
Moldable Tools for Object-oriented
Development
(Preprint?)

Andrei Chiş, Tudor Gı̂rba, Juraj Kubelka, Oscar Nierstrasz, Stefan
Reichhart, and Aliaksei Syrel

Abstract Object-oriented programming aims to facilitate navigation be-
tween domain concepts and the code that addresses those domains by en-
abling developers to directly model those domain concepts in the code. To
make informed decisions developers then formulate detailed and domain-
specific questions about their systems in terms of domain concepts, and use
tools to explore available information and answer those questions. Develop-
ment tools however focus mainly on object-oriented idioms and do not expose
or exploit domain concepts constructed on top of object-oriented program-
ming idioms. Analysis tools are typically not tightly integrated with develop-
ment tools. This has a negative effect on program comprehension, increasing
the effort and the time for obtaining answers.

To improve program comprehension we propose to better integrate do-
main concepts and program comprehension tools into the development envi-
ronment through moldable tools. Moldable tools are development tools that

? Chiş A., Gı̂rba T., Kubelka J., Nierstrasz O., Reichhart S., Syrel A. (2017) Moldable
Tools for Object-Oriented Development. In: Mazzara M., Meyer B. (eds) Present and

Ulterior Software Engineering. Springer, Cham DOI: 10.1007/978-3-319-67425-4 6

Andrei Chiş
Software Composition Group, University of Bern, Switzerland, scg.unibe.ch

Tudor Gı̂rba

feenk.com, Switzerland

Juraj Kubelka
PLEIAD Laboratory, University of Chile, Chile, pleiad.cl

Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland, scg.unibe.ch

Stefan Reichhart

stefan.reichhart@gmail.com, Switzerland

Aliaksei Syrel
Software Composition Group, University of Bern, Switzerland, scg.unibe.ch

1

https://doi.org/10.1007/978-3-319-67425-4_6
http://scg.unibe.ch
http://feenk.com
http://pleiad.cl
http://scg.unibe.ch
mailto:stefan.reichhart@gmail.com
http://scg.unibe.ch

2 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

are aware of the current development context and support inexpensive cre-
ation of domain-specific extensions. We elaborate on the idea of moldable
tools and show how to apply moldable tools to support object-oriented pro-
gramming. Through practical examples we show how developers can embed
domain concepts into their development tools.

1 Introduction

Software applications express domain models from the real world as exe-
cutable models (i.e., programs) within the design space of a language. Pro-
gram comprehension then requires developers to navigate between domain
concepts and the code that addresses those domains. In the procedural
paradigm domain concepts are spread throughout procedures and data struc-
tures, potentially making the recovery of domain concepts a tedious activity.

Object-oriented programming promised to addressed this problem by pro-
viding developers with better mechanisms to construct domain abstractions.
Instead of using procedures and data structures developers can model a do-
main in terms of objects and object interactions (i.e., message sends). Objects
model domain entities and encapsulate the state of those entities together
with their behaviour. Despite its early promise to solve the problem of nav-
igating between domain concepts and their implementations developers still
struggle to navigate between these worlds in object-oriented applications.
Furthermore, a wide range of analyses and program comprehension tools
have been proposed to aid developers in performing this navigation. Nev-
ertheless, in spite of an ever-increasing number of program comprehension
tools, these tools are still heavily underused [33]. Instead, developers mostly
rely on code reading as their main technique to understand and reason about
their software systems. One the one hand, code reading is highly contextual:
code indicates the exact behavior of an application. On the other hand, code
reading does not scale: reading one hundred thousand lines of code takes
more than one-man month of work.

In previous work we explored this aspect and argued that the lack of proper
environments for developing object-oriented applications is an important fac-
tor that makes navigation between code and domain concepts an ever-present
problem [26]. Two issues with current development environments that con-
tribute to the problem are that they disconnect development and program
comprehension tools, and they focus on generic rather than tailored develop-
ment tools.

Disconnected comprehension. Separating program comprehension and de-
velopment tools creates a gap between program comprehension and devel-
opment, two activities that are deeply intertwined. For example, integrated
development environments (IDEs) are an essential category of tools for craft-

Moldable Tools for Object-oriented Development 3

ing software. They aim to support software development and evolution by
providing a uniform interface for all the tools needed by programmers during
the software development process (e.g., code editors, compilers, testing tools,
debuggers). Nevertheless, current mainstream IDEs are centered around the
code editor and promote code reading as a default way of reasoning about
software. Developers can use additional program comprehension tools along-
side the IDE or install them as ‘plug-ins’, however, with few exceptions these
new tools do not integrate with existing development tools from the IDE.
This requires developers to manually bridge these two types of tools.

Generic tools. While addressing a specific task, many development tools do
not make any assumptions about the actual contexts in which they are used.
They handle in the same way different software systems, even if those systems
model different domains. This means that they are unaware of application or
technical domain concepts. For example, a generic object inspector handles
all run-time objects in an identical manner. On the one hand, this increases
its range of applicability; on the other hand, it makes it less suited to handle
detailed and domain-specific questions. Generic tools force developers to re-
fine their domain-specific questions into low-level generic ones and mentally
piece together information from various sources [34]. This offers limited sup-
port for informed decision making, leading to an inefficient and error-prone
effort during software development and maintenance as developers cannot
directly reason in terms of domain abstractions.

Both these issues can be improved by moving from building software using
generic and disconnected tools for development and program comprehension
to building software using development tools tailored to specific application
domains. This has the potential to reduce code reading and improve pro-
gram comprehension as tailored tools can directly provide developers with
domain-specific information that they would otherwise need to find during
development by reading and exploring source code or using external tools.
For this vision to be possible we propose moldable development, an approach
for crafting software in which developers continuously adapt and evolve their
development tools (e.g., code editors, debuggers, run-time inspectors, search
tools) to take into account their actual application domains. To support this
activity we introduced moldable tools [9]. A moldable tool is a development
tool that is aware of the current development context, and supports inexpen-
sive creation of domain-specific extensions using a plug-in approach.

Here we extend our previous work on this topic in which we introduced
the idea of moldable development [8]. We expand on the idea of moldable de-
velopment and explore its applicability to the development of object-oriented
applications. Our overall contributions are:

• Discussing challenges for making moldable development practical and
proposing an approach to achieve this based on moldable tools;

4 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

• Discussing mechanisms for designing moldable tools using object-oriented
concepts;

• Exemplifying the creation of moldable tools for object-oriented program-
ming using real world examples of tools and extensions.

2 Moldable development, moldable tools

The key idea behind moldable development is that developers adapt their
development tools to be aware of the domain behind the applications under
development. This scenario requires both that developers are willing to ex-
tend their tools, and that development tools are designed to capture domain
abstractions.

2.1 Towards moldable development

In the context of model-driven engineering, Whittle et al. [45] observed that
to improve the way they evolve their applications many developers build their
own tools or introduce major adaptations to off-the-shelf tools, even if this
requires significant effort. When studying homegrown tools in a large software
company, Smith et al. [35] also observed that developers take the initiative to
build tools to solve problems they face, especially when their organization’s
culture promotes this activity. This shows that developers do build tools to
help themselves in their work. Nevertheless, adapting development tools to
specific domains is not a widespread activity.

To increase its adoption, we argue that moldable development has to have
as its foundation development tools designed so they can inexpensively ac-
commodate domain abstractions. As an analogy, in the past testing was per-
ceived as difficult since writing tests was a costly activity. With the intro-
duction of SUnit [3] and other testing frameworks the cost of creating and
managing tests decreased significantly, thus encouraging the adoption of test-
ing as an integral activity of the software development process.

We propose to accommodate domain abstractions in development tools by
designing such tools so that they:

• support inexpensive creation of domain-specific extensions, and
• enable developers to easily organize and locate suitable extensions.

Both aspects are needed: even if extensions are easy to build, difficulty in
finding and deciding when an extension is applicable discourages developers
from embracing the activity of adapting their development tools.

Moldable Tools for Object-oriented Development 5

Domain-specific
Extension

Development Context Activation Predicate

Moldable Tool *

1

*
Object

*

Fig. 1 Moldable tools for object-oriented programming: extensions are attached to objects;

activation predicates detect applicable extensions.

2.2 Moldable Tools in a Nutshell

When looking at software development and evolution we observe that devel-
opers use a range of widely accepted tools like code editors, compilers, debug-
gers, profilers, search tools, version control tools, etc. Each tool embodies a
design that addresses a certain activity in the software development cycle. To
support inexpensive adaptations in these tools while preserving their intended
design we proposed moldable tools [9]. Moldable tools enable domain-specific
adaptations through development tools modeled as frameworks that support
domain-specific plug-ins (i.e., extensions). To facilitate discovery of exten-
sions moldable tools allow extension creators to specify together with their
extensions an activation predicate that captures the development contexts in
which that extension is applicable.

By “development context” we intend both the current application domain
and previous interactions with the domain. Related work on exploring how
developers comprehend software showed that interactions with a domain play
an important role in improving program comprehension [20, 25, 19]. For ex-
ample interaction recording tools, like Mylar [17] and DFlow [23], provide
support for automatically building a context as developers interact with de-
velopment tools and filtering visible information based on that context [24].

Moldable tools enable developers to ‘mold’ domain abstractions into the
tools by creating domain-specific extensions expressing those abstractions,
and attaching to those extensions activation predicates that capture the de-
velopment contexts in which extensions are applicable. Then, at run time,
a moldable tool automatically selects extensions appropriate for the current
development context. Hence, developers do not have to manually infer when
an extension is applicable.

3 Designing moldable tools

In this section we discuss how to design moldable tools using object-oriented
concepts.

6 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

3.1 Enabling Domain-specific Extensions

The first step towards enabling moldable tools consists in choosing how to
support domain-specific extensions. To propose a solution we start from
the observation of Pawson that while objects should encapsulate all rele-
vant behaviour, in the context of business systems, many domain objects are
behaviorally-weak [32]: much of the functionality is contained in ‘controller’
objects that sit on top of model objects, which in turn provide only basic
functionality. To address this issue, Pawson proposed naked objects as a way
to move towards behaviorally-complete objects where business actions are
encapsulated in the actual domain objects [29].

The same situation arises when development tools need to provide cus-
tom behaviour for objects modeling different domain entities. One approach
consists in designing development tools that encapsulate themselves the logic
for how to handle domain-specific objects. On the one hand, this decouples
the business logic from the logic used to handle objects in development tools.
On the other hand, this decoupling can result in duplicated functionality be-
tween tools or the need to evolve objects and tools separately as requirements
change.

Following the idea of Pawson a second approach consists in making ob-
jects responsible for deciding how they are handled in development tools.
This allows different tools to reuse the same behaviour and enables a closer
evolution of objects and tools. A common use for this approach is to visu-
alize objects: in most object-oriented languages it is the responsibility of an
object to represent itself in a textual way (e.g., toString in Java, printString
in Smalltalk). Development tools that need a textual representation of an
object just ask that object for its representation.

Moldable tools for object-oriented programming build on the second ap-
proach and enable customization by asking objects to indicate the desired
behaviour (Figure 1). Hence, objects become behaviorally-complete with re-
gard to development tools, not only to the business domain. This reduces the
distance between tools and objects and encourages application developers to
evolve domain-specific tools together with their objects.

3.2 Specifying Domain-specific Extensions

The second step in applying moldable tools to object-oriented programming
consists in choosing how to specify custom extensions. Researchers have ex-
plored multiple alternatives for tool building, including, but not limited to,
internal DSLs, external DSLs, logical programming languages, and formal
specification languages. Following the same line of reasoning as in the previ-
ous section, object-oriented programming already provides a modeling lan-
guage in terms of objects. Therefore, we propose that moldable tools for

Moldable Tools for Object-oriented Development 7

object-oriented programming enable the creation of domain-specific exten-
sions using the underlying object-oriented language of the target application.
Hence, developers do not have to learn a new programming language to be
able to extend their tools. Moldable tools then model domain-specific exten-
sions as objects. Developers specify an extension by creating and configuring
an object using its API (i.e., an internal DSL). This solution favors a design
in which developers create custom extensions by using snippets of code to
configure those extensions. Related work focusing on similar ideas indicates
that this reduces the cost of creating extensions [27, 39].

3.3 Context-aware Extensions

Domain objects provide one axis for selecting domain-specific extensions: a
moldable tool selects extensions for those domain objects currently investi-
gated in that tool. Each extension object has an activation predicate specified
when the extension is created. Activation predicates can determine if the ex-
tension is applicable or not based on the state of its associated object, the
state of other accessible objects from the domain model and previous devel-
oper interactions with the domain.

For example, in many graphical frameworks, graphical widgets are orga-
nized in a tree structure. Extensions for navigating or searching through the
structure of sub-widgets can have an activation predicate checking if the wid-
get has sub-widgets. Also when navigating from a parent widget to one of
its sub-widgets an inspection tool can show a view highlighting how the sub-
widget is positioned within the parent widget. This view can only be made
available when navigating from a parent widget to a sub-widget, and not
when inspecting a sub-widget in isolation.

4 Addressing Domain-specific Problems

To investigate the usefulness and practical applicability of moldable tools in
the context of object-oriented programming we focus on three activities per-
formed by developers during software development and maintenance, namely:
(i) reasoning about run-time objects, (ii) searching for domain-specific arti-
facts, and (iii) reasoning about run-time behavior. We selected them as they
are pervasive, challenging and time-consuming activities during software de-
velopment and maintenance. For each one we explore how relevant problems

8 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

can be addressed if developers are able to adapt their development tools to
their own contextual needs.2

4.1 Reasoning about run-time objects

Since objects only exist at run time, understanding object-oriented applica-
tions entails the comprehension of run-time objects. Object inspectors are
an essential category of tools that allow developers to perform this task. An
object inspector provides a simple interface that allows a user to inspect all
the fields of an arbitrary object, and recursively dive into those fields. To
better understand what software developers expect from an object inspector
we performed an exploratory investigation. We identified the need for ob-
ject inspectors that support different high-level ways to visualize and explore
objects, depending on both the object and the current developer need [10].
Traditional object inspectors however favor a generic view that focuses on the
low-level details of the state of single objects. While universally applicable,
these approaches do not take into account the varying needs of developers
that could benefit from tailored views and exploration possibilities.

To address this issue this we introduced the Moldable Inspector. The
essence of the Moldable Inspector is that it enables developers to answer
high-level, domain-specific questions by allowing them to adapt (i.e., mold)
the whole inspection process to suit their immediate needs. To make this pos-
sible, instead of a single generic view for an object, the Moldable Inspector
allows each object to represent itself using multiple domain-specific views,
facilitates the creation and integration of new views and uses the current de-
velopment context to automatically find, at run-time, appropriate views [10].
To validate this approach we created until now, together with the developers
of several frameworks and libraries, more than 131 custom views for 84 types
of objects belonging to 15 applications, requiring, on average, 9.2 lines of
code per view.

For example, depending on her task, a developer working with a widget
object may need to explore both the internal structure of that object (e.g.,
state) and its visual representation. We can address this by attaching to a
widget object two views that directly show its state (Figure 2a) and its visual
representation (Figure 2b). Now the Moldable Inspector can show both these
views when a developer interacts with a widget object (Figure 2).

2 The three covered tools are developed as part of the GToolkit project. More information
about the tools can be found at http://gtoolkit.org. All these tools are also part of the

Pharo IDE (http://pharo.org).

http://gtoolkit.org
http://pharo.org

Moldable Tools for Object-oriented Development 9

(a) (b)

Fig. 2 Using the Moldable Inspector to explore a widget object: (a) The Raw view shows

the implementation of the widget; (b) The Morph view shows the visual representation of
the widget.

4.2 Searching for domain-specific abstractions

Software systems consist of many different kinds of domain-specific and in-
terrelated software entities. Search tools aim to support developers in rapidly
identifying or locating those entities of interest. Nevertheless, our analysis of
mainstream IDEs and current exploration approaches shows that they sup-
port searching through generic search tools that are not well-integrated into
the IDE. In particular current IDEs decouple tools for searching through code,
external data and run-time objects. This impedes search tasks over domain-
specific entities as considerable effort is wasted by developers to recover and
link data and concepts relevant to their application domains. Furthermore,
this limits discoverability as one has to be aware of a domain abstraction in
order to know what to look for.

For example, a web server can rely on XML files to model descriptors for
web services and store security roles (e.g., admin, employer, manager). In an
IDE providing just generic searches, locating a server’s descriptor requires a
developers to use a file search. Finding what web services use a given security
role requires then multiple textual searches through XML files. A domain-
specific search tool can enable developers to directly locate descriptor files
and search through the web services that use a given security role.

To address this problem we propose that search tools directly enable devel-
opers to discover and search through domain concepts. We have proposed the
Moldable Spotter, a search tool that allows objects to express multiple cus-
tom searches through the data that they encapsulate [38]. Moldable Spotter
further enables developers to easily create custom searches for their domain

10 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

objects and automatically discover searches for domain object as they are
interacting with those objects. We also show that by taking into account
generic searches through code we can provide a single entry point for embed-
ding search support within IDEs. Based on 124 search extensions for 41 types
of objects currently present in the Pharo IDE the average cost of creating a
custom search extension is, just like in the case of the Moldable Inspector,
9.2 lines of code.

4.3 Moldable Debugger

Debuggers are essential for reasoning about the run-time behaviour of soft-
ware systems. Traditional debuggers rely on generic mechanisms to intro-
spect and interact with the running systems (i.e., stack-based operations, line
breakpoints), while developers reason about and formulate domain-specific
questions using concepts and abstractions from their application domains.
This mismatch creates an abstraction gap between the debugging needs and
the debugging support leading to an inefficient and error-prone debugging
effort, as developers need to recover concrete domain concepts using generic
mechanisms.

To address this abstraction gap we have proposed the Moldable Debugger,
a framework for developing domain-specific debuggers [7]. The Moldable De-
bugger is adapted to a domain by creating and combining domain-specific
debugging operations with domain-specific debugging views, and adapts it-
self to a domain by selecting, at run time, appropriate debugging operations
and views. A domain-specific debugger is attached to an object modeling the
run-time stack. Hence, stack objects are allowed to express how developers
interact with them. We created, on top of a template of 1500 lines of code,
six custom debuggers requiring between 60 and 600 lines of code. The cost is
greater than in the previous two tools as the scope of an extension is larger
(i.e., it affects the entire debugger).

5 Adapting tools to domain objects

To exemplify how moldable development can be applied during the devel-
opment of an application to adapt moldable tools to specific domains we
present two concrete use cases. We selected two frameworks, the Opal com-
piler (Section 5.1) and PetitParser (Section 5.2), given that their developers
or maintainers created custom extensions for moldable tools as they evolved
them. These are also two mature frameworks that cover two different do-
mains, each with its own challenges. Opal requires users to reason about and
navigate between multiple representations of source code (e.g., source code,

Moldable Tools for Object-oriented Development 11

AST nodes, IR, bytecode). If an error occurs during parsing, PetitParser users
need to understand how the parsing consumed the input and locate that part
of the input (or the grammar) that caused the error; often the method where
the error is raised is different from the method where the parser actually
made an erroneous decision.

5.1 Opal Compiler

Opal3 is a compiler infrastructure focusing on customizability that has been
part of Pharo4 since the Pharo 3 release (May 2014).5 Initially Opal was
developed using the standard development tools of Pharo.

Developing a new compiler is a challenging activity involving multiple
steps: parsing the source code into an abstract syntax tree (AST), translat-
ing the AST into an intermediate representation (IR), translating the IR into
bytecode, and optimizing at the level of the AST, IR and bytecode. Types
of bugs specific to compilers and encountered during development were those
related to incorrect generation of bytecode from IR, and wrong mappings
between source code or AST nodes and bytecode caused by compiler opti-
mizations.6 Debugging such bugs just by reading code or using generic de-
buggers and inspectors is a difficult endeavor as the information needed (i.e.,
the mapping between source code, AST nodes, IR and bytecode) is highly
domain-specific and not present in these tools by default. To make this in-
formation explicit we extended several development tools together with the
Opal team while Opal itself was being developed.

Moldable Inspector extensions

In Pharo methods are represented as instances of the CompiledMethod class,
and they hold the corresponding bytecode. Inspecting the attributes of a
CompiledMethod object in a generic object inspector only gives details about
the format in which bytecode is represented (header, literals, trailer), and
shows the numeric code of the bytecode. For example, in Figure 3a we can
see that the inspected method has 4 literals, and the second bytecode stored
at index 22 has the code 112. This provides no insight into what the ac-
tual bytecode does, the source code of the method, the AST, the IR, or the
mapping between these representations. To address these issues we gradually
attached several custom views to CompiledMethod and SymbolicBytecode ob-

3 http://www.smalltalkhub.com/#!/~Pharo/Opal
4 http://pharo.org
5 http://pharo.org/news/pharo-3.0-released
6 pharo.fogbugz.com/f/cases/14606, pharo.fogbugz.com/f/cases/12887,

pharo.fogbugz.com/f/cases/13260, pharo.fogbugz.com/f/cases/15174

http://www.smalltalkhub.com/#!/~Pharo/Opal
http://pharo.org
http://pharo.org/news/pharo-3.0-released
pharo.fogbugz.com/f/cases/14606
pharo.fogbugz.com/f/cases/12887
pharo.fogbugz.com/f/cases/13260
pharo.fogbugz.com/f/cases/15174

12 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

(a) (b)

(c)

Fig. 3 Using the Moldable Inspector to visualize compiled code: (a) The Raw view shows

the implementation of the object; (b) The AST view shows the AST from which the code
was compiled; (c) The mapping between bytecode and source code can be explored by

selecting bytecodes in the Bytecode view.

jects: a human-friendly representation of the bytecode (Figure 3c, left side),
the source code of the method, the AST (Figure 3b), and the IR. Using
the bytecode view, the developer can see that the bytecode at index 22 cor-
responds to pushing self7 onto the top of the stack. To show the mapping
between bytecode and source code, whenever a bytecode is selected a new
view is opened to the right showing the source code of the method and high-
lighting the code corresponding to the selected bytecode (Figure 3c); this
relies on the ability of the inspector to display two or more objects at once.

Extensions to the Moldable Inspector are constructed using code snippets
that return graphical objects. We provide an internal domain-specific lan-
guage (i.e., a fluent API) that can be used to directly instantiate several types

7 self represents the object that received the current message; this in Java.

Moldable Tools for Object-oriented Development 13

(a) (b)

(c)

Fig. 4 Searching through bytecode using Moldable Spotter: (a) searching for accesses
to nil; (b) searching for instructions accessing temporary variables; (c) When selecting a

bytecode the mapping with the source code is shown.

of basic graphical objects such as list, tree, table, text and code; any other
graphical object from Pharo can also be used in an extension. Extensions
are then attached to objects by defining within their classes methods that
construct those extensions and marking them with a predefined annotation.
For example, lines 1–8 show the code for creating the AST view displayed in
Figure 3b. Using this approach development tools can ask objects for their
graphical representations.

1 gtInspectorASTIn: aComposite
2 <gtInspectorPresentationOrder: 35>
3 aComposite tree
4 rootsExpanded;
5 title: 'AST';
6 display: [:aMethod | aMethod ast];
7 children: [:aNode | aNode children];
8 format: [:aNode | aNode gtPrintString]

14 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

Moldable Spotter extensions

Apart from inspecting compiled code, especially when compiling long meth-
ods, common tasks consist in locating certain types of bytecode instructions
(e.g., pop, return), message sends (e.g., send: printString), or accesses to literal
values (pushLit: Object). A generic tool to search through source code or ob-
ject state does not provide this type of functionality. To support these tasks
we attached to CompiledMethod objects a custom search (lines 9–15) through
the human-friendly representation of bytecode previously introduced. Creat-
ing extensions for Moldable Spotter follows the same principle as in the case
of the Moldable Inspector; only a different API and annotation are used. As a
result, development tools can also ask objects which domain-specific searches
they support.

9 spotterForBytecodesFor: aStep
10 <spotterOrder: 15>
11 aStep listProcessor
12 title: 'Bytecode';
13 allCandidates: [self symbolicBytecodes];
14 itemName: #printString;
15 filter: GTFilterSubstrings

This extension supports all the aforementioned searches as well as others,
such as looking for when a constant is pushed to the stack (Figure 4a) or
finding all instructions that access temporary variables (local variables and
method parameters; Figure 4b). After finding a bytecode the developer can
open it in the inspector or directly spawn the view showing the mapping to
source code in the search tool (Figure 4c).

Moldable Debugger extensions

One cannot easily use source-level debuggers to reason about bytecode. De-
bugging actions in these debuggers normally skip over multiple bytecode
instructions. For example, stepping into a message send with multiple pa-
rameters skips over all push instructions that place the required parameters
on the stack. The same issue arises when developing compiler plugins that
alter the default bytecode generated for a given instructions (e.g., slots can
generate custom bytecode for reading and writing object attributes [42]).

As a use case illustrating this problem consider a class that uses a boolean
slot. A boolean slot occupies a single bit of a (hidden) integer slot that is
shared by all classes of a single hierarchy. If multiple classes within the same
hierarchy introduce boolean slots, they will be efficiently mapped to this
shared integer slot. This is however transparent to users who can use the
attribute normally (in the method from Figure 5a isHorizontal is defined as
a boolean slot). Although transparency is useful when using slots, when de-

Moldable Tools for Object-oriented Development 15

(a) (b)

Fig. 5 Debugging a boolean slot: (a) Developers cannot use a generic debugger to access

the bytecode generated by the boolean slot; (b) An extension to the debugger shows the
bytecode of the current method, and supports stepping at the bytecode level; this gives

direct access to bytecode generated by the boolean slot.

bugging the actual slot objects, one needs access to the bytecode generated
by the slot. This is not available in a generic debugger.

To facilitate bytecode debugging, in this and other situations, we developed
an extension to the Pharo debugger that gives direct access to the bytecode
and supports stepping through the execution of a program one bytecode in-
struction at a time. Creating a custom debugger from the Moldable Debugger
is not as straightforward as in the case of the previous two tools. In the current
implementation extensions are created by subclassing predefined classes for
customizing the user interface and logic of the debugger. For this extension we
needed to create a custom user interface by subclassing DebuggingView, and
a custom debugging action by creating a subclass of DebugAction (Figure 6).
The total cost of this extension is 200 lines of code. The same debugging
scenario is shown in Figure 5b using this extension. Now the developer can
see and interact with the actual bytecode generated by the boolean slot.

5.2 PetitParser

PetitParser is a framework for creating parsers, written in Pharo, that makes
it easy to dynamically reuse, compose, transform and extend grammars [30].
A parser is created by specifying a set of grammar productions in one or more
dedicated classes. To specify a grammar production a developer needs to: (i)

16 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

DebugAction

DebugSession

StepOverBytecode

DebuggingView

Bytecode
DebuggingView

<loads>

Fig. 6 The structure of a custom extension for debugging bytecode. The extension pro-

vides a custom user interface and a debugging action for stepping over bytecode instruc-
tions. DebugSession provides basic functionality for supporting debugging and does not

need to be extended.

(a) (b)

Fig. 7 Using Moldable Inspector to visualize a parser object: (a) The Raw view shows

how the parser is implemented; (b) The Named tree view shows only the structure of the
grammar using a tree view.

create a method that constructs and returns a parser object for that part of
the grammar; (ii) define in the same class an attribute having the same name
as the method.

PetitParser is a framework meant to be used by many developers, other
than just its creators, to specify parsers. As the specification of a parser con-
sists of classes and methods, parsers can be developed only using generic
development tools, like code editors and debuggers. This raises some prob-
lems: the specification of the parser is used to instantiate at run-time a tree
of primitive parsers (e.g., choice, sequence, negation); this tree is then used
to parse the input. Developers debugging a parser need to manually link
primitive parsers to the grammar production that generated them. Adding,
renaming and removing productions requires working with both a method
and an attribute having the same name.

To ease the creation of parsers the PetitParser developers initially built a
custom code editor that allowed the creators of a parser to just work in terms
of grammar productions instead of attributes and methods. This only covers
part of the problem. To further improve the development and debugging

Moldable Tools for Object-oriented Development 17

Fig. 8 Using Moldable Spotter to search for productions containing the word ‘hex’ in a

parser for Java code.

of parsers we created, together with the current maintainers of PetitParser,
extensions for several other development tools. These development tools were
built after the release of PetitParser, during its maintenance cycles.

Moldable Inspector extensions

As previously mentioned actual parsers are instantiated as objects. Viewing
these objects using a generic object inspector only shows how they are im-
plemented and gives no immediate insight into the structure of the parser.
For example in Figure 7a, showing the attributes of a parser for arithmetic
expressions, the structure of the underlying grammar is not clearly evident
from the inspected objects. To provide this information directly in the in-
spector we attached to parser objects views that show the tree structure of
the grammar using other representations. Figure 7b contains a view showing
the structure of the grammar using a tree list.

Moldable Spotter extensions

Parser classes can contain also other methods and attributes apart from those
used to model grammar productions. When using a method or attribute
search to look for a production these extra methods and attributes can re-
turn unrelated results. To avoid this we extended the search infrastructure
from Pharo by attaching to classes representing parsers, searches that work
at the level of grammar productions (lines 16–27). As this search should only
be applicable to classes modeling parsers, an activation predicate checks this
explicitly (lines 26–27). Attaching this search to an object requires an en-
vironment to also model code entities (e.g., methods, classes, annotations)
as objects. Figure 8 illustrates a scenario in which a developer searches in a
parser for Java code for productions that contain the word ‘hex’.

18 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

16 spotterForProductionsFor: aStep
17 <spotterOrder: 10>
18 aStep listProcessor
19 title: 'Productions';
20 allCandidates: [:aParserClass |
21 aParserClass productionMethods];
22 candidatesLimit: 5;
23 itemName: [:aProduction | aProduction selector];
24 filter: GTFilterRegex;
25 itemFilterName: [:aProduction| aProduction selector];
26 when: [:aParserClass |
27 aParserClass inheritsFrom: PPCompositeParser];

Moldable Debugger extensions

Debugging a parser using a generic debugger also poses challenges. One the
one hand, generic debuggers only provide debugging actions and breakpoints
at the level of source-code instructions (e.g., step over instruction). On the
other hand, they neither display the source code of grammar productions
nor do they provide easy access to the input being parsed. This is evident in
Figure 9a, which shows a debugger opened on a PetitParser parser for Java
code: the stack trace shows only parseOn: methods belonging to primitive
parsers; to determine how much parsing has advanced one needs to use the
inspector to locate the input stream and the current position in the stream,
and then manually determine the character corresponding to that position in
the stream.

To overcome these issues, other tools for working with parser generators
provide dedicated domain-specific debuggers (e.g., ANTLR Studio, an IDE
for the ANTLR [1]). In the case of PetitParser we developed a custom exten-
sion for the debugger (Figure 9b). First, this extension offers debugging oper-
ations at the level of the input (e.g., setting a breakpoint when a certain part
of the input is parsed) and of the grammar (e.g., setting a breakpoint when
a grammar production is exercised). Second, it provides a dedicated user
interface for the debugger that highlights the grammar productions in the
stack, shows information about a selected grammar production (e.g., source
code, visual representation), shows the input being parsed, and highlights
how much parsing has advanced in the input stream. Third, this extension
is applicable only when the run-time stack contains a call to a parser object.
Creating this extension followed the same approach as for Opal. We fur-
ther reused several custom extensions already provided by PetitParser, like a
graph view showing the structure of a grammar production (Figure 9b), and
functions for computing the first and follow sets for a grammar production.
In the end this debugger required 600 lines of code (excluding the aforemen-
tioned extensions). It required more code than for the Opal debugger mainly
because it provides more custom debugging actions.

Moldable Tools for Object-oriented Development 19

(a) (b)

Fig. 9 Debugging a parser: (a) A generic debugger has no knowledge about parsing and
cannot provide information and debugging actions related to the parser grammar or the

input stream; (b) An extension for the Moldable Debugger showing parsing related in-

formation and providing debugging actions at the level of the grammar and the input
stream.

6 Discussion

In this section we discuss the applicability of moldable tools for other appli-
cation domains and IDEs, and emphasize future challenges.

6.1 Applicability

Section 5 presented two examples showing how to improve reasoning about
applications by extending development tools. The chosen examples cover a
compiler and a parser. We also applied moldable development to other types
of applications from various domains: Glamour [6] (a framework for creating
data browsers based on ideas from reactive programming), FileSystem [5] (a
library for interacting with file systems), MessageTally (a library for profil-
ing code), and Metacello [5] (a package management system), etc. Developers
of other libraries related to Pharo also started to create and provide exten-
sions, especially for the Moldable Inspector and Moldable Spotter, as part of
their releases. Examples of such libraries include Zinc8, a framework to deal
with the HTTP networking protocol, and Roassal [2], an engine for scripting
visualizations.

8 http://zn.stfx.eu

http://zn.stfx.eu

20 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

Section 5 also shows that by adapting development tools comprehension
can be improved from multiple perspectives: in the case of Opal, improving
tools helps the developers of Opal to better reason about their system and
fix bugs faster; in the case of PetitParser, improving tools does not directly
help the developers of PetitParser itself but rather developers that use it to
create and evolve parsers.

For the two examples presented here, as well as in other situations, as
discussed in Section 3.1, developers do build tools to help them in their ac-
tivities. Nevertheless, in many cases these tools are being built and used
outside of the main development environment. Through moldable develop-
ment we aim to encourage developers to adapt development tools to their
application domains.

6.2 Moldable Tools in Other Languages

Currently we are using Pharo as an environment for exploring tool building,
however, there is no conceptual limitation that ties moldable development
and moldable tools to Pharo. Indeed, Pharo offers expressive introspection
capabilities that simplify the creation of tools like debuggers and inspectors.
Nevertheless, we anticipate no technical limitations that would make it dif-
ficult to provide moldable tools for other programming languages and IDEs.
Mainstream IDEs, like Eclipse or IntelliJ, provide multiple customization pos-
sibilities (e.g., plug-ins, extensions and extension points, perspectives) that
can be leveraged to support moldable tools.

One key requirement for moldable tools is that the application entities
that the tools are to become aware of must be modeled as run-time enti-
ties. Such entities include not only domain objects, but also other software
entities such as packages, classes, methods, annotations, files, source code,
bug reports, documentation, examples, repositories, configurations, etc. Cus-
tom extensions can then be uniformly attached to domain objects, source
code entities and external resources. Pharo provides direct support for this
requirement as all code entities are modeled as objects. Modern IDEs also
provide an object-oriented model for representing code and project related
data (e.g., JDT in Eclipse). Hence, we do not view this aspect as a limitation
in porting moldable tools to other IDEs.

6.3 Future challenges

Until now we have explored moldable development and moldable tools by
investigating how to incorporate domain concepts into several development
tools. Nevertheless, these development tools do not live in isolation, but are

Moldable Tools for Object-oriented Development 21

integrated in an IDE. IDEs contain many other tools that need to interact and
work together. As more tools offer the possibility to create extensions, these
extensions will need to be synchronized. This raises the need for a moldable
environment that can adapt tools to domains in a uniform and consistent
way.

Moldable development is based on developers evolving moldable tools dur-
ing the software development process. Hence, as the application evolves,
changes in the application can lead to changes in the created tools. This
requires a more thorough methodology to keep domain-specific extensions
synchronized with the actual applications.

7 Related work

There exists a large body of research that investigates tool building with
the aim of improving program comprehension. In this section we restrict our
focus to approaches that target development tools. We classify and discuss
related work in this area based on how development tools are created.

7.1 Automatic generation of tools

Early examples of adapting development tools consisted in generating pro-
jectional editors based on a language specifications (e.g., ALOE [22], The
Synthesizer Generator [31]). They were followed by more complex develop-
ment environments targeting a wider range of language specifications. The
Gandalf project, for example, extends ALOE with support for version con-
trol with the goal of “permitting environment designers to generate families
of software development environments semiautomatically without excessive
cost” [14]. Meta Environment [18] generates editors and TIDE [41] generates
debuggers for languages defined using ASF+SDF. LISA [15] generates a wide
range of tools for visualizing program structures and animating algorithms
for languages defined using attribute grammars. The Xtext9 project from
Eclipse can generate complex text editors, while MPS10 provides dedicated
projectional editors. These examples cover only a small part of solutions
that generate development tools from a formal language specification. Unlike
them moldable development through moldable tools focuses on the creation
of tools where a language specification is missing. The example discussed here
is object-oriented programming where applications can be expressed in terms
of an object model that do not require a formal specification.

9 http://www.eclipse.org/Xtext/
10 https://www.jetbrains.com/mps/

http://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/

22 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

Based on these solutions for building development tools, several approaches
were proposed that focus on improving program comprehension by improving
the language. An example is Generic Tools, Specific Languages [43]. This ap-
proach focuses on first creating domain-specific languages for an application
and then adapting development tools to those languages. An instance of this
approach is mbeddr11, an extensible set of integrated languages for embed-
ded software development that supports tools like projectional editors [44]
and debuggers [28]. Another example is Helvetia, an extensible system for
embedding language extensions into an existing host language. Helvetia en-
ables extensions of the syntax of the host language in a way that does not
break development tools like debuggers and compilers. These approaches aim
to improve program comprehension by first improving the programming lan-
guage and then adapting development tools to those languages. Moldable
development focuses on improving the tool rather than the language.

7.2 Manual creation of tools

Apart from automatic generation of development tools, a different direction
consists in enabling developers to manually adapt development tools or create
new ones. This direction is at the core of several live environments that blur
the line between applications and IDEs. For example, within a Smalltalk-
80 [13] system there is no distinction between the application code and the
code of the system (e.g., compiler, parser, IDE, development tools). Devel-
opers can access and modify the code of the IDE in the same way as they do
their own application code. In Self [40], a prototype-based system, develop-
ers evolve an application by only interacting with objects. Furthermore, Self
draws no system-level distinction between using an application and chang-
ing or programming it [36]. Both actions are performed by manipulating the
state and behavior of objects. Nevertheless, while these environments do not
directly support cheap and context-aware tooling, they provide a solid foun-
dation for tool building.

Modern IDEs, like Eclipse, IntelliJ or VisualStudio, enable developers to
customize their functionality using plug-ins, however, developing a new plu-
gin is not a straightforward activity. Through moldable tools we aim to sig-
nificantly reduce this effort. Several text editors, like Emacs and Vi, also
have a direct focus on extensibility. Vi is built on the idea of command com-
posability: it provides a set of minimalist commands that can be composed
together [16]. Emacs allows developers to cleanly add new commands [37];
unlike Vi it targets more monolithic commands for special-purpose activities.

To support the creation of sophisticated development tools, OmniBrowser [4]
relies on an explicit meta-model. To create a new development tool develop-
ers need to specify the domain model of the tool as a graph and indicate

11 http://mbeddr.com/

http://mbeddr.com/

Moldable Tools for Object-oriented Development 23

the navigation paths through the graph. JQuery [11] supports the creation
of various code browsers through a declarative language that extracts and
groups code related data. A visual approach to building development tools is
proposed by Taeumel et al. [39]: developers create new tools by visually com-
bining concise scripts that extract, transform and display data. They show
that their solution supports the creation of tools like code editors and debug-
gers with a low effort. Like moldable tools, these approaches also promote
the creation of custom development tools to improve comprehension.

8 Conclusions

We have investigated the issue of navigating between domain concepts and
their implementation in the context of object-oriented applications. We ar-
gued that one solution for improving this navigation and also reducing the re-
liance on code reading during program comprehension is to enable developers
to evolve their development tools alongside their applications. We proposed
moldable development as an approach for achieving this goal. Through two
use cases we showed that navigation can be improved if developers persevere
in customizing their tools.

Moldable development poses a predicament as developers have to invest
time and effort in customizing development tools. Nevertheless, this can make
considerable economical sense, if the cost of adapting tools outweighs the ef-
fort required to reason about applications using generic and disconnected
tools. To reduce the cost of creating domain-specific extensions we proposed
moldable tools. Moldable tools enable customization through fine-grained
plug-ins, and they support developers in locating applicable plug-ins. We
showed that by attaching extensions to objects and providing internal APIs
for the creation of extensions, the cost can be low even when adapting com-
plex tools.

Moldable development also raises challenges related to how to enable
meaningful customizations in development tools, how to better incorporate
them in the software development cycle, and how to design complete inte-
grated development environments that support this approach, rather than
just individual tools. We are actively pursuing these challenges by analyz-
ing how developers use and extend moldable tools [21] and exploring how to
better incorporate visualizations into tools [12].

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Analysis” (SNSF project No.

24 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

200020-162352, Jan 1, 2016 - Dec. 30, 2018). We also thank Claudio Corrodi
for his corrections and improvements to the final draft.

References

1. ANTLR – debugging ANTLR grammars using ANTLR Studio, accessed June 3, 2016.
http://www.placidsystems.com/articles/article-debugging/usingdebugger.htm.

2. V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Agile visualization with

Roassal. In Deep Into Pharo, pages 209–239. Square Bracket Associates, Sept. 2013.
3. K. Beck. Simple Smalltalk testing: With patterns. www.xprogramming.com/testfram.

htm.

4. A. Bergel, S. Ducasse, C. Putney, and R. Wuyts. Creating sophisticated development
tools with OmniBrowser. Journal of Computer Languages, Systems and Structures,

34(2-3):109–129, 2008.
5. N. Bouraqadi, L. Fabresse, A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Sockets.

In Deep Into Pharo, page 21. Square Bracket Associates, Sept. 2013.

6. P. Bunge. Scripting browsers with Glamour. Master’s thesis, University of Bern, Apr.
2009.

7. A. Chiş, M. Denker, T. Gı̂rba, and O. Nierstrasz. Practical domain-specific debuggers

using the moldable debugger framework. Computer Languages, Systems & Structures,
44, Part A:89–113, 2015. Special issue on the 6th and 7th International Conference

on Software Language Engineering (SLE 2013 and SLE 2014).

8. A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel. Exempli-
fying moldable development. In Proceedings of the 1st Edition of the Programming

Experience Workshop (PX 2016), page to appear, 2016.

9. A. Chiş, T. Gı̂rba, and O. Nierstrasz. Towards moldable development tools. In Pro-
ceedings of the 6th Workshop on Evaluation and Usability of Programming Languages

and Tools, PLATEAU ’15, pages 25–26, New York, NY, USA, 2015. ACM.
10. A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel. The Moldable Inspector. In Proceed-

ings of the 2015 ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, Onward! 2015, pages 44–60, New York,
NY, USA, 2015. ACM.

11. K. De Volder. JQuery: A generic code browser with a declarative configuration lan-

guage. In Proceedings of the 8th International Conference on Practical Aspects of
Declarative Languages, PADL’06, pages 88–102, Berlin, Heidelberg, 2006. Springer-

Verlag.

12. T. Gı̂rba and A. Chiş. Pervasive Software Visualizations. In Proceedings of 3rd IEEE
Working Conference on Software Visualization, VISSOFT’15, pages 1–5. IEEE, Sept.

2015.

13. A. Goldberg. Smalltalk 80: the Interactive Programming Environment. Addison Wes-
ley, Reading, Mass., 1984.

14. A. N. Habermann and D. Notkin. Gandalf: Software development environments. IEEE
Transactions on Software Engineering, 12(12):1117–1127, 1986.

15. P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu. Automatic
generation of language-based tools using the LISA system. Software, IEE Proceedings
-, 152(2):54–69, 2005.

16. W. Joy. An introduction to display editing with Vi. In In UNIX User’s Manual

Supplementary Documents,. USENIX Association, 1980.
17. M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for IDEs. In AOSD

’05: Proceedings of the 4th international conference on Aspect-oriented software de-
velopment, pages 159–168, New York, NY, USA, 2005. ACM Press.

www.xprogramming.com/testfram.htm
www.xprogramming.com/testfram.htm

Moldable Tools for Object-oriented Development 25

18. P. Klint. A meta-environment for generating programming environments. ACM Trans-

actions on Software Engineering and Methodology (TOSEM), 2(2):176–201, 1993.
19. A. Ko, B. Myers, M. Coblenz, and H. Aung. An exploratory study of how develop-

ers seek, relate, and collect relevant information during software maintenance tasks.

Software Engineering, IEEE Transactions on, 32(12):971 –987, Dec. 2006.
20. A. J. Ko, H. Aung, and B. A. Myers. Eliciting design requirements for maintenance-

oriented IDEs: a detailed study of corrective and perfective maintenance tasks. In

ICSE ’05: Proceedings of the 27th international conference on Software engineering,
pages 125–135, 2005.

21. J. Kubelka, A. Bergel, A. Chiş, T. Gı̂rba, S. Reichhart, R. Robbes, and A. Syrel. On
understanding how developers use the Spotter search tool. In Proceedings of 3rd IEEE

Working Conference on Software Visualization - New Ideas and Emerging Results,

VISSOFT-NIER’15, pages 145–149. IEEE, Sept. 2015.
22. R. I. Medina-Mora. Syntax-directed Editing: Towards Integrated Programming Envi-

ronments. Ph.D. thesis, Carnegie Mellon University, 1982. AAI8215892.

23. R. Minelli, A. M. and, and M. Lanza. I know what you did last summer: An in-
vestigation of how developers spend their time. In Proceedings of the 2015 IEEE

23rd International Conference on Program Comprehension, ICPC ’15, pages 25–35,

Piscataway, NJ, USA, 2015. IEEE Press.
24. R. Minelli, A. Mocci, R. Robbes, and M. Lanza. Taming the IDE with fine-grained

interaction data. In Proceedings of ICPC 2016 (24th International Conference on

Program Comprehension), page to appear, 2016.
25. G. C. Murphy, M. Kersten, M. P. Robillard, and D. Čubranić. The emergent structure

of development tasks. In Proceedings of the 19th European Conference on Object-
Oriented Programming, ECOOP’05, pages 33–48, Berlin, Heidelberg, 2005. Springer-

Verlag.

26. O. Nierstrasz. The death of object-oriented programming. In P. Stevens and A. Wa-
sowski, editors, FASE 2016, volume 9633 of LNCS, pages 3–10. Springer-Verlag, 2016.

27. J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE

Computer, 31(3):23–30, Mar. 1998.
28. D. Pavletic, M. Voelter, S. Raza, B. Kolb, and T. Kehrer. Extensible debugger frame-

work for extensible languages. In J. A. de la Puente and T. Vardanega, editors, Reliable

Software Technologies – Ada–Europe 2015, volume 9111 of Lecture Notes in Computer
Science, pages 33–49. Springer International Publishing, 2015.

29. R. Pawson. Naked Objects. Ph.D. thesis, Trinity College, Dublin, 2004.

30. L. Renggli, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Practical dynamic grammars
for dynamic languages. In 4th Workshop on Dynamic Languages and Applications

(DYLA 2010), pages 1–4, Malaga, Spain, June 2010.
31. T. Reps and T. Teitelbaum. The synthesizer generator. SIGSOFT Softw. Eng. Notes,

9(3):42–48, Apr. 1984.

32. A. Riel. Object-Oriented Design Heuristics. Addison Wesley, Boston MA, 1996.
33. T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional develop-

ers comprehend software? In Proceedings of the 2012 International Conference on

Software Engineering, ICSE 2012, pages 255–265, Piscataway, NJ, USA, 2012. IEEE
Press.

34. J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering questions during a
programming change task. IEEE Trans. Softw. Eng., 34:434–451, July 2008.

35. E. K. Smith, C. Bird, and T. Zimmermann. Build it yourself! Homegrown tools in

a large software company. In Proceedings of the 37th International Conference on

Software Engineering. IEEE – Institute of Electrical and Electronics Engineers, May
2015.

36. R. B. Smith, J. Maloney, and D. Ungar. The Self-4.0 user interface: manifesting
a system-wide vision of concreteness, uniformity, and flexibility. SIGPLAN Not.,

30(10):47–60, Oct. 1995.

26 A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and A. Syrel

37. R. M. Stallman. Emacs the extensible, customizable self-documenting display editor.

ACM SIGOA Newsletter, 2(1-2):147–156, Apr. 1981.
38. A. Syrel, A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, and S. Reichhart. Spotter: to-

wards a unified search interface in IDEs. In Proceedings of the Companion Publication

of the 2015 ACM SIGPLAN Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH Companion 2015, pages 54–55, New York, NY, USA,

2015. ACM.

39. M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and R. Hirschfeld. Interleaving of
modification and use in data-driven tool development. In Proceedings of the 2014

ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2014, pages 185–200, New York, NY, USA, 2014.

ACM.

40. D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings OOPSLA
’87, ACM SIGPLAN Notices, volume 22, pages 227–242, Dec. 1987.

41. M. van den Brand, B. Cornelissen, P. Olivier, and J. Vinju. TIDE: A generic debug-

ging framework — tool demonstration —. Electronic Notes in Theoretical Computer
Science, 141(4):161 – 165, 2005. Proceedings of the Fifth Workshop on Language De-

scriptions, Tools, and Applications (LDTA 2005) Language Descriptions, Tools, and

Applications 2005.
42. T. Verwaest, C. Bruni, M. Lungu, and O. Nierstrasz. Flexible object layouts: enabling

lightweight language extensions by intercepting slot access. In Proceedings of the 2011

ACM international conference on Object oriented programming systems languages and
applications, OOPSLA ’11, pages 959–972, New York, NY, USA, 2011. ACM.

43. M. Voelter. Generic tools, specific languages. Ph.D. thesis, Delft University of Tech-
nology, 2014.

44. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. Mbeddr: An extensible C-based pro-

gramming language and IDE for embedded systems. In Proceedings of the 3rd An-
nual Conference on Systems, Programming, and Applications: Software for Humanity,

SPLASH ’12, pages 121–140, New York, NY, USA, 2012. ACM.

45. J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal. Model-
Driven Engineering Languages and Systems: 16th International Conference, (MOD-

ELS 2013), chapter Industrial Adoption of Model-Driven Engineering: Are the Tools

Really the Problem?, pages 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

	Moldable Tools for Object-oriented Development
	Andrei Chis, Tudor Gîrba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel
	Introduction
	Moldable development, moldable tools
	Towards moldable development
	Moldable Tools in a Nutshell

	Designing moldable tools
	Enabling Domain-specific Extensions
	Specifying Domain-specific Extensions
	Context-aware Extensions

	Addressing Domain-specific Problems
	Reasoning about run-time objects
	Searching for domain-specific abstractions
	Moldable Debugger

	Adapting tools to domain objects
	Opal Compiler
	PetitParser

	Discussion
	Applicability
	Moldable Tools in Other Languages
	Future challenges

	Related work
	Automatic generation of tools
	Manual creation of tools

	Conclusions
	References

