
The Moldable Inspector: a framework
for domain-specific object inspection

Andrei Chiş
University of Bern, Switzerland

andrei@iam.unibe.ch

Tudor Gı̂rba
CompuGroup Medical Schweiz AG

tudor@tudorgirba.com

Oscar Nierstrasz
University of Bern, Switzerland

scg.unibe.ch/oscar

Abstract
Answering run-time questions in object-oriented systems in-
volves reasoning about and exploring connections between
multiple objects. Developer questions exercise various as-
pects of an object and require multiple kinds of interactions
depending on the relationships between objects, the applica-
tion domain and the differing developer needs. Nevertheless,
traditional object inspectors, the essential tools often used to
reason about objects, favor a generic view that focuses on
the low-level details of the state of individual objects. This
leads to an inefficient effort, increasing the time spent in the
inspector. To improve the inspection process, we propose the
Moldable Inspector, a novel approach for an extensible ob-
ject inspector. The Moldable Inspector allows developers to
look at objects using multiple interchangeable presentations
and supports a workflow in which multiple levels of con-
necting objects can be seen together. Both these aspects can
be tailored to the domain of the objects and the question
at hand. We further exemplify how the proposed solution
improves the inspection process, introduce a prototype im-
plementation and discuss new directions for extending the
Moldable Inspector.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments, interactive environments

General Terms Tools, Languages, Design

Keywords Object inspector, Domain-specific tools, User
interfaces, Programming environments

1. Introduction
Objects integrate data and behavior to model relevant con-
cepts from application domains. Computation is further ex-
pressed in terms of interactions between objects. Therefore,
understanding objects along with their relationships is criti-
cal for developing and evolving object-oriented applications.

Due to their nature, object-oriented applications have a
dual representation: static, in terms of source code, and dy-
namic, in terms of objects. Developers often focus on the
static source code to gain insight into the dynamic represen-

tation, however, due to mechanisms like inheritance, poly-
morphism and dynamic binding, understanding objects and
relations between objects based only on a static view of the
code poses many difficulties [5].

Object inspectors offer a better alternative as they enable
developers to explore the actual run-time objects. Inspectors
offer generic mechanisms to display and explore the state of
an arbitrary object, however they do not take into account the
varying needs of developers that could benefit from tailored
ways to view and explore object state.

Consider the question of determining whether or not a
graphical component that has a certain visual characteris-
tic is present within a list of graphical components. A visual
representation of the graphical component provides more in-
sight than just looking at the state of that component. A dif-
ferent question from a different domain consists in determin-
ing if an object representing a directory contains a particular
file. An object inspector showing the list of files contained by
the directory object can provide a straightforward answer.

A generic solution focusing only on object state, while
universally applicable, fails to highlight what aspects of an
object are important in a given development context. By
a development context we understand a specific run-time
question from a specific domain (e.g., fixing a performance
problem in a parser, finding a memory leak in a graphical
framework). This mismatch increases the inspection time as
developers have to manually search for what is relevant for
their particular contexts.

Traditional object inspectors exhibit this problem since:

• They rely on predefined, generic state-based presenta-
tions for displaying objects, thus ignoring significant dif-
ferences between objects in different domains;

• They focus on individual objects, thus providing only
rigid mechanisms for exploring relations between ob-
jects.

These problems can be solved if instead of using a generic
object inspector a developer relies on an object inspector that
can easily be adapted to the development context at hand
(i.e., both the application domain and the developer ques-
tion). We consequently propose the Moldable Inspector, a

http://scg.unibe.ch/staff/oscar


(a) (b)

Figure 1: Two distinct way to look at a morph object for choosing colors
depending on the developer needs: (a) presentation showing the visual
appearance; (b) presentation showing the structure (the tree of submorphs).

novel approach for an extensible object inspector that (1)
allows developers to inspect at objects using multiple in-
terchangeable presentations, and (2) provides a workflow in
which multiple levels of connecting objects can be seen to-
gether, and navigation between objects is guided by the do-
main and the question. The Moldable Inspector further relies
on the idea of using code to both steer the inspection process
and to extend the existing presentations at inspection time.

To validate the proposed approach and show that it has
practical applicability, we are developing a prototype imple-
mentation in Pharo1, a modern Smalltalk environment. The
current version of our implementation features most of the
core functionality of the proposed framework in less than
500 lines of code. Furthermore, it has been used to create
more than 70 extensions requiring, on average, 8 lines of
code per extension. Its small size has two practical advan-
tages: on the one hand it makes it easy to understand; on the
other hand it makes the adaptation of the inspector to new
run-time questions and domain objects affordable.

The contributions of this paper are as follows:

• Introducing the Moldable Inspector framework for defin-
ing a context-aware object inspector;

• Presenting the current prototype instantiation of the
Moldable Inspector and discussing several implemen-
tation aspects;

• Proposing new directions for extending the Moldable
Inspector framework.

2. Why basic inspectors are not enough
To successfully answer a run-time question in an object-
oriented system, developers have to identify which objects
are relevant for that question and understand those objects
along with their interactions. One can anticipate neither what
objects will be needed, nor what aspect of an object (e.g.,
state, code, memory usage, dependencies) will be important
for a given question. Thus, object inspectors viewing objects
through generic state-based presentations and offering fixed

1 http://pharo.org

(a)

(b)

Figure 2: Two distinct ways to look at a directory object depending on
the developer needs: (a) presentation showing the state of the object; (b)
presentations showing the contained files and directories

mechanisms for navigating between objects are less suitable
for answering run-time questions in object-oriented systems.
This section exemplifies these problems.

2.1 Limitations of viewing objects through single views
In Pharo the Morph class is the root class for all graphi-
cal components. A morph can contain other morphs (i.e.,
submorphs). If a developer wants to locate a morph object
within a collection, she would benefit from its visual appear-
ance (Figure 1a), but if she wants to debug issues related
to the structure of the morph, she needs to see and explore
the tree of submorphs (Figure 1b). Both of these represen-
tations are valid, but they serve different interests. This type
of problem is not isolated and can be found in various other
situations.

A different use case consists in inspecting objects mod-
eling various resources. Consider instances of the class
FileReference that can refer to a concrete file or directory.
During inspection these objects require different represen-
tations depending on the developer needs. For example, a
state view is sufficient for determining the path of a directo-
ry/file (Figure 2a). However, if a developer needs to explore
the content of a file/directory, looking just at the state of
the corresponding object is not appropriate; a presentation
showing the content serves the purpose better. A presenta-
tion for a directory (Figure 2b) can show the list of files from

http://pharo.org


Figure 3: Inspecting a list of files/directories with an object inspector
relying on a tree for exploring object state. It is not possible to immediately
access the content of a file/directory.

that directory, while one for a file can display its content; the
presentation could differ from a file to another depending
on the type of the file (e.g., image, text, xml, html). Even if
objects representing files and directories are instances of the
same class, exploring their content requires different presen-
tations. An object inspector that focuses solely on the state
of an object does not support this use case.

2.2 Limitations when focusing on individual objects
On the one hand, visually searching for certain objects
within lists (e.g., spotting a particular file/directory inside
a directory) requires presentations that make it easy to iden-
tify the desired objects (e.g., show the content of a file/direc-
tory). On the other hand, this task also requires a developer
to simultaneously interact with two objects: the list and an
element from that list. Object inspectors that focus on the
state of single objects lead to a time consuming exploration
effort. Consider using an object inspector representing an
object as a tree to look for a particular file/directory within
a given directory (Figure 3). This inspector does not provide
easy access to the content of a file/directory and further re-
quires a developer to permanently expand and collapse the
elements of the target list, increasing the time spent in the
inspector.

Another limitation of an object inspector providing only a
fixed navigation based on object state is that it does not allow
a developer to reach objects not stored in an instance variable
of an object already accessible from the inspector. Consider
a developer wishing to navigate from a morph representing
a list to its context menu (i.e., to check if the context menu
has the correct structure). Unfortunately, the context menu
is generated on demand every time a user right-clicks on

View on
Object 1

View on
Object 2

View on
Object 3

Figure 4: An inspection session consisting of three objects, where each
object defines three basic presentations. Gray presentations are valid in one
development context, while white presentations are valid in another devel-
opment context. A moldable presentation selects only those presentations
that are relevant for the current development context.

an element of the list and is never stored in an instance
variable of the morph, thus, it won’t be accessible if we can
only navigate between objects based on their state. This is
an example of a more general problem where references to
objects that we wish to navigate to are not actually stored in
instance variables of the objects we are currently inspecting.

3. The Moldable Inspector framework
The Moldable Inspector supports developers in reasoning
about run-time questions in specific application domains by
providing moldable presentations and moldable navigation.
Moldable presentations make it possible for an object to
have multiple interchangeable presentations tailored to the
domain and the question at hand. Moldable navigation pro-
vides a workflow in which multiple levels of connecting ob-
jects can be seen together and navigation between objects is
guided by the domain and the question at hand.

3.1 Moldable presentations
Reiss argues that software understanding requires custom vi-
sualizations tailored to the problems at hand [8]. In the con-
text of object inspectors we argue that understanding objects
requires presentations tailored to both the domain and the
question at hand (i.e., the development context). While dif-
ferent objects require different presentations, given that they
model different entities, the same object requires multiple
presentations that depend on multiple usage contexts.

To address this, the Moldable Inspector allows an object
to define a set of multiple interchangeable presentations cap-
turing interesting aspects of that object in various develop-
ment contexts. We will refer to these presentations as basic
presentations. A developer can then inspect an object using
a moldable presentation that selects only those basic presen-
tations that are suitable for the current development context.

Moldable presentations are made possible by the Mold-
able Inspector reifying the current development context (i.e.,
the domain and the question). An object can thus define a
wide set of presentations, not all relevant to a particular con-
text, however, in a given development context a moldable
presentation only shows those presentations relevant for that
context (Figure 4).



Object

PresentationSession

subject

*

linkedSubjects

*

Figure 5: The model behind the Moldable Inspector framework: the
Session objects reifies the development context; objects define multiple
presentations; presentations can indicate relevant objects; when used, only
those presentations relevant to the current development context are selected.

3.2 Moldable navigation
Understanding a run-time question involves reasoning about
multiple objects and exploring connections between objects.
Different types of questions require different kinds of inter-
actions depending on the relationships between objects, the
domain and the differing developer needs. Viewing one ob-
ject at a time and hardcoding the reachable objects by only
supporting state-based navigation does not support well this
activity.

To overcome these limitations the Moldable Inspector of-
fers moldable navigation, i.e., a workflow in which multiple
levels of connecting objects can be seen together and nav-
igation between objects is guided by the question and the
domain. This navigation mechanism is obtained by allowing
each basic presentation to indicate a set of relevant objects
that could be inspected next (Figure 5). Since objects are
displayed during an inspection session using moldable pre-
sentations, only basic presentations relevant to the current
question and domain are accessible; thus, the objects indi-
cated by those basic presentations will also be relevant in
that situation. However, as one cannot anticipate all devel-
oper needs, code can be used to steer the inspection process
on-the-fly and increase the set of reachable objects.

4. Implementation aspects
In this section we present the current prototype instantiation
of the Moldable Inspector, called the GTInspector, and dis-
cuss several implementation aspects. The GTInspector is in-
tegrated into Moose2, a platform for data and software anal-
ysis [6].

4.1 Supporting moldable presentations
A moldable presentation consists of a set of basic presenta-
tions selected according to the current development context.
This feature requires mechanisms to associate basic presen-
tations with objects, specify a development context, and fil-
ter basic presentations based on the development context.

2 http://moosetechnology.org

Figure 6: GTInspector displaying a directory and one contained file.
Both objects have presentations to display the state and the source code
of their class. The directory further has a presentation for showing the
contained files/directories (“Items”). The file represents an image and has a
presentation that shows its content as text (“Raw”) and one that displays the
actual image contained in that file (“Picture”).

Once a moldable presentation has been computed a solution
that can display multiple basic presentations is required.

In the current implementation a basic presentation is as-
sociated with an object by defining in the class of the ob-
ject a method constructing the presentation and marking it
with a predefined annotation. Currently defining a develop-
ment context and filtering presentations based on it is not
supported. Instead, regardless of the context, an object is
represented using all the available presentations. An object
with multiple basic presentations is displayed using a tabu-
lator widget, where each presentation is added as a tab. This
allows for interchangeable presentations and also gives an
overview of all the basic presentations available for an ob-
ject. Figure 6 shows how a directory and a file object are
represented using this approach.

By default two basic presentations are added to every
object: one shows the state of the object while the other gives
access to the source code of the object class. By making
the state of every object available, we support the classic
way of using an inspector. Furthermore, by making the class
of the object immediately browsable the inspector supports
a common use case of looking implementation up during
inspection time.

4.2 Supporting moldable navigation
Providing support for navigating between objects requires
a mechanism to show connections between objects. GTIn-
spector shows connections between objects using the Miller
columns technique3: the next object is always shown to the
right. This preserves the entire logical flow of how the devel-
oper got to an object. At any moment a predefined number
of columns (i.e., objects) is visible and a scroll bar is used to
access previous columns.

To support moldable navigation we need to allow basic
presentations to indicate relevant objects and support devel-
opers in using code to guide the inspection process. To sup-

3 http://en.wikipedia.org/wiki/Miller_columns

http://moosetechnology.org
http://en.wikipedia.org/wiki/Miller_columns


port the first aspect GTInspector allows developers to con-
tinue the navigation by selecting any object available in the
current presentation. The second aspect is also supported as
the presentation showing the state, available for every ob-
ject, can be used to write code executed in the context of an
object. This can be seen in Figure 6 where the object on the
right was obtained by executing the code “self files at: 7” on
the object on the left.

4.3 The cost of new presentations
GTInspector has been used to create over 70 basic presen-
tations for 40 different types of objects. On average a basic
presentation requires 8 lines of code. Their small size makes
them easy to understand and makes the creation of new ba-
sic presentations an affordable activity. To give a feeling of
the amount of code required to create a new presentation the
following lines show how to specify a tree presentation dis-
playing the structure of a morph:

1 composite tree
2 title: 'Submorphs';
3 rootsExpanded;
4 display: [:rootMorph | {rootMorph}];
5 format: [:morph | morph printString];
6 children: [:morph | morph submorphs];
7 when: [:morph | morph submorphs notEmpty]

5. Improving the inspection process
To show that the GTInspector improves the inspection pro-
cess in this section we look at how it addresses the limi-
tations of traditional object inspectors encountered in Sec-
tion 2.

5.1 Multiple presentations for objects
Section 2 showed that depending on the development con-
text one needs to see either the visual appearance of a morph
or its structure. The GTInspector addresses this requirement
as it can provide two basic presentations capturing these
two aspects (Figure 7). It can further provide dedicated pre-
sentations for inspecting FileReference objects based on the
type and content of the object. For example, a FileReference
object representing a directory has a presentation show-

ing list of files/directories within that directory (Figure 8).
FileReference objects representing files have dedicated pre-
sentations that display the content of the file in a proper way
(e.g., a file storing a picture is displayed using a visualization
– Figure 6, while a file representing a script using an editor
with proper syntax highlighting – Figure 8.)

5.2 Flexible navigation
Visually searching for particular objects within lists becomes
possible with the GTInspector: while iterating over the list
elements one can obtain a moldable presentation showing
each element. For example, to locate a file based on its
content one can iterate over the files of a directory and view
each file using a specialized presentation (Figure 8).

Figure 7: Two different ways to look at a morph for choosing colors.

Figure 8: Exploring the content of a directory.

Using code to guide the navigation process makes it pos-
sible to reach objects not directly stored within instance vari-
ables: Figure 9 shows how one can obtain the context menu
of a list morph showing file objects, execute an action from
that menu and inspect the result. First the context menu is ex-
tracted using the code “self getMenu: false” (the false value
indicates the shift key was not pressed). As the menu is a
morph we can inspect it visually. Then we can execute the
last action, “Copy”, which copies a textual representation of
the selected object to the clipboard, and finally inspect the
current value from the clipboard to see if it is correct.

6. Further directions
While the GTInspector supports a fully functional object in-
spector there are a number of directions that can be explored
in order to further improve it. These include, but are not lim-
ited to: identifying common types of recurring run-time sce-
narios and determining types of basic presentations useful in
for addressing those scenarios, modeling the history of an in-
spection session as a first class entity, improving navigation
through large inspection sessions.

6.1 Identifying recurring run-time scenarios
Currently the GTInspector allows objects to have different
representations in different development contexts. However,
the responsibility of deciding which presentation is relevant
in the current development context falls solely on the devel-



Figure 9: Performing a navigation scenario involving objects that are not directly linked through instance variables: extract the context menu of a list morph,
run an action from the menu and verify the result. The first pane shows the tree morph, the second the context menu and the last the current value from the
clipboard. At each step code is used to navigate to the next object.

oper. Identifying a set of common scenarios and determining
which presentations are useful in those scenarios would lift
part of this burden from developers: with the common use
cases already supported, developers would only need to fo-
cus on creating presentations for their specific situations.

6.2 The inspection session as a first-class entity
While the GTInspector provides support for moldable navi-
gation one has to manually repeat inspection sessions. Mod-
eling the history of an inspection session as a first-class en-
tity would make it possible to store, find and reuse inspection
sessions.

6.3 Navigation improvements
While Miller columns are intuitive to use, they have two
main drawbacks: (i) they require horizontal scroll bars to
show deep hierarchical structures (e.g., a deep inspection
session) and (ii) they do not indicate the relation between
two columns (e.g., what did the user do to navigate from one
object to the other). We are currently investigating how to
solve these problems by providing a new type of scrolling
widget showing an overview of the entire inspection session
and indicating the relation between columns.

7. Related work
There is a wide body of research looking at how to improve
the effectiveness of comprehension and development tools
by finding and highlighting contextual information and pro-
viding better support for exploring code and data.

Code Bubbles brings the idea of a session of inspection
to code understanding and debugging [1, 4]. The approach
shows the related entities next to one another and allows the
developer to manipulate and store them in sessions. How-
ever, this approach still relies on single representations for
each entity regardless of the context, and object inspection
is particularly only offered through a classic tree like view.

While the focus of our paper is on the conceptual struc-
ture of an inspector, the actual implementation is still an in-

teresting aspect that deserves a discussion. The rendering of-
fered by Code Bubbles allows the developer to manipulate a
tree, rather than only a list. On the one hand, this is a pow-
erful tool to understand more complicated scenarios. On the
other hand, it is a more complicated interface that relies on
the developer to organize the bubbles. Our implementation
relies on a Miller columns design that requires little space
and little spatial maintenance effort from the developer.

jGRASP is an integrated development environment pro-
viding object viewers that like our approach allow objects to
have multiple presentations [3]. However, jGRASP always
shows the same objects through the same views as it does
not take into account the development context in which those
objects are encountered.

Eclipse4 allows developers to create custom textual rep-
resentation for objects using “Detail Formatters”. Each class
can have a Detail Formatter consisting of a snippet of code
that constructs a custom string value used to display in-
stances of that class. NetBeans5 and IntelliJ6 allow devel-
opers to attach multiple such formatters to a given class and
switch between them at run time. Unlike the Moldable In-
spector these approaches only allow objects to have text rep-
resentations.

8. Conclusions
Different types of questions exercise different aspects of an
object and require different kinds of interaction depending
on the relationships between objects, the application domain
and the differing developer needs. To support this we pre-
sented a novel approach, called the Moldable Inspector, for
developing an extensible object inspector that can be adapted
to both the objects of a domain and the questions at hand.
The development context is reified and used to both select
presentations and steer the navigation between objects using
a workflow in which multiple levels of connecting objects

4 eclipse.org/ide
5 netbeans.org
6 jetbrains.com/idea

eclipse.org/ide
netbeans.org
jetbrains.com/idea


can be seen together. To show that the Moldable Inspec-
tor has practical applicability we presented the GTInspector
prototype, and discussed several scenarios in which it im-
proves the inspection process.

The Moldable Inspector is part of a broader work on
meta-tooling (i.e., tools for building tools) that aims to en-
able developers to quickly and effectively customize the IDE
to suite their development contexts [7]. The Moldable In-
spector follows on the Moldable Debugger [2] work that
proposed a new approach for developing domain-specific de-
buggers.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project No. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). We also thank Erwann Wernli
and Jorge Ressia for their comments.

References
[1] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman

Karumuri, William Cheung, Joshua Kaplan, Christopher Cole-
man, Ferdi Adeputra, and Joseph J. LaViola, Jr. Code bub-
bles: a working set-based interface for code understanding
and maintenance. In CHI ’10: Proceedings of the 28th in-
ternational conference on Human factors in computing sys-
tems, pages 2503–2512, New York, NY, USA, 2010. ACM.
doi:10.1145/1753326.1753706.

[2] Andrei Chiş, Oscar Nierstrasz, and Tudor Gı̂rba. The Moldable
Debugger: a framework for developing domain-specific debug-
gers. In 7th International Conference on Software Language
Engineering (SLE), 2014. to appear.

[3] James H. Cross, II, T. Dean Hendrix, David A. Umphress,
Larry A. Barowski, Jhilmil Jain, and Lacey N. Mont-
gomery. Robust generation of dynamic data struc-
ture visualizations with multiple interaction approaches.
Trans. Comput. Educ., 9(2):13:1–13:32, June 2009. URL:
http://doi.acm.org/10.1145/1538234.1538240, doi:

10.1145/1538234.1538240.

[4] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacob-
sen, and Steven P. Reiss. Debugger canvas: industrial expe-
rience with the code bubbles paradigm. In Proceedings of
the 2012 International Conference on Software Engineering,
ICSE 2012, pages 1064–1073, Piscataway, NJ, USA, 2012.
IEEE Press. URL: http://dl.acm.org/citation.cfm?

id=2337223.2337362.

[5] Alastair Dunsmore, Marc Roper, and Murray Wood. Object-
oriented inspection in the face of delocalisation. In Proceed-
ings of ICSE ’00 (22nd International Conference on Software
Engineering), pages 467–476. ACM Press, 2000.

[6] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The
story of Moose: an agile reengineering environment. In Pro-
ceedings of the European Software Engineering Conference
(ESEC/FSE’05), pages 1–10, New York, NY, USA, September
2005. ACM Press. Invited paper. doi:10.1145/1095430.

1081707.

[7] Oscar Nierstrasz and Mircea Lungu. Agile software assess-
ment. In Proceedings of International Conference on Pro-
gram Comprehension (ICPC 2012), pages 3–10, 2012. doi:

10.1109/ICPC.2012.6240507.

[8] Steven P. Reiss. The paradox of software visualization. VIS-
SOFT 2005. 3rd IEEE International Workshop on Visualiz-
ing Software for Understanding and Analysis, page 19, 2005.
doi:10.1109/VISSOF.2005.1684306.

http://dx.doi.org/10.1145/1753326.1753706
http://doi.acm.org/10.1145/1538234.1538240
http://dx.doi.org/10.1145/1538234.1538240
http://dx.doi.org/10.1145/1538234.1538240
http://dl.acm.org/citation.cfm?id=2337223.2337362
http://dl.acm.org/citation.cfm?id=2337223.2337362
http://dx.doi.org/10.1145/1095430.1081707
http://dx.doi.org/10.1145/1095430.1081707
http://dx.doi.org/10.1109/ICPC.2012.6240507
http://dx.doi.org/10.1109/ICPC.2012.6240507
http://dx.doi.org/10.1109/VISSOF.2005.1684306

	Introduction
	Why basic inspectors are not enough
	Limitations of viewing objects through single views
	Limitations when focusing on individual objects

	The Moldable Inspector framework
	Moldable presentations
	Moldable navigation

	Implementation aspects
	Supporting moldable presentations
	Supporting moldable navigation
	The cost of new presentations

	Improving the inspection process
	Multiple presentations for objects
	Flexible navigation

	Further directions
	Identifying recurring run-time scenarios
	The inspection session as a first-class entity
	Navigation improvements

	Related work
	Conclusions

