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Abstract. Virtual machines (VMs) emulating hardware devices are gen-
erally implemented in low-level languages for performance reasons. This
results in unmaintainable systems that are difficult to understand. In
this paper we report on our experience using the PyPy toolchain to
improve the portability and reduce the complexity of whole-system VM
implementations. As a case study we implement a VM prototype for a
Nintendo Game Boy, called PyGirl, in which the high-level model is
separated from low-level VM implementation issues. We shed light on
the process of refactoring from a low-level VM implementation in Java
to a high-level model in RPython. We show that our whole-system VM
written with PyPy is significantly less complex than standard imple-
mentations, without substantial loss in performance.
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1 Introduction

The research field revolving around virtual machines (VMs) is mainly split up
in two large subfields. On the one hand we have the whole-system VM (WSVM)
domain focusing on new ways to build and optimize emulators for hardware de-
vices. These VMs mimic closely the actual hardware which they are emulating.
On the other hand we have the language domain focusing on building high-level
language VMs (HLLVM). These VMs only exist virtually. There are no hard-
ware counterparts which natively understand the code running on those VMs.
Although both domains share conceptual and implementation similarities, only
recently has awareness been growing about the overlap of ideas and acknowl-
edgement that the two fields can enforce each other. As a clear example of this
fact we see that modern VM books discuss both fields [12].

Historically, the two fields developed independently of each other. There-
fore the tools and techniques that are used in each of them are very different.
? In Proceedings of TOOLS Europe 2009, LNBIP 33 p. 328-347, © Springer-Verlag,
2009.
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Although concepts for performance enhancement, like just-in-time compilation,
are used in both fields, especially the infrastructure and tools used to realize the
systems are very different.

An important progress that recently emerged in the field of language virtual
machines is the use of higher-level models for describing virtual machines. Final
VMs are then generated from these prototypes and enhanced by specific, low-
level optimization techniques. This approach has been realized in the PyPy
project. The PyPy project aims at building a complete high-level Python VM in
Python rather than in a low-level language like C. All VM implementation details
such as garbage collection and JIT compilation are excluded from this prototype.
Performance and VM specific details are then reintroduced by applying several
model transformation steps from the Python sources to a highly optimized target
VM.

In this paper we report on our experience using the PyPy translation
toolchain2 to prototype WSVMs in a high-level language without sacrificing
too much performance in the resulting VM, resulting in only about 40% slow-
down compared to a similar WSVM in Java. By separating the high-level VM
prototype from low-level implementation details we reduce code complexity. The
high-level transformations provided by the PyPy toolchain ensure that the per-
formance of the resulting VM is preserved.

Our case study is a custom high-level VM prototype similar to the Squeak
VM SPy [3]. SPy is written in RPython as a clean high-level implementation and
uses the PyPy toolchain to reintroduce all VM implementation details. Rather
than implementing a HLLVM we concentrate on emulating a Game Boy. We port
an existing Java implementation of the virtual machine, Mario [5], to RPython.
We focus on building a high-level and abstract but executable prototype rather
than an inflexible and early optimized system. We then show that by using the
PyPy toolchain we are able to generate performant low-level virtual machines
from those prototypes.

The main contributions of this paper are:

– We show how the execution and implementation details of WSVMs are sepa-
rated in the same way as those of HLLVMs.

– We show how the use of preprocessing-time meta-programming minimizes the
code and decreases the complexity.

– We provide a sample implementation of a WSVM prototype for PyPy which
exhibits a simplified implementation without substantial loss of performance
(about 40% compared to a similar WSVM in Java).

The remainder of this paper is structured as follows. In Section 2 we give
an introduction to the PyPy project. Section 3 covers the technical details of
the Game Boy, followed by the actual implementation details of PyGirl in
Section 4. In Section 5 we compare the performance of the different WSVMs
implementations. In Section 6 the future work is discussed. Finally in Section 7
we provide a brief overview of our achievements.
2 http://codespeak.net/pypy/
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2 PyPy in a Nutshell

In this section we describe the PyPy project, which produced the toolchain that
we use to translate our VM model. The PyPy toolchain transforms high-level
prototypes into highly optimized executable binaries that incorporate all needed
general VM features.

The initial goal of PyPy was to write a full-featured, customizable and fast
interpreter for Python written in Python itself, in order to have the language
described in itself, i.e. a meta-circular interpreter. Running an interpreter on
top of another interpreter results in execution so slow as to be almost useless.
PyPy addresses this by providing a “domain specific compiler”, a toolchain that
translates high-level VM prototypes in Python down to executables for different
back ends, such as C/Posix [10]. Just like the interpreter, the toolchain itself is
written in Python.

The effort of generating a VM from a model in the language itself is similar
to other self-sustaining systems such as Squeak where the VM is written in
Slang. Slang is a subset of Smalltalk [4] which can be directly translated to C.
The major difference between Slang and PyPy is that Slang is a thinly veiled
Smalltalk-syntax on top of the semantics of C, whereas PyPy focuses on making
a more complete subset of the Python language translatable to C. This difference
is clearly visible in the level of abstraction used by programs written for the
respective platforms [6]. For instance, in the Squeak VM exception handling is
manually added to check some bit flags each time after returning from a function
call. Not only is this a tedious task, but can also easily result in bugs by omitting
a manual check. Using PyPy simplifies this task, since it is possible to use high-
level exception handling in the VM prototype which eventually gets translated
down automatically to something similar in the executable.

There are many examples of high-level language virtual machines (HLLVM)
that are realized using higher-level languages. Jikes [7] and earlier Jalapeño [1]
realized a complete, modern optimizing Java virtual machine in Java. Inspired
by the idea of Squeak, the Squawk3 Java VM [11] realizes a Java virtual machine
in Java. The virtual machine is implemented in Java and then translated ahead-
of-time to an executable. Klein [14] was a research project to explore how to
realize and especially bootstrap a virtual machine for the dynamic prototype
based language Self [13].

In all these examples the virtual machines realized were language virtual
machines rather than virtual machines simulating real hardware. To our best
knowledge none of the used frameworks and tools have been evaluated in the
context of hardware VMs.

2.1 The Interpreter

The starting point for PyPy is to create a minimal but full interpreter for Python
written in Python itself. By minimal we mean that all interpreter implementation
3 http://research.sun.com/projects/squawk/
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details such as garbage collection and optimizations are not implemented but
provided by the environment running the interpreter. This results in a very clean
and concise implementation of the interpreter, modelling how the language works
without obscuring it with implementation details.

2.2 The Translation Toolchain

In this subsection we describe PyPy’s translation toolchain, a “domain specific
compiler” that translates VM prototypes to executables binaries. The transla-
tion of high-level VM prototypes to low-level back ends is necessary since the
prototypes do not run fast by themselves. The Python interpreter written in
Python running on top of standard CPython runs code about 2000 times slower
than CPython.4

The PyPy translation toolchain is designed as a flexible toolchain where
front and back ends can be replaced so that it can generate VMs for different
languages running on different platforms. Not only the front and back end can
be changed, but also the set of transformations applied during the translation
process. This results in fast and portable VMs. The following figure shows how
prototype VM models can be translated to different back ends:

This overall architecture of PyPy is shown in Figure 1. On top we have the
front end or VM prototype which is the input to the translation toolchain. As
output we get a self-containing VM which contains all the required implemen-
tation details. This VM is compatible with one of the many back ends which
PyPy targets. From here on we will discuss all the steps which the toolchain
undergoes to go from prototype to back end specific VM.

In short, the PyPy toolchain builds a dynamically modifiable flow graph
from the target program’s sources. Then this prototype is transformed in several
steps until a final binary results. Using the same intermediate representation for
a large part of the translation and applying transformations in small steps allows
us to customize every translation aspect.

Translation Steps In the first step the translator loads the source-code it
translates. Unlike standard compilers that start by parsing the source code, the
PyPy toolchain never accesses the Python source code. The toolchain can use
its hosting Python interpreter to load its input files. This is because the input
code for the translator is RPython code (which is a subset of Python code), and
the toolchain itself is running on top of a Python interpreter. While loading, the
Python interpreter evaluates all top-level statements and adds the loaded method
and class definitions to the global Python memory. Afterwards the toolchain uses
the the globally loaded main function as entry point for its input graph.

This setup allows the input prototype to apply meta-programming in plain
Python code at preprocessing time. Only the object graph resulting from meta-
programming has to be RPython compatible (Listing 2 shows an example of this
feature).
4 http://codespeak.net/pypy/dist/pypy/doc/faq.html
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Fig. 1. PyPy translation toolchain architecture

Because PyPy mostly targets statically typed back ends the graph is an-
notated with inferred types. Starting with the specified entry point, the type
inference engine works its way through the object flow graph and tries to in-
fer most specific types. If multiple types are possible for a certain node, the
type inference engine tries to select the least common superclass as type. If the
least upper bound degenerates to Object, an error is thrown to show that no
specialization is possible. The same happens when two types have no common
superclass, like booleans and objects. If such type-errors arise, they have to be
fixed by the programmer. These problems are often solved by introducing a
new common superclass or moving a method higher up the hierarchy. In other
cases they really are semantic errors and require restructuring. Section 4.3 covers
some aspects of resolving errors discovered by the toolchain. Here we see that
the compiling process has an impact on the structure of the input source code.
It effectively limits the expressiveness of the input language. For this reason we
call the restricted input language understood by the PyPy toolchain RPython
instead of Python. RPython is described in more detail in Section 2.3.

The annotation step is followed by the conversion from a high-level flow-graph
into a low-level one. Up to now there are two converters, one which specializes
towards low-level back ends like C and one which specializes towards object-
oriented back ends like CLI.

To the low-level flow-graph optional back end optimizations are applied.
These optimizations are rather similar to optimizations found in standard com-
pilers, like function inlining and escape analysis.

After the low-level flow-graph is optimized, it gets specialized for a specific
back end. The preparation for code generation covers the following steps:
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– Insertion of explicit exception handling.
– Adding memory management details. Different garbage-collection strategies

are available5. Note that these garbage collectors themselves are also written
in Python code. They also get translated and woven into the VM definition.

– Creation of low-level names for generated function and variables.

Eventually the language-specific flow-graph is transformed into source files.
These source files are then again processed by the back end, which can perform
further domain-specific optimizations. For example generated C source files are
compiled with GCC using the -O3 flag.

2.3 RPython

The PyPy translation toolchain is designed to boost the performance of the
Python interpreter written in Python. More than just that, it translates general
VM prototypes to fast executable binaries. The translation from a dynamically-
typed language like Python to a statically-typed language like C is not straight-
forward however. As mentioned before, in order to be able to preserve the se-
mantics we are forced to limit the expressiveness of the input language. For this
reason, when we talk about the language accepted by the translation toolchain,
we do not refer to Python but rather to RPython or restricted Python. The lan-
guage is defined implicitly by the translation toolchain6. The main differences
between the full Python language and RPython are summarized in the following
list:

– Variables need to be type consistent,
– Runtime reflection is not supported,
– All globals are assumed to be constants,
– Types of all variables in the code must be inferable.

Although these restrictions seem to be substantial for a dynamic language such
as Python, it is still possible to use high-level features like single inheritance,
mixins and exception handling. More importantly, since RPython is a proper
subset of Python, it is possible to test and debug the input programs with
all Python tools before trying to translate it. Since VM prototypes we build
for PyPy are executable by themselves, there is a great development speedup
against a classical compile-wait-test cycle.

3 Game Boy Technical Details

As a case study we implement PyGirl, an executable VM prototype of a Game
Boy. We will then translate this prototype using the PyPy translation toolchain
5 http://codespeak.net/pypy/dist/pypy/doc/garbage_collection.html
6 http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#
restricted-python

http://codespeak.net/pypy/dist/pypy/doc/garbage_collection.html
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#restricted-python
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html#restricted-python
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presented in the previous section. In this section we list the technical details
of the gaming hardware. The official documentation is available on Nintendo’s
website7.

Device

RAM

ROM

JoyPad

Video

SoundCPUCartridge

3.1 Hardware Pieces

The Game Boy system is composed of six essential pieces which are accessible
through shared memory. External events are supported through an 8 bit mask-
able interrupt channel. There are two kind of 8 bit opcodes:

– First-order opcodes are executed directly
– Second-order opcodes fetch the next instruction for execution. The combined

opcode doubles the range of possible instructions at the cost of execution
speed. The second-order opcodes are mostly used for bit testing and bit setting
on the different registers.

The following list shows some more specific details of the different parts of Nin-
tendo’s gaming device.

– The 8 bit CPU is a slightly modified version of the Zilog 80 with a speed of
4.19 MHz. The CPU supports two power-saving mechanisms both working
in a similar way. After a certain interrupt, the CPU is put into a low power
consumption mode which is left only after another interrupt has occurred.

– The cartridge contains ROM with the embedded game and possibly additional
RAM and/or other devices. The size of the RAM depends on the type of
cartridge. Some types of cartridges support an additional battery to store
game-state. Switchable memory banks are used to extend the 8 bit limited
address range. A checksum in the header and a startup procedure are used
to guarantee that the device is working correctly and the cartridge is not
corrupted.

– The supported resolution is 160×144 pixels with 4 shades. It is possible to
show maximally 40 sprites of 8×8 or 8×16 pixels at the same time. The video
chip has two tile-map memory regions, one for the background and one for the
foreground. The actual background and foreground drawn on the screen are
cropped versions of the data available in the tile maps. This allows the Game
Boy to easily refresh the tile maps.

7 http://www.nintendo.co.uk/NOE/en_GB/support/game_boy__pocket__color_
559_562.html

http://www.nintendo.co.uk/NOE/en_GB/support/game_boy__pocket__color_559_562.html
http://www.nintendo.co.uk/NOE/en_GB/support/game_boy__pocket__color_559_562.html
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– A serial connection can be used to communicate with another device.
– The sound chip supports stereo sound and has four internal mono sound chan-

nels. Sound can be either read directly from the RAM, thus creating arbitrary
samples at the cost of its calculation, or it can be produced via a noise-channel
or via two different wave-pattern generators.

4 PyGirl Implementation

In this section we highlight the most relevant implementation details of the
PyGirl VM. We present a list of refactorings that we applied while going from
a source implementation to our own model. We especially stress the details
regarding the application of preprocessing-time meta-programming.

Instead of starting to implement from a formal specification for the Game
Boy we adapt an existing stereotypical VM implementation to PyPy. This allows
us to show the differences of both implementation styles more easily. We then
compare the complexity of our resulting prototype to various other Game Boy
VM implementations: Mario which we refactor to our own implementation,
JavaBoy8 and AEPgb9. Table 1 shows how our final prototype differs from
the other Game Boy VM implementations in terms of McCabe cyclomatic code
complexity (MCC) [8]. It assigns a number to a piece of code corresponding to
the number of possible traces through the code.

Cartridge JavaBoy AEPgb Mario PyGirl r54984 r63242
KLoC 1.0 0.5 1.2 0.8 0.8
Number of methods 28 24 84 89 90
MCC Sum over all methods 220 103 268 217 211
Methods over MCC > 10 3 1 5 0 0
Max MCC 70 17 23 9 8
average 7.86 4.29 3.19 2.44 2.34

Table 1. McCabe cyclomatic complexity of the Cartridge related classes.

4.1 Source Implementation

In this section we present the important details of the Game Boy VM written
in Java from which we started. The Game Boy VM Mario [5] is developed
in a portable manner by abstracting out platform-specific details from certain
components. Hence it provides variants of the emulator for the different versions
of Java architectures like the Java Standard Edition and Applets for the web.
8 http://www.millstone.demon.co.uk/download/javaboy/
9 http://sourceforge.net/projects/aepgb/

http://www.millstone.demon.co.uk/download/javaboy/
http://sourceforge.net/projects/aepgb/
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The application is structured by providing one class for each physical piece of
hardware. Platform-specific parts are factored out by providing a set of abstract
driver interfaces handling input and output. These drivers are then implemented
for each architecture separately, adapting to the platform-specific requirements.
Even though this is a fairly abstract and portable design, this already is an in-
dicator that without a toolchain VM implementations are bound to be cluttered
with back end specific details.

While at first glance the code appears to be written in an object-oriented
manner, many parts of Mario strictly follow the low-level execution details of
the hardware. On top of this, the implementation is cluttered with local optimiza-
tions. Two types of optimization strategies clearly stand out: manual inlining of
code and manual unrolling of loops. Both strategies result in an overly expanded
code-base, obscuring the overall design and semantics.

For example, the CPU class is cluttered with such speed optimizations. The
reason is that a CPU is a very low-level general-purpose device which does not
provide many possibilities for abstraction. However, even the video chip is im-
plemented in a non-abstract procedural way. This is so even though there are
more conceptual components ready for abstract representation, such as sprites,
background and foreground. PyGirl uses high-level abstractions for these com-
ponents resulting in less complex code. Table 2 shows that our Video classes are
less complex than the ones from Mario.

Video JavaBoy AEPgb Mario PyGirl r54984 r63242
KLoC 1.0 1.1 1.2 0.6 1.1
Number of methods 53 108 68 76 182
MCC Sum over all methods 212 288 223 201 293
Methods over MCC > 10 5 5 5 3 0
Max MCC 36 24 20 15 8
average 4.00 2.67 3.28 2.64 1.61

Table 2. McCabe cyclomatic complexity of the Video related classes.

4.2 From Java to Python

Now we show how we migrated the source VM from to Java to Python. In a
first step we ported the code one-to-one, in order to easily track the upcoming
refactoring progress. During the whole process we keep the overall structure of
the existing system because it directly corresponds to the hardware.

The following sections cover different refactorings we apply and abstractions
introduced to go from a low-level detailed implementation to a high-level proto-
type of the VM.

Memory Usage Considerations The Java code is cluttered with type-casts
between bytes and integers. Bytes are used to represent the 8 bit hardware
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architecture, whereas integers are used for all sorts of arithmetic operations.
Instead of using integers whenever possible, the Java version focuses on reducing
the memory footprint of the running emulator and focuses on the implementation
details of the original hardware. Only at very few places in the code is the use of
bytes justified by the resulting two’s-complement interpretation of the numbers.

In our prototype type-casts are removed wherever possible to improve read-
ability and maintainability. Firstly we consider the memory footprint of the
device we emulate too small to justify optimization of memory usage. Even if we
use four to eight times as much memory as the original device would have used,
corresponding to an expansion from 8 to 32 or 64 Bit, this would mean that we
end up with about 20Mb memory usage. Running PyGirl on a 64 Bit machine
results in a total memory usage of 24Mb. This is a negligible amount for mod-
ern computers. Secondly and more importantly it is, hypothetically speaking,
possible to plug an additional transformation into the toolchain converting all
integers to bytes. By doing so the memory footprint of the final VM would again
be equal to the one of the original device.

Metaprogramming As described in Section 2.2 we can use the full Python lan-
guage at preprocessing-time for meta-programming. The most prominent candi-
date for refactoring is the CPU class. It is packed with duplicated and inlined
code and has a typical opcode dispatch switch. Table 3 shows the MCC for the
CPU class in Mario, the two other Game Boy VM implementations AEPgb
and JavaBoy and two snapshots of PyGirl.

CPU JavaBoy AEPgb Mario PyGirl r54984 r63242
KLoC 2.7 2.9 4.2 1.2 1.0
Number of methods 22 111 372 173 180
MCC Sum over all methods 801 704 996 272 252
Methods over MCC > 10 5 1 2 0 0
Max MCC 415 536 513 10 9
average 36.41 6.34 2.28 1.57 1.4

Table 3. McCabe cyclomatic complexity of the CPU related classes.

PyGirl’s CPU class has half of the number of methods that Mario has. The
sum of the code complexity over all methods is drastically reduced. One reason
for the high complexity sum of Mario’s CPU class is its size. The original class
is around 4000 lines long, featuring an unpleasant 1700 line switch delegating the
incoming opcodes. On top of that there is a nested switch of 800 LoC handling
the second-order opcodes. An excerpt of this dispatch switch is given in the
following listing:
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public void execute(int opcode) {
switch (opcode) {
case 0x00:

this.nop();
break;

...

case 0xFF:
this.rst(0x38);
break;

default:
throw new RuntimeException(ERR);

}
}

In both switches we identify patterns which can be used as basis for abstractions.
In the following excerpt from the original Java code we see how bytecodes directly
encode their semantics in a structured way:

public void execute(int opcode) {
...
case 0x78:

this.ld_A_B();
case 0x79:

this.ld_A_C();
...

}

public final void ld_A_B() {
this.a = this.b;
this.cycles -= 1;

}

Listing 1. Java: Grouped opcode mappings

The Java code covers all these switch cases by manually specifying them and
by encoding the logic in one function per opcode. Since all these operations are
symmetrical in terms of semantics and use of cycles the code can be compacted
by using meta-programming. Even while there are only few lines of code per
operation there is quite some redundancy.

Instead of separate functions PyGirl uses a single load function for all
register combinations. We reuse the function for multiple opcodes by applying
the load function to each time two register objects. Every combination of the load
function with two registers is related to a single opcode encoding its meaning.

def load(self, register1, register2):
register1.set(register2.get())
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To refactor Listing 1, we create such reusable functions for all the different types
of operations. Then we replace the switch with a compact lookup in an opcode
table generated from the abstract functionality descriptions.

def execute(self, op_code):
OP_CODES[op_code](self)

Instead of hard-coding the mapping to the respective functions, we use meta-
programming to compute the definition at translation time. The mapping of
opcodes to functions in the example Listing 1 can be replaced with a more
compact definition. We specify the connected opcodes in a set of entries, each
consisting of a starting opcode, an offset, a function and a set of registers. At
runtime a sequence of opcodes is mapped to such a function. A corresponding
register out of the register set is passed as an argument to this function. An
example of this compact opcode definition is given in the following listing:

REGS = [CPU.get_bc, CPU.get_de, CPU.get_hl, CPU.get_sp]

SET = [
(0x01, 0x10, CPU.fetch_double_register, REGS),
(0x03, 0x10, CPU.inc_double_register, REGS),
(0x09, 0x10, CPU.add_hl, REGS),
(0x0B, 0x10, CPU.dec_double_register, REGS),

...
(start, step, func, registers)
...

]

OP_CODE_TABLE += create_op_codes(SET)

Listing 2. RPython: Compacted definitions of opcodes

In the first line we see that we do not directly specify the register. Instead
we use getter methods of the CPU class returning these registers at run-
time. The first line of the SET specifies that the opcode 0x01 is mapped to
fetch_double_register passing in the register returned by get_bc(). The op-
code is 0x11 using the result of get_de() as argument to the function. Since
there are 4 registers in the SET the last opcode in this sequence is 0x31.

Next we have to create the concrete methods from this definition. Helper
function take the opcode definition set at preprocessing time and create corre-
sponding closures. The create_op_codes method in the following listing creates
such closures:

def create_op_codes(table):
op_codes = []

for entry in table:
op_code = entry[0]
step = entry[1]
function = entry[2]
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for getter in entry[3]:
op_codes.append(

(op_code,
register_lambda(function, getter)))

op_code += step
return op_codes

Since Python handles the scope of variables at the function rather than the block
level we introduced a further helper method register_lambda for creating the
closures. In the following excerpt you can see how this method creates a specific
closure depending on the incoming registerOrGetter argument:

def register_lambda(function, registerOrGetter):
if callable(registerOrGetter):

return lambda s: function(s,
registerOrGetter(s))

else:
return lambda s: function(s,

registerOrGetter)

We create opcode table entries at preprocessing time not only for most of the
register operations such as loading and storing, but also for nearly all other
register operations. In total we apply meta-programming to generate about 450
out of all 512 opcodes.

As a note on performance, when translating this code to C, PyPy is able
to take the preprocessed opcode table and translate it back into an optimized
switch. So the source code stays compact and maintainable without substan-
tial loss in performance. Even better, future versions of PyPy are expected to
automatically optimize running bytecode interpreters dynamically towards the
bytecode they evaluate, i.e. JIT compiling the bytecodes. PyPy can also inline
small methods. Although there are no inlined methods in Mario, it would be
the next logical step for manually optimizing the code. By letting PyPy handle
the optimizations, we maintain a clean implementation.

4.3 Translation

Directly trying to translate our VM prototype, which is initially full Python code,
to a low-level back end raises conflicts. This is due to the fact that the PyPy
translation toolchain does not take full Python code as input, but rather a re-
stricted subset of Python called RPython. The restrictions imposed by RPython
only become apparent when you try to translate prototypes with PyPy. Most
bugs come from the fact that while Python is fully polymorphic, RPython en-
forces the static types of all variables to be correct.

Every variable needs to be inferable to a specific type. The most generic
type in the system, i.e. Object, is not allowed as type for any variable. All
messages sent to instances of a class must be declared in that class, or in any of
its superclasses.
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The easiest translation bugs are straightforward syntactic bugs, like typos.
Such bugs often go unnoticed in dynamic programming languages since they are
not statically enforced and are only a problem at runtime. After fixing these, you
typically encounter type conversion errors. Some of these problems are related to
assignments of objects of different types to the same variable. One possible solu-
tion for static type inconsistencies is to introduce common abstract superclasses.
This ensures that objects assigned to a single variable have this superclass as a
common type.

Call Wrappers We handle operations on registers and other CPU functions
elegantly by passing function closures around. This allows us to reuse methods
for different actions. A very common example is the following load function:

def load(self, getter, setter):
setter(getter())

load(self.flag.get, self.a.set)
load(self.fetch, self.a.set)

The load function is called with different arguments. In the first example the
function is used to copy the values from the flag-register into the register a.
The second example loads the next instruction into register a. When we first
translated this code fragment the toolchain was unable to transform the code
into a typed counterpart. PyPy was unable to create a strict typed function
due to the different origins of the passed function closures. We resolve this by
creating call-wrappers with a common superclass. Introducing call-wrappers for
the passed function closures adds some overhead, but it is a simple way to keep
the code minimal and close to the original idea of passing around closures. The
following code shows the same function calls using wrappers for each passed type
of closure:

class CallWrapper(object):
def get(self, use_cycles=True):

raise Exception("called CallWrapper.get")

def set(self, value, use_cycles=True):
raise Exception("called CallWrapper.set")

class RegisterCallWrapper(CallWrapper):
def __init__(self, register):

self.register = register

def get(self, use_cycles=True):
return self.register.get(use_cycles)

def set(self, value, use_cycles=True):
return self.register.set(value, use_cycles)
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class CPUFetchCaller(CallWrapper):
def __init__(self, CPU):

self.CPU = CPU

def get(self, use_cycles=True):
return self.CPU.fetch(use_cycles)

RegisterCallWrapper takes a register and calls get or set on it. The CPUFetch-
Caller is an abstraction for the fetch method of the CPU that allows it to be
used as an argument for the load function. These are two out of the five total call-
wrappers we use to handle closure passing. The common superclass CallWrapper
makes it possible for PyPy to infer a common type for the argument of every
method. Note that return-types of methods are also required to be type-correct.
For our wrappers this implies that all get methods are required to return a
value of the same type. Thus all getmethods return integers. To support the call-
wrappers we replaced the closure calls. Instead of directly invoking the argument
as in Listing 4.3 we call get or set on the call wrappers. Applied to the previously
presented load method this resulted in the following code:

def load(self, getCaller, setCaller):
setCaller.set(getCaller.get())

Then the method-calls from the original example look now like

load(RegisterCallWrapper(self.flag),
RegisterCallWrapper(self.a))

load(CPUFetchCaller(self),
RegisterCallWrapper(self.a))

While it is possible to do the same in Java, this imposes a huge runtime overhead.
If we create the CallWrappers in Java, this form of meta-programming is not
handled at preprocessing time. Instead the objects will be around at runtime,
which implies a performance as well as a memory overhead.

5 Performance evaluation

In this section we show that using the PyPy toolchain to reduce complexity of
WSVMs does not result in substantial performance loss. To do so we compare
the performance of our Game Boy VM PyGirl to the performance of our source
implementation, Mario. We run benchmarks on three different versions of the
Game Boy VM. The original Java emulation Mario, the interpreted variant of
PyGirl and finally the translated binary version of PyGirl. We benchmark
the interpreted PyGirl by running it on top of CPython whereas the translated
version is built from those sources.

Each test shows the average execution time over 100 runs using Java
1.6.0_10, Cacao 0.97 and CPython 2.5.2 (additionally using Psyco 1.6-1)
on a 64 Bit Ubuntu 8.04.1 server machine with an Intel Xeon CPU QuadCore
2.00 GHz processor. We use revision number r63242 of the PyPy project.
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5.1 Benchmark Details

In this section we discuss the benchmark parameters. The binaries for the
RPython benchmark are created using the default arguments for PyPy resulting
in C code which is then transformed to an executable binary via GCC. PyPy
uses the following GCC optimizations when creating the binary executable:

-c -O3 -pthread -fomit-frame-pointer

In order to show the difference and impact of a JIT and dynamic optimization for
the interpreted PyGirl we use Psyco [9], a just-in-time specializer for Python.
Since the current version of Psyco (1.6-1) only emits machine code for 32 bit
intel-based systems, we benchmark our code using Psyco on a similar Ubuntu
installation with the appropriate 32 bit processor. Since those results are less
important than the comparison with Java, we simply scaled them to fit the 64
Bit machine. Those results should only display the possible performance gain
by using a JIT. Still, it highlights that running the emulator on top of Psyco
equally results in unacceptable performance.

For those who are missing the -server switch in the Java 1.6 benchmark,
we can say that this option did not result in any significant performance gain
for the tests. The speedup is less than a percent and about the order of the
standard deviation, thus the results are merely distinguishable from the standard
configuration.

5.2 Runtime Optimization Comparison

In this section we compare the performance of Mario and PyGirl. In order
to test performance we let both systems run a ROM which exercises the video
output10 but produced no sound11. The ROM simply prints hello world! on the
background while a smiley moves over the screen as a moving sprite, a simple
but complex enough benchmark. In the Table 4 you can see the actual CPU
time used by the emulators in relation to the actual game time. By game time
we mean the actual time that a user spends playing a game at normal speed.
By CPU time we mean the time spent by the processor of the host actually
running the emulator. Notice that as game time increases, the difference in CPU
time between Mario and the translated PyGirl emulator shrinks. Eventually
Mario gets faster than PyGirl due to the runtime optimizations of the JVM.
Figure 2 shows the performance for both emulators running on different plat-
forms. It is clearly visible that the translated PyGirl runs at linear speed,
whereas the Mario behaves differently. The JVM’s JIT is only warmed up after
about 30 to 40 seconds of actual game time. The Cacao VM performs some-
what differently from the standard JVM implementations. Cacao’s JIT already
runs Mario optimized after very little game time, but ends up being even a bit
10 The pixels are drawn in internal buffers but are not actually written to a screen.
11 In both systems we fully disabled the sound drivers so that they cannot have any

impact on performance.
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Game Time RPython CPU time Java 1.6 CPU time Ratio
1 0.03 0.19 0.15
4 0.12 0.25 0.46
10 0.29 0.37 0.78
15 0.43 0.46 0.93
30 0.86 0.74 1.17
60 1.73 1.28 1.36

300 8.60 5.47 1.57
600 17.23 10.73 1.61
1800 51.81 31.65 1.64
3600 103.62 63.08 1.64

Table 4. Influence of the JIT on the benchmark results. Average execution in seconds
over 100 runs per test.
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Fig. 2. This graph shows the CPU time of the host needed to emulate an example
ROM, in relation to the game time on the Game Boy. It compares the performance
of PyGirl and Mario emulating all device parts excluding sound. The results are
discussed in Section 5.2
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slower than PyGirl. While Mario on the standard JVM has the advantage of
the availability of a JIT compiler and dynamic optimizations, it is only about
60% faster than PyGirl.

Simple benchmarks running on simple language interpreters which are com-
piled with PyPy to its CLI-back end12 have shown that a JIT compiler can
also be used here to get significant performance gains. We strongly believe that
future versions of PyPy will directly improve the performance of the PyGirl
VM, thanks to a generated JIT compiler, by the same order of magnitude. Fu-
ture versions of PyPy featuring dynamic optimizations for the C-back end might
even help us outplay the performance of Mario running on the standard JVM.

6 Future Work

In this section we discuss the future work needed for PyGirl and related tasks
for PyPy.

6.1 Future work for the Game Boy VM PyGirl

While most hardware parts already have a fully functioning software counterpart,
this is not the case yet for the sound unit. This is mostly the case since it is the
least important piece of hardware for the Game Boy emulator to be immediately
usable. For it to work it still needs to be fully ported and refactored.

6.2 Future work for PyPy

PyGirl’s current state of implementation only allows the code to be trans-
lated using the C-back end. The current implementation of the I/O drivers are
based on libSDL13, thus it is not yet compatible with other back ends. The fact
most VMs only need very basic graphics support, like simple bitblitting, makes
enabling graphics support for the other back ends a straightforward task.

Translating PyGirl with the JVM as target makes it possible to directly
compare the performance of the original Java implementation with our approach.
Since the Java Virtual Machine is widely available and compatible with many
different platforms, this would eventually even allow us to run PyGirl on mobile
devices [2].

7 Conclusion

In this paper we have shown that the use of high-level prototypes for the defini-
tion of whole-system virtual machines and the application of meta-programming
12 http://morepypy.blogspot.com/2008/11/porting-jit-to-cli-part-1.html
13 http://www.libsdl.org/

http://morepypy.blogspot.com/2008/11/porting-jit-to-cli-part-1.html
http://www.libsdl.org/
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reduces code complexity significantly without substantial loss of performance.
By using the translation toolchain PyPy we keep our high-level WSVM model
free from low-level implementation details, such as garbage collection and excep-
tion handling. When we build a final WSVM from out prototype, those details
are reintroduced by the translation toolchain.

We have supported our claims by comparing the performance and complexity
of two VM implementations for the Game Boy, PyGirl and Mario. We found
that for specific classes the average McCabe cyclomatic complexity is reduced
to less than the half compared to other Game Boy VMs. In other cases, like
the CPU class, we even reduced the maximum MCC from over 500 down to
9. In order to strengthen our case about the reduced complexity, we compared
the complexity of our prototype with yet another two Game Boy emulators,
exhibiting the same complexity issues as Mario. In Section 5 we have shown
that using PyPy does not result in a significant performance loss. PyGirl only
runs about 40% slower than the Game Boy VM Mario on the standard JVM.
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