
GTInspector: A Moldable Domain-Aware Object Inspector ∗

(Preprint †)

Andrei Chiş ‡ Oscar Nierstrasz
Aliaksei Syrel

Software Composition Group, University of Bern
Switzerland (scg.unibe.ch)

Tudor Gı̂rba
tudorgirba.com

Switzerland

Abstract
Understanding the run-time behaviour of object-oriented ap-
plications entails the comprehension of run-time objects.
Traditional object inspectors favor generic views that focus
on the low-level details of the state of single objects. While
universally applicable, this generic approach does not take
into account the varying needs of developers that could ben-
efit from tailored views and exploration possibilities. GTIn-
spector is a novel moldable object inspector that provides
different high-level ways to visualize and explore objects,
adapted to both the object and the current developer need.
More information about the GTInspector can be found at:
scg.unibe.ch/research/moldableinspector

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments, interactive environments

Keywords Object inspector, Domain-specific tools, IDEs

1. Problem Description
Object-oriented programming makes use of objects to model
application domains. There exists a wide diversity of objects
from an even wider range of application domains, objects

∗An extended version is published at Onward! 2015 [2]
† In Proceedings of the Companion Publication of the 2015 ACM SIG-
PLAN Conference on Systems, Programming, and Applications: Software
for Humanity (SPLASH Companion 2015), October 25–30, 2015, Pitts-
burgh, PA, USA. DOI: 10.1145/2814189.2814194
‡ 3rd year PhD student, co-author of the GTInspector and member of
the GT team (gt.moosetechnology.org), working towards development
tools that can mold to both the development task and application domain
(andreichis.com).

[Copyright notice will appear here once ’preprint’ option is removed.]

that depending on the actual task can interact in various
ways. For example, objects like folders, files, parsers, HTML
pages, remote resources, database connections, graphical
components, etc., a common presence in today’s software
systems, along with many more types of specialized objects.

Nevertheless, in spite of this diversity, object inspectors,
an essential category of tools for comprehending run-time
objects, display all objects, regardless of the domain or task,
in a generic way. For example, when inspecting an object
pointing to a remote resource or a graphical object, tradi-
tional inspectors show just object state, event if the devel-
oper wants to see, at that precise moment, the content of that
resource or the visual representation of that graphical object.
While mainstream IDEs (e.g., Eclipse, Netbeans, VisualStu-
dio) offer support for defining custom views, customization
is usually limited to textual views (e.g., tree or table) display-
ing object attributes. Traditional inspectors further focus on
single objects, when it’s rarely the case that a problem can
be solved by just inspecting one single object in isolation.

2. GTInspector in a Nutshell
To address the aforementioned problems we propose GTIn-
spector, an object inspector based on the Moldable Inspector
model that enables developers to answer high-level, domain-
specific questions by allowing them to adapt the whole in-
spection process to suit their immediate needs [2]. GTIn-
spector builds on the following three operators:

Multiple Views Each object has multiple custom views; a
view captures one representation of an object. For example,
a file object has views that depending on the type of the
file display its content in different ways (i.e., a graphical
view for a png file and a list view of files/folders for a
zip archive – last two objects in Figure 1). Developers can
easily add custom views for their own domain objects. At run
time GTInspector selects views appropriate for the current
objects and developer needs. As screen real estate is a scarce
resource, in the current implementation, all selected views
of an object are grouped using a tab widget; hence, for each
object, only one view is displayed per tab. If the tab widget
supports repositioning of tabs, multiple tabs can be made

1 2015/10/5

http://scg.unibe.ch
http://www.tudorgirba.com
http://scg.unibe.ch/research/moldableinspector
http://dx.doi.org/10.1145/2814189.2814194
http://gt.moosetechnology.org/
http://www.andreichis.com


Selection in 
visualization

Code 
execution

Selection 
in list

Figure 1: An inspection session consisting of six objects. Four objects are currently visible: (i) graphical window, (ii) model for a graphical component, (iii)
file pointing to an archive, and (iv) file pointing to a png picture. From a dedicated view of an object in one tab of a Miller column, one can navigate to a view
of another object in the next column. Navigating to each object involves a different mechanism: (a) selecting an object in a view, (b) executing code to locate
the object, and (c) selecting an object in a list. The order in which these objects were inspected is given by their positioning from left to right.

available at the same time. The jGRASP IDE also allows
developers to look at objects using specialized views [3].
However, objects are seen through unique views selected at
run time based on the structure of an object. Self [4] allows
each object to have a single unique representation through
which users can also interact with the object.

Flexible Navigation Each view can specify a set of re-
lated objects, together with the mechanism for navigating
to those objects. For example, a view showing the graphi-
cal representation of a widget can allow developers to nav-
igate to any sub-widget by clicking it (navigating from
the first to the second object in Figure 1). New objects
can also be constructed/located using code snippets. GTIn-
spector groups connected objects in an exploration session
and displays them using an extension of Miller columns
(en.wikipedia.org/wiki/Miller columns) that pro-
vides an overview of the entire session, enables rapid navi-
gation and makes it possible to control the number of visible
objects. Code Bubbles also brings the idea of an exploration
session to code understanding and debugging [1]. However,
it relies on single representation for objects and requires
developers to organize bubbles and manipulate a tree, rather
than only a list. While this supports more elaborate scenarios
it requires more spatial maintenance effort from developers.

Live Programming GTInspector features a simple exten-
sion mechanism where new views can be developed at run
time using an internal DSL directly from within the inspec-
tor. Views are attached to objects using extension methods
and located at run time using annotations. GTInspector is
developed in Pharo (pharo.org), a modern Smalltalk di-
alect. We build, together with the developers of several ap-
plications, 131 views covering 84 distinct types of objects.
Creating a view required on average of 9.2± 6.6(M ± SD)

lines of code. Combined with the ability of creating these
views live directly from within the inspector, GTInspector
provides a new workflow that makes custom inspection ac-
cessible. While developed in Pharo, there is no conceptual
limitation that would impede an implementation in other
object-oriented languages and IDEs.

3. Demonstration
In this tool demonstration we show how GTInspector im-
proves the inspection process by applying the inspector to
several use-cases and extending the inspector at run time
with new views as new unanticipated problems arise. We fo-
cus on real-world use-cases such as interacting with the file
system, exploring GUIs, inspecting results from a database
query or mapping AST nodes to bytecode. Some of these
features are usually addressed within IDEs using dedicated
tools, without these tools being connected to the actual run-
time objects. This leads to fragmented debugging activities
as developers have to permanently look for these tools else-
where and then bring the desired information back to the
inspector/debugger. GTInspector removes this gap by pro-
viding the desired data right in the inspector at run time.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project Nr. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015).

References
[1] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Ka-

plan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code bubbles: a
working set-based interface for code understanding and maintenance.
In CHI, pages 2503–2512, 2010.

2 2015/10/5

http://en.wikipedia.org/wiki/Miller_columns
http://pharo.org


[2] A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel. The Moldable Inspector.
In Onward! to appear, 2015.

[3] J. H. Cross, II, T. D. Hendrix, D. A. Umphress, L. A. Barowski, J. Jain,
and L. N. Montgomery. Robust generation of dynamic data structure
visualizations with multiple interaction approaches. Trans. Comput.

Educ., 9(2):13:1–13:32, June 2009.

[4] R. B. Smith, J. Maloney, and D. Ungar. The self-4.0 user interface. In
OOPSLA, pages 47–60, 1995.

3 2015/10/5


	Problem Description
	GTInspector in a Nutshell
	Demonstration

