
Towards moldable development tools

Andrei Chiş, Oscar Nierstrasz
Software Composition Group,

University of Bern
scg.unibe.ch

Tudor Gı̂rba
tudorgirba.com

Abstract
Integrated development environments (IDEs) form an essen-
tial category of tools for developing software that should
support software engineering decision making. Developers
commonly ask detailed and domain-specific questions about
the software systems they are developing and maintaining.
Unfortunately, rigid and generic IDEs that focus on low-
level programming tasks that promote code rather than data,
and that suppress customization offer limited support for in-
formed decision making during software development. We
propose to improve decision making within IDEs by moving
from generic to context-aware IDEs through moldable tools.
In this paper, we promote the idea of moldable tools, illus-
trate it with concrete examples, and discuss future research
directions.

Categories and Subject Descriptors D.2.6 [Software engi-
neering]: Programming Environments – Integrated environ-
ments, Interactive environments

Keywords IDEs, customization, adaptation, modeling

1. Research Problem and Motivation
When developers are faced with particular questions that re-
quire the customization of existing tools, if they cannot eas-
ily customize the relevant tool they will most likely not do
so. Popular IDEs do not easily accommodate new function-
ality. An IDE like Eclipse, for example, allows users to cus-
tomize the individual windows of the environment, and new
tools can be downloaded and installed as “plug-ins”, but de-
veloping a new plug-in is highly non-trivial.

To improve decision making within IDEs we consider
that an IDE should enable the customization of all its as-
pects to the current development context. Towards this goal

[Copyright notice will appear here once ’preprint’ option is removed.]

we propose to model the IDE as a set of interconnected
moldable tools, where a moldable tool is a development tool
aware of the current development context that enables rapid
customization to new development contexts. Customization
is needed as one cannot anticipate all relevant problems;
awareness of the development context enables the tool to au-
tomatically detect relevant extensions. Moldable tools build
on previous ideas related to extensible environments [3, 5].

In our vision developers adapt a moldable tool to a devel-
opment context by (i) creating a context-specific extension
for that tool and (ii) attaching to the extension an activation
predicate (i.e., coupling invariant) that captures the develop-
ment contexts in which the extension is applicable. Then, at
run time, a moldable tool automatically selects extensions
appropriate for the current development context.

2. Moldable Development Tools
For this vision to be practical, the cost associated with cre-
ating context-specific extensions should be small. Neverthe-
less, the cost can vary significantly based on the tool and the
type of extension that is required. In what follows we sum-
marize three examples of moldable tools, motivate the type
of extensions they support, and look at the effort required to
extend them, in terms of lines of code.

2.1 Moldable Inspector
Object inspectors allow developers to comprehend the run-
time of object-oriented systems. Nevertheless, traditional
object inspectors favor generic approaches to display and ex-
plore the state of arbitrary objects. While universally appli-
cable, these approaches do not take into account the varying
needs of developers that could benefit from tailored views
and exploration possibilities [2]. For example, when inter-
acting with graphical objects, depending on the task at hand,
a developer could need to inspect its visual representation,
its structure in terms of graphical subcomponents, or its in-
ternal state.

To inspect objects using tailored views we propose Mold-
able Inspector,1 an inspector model that supports multiple
domain-specific views for each object and facilitates the cre-

1 scg.unibe.ch/research/moldableinspector

1 2015/10/19

http://scg.unibe.ch/research/moldableinspector


ation and integration of new views [2]. In the current im-
plementation views are created using an internal DSL and
placed within methods that require predefined annotations.
Until now we have created, together with the developers of
several frameworks/libraries, 131 custom views for 84 ob-
jects belonging to 15 applications, requiring, on average,
9.2 ± 6.6(M ± SD) lines of code per view. An example
illustrating how to instantiate a view that shows the structure
of a graphical object is given below, together with the result-
ing view when applied on a graphical object.

1 aCanvas tree
2 title: 'Submorphs';
3 display: #yourself;
4 format: #printString;
5 icon: #scaledIcon;
6 children: #submorphs;
7 when: #hasSubmorphs

2.2 Moldable Spotter
Search tools enable developers to rapidly identify or locate
entities of interest. Nevertheless, current software systems
interleave many different types of highly interconnected data
(e.g., source code, documentation, configuration files). Deal-
ing with this reality requires developers to perform investiga-
tions that chain together multiple searches on different data
types. Nevertheless, most mainstream IDEs address search-
ing by means of many disconnected search tools, making it
difficult for developers to reuse search results produced by
one search tool as input for another search tool.

To reduce the time required to manually link discon-
nected search results we propose Moldable Spotter,2 a model
for expressing and combining search tools in a unified way.
Moldable Spotter supports searches that build upon each
other and makes it easy to express and integrate new types
of searches on new data types. Using an internal DSL, we
have created 100 custom searches for 30 different data types.
On average, extending Moldable Spotter with a new type of
search required 8 lines of code.

2.3 Moldable Debugger
Debuggers are essential for reasoning about the run-time
behaviour of software systems as they give developers di-
rect access to the running systems. Nevertheless, traditional
debuggers rely on generic mechanisms to interact with the
running systems, while developers reason about and formu-
late domain-specific questions using concepts and abstrac-
tions from their application domains. For example debug-
ging event-based systems or parsers using generic stack-
based debuggers can be problematic.

To enable developers to take advantage of domain con-
cepts when debugging we propose the Moldable Debugger,3

a debugger model that enables developers to create specific

2 scg.unibe.ch/research/moldablespotter
3 scg.unibe.ch/research/moldabledebugger

debuggers with custom debugging operations for stepping
through the execution and custom user interfaces [1]. In
the current implementation custom debuggers are created by
subclassing a predefined class containing a template for a
debugger, and overriding hook methods for constructing de-
bugging actions and the user interface. We create, on top of
a template of 1500 lines of code, six custom debuggers re-
quiring between 60 and 600 lines of code. The cost is greater
than in the previous two tools as the scope of an extension is
larger (i.e., the entire debugger).

3. Discussion and Future Work
Moldable tools come with a price as they have to be ex-
tended by application or framework developers rather than
by tool providers. Nevertheless, this can make considerable
economical sense when working on a long-lived system.
Furthermore, library developers can ship library-specific ex-
tensions together with their product.

Feedback from developers using and extending these
tools is essential for their improvement. All tools presented
here are part of the Moose (moosetechnology.org) plat-
form and Moldable Inspector and Moldable Spotter are also
integrated into the Pharo IDE (pharo.org) as part of the
Glamorous Toolkit (gt.moosetechnology.org). We are
currently working towards gathering and analysing usage
data to learn how these tools are used and extended in prac-
tice [4]. Preliminary data indicate that developers use mul-
tiple existing extensions and create custom extensions for
libraries and frameworks used in their projects.

This paper covers just a few tools and types of extensions.
We are actively working on improving the customization
support and applying the ideas of moldable tools to other
tools, like editors and REPLs. Our long-term goal is to apply
these ideas to the entire tool suite from an IDE.

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project Nr. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015).

References
[1] A. Chiş, T. Gı̂rba, and O. Nierstrasz. The Moldable Debugger: A

framework for developing domain-specific debuggers. In SLE, volume
8706, pages 102–121. Springer International Publishing, 2014.

[2] A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel. The Moldable Inspector.
In Onward! to appear, 2015.

[3] A. N. Habermann and D. Notkin. Gandalf: Software development
environments. IEEE Trans. Softw. Eng., 12(12):1117–1127, 1986.

[4] J. Kubelka, A. Bergel, A. Chiş, T. Gı̂rba, S. Reichhart, R. Robbes, and
A. Syrel. On understanding how developers use the Spotter search tool.
In VISSOFT. to appear, 2015.

[5] A. Mørch. Three levels of end-user tailoring: Customization, integra-
tion, and extension. In Computers and Design in Context, pages 51–76.
MIT Press, 1997.

2 2015/10/19

http://scg.unibe.ch/research/moldablespotter
http://scg.unibe.ch/research/moldabledebugger
http://moosetechnology.org
http://pharo.org
http://gt.moosetechnology.org

	Research Problem and Motivation
	Moldable Development Tools
	Moldable Inspector
	Moldable Spotter
	Moldable Debugger

	Discussion and Future Work

