String (see Figure 7). They are multi-valued because each layer
has multiple forbidden or allowed layers to access. The reason why we added it
to String instead of a dedicated Layer class, is just convenience, as strings can
easily be instantiated using ‘quotes’.

We can again display the call relationships (see Figure 7) with a dedicated
visualization that takes annotations into account. Blue calls are explicitly allowed
and red calls are forbidden. Grey calls are not specified with our annotations, so
they are neither allowed nor forbidden.

'gui': String

'persistence': String
name = jedit.data'

:FAMIX.Namespace

name = 'jedit.gui'

:FAMIX.Namespace

name = 'jedit.menu'

:FAMIX.Namespace

name = 'layer'
type = String
multiplicity = 1

:Metanool.AnnotationDescription

name = 'forbidden'
type = String
multiplicity = *

:Metanool.AnnotationDescription

Fig. 7. Explicit constraints over named layers. The 'allowed' annotations are
similar to the 'forbidden' one, and were omitted from the diagram due to space
limitation.

Enriching Reverse Engineering with Annotations 9

4.2 Task lists

In this example, tasks are added to objects and a list of all tasks is generated.
This is analogous to the @ToDo annotation in Java.

Introducing a task type. To attach to-do tasks to elements such as classes and
namespaces, we must introduce a new type: ToDo. We define the new class ToDo
with two instance variables: a String named 'task' and a Boolean named 'done'.
Like this, each ToDo has a description and can be marked as done. This new
type can already be used in Metanool as is, but it is better to offer a specialized
GUI to make it easy to enter and update tasks. The metanoolEditPane method
creates the GUI editor pane for tasks consisting of a checkbox (by adding the
default edit pane for Boolean) and a text input field (by adding the default edit
pane for String):

ToDo�metanoolEditPane
↑ Form new

addComponent: (Boolean metanoolEditPaneForProperty: 'done' of: self);
addComponent: (String metanoolEditPaneForProperty: 'task' of: self).

Fig. 8. A specialized GUI for multi-valued to-do annotations.

Editing the tasks. After creating the ToDo type, we add a multi-valued “to
do” annotation description of type ToDo to the elements we want to annotate.
Like this, every element can have as many tasks as needed (see Figure 8). We can
also add the same annotation description to several elements, e.g., FAMIX.Class
and FAMIX.Namespace.

10 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

4.3 Detection strategies

Detection strategies are metrics-based rules to detect candidates for common
design flaws in a system, such as god classes, data classes, brain classes and
other code smells [12]. Since detection strategies only detect candidates, manual
inspection is often needed to filter out false positives. Annotations can be used
to flag these false positives, and also to flag false negatives that may have been
detected by other means.

Let us consider the example of detecting god classes in jEdit. First we add
annotation descriptions “auto god class” and “manual god class”, both of type
Boolean. We set the auto god class annotation to true for all classes identified by
our detection strategy. Then we manually set the annotation for all god classes
we have knowledge of.

In Figure 9 we see a visualization of the jEdit class hierarchy in which all
god classes are represented by large rectangles. Classes are colored black only
if the manual and automatic annotations agree. False positives are shown as
small pink boxes (manually refused). False negatives are shown as large red
boxes (manually detected but not automatically). Grey boxes are automatically
detected god classes that have not been manually rejected.

Legend

god class (automatic & manual detection)

god class (manual detection)

god class (automatic detection)

not god class

not god class (automatic detection &
 manually refused)

Fig. 9. Automatic and manual detection of god classes. The reason for the ex-
istence of 5 categories out of two boolean variables is that the default value is
nil.

Enriching Reverse Engineering with Annotations 11

4.4 Feature analysis

The final example shows how to use our annotations to perform and validate the
results of automatic feature analysis based on dynamic analysis of traces [13].

Features are abstractions that encapsulate knowledge of a problem domain
and describe units of system behavior [14]. Several researchers have identified the
potential of exploiting features in reverse engineering [15,16]. Feature identifica-
tion approaches (e.g., Software Reconnaissance [17]) describe various techniques
for locating which parts of the code implement a given feature. Automatic ap-
proaches to feature identification are typically based on dynamic analysis where
the features are executed on an instrumented system and the traces of all mes-
sage sends are captured.

We show how Metanool annotations can help to refine the results of feature
analysis by taking additional developer knowledge into account. In particular,
the presence of hidden features can perturb the analysis unless they are taken
into account.

Feature analysis of Moose. We performed a feature analysis on the Moose
system itself with 8 specified features using a Dynamix model of Moose [14].
Then we applied the feature affinity metric to the classes based on these results
to quantify which classes belong to only one feature (single feature affinity), and
which classes are used for many features (ranging from low group affinity, to
high group affinity and infrastructural).

Our feature analysis automatically detects three classes as being infrastruc-
tural. The developers of Moose deny this result. They state that one of the classes
detected as infrastructural, the FamixNameResolver class, implements function-
ality specific to importing a Moose model from Smalltalk source code. This
functionality should in fact constitute a distinct feature. Another of the three de-
tected infrastructural classes is named UnresolvedClass in our model. The events
captured for a feature may reference classes that are not present in static model
of the system and thus not every participating class of a feature can be resolved
to a class in the model. As each feature exhibited unresolvable classes, automatic
feature analysis incorrectly identified this UnresolvedClass as an infrastructural
class.

This developer knowledge reveals two important facts to the reverse engineer:
Firstly, the behavior of importing Smalltalk models needs to be treated as a
distinct feature, and secondly, the behavior of the executed features was not
well delimited. They all used Smalltalk source code import which made the class
FamixNameResolver appear as an infrastructural class.

However, we do not want to throw away the results of dynamic feature anal-
ysis just because we have detected these false positives in feature affinity assign-
ment. Our feature views, though they are approximations, reveal other interest-
ing information about the features of the Moose system. Instead we choose to
refine the feature representations using annotations.

We create an annotation named feature--affinity with the enumeration type
#('none' 'single feature' 'low group' 'high group' 'infrastructural'). We then anno-

12 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

tate the classes according the their automatically computed featureAffinity val-
ues, but we change the value manually for the classes that have been classified
wrongly. The class FamixNameResolver takes the annotation value 'single feature'
instead of 'infrastructural'.

Refined visualization. In Figure 10 we show part of the system complex-
ity view with the classes coloured according to their feature--affinity annotation.
The class MooseModel (1) is the only class that appears now as 'infrastructural
' in this picture. As this class is fundamental to every feature when using
Moose, this result is closer to reality. The originally wrongly categorized class
FamixNameResolver is now correctly coloured as a 'single feature' class (blue).

Fig. 10. The refined feature affinity values of classes

5 Related work

Every programming language offers the possibility of embedding textual com-
ments in the source code to encode external knowledge directly in the system
[18,19]. Comments serve as a form of documentation and should be accessible
to code analysis tools since they provide an important source of additional in-
formation. Comments, however, are unstructured and cannot easily be taken
into account for further analysis. One notable exception is the use of clustering
techniques to identify concepts implicit in the textual comments of source code
[20].

A more advanced approach of annotating source code is offered by Java
Annotations[6]. They are meta-described by instances of AnnotationTypes thus
enabling run-time examination. However, as Java Annotations are source code
based, they cannot be used to annotate objects as would be necessary when

Enriching Reverse Engineering with Annotations 13

working with models. As with comments, the source code itself needs to be
changed if a class or any other code artifact is annotated. Every time an annota-
tion description is changed, it has to be compiled and all annotations described
by this AnnotationType have to be changed manually to conform to it again.
Java Annotations also do not provide specialized editors for annotating and for
editing the meta-descriptions.

Adaptive Object-Models (AOM) [5,21] encode domain entities in metadata
instead of classes. Thus, whenever a change is needed, the meta-model is changed
which is then immediately reflected in the running code. AOMs have only been
proposed to solve changing business models in applications, but they could be ap-
plicable for modeling external knowledge during reverse engineering. This solves
the problem of inflexibility we have with Java annotations. Our solution is in-
spired by AOM in the way that not only the values but also the structure of our
annotations can be changed at any time.

Annotations can also be fruitfully integrated into the runtime of a program-
ming language. Reflectivity is a framework that extends Smalltalk with support
for reflection at the sub-method level [22]. Representations of source code can be
annotated at run-time for use by various tools. This has been used to perform
feature analysis [23]. Instead of generating traces to be analyzed post hoc, ob-
jects representing the static structure of the system are annotated with feature
information while features are exercised. However, as opposed to Metanool, the
annotations proposed in Reflectivity are not typed thus they are less useful for
modeling complex concepts.

6 Conclusions

We have presented an approach to enriching the results of reverse engineering
analyses with human knowledge by means of iteratively and incrementally de-
fined, typed annotations. Annotations are meta-described, and can therefore be
analyzed and manipulated at run-time by the same reverse engineering tools
that carry out analysis of unadorned source code models.

We have demonstrated our approach by presenting Metanool, a tool for defin-
ing, editing and manipulating annotations. We have also shown four concrete sce-
narios of our approach using Metanool in the context of the Moose reengineering
environment. We have shown how annotations can be fruitfully exploited to en-
rich reverse engineering with information that is implicit in, or even absent from
the source code, such as adherence to architectural constraints, the presence
of design flaws, or the relationship between software components and system
features. We have also shown how annotations can flexibly added over time,
and transformed as the needed structure of the information emerges. Graphical
editors can be easily added to support new types of annotations.

During the development of Metanool, several directions for further research
became apparent:

– User defined type transformation. Changing the type of an annotation and
automatically transforming all existing values to conform to the new type is

14 A. Brühlmann, T. Gı̂rba, O. Greevy, O. Nierstrasz

a central point of our approach. A useful extension would be to allow the
reverse engineer to define a transformation strategy. This would be similar
to the solution featured in DabbleDB1, and it would not only allow the
user to change existing annotations to a new type without implementing the
strategy up front, but also to augment the existing strategies when needed.

– Scoping. In Metanool, annotation descriptions are globally defined. More so-
phisticated scoping of annotations could be useful, especially for analysis of
large systems where certain annotations types might only make sense for
particular subsystems. Also, the idea of value inheritance could be interest-
ing. With value inheritance, a child object would return the annotation value
of its parent unless it has its own value.

– Java annotations. Java annotations could be enhanced with GUI support to
provide some of the benefits of Metanool in Java source code. Lightweight
reverse engineering tools could then be better supported in environments
such as Eclipse [24].

– Annotations for forward engineering. Annotations could be integrated into
code browsers in various ways to also support forward engineering. For ex-
ample, source code artifacts could be tagged and categorized by annotations
and then be browsed based on these categories.

Acknowledgments. We gratefully acknowledge the financial support of the Hasler

Foundation for the project “Enabling the evolution of J2EE applications through re-

verse engineering and quality assurance” (project no. 2234) and the Swiss National

Science Foundation for the project “Analyzing, capturing and taming software change”

(SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008). We would also want to thank

Alexandre Bergel and Lukas Renggli for their comments on drafts on this paper.

References

1. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Proceedings of the
10th Working Conference on Reverse Engineering (WCRE 2003), IEEE Computer
Society (2003) 36

2. Murphy, G., Notkin, D., Sullivan, K.: Software reflexion models: Bridging the gap
between source and high-level models. In: Proceedings of SIGSOFT ’95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM
Press (1995) 18–28

3. Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: Co-evolving code and design with
intensional views — a case study. Journal of Computer Languages, Systems and
Structures 32 (2006) 140–156

4. Nierstrasz, O., Ducasse, S., Gı̂rba, T.: The story of Moose: an agile reengineering
environment. In: Proceedings of the European Software Engineering Conference
(ESEC/FSE’05), New York NY, ACM Press (2005) 1–10 Invited paper.

5. Yoder, J., Balaguer, F., Johnson, R.: Architecture and design of adaptive object
models. In: Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’01). (2001) 50–60

1 http://www.dabbledb.com

Enriching Reverse Engineering with Annotations 15

6. Sun microsystems: Java annotations (2004)
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

7. jEdit web site: jEdit: a programmer’s text editor (2008) http://www.jedit.org.
8. Meyer, M., Gı̂rba, T., Lungu, M.: Mondrian: An agile visualization framework. In:

ACM Symposium on Software Visualization (SoftVis’06), New York, NY, USA,
ACM Press (2006) 135–144

9. Ducasse, S., Gı̂rba, T.: Using Smalltalk as a reflective executable meta-language.
In: International Conference on Model Driven Engineering Languages and Systems
(Models/UML 2006). Volume 4199 of LNCS., Berlin, Germany, Springer-Verlag
(2006) 604–618

10. Brühlmann, A.: Enriching reverse engineering with annotations. Master’s thesis,
University of Bern (2008)

11. Patel, S., Dandawate, Y., Kuriakose, J.: Architecture recovery as first step in sys-
tem appreciation. In: 2nd Workshop on Empirical Studies in Reverse Engineering,
Politecnico di Torino (2006) http://softeng.polito.it/events/WESRE2006/.

12. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer-Verlag
(2006)

13. Greevy, O., Ducasse, S.: Correlating features and code using a compact two-sided
trace analysis approach. In: Proceedings of 9th European Conference on Software
Maintenance and Reengineering (CSMR’05), Los Alamitos CA, IEEE Computer
Society (2005) 314–323

14. Greevy, O.: Enriching Reverse Engineering with Feature Analysis. PhD thesis,
University of Berne (2007)

15. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Computer 29 (2003) 210–224

16. Antoniol, G., Guéhéneuc, Y.G.: Feature identification: a novel approach and a case
study. In: Proceedings IEEE International Conference on Software Maintenance
(ICSM’05), Los Alamitos CA, IEEE Computer Society Press (2005) 357–366

17. Wilde, N., Scully, M.: Software reconnaisance: Mapping program features to code.
Software Maintenance: Research and Practice 7 (1995) 49–62

18. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification (Third
Edition). Addison Wesley (2005)

19. Stroustrup, B., Ellis, M.A.: The Annotated C++ Reference Manual. Addison
Wesley (1990)

20. Kuhn, A., Ducasse, S., Gı̂rba, T.: Enriching reverse engineering with semantic
clustering. In: Proceedings of 12th Working Conference on Reverse Engineering
(WCRE’05), Los Alamitos CA, IEEE Computer Society Press (2005) 113–122

21. Yoder, J.W., Johnson, R.: The adaptive object model architectural style. In:
Proceeding of The Working IEEE/IFIP Conference on Software Architecture 2002
(WICSA3 ’02). (2002)

22. Denker, M., Ducasse, S., Lienhard, A., Marschall, P.: Sub-method reflection. Jour-
nal of Object Technology 6 (2007) 231–251

23. Denker, M., Greevy, O., Nierstrasz, O.: Supporting feature analysis with runtime
annotations. In: Proceedings of the 3rd International Workshop on Program Com-
prehension through Dynamic Analysis (PCODA 2007), Technische Universiteit
Delft (2007) 29–33

24. Murphy, Kersten, Findlater: How are Java software developers using the Eclipse
IDE? IEEE Software (2006)

	Enriching Reverse Engineering with Annotations
	Andrea Brühlmann, Tudor Gîrba, Orla Greevy, Oscar Nierstrasz

