
er

hat
A-
gid
ire-
to

h —
rks
Using Restructur ing Transformat ions to
Reengineer Object-Oriented Systems

A Position Paper on the FAMOOS Project

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richn1

Software Composition Group, University of Berne

Abstract. Applying object-oriented design methods and languages does not guarantee t
the resulting software systems will be flexible and adaptable. The industrial partners in the F
MOOS project have learned this lesson the hard way: they are now faced with large and ri
software systems that hamper them in meeting a diverse and evolving set of customer requ
ments. Object-oriented frameworks are touted as a promising solution, but it is unclear how
transform object-oriented legacy systems into frameworks. This paper proposes an approac
i.e, a methodology and tools— for re-engineering object-oriented systems towards framewo
by means ofhigh-levelandlow-level restructuring transformationsthat detect and resolve archi-
tectural and detailed design anomalies, and improve application flexibility and adaptability.

1. Authors’ address: Institut für Informatik (IAM), Universität Bern, Neubrückstrasse 10, CH-3012
Berne, Switzerland.Tel: +41 (31) 631.4430.Fax: +41 (31) 631.3965.E-mail: famoos@iam.unibe.ch.
WWW: http://iamwww.unibe.ch/~famoos/
e-
-
h
-
t-
of
—

-

-
y
s-
e
-
In
of
-

nd
p-
1 Introduction
Surprising as it may seem, many of the early
adopters of the object-oriented paradigm al-
ready face a number of problems typically en-
countered in large-scale legacy systems. In the
FAMOOS project we are confronted with mil-
lions of lines of industrial source code, devel-
oped using object-oriented design methods
and languages of the late 80s. These systems
exhibit a range of problems, effectively pre-
venting them from satisfying the evolving re-
quirements imposed by their customers.

Although object-oriented design methods
and programming languages are considered
valuable for building flexible and adaptable
systems, experience has shown that applying
these techniques in isolation is not sufficient.
This is now well-accepted in the object-ori-
ented community and the state-of-the-art en-
courages the construction offrameworks[15]
to cope with the wide variety of customer

needs and evolving requirements. A fram
work is a semi-finished application architec
ture together with a component library, whic
supports the construction of families of sys
tems for a specific problem domain. The sof
ware industry has accepted the principle
frameworks but now demands an approach
i.e, a methodology and tools— to transform
their object-oriented legacy systems into ob
ject-oriented frameworks.

This paper reports on the FAMOOS ap
proach for evolving object-oriented legac
systems into frameworks. This approach di
tinguishes between high-level problems in th
application architecture, and low-level prob
lems in the detailed object-oriented design.
both cases we are seeking to identify sets
useful restructuring transformations that re
solve architectural and design problems, a
can be used to gradually transform specific a



Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 2.

r-
d
f
m

,

-
in
se

s,

e
l
s
s
-

t-

-

plications into more flexible, framework-
based applications.

The following section presents the context
of the FAMOOS project and the case studies
on which we base our observations and
against which we will validate our work. We
then briefly introduce the readers to some ter-
minology before describing the ideas behind
the methodology and presenting the prototype
tools we are developing to aid in re-engineer-
ing. Finally, we conclude with a discussion of
related work and future directions.

2 The Case Studies
In the FAMOOS project, two industrial part-
ners (Nokia, Finland and Daimler-Benz, Ge
many) provide real-world cases to be studie
by two academic partners (University o
Berne, Switzerland and Forschungs Zentru
Informatik, Germany) with the aid of tools
supplied by the tool providers (SEMA Group
Spain and TakeFive, Austria).

The industrial partners have provided five leg
acy systems, as shown in Figure 1, written
C++ (four case studies) and Ada (one ca
study).

The five case studies are described briefly
below:

• pipeline planning: This software sys-
tem supports the planning of liquid flow
in a pipeline between many stations. The
industrial partner wants toextract de-
sign from source-code, in order to re-
duce the cost of implementing similar
systems, probably in other languages.

• user interface: This software provides
graphical representations of telecommu-
nication networks to telecom operators.
The industrial partner wants to improve
portability, facilitate the addition of

functionality and enhance tailorability
to meet the needs of different customer
all to increase the flexibilityof the soft-
ware.

• mail sorting: This is software to control
machines which sort surface mail. Th
software is highly configurable, to dea
with the different ways the customer
handle letters. The software itself i
based on an internally developed distrib
uted architecture but the industrial par
ner want toimprove the portability and
scalabilityof the system, and is consid

Figure 1 FAMOOS case studies

pipeline
planning interface sorting

network
management

mailuser space
mission

55,000 60,000

350,000

2,500,000

2,000,000

extract
design

increase portability
scalability

unbundle
application

identify
componentsflexibility

lines of code



3. Using Restructuring Transformations to Reengineer Object-Oriented Systems

es
-
-

e
ng
d
t-
-
l

ral
ls
g

n

x-
t
d

-
e
s.

-
b-
re
-

to

nt

s-
g

ering adopting new technology (e.g.
CORBA, Java, HTML) to achieve this.

• cellular network management: This is
a network management system for digit-
al networks. The main goal of the re-en-
gineering project is tounbundle the ap-
plication, i.e. split the system into sub-
products that can be developed and sold
separately.

• space mission management: A set of
applications that —in different combi-
nations— form systems to support the
planning and execution of space mis-
sions. The industrial partner seeks to
identify componentsin order to improve
reliability and facilitate system mainte-
nance.

During the first six months of the project,
the industrial partners made a thorough analy-
sis of each of the case studies and the kinds of
problems they face, resulting in a 60-page re-
port [28]. The document is an excellent source
of material and we summarise here its main
points as a starting point for developing our
approach.

Goals and Motivations

A first observation is that the goals and moti-
vations for re-engineering the software sys-
tems are quite diverse, yet some common
themes emerge. Two case studies mention ex-
plicitly that they want tounbundlethe soft-
ware system into subsystems that can be
tested, delivered and marketed separately.Im-
proving performanceis a goal of two case
studies; two name it as a potential problem
once the system is transformed into a frame-
work. Two case studies stateporting to other
user-interface platforms an explicit target; one
case study mentions it as a desirable aim but
hard to achieve with the current architecture.
One case study statesdesign extractionas
their primary goal, although all other case
studies mention this as a required step in doc-
umenting the system. One case study specifies

exploitation of new technologyas a solution to
the problem of scalability and portability and
this theme recurs with two other case studi
where the industrial partner would like to ex
ploit new features of the programming lan
guage.

The industrial partners also specify th
problems they see as obstacles to meeti
these goals and to arriving at more flexible an
maintainable code. Problems with the sof
ware system occur at different levels of granu
larity and we group these as high-leve
problems and low-level problems.

High-level Problems

These problems are perceived as the cent
issues in achieving the re-engineering goa
and the industrial partners accept that solvin
these problems will require significant huma
intervention.

• insufficient documentation: All of the
case studies face the problem of non-e
istent, unsatisfactory or inconsisten
documentation. Tools are require
which would help to generate module
interfaces, maintain existing documen
tation and visualise the static structur
and dynamic behaviour of their system

• lack of modularity: Four of the five case
studies suffer from a high degree of cou
pling between classes / modules / su
systems that hampers further softwa
development (compilation, mainte
nance, versioning, testing). A solution
will involve metrics to help detect such
dependencies and refactoring tools
help in resolving them.

• duplicated functionality: In three of the
case studies several modules impleme
similar functionality in a slightly differ-
ent way. This common functionality
should be factored out in separate clas
es / components, but tools are missin
which help in recognizing similarities
and restructuring the source code.



Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 4.

-

er

se
-
d
e-
y
ve
se
al

+
-

s,
e

e

-
t
as
c-
in-
• improper layering: In two case studies
the user-interface code is mixed in with
the “basic” functionality, creating prob-
lems in porting to other user-interface
platforms. A general lack of separation,
or layering, is observed with regard to
other aspects (distribution, database, op-
erating system) in other case studies. In
contrast to a lack of layering, one case
study suffers from unnecessary layers.
Overly layered modules resulted from
each successive developer encapsulat-
ing the module with a new concept in-
stead of revising it. This problem needs

tool support for recognising and correct
ing such design flaws.

Low-level Problems
The code must also be “cleaned up” at a low
level, in order to improve its maintainability.
The industrial partners perceive many of the
problems as arising from the lack of familiari
ty of developers with the new object-oriente
paradigm. Furthermore, several years of d
velopment with sometimes geographicall
dispersed programming teams that ha
changed over time have exacerbated the
problems. Table 1 shows a summary of typic
problems encountered in the case studies.

• misuse of inheritance: Inheritance is
used as a way to add missing behaviour
to one superclass. This is a result of hav-
ing a method in a subclass being a mod-
ified clone of the method in the super-
class.

• missing inheritance: In some cases, soft-
ware engineers had duplicated code in-
stead of creating a subclass. In other
parts, long case statements that discrim-
inate on the value of a variable are used
instead of method dispatching on a type.

• misplaced operations: Operations on
objects were defined outside the corre-
sponding class. Sometimes this was nec-
essary in order to patch “frozen” de-
signs.

• violation of encapsulation: This was ob-
served in extensive use of the C+
friend mechanism. Also, software engi
neers rely on the strong typing of the
compiler to ensure certain constraint
leading in some cases to redundant typ
definitions which contaminate the nam
space.

• missing encapsulation: This problem
has been named “C style C++”, al
though it was observed in Ada as well. I
refers to the usage of the C++ classes
a structuring mechanism for namespa
es. Sometimes this was necessary to
terface with external systems.

Table 1: Perceived problems with Object-Oriented Concepts

pipeline
planning

mail
sorting

user
interface

cellular
network

management

space mission
management

misuse of inheritance •
missing inheritance • • •
misplaced operations •
violation of encapsulation • • • •
missing encapsulation • • • • •



5. Using Restructuring Transformations to Reengineer Object-Oriented Systems

r

a
l
a
d
-
-
a
l
s
e
-

l-

-
nt
l-

o
n.
e-
-

al
s

e
-
at

h
ce
ed

-
d

to
].
or
-
t

Summary: Low-Level and High-
Level Restructuring

From the analysis of the FAMOOS case stud-
ies, we see that a re-engineering methodology
for object-oriented legacy systems must sup-
port two conceptually separate activities. The
low-level problems listed in Table 1 must be
addressed by what we calllow-level restruc-
turing: the restructuring of the code to a new,
functionally equivalent system, by repairing
the system’s implementation to facilitate sub-
sequent maintenance. This kind of restructur-
ing has to do with problems that can be
identified quite mechanically. Many of these
problems are also encountered when restruc-
turing non-object-oriented systems to object-
oriented systems [10]. The second activity is
what we callhigh-level restructuring, and ad-
dresses the technical challenges and architec-
tural problems associated with the high-level
problems. This kind of restructuring should
also preserve the overall system behaviour,
but requires changes to enhance the system ar-
chitecture to better support future extensions.
High-level structuring is an activity which re-
quires human intervention.

In the remainder of this document, we elab-
orate on each of these activities to define a in-
itial approach for transforming object-
oriented legacy systems into framework-base
applications. But first, we provide some in-
sight in framework related techniques.

3 From Legacy Systems to
Frameworks

Whereas a specific application is designed to
meet specific application requirements, a
framework provides a generic solution that
can be easily adapted to different needs. In or-
der to reengineer applications into frame-
works, one must detect where application
specific and generic aspects are intertwined,
and attempt to separate them. This kind of
work is often required in other kinds of re-en-
gineering efforts: factoring out genericity

from application specific aspects makes fo
better adaptability and maintainability of the
software.

Frameworks
A framework is a software structure which
provides a skeletal software architecture and
library of components[15], [25]. The skeleta
architecture factors out the commonalities of
family of applications and can be specialize
for creating a specific application. The com
ponent library provides an extensible collec
tion of software artefacts addressing
particular application domain. Successfu
frameworks are usually domain specific (a
opposed to completely general), so that th
framework architecture is in a sense an em
bodiment of requirement and design know
edge for a specific application domain.

How does one acquire this application do
main knowledge ? Framework developme
and application development are often para
lel tasks. An initial framework can be used t
create a new framework-based applicatio
The specific application requirements may r
quire an extension of the framework compo
nent library and a refinement of the skelet
software architecture. A good framework thu
evolves iteratively with the acquisition of
more domain knowledge and with experienc
in building new applications. Clearly, com
pleted and running systems embody a gre
deal of domain-specific knowledge, whic
when recovered and coupled with experien
and an understanding its problems can be us
to build a framework. In FAMOOS we seek to
re-engineer applications into framework
based applications, from which full-fledge
frameworks can be derived.

Design Patterns
A design pattern provides a general solution
common software design problems[3], [11
Design patterns provide design guidelines
rules of thumb. They are important in the con
text of re-engineering for two reasons. Firs



Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 6.

-

-
is
th
ic
n
e-

o

-
e-
9].
he
t
al

s
r,
ly
n.

-
en
,

ain
p-
ic
a-

e,

-

e
u-
er-
e

e-
of
the detection of design patterns [2], or near-
design patterns in the code gives insight into
the nature of the design problem faced. Sec-
ond, design patterns provide flexible solutions
to software design problems and can aid in im-
proving the flexibility of the software[3][11].

3.1 FAMOOS Approach
In section 2 we saw that two kinds of restruc-
turing are needed to support the re-engineer-
ing of the case studies: low-level restructuring
and high-level restructuring. The former deals
with repairing what is considered bad style
(i.e., overuse of inheritance, missing inherit-
ance, misplaced operations, misuse of encap-
sulation and missing encapsulation). The
latter is concerned more with understanding
and improving the architecture of a system
(i.e., documentation, modularity, factoring
out common functionality, proper layering).
The methodological difference between the
two kinds of activities relates to their automa-
tion. Low level problems can be detected me-
chanically, though their proper resolution may
require some human intervention. High-level
restructuring, on the other hand, requires a
good deal of human expertise.

In the FAMOOS project, we defined a
three-tiered model to support both kinds of re-
structuring activities. The three levels are de-
fined as follows:

• Source View: A view of the system as
expressed in terms of programming lan-
guage mechanisms and represents a triv-
ial interpretation of the source code.

• Semantic View: A language-independ-
ent view of the system representing the
concepts present in the source code rath-
er than the language mechanisms used
to express it.

• Pragmatic Views: Semantic views are
based on the semantic view augmented
with knowledge not present of inferable
from the source code such as coding
conventions, architectural styles[29],

design patterns and application or do
main specific knowledge.

Having a layered model is not unusual in re
engineering. The model presented in[10]
similar to ours and reflects the need for bo
bottom-up (mapping from source to semant
concepts) and top-down (mapping applicatio
specific concepts to semantic concepts) r
covery in program understanding.

We now discuss how our model may help t
restructure object-oriented systems.

Low-Level Restructuring

In the FAMOOS project, we see low-level re
structuring as a normalisation process, corr
sponding to the one of relational databases[
Normalizing a database schema improves t
organization of the information but does no
change the information content. Each norm
form (in particular 2NF, 3NF and BCNF) for-
malizes certain desirable properties in term
of various kinds of dependencies. Moreove
after normalization the schema more clear
reflects the semantics of the problem domai

Correspondingly, our semantic view focus
es on different kinds of dependencies betwe
“primitive” object-oriented concepts (classes
methods and state). Once we detected cert
patterns of dependencies (by defining the a
propriate recognizers [12]) in the semant
view, we can apply some restructuring oper
tion (typically class refactoring [14]) to re-
solve the associated problem in the sourc
this way “normalising” the class hierarchy.

Partial dependencies between parts of in
heritance tree and clients(i.e., different cli-
ents only use different parts of the inheritanc
tree) indicate misuse of inheritance. The sol
tion is to analyse those dependencies to det
mine where the inheritance tree can b
collapsed and where it must be refactored.

A common pattern of dependencies b
tween unrelated classes or inside branches
controls statements(if , case , ...) indicate



7. Using Restructuring Transformations to Reengineer Object-Oriented Systems

-

,
e
-
r-
a

e
]

e
ul-
-

h
e-
s
r-

to
]:
ers
n

de
e
-
de,
vo-
s
l

e
on-
missing inheritance. The solution is to factor
the pattern out into another superclass.

Circular dependencies between methods
indicate at least one misplaced method [27].
The solution is to move the method to the cor-
rect class; however the dependencies of the
clients on this method must also be updated.

Circular dependencies between methods
and stateindicate violation of encapsulation.
The solution is to analyse those dependencies
to determine where the breaking of encapsula-
tion is actually needed and what should be
made public to eliminate this need.

Partial dependencies between classes(i.e.,
a client will only use part of the interface de-
fined for the class) indicates missing encapsu-
lation. The solution is to factor out each part of
that class into different classes.

High-Level Restructuring

In the FAMOOS project, we see high-level re-
structuring as a chain of design pattern trans-
formations. That is, we want to detect and
correct overly rigid architectural patterns that
hinder flexibility.

Our approach is based on the idea of anti
patterns [19] linked with corresponding reso-
lutions in design pattern form[11]. Once we
detected a certain anti-pattern (using pattern
detection techniques like described in[2]) and
apply the corresponding pattern we can tackle
aspects of the high-level problems.

Design patterns are known to form a good
basis for documenting frameworks [1][16], so
once detected or applied a pattern we made a
valuable contribution to the documentation
problem.

Most design patterns in [11] decouple im-
portant aspects (creation, structure and behav-
iour) of object interaction. Thus, design
pattern transformations can improve the mod-

ularity of a system and avoid duplicated func
tionality.

Design patterns like Observer, Bridge
Strategy[11], Layers, Pipes and Filters [3] ar
especially well suited for layered designs. Ap
plying the corresponding design pattern ope
ations incorporate a layered architecture into
software system.

Current status

At the time of writing, the FAMOOS project is
still in its initial stages. The above ideas hav
been tested in smaller experiments [24][27
but not yet on the industrial case studies.

4 Tool Support

In order to understand a software system w
regard it as essential to be able to recover m
tiple views of the software and to combine in
formation obtained from different views
[22][20][12]. Since none of the tools to which
we currently have access allow a rich enoug
set of views to be generated, we are now d
veloping a prototype tool called MOOSE a
an environment to aid in the program unde
standing and problem detection.

The architecture of MOOSE corresponds
the basic re-engineering tool architecture [4
an information base is generated using pars
and semantic analysers and this informatio
base is used to extract new views of the co
using queries, graph viewers, etc. Th
MOOSE information base explicitly repre
sents the concepts that are present in the co
e.g. classes, methods, instances, method in
cation, etc. This explicit representation allow
for manipulating the code at a higher leve
than textual editing and allows to formulat
hypotheses based on queries about the c
cepts present in the code.



Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 8.

of

e
d
e
e
n

e
-
f

-
e-

e

r-
to
-
he

c-
re
-

s-
.

l
+
-
-
ng
MOOSE is an attempt to integrates third-

party tools into a coherent whole. As an exam-
ple, we import information from the symbol
tables maintained in the Sniff+2.2.1[30] and
Concerto/Audit-CC++[5] environments and
export to public domain graph lay-out tools
(XVCG). We are also experimenting with a
wide range of analysis tools —perl-scripts,
spreadsheets, query languages, prolog infer-
ence engines, graphical displayers— to test
their applicability in re-engineering. Further-
more, we consider that a dynamic view of the
software is also important for code under-
standing and plan to integrate dynamic analy-
sis tools into MOOSE.

Mixing Static and Dynamic
Information

A static view of software is based on the
source code and consists of the classes, meth-
ods and instances which describe the soft-
ware. A dynamic view is based on the
software as it exists during execution and is
viewed in terms of instances. The two views
overlap at those instances which exist both
statically and dynamically.

The mixing of static and dynamic informa-
tion is invaluable for understanding program
structure [22]. Dynamic information must
evolve within the constraints expressed in the
static information and static information can
be understood at a coarser-grained level when
coupled with dynamic information. Mixing
both kinds of information can generate several
new views of the application. For example,
analysing the sequence of calls between ob-
jects can provide us with dependencies be-

tween classes and allows the detection
problems in the application [20].

5 Related Work
Though not much work is yet reported on th
re-engineering of large-scale object-oriente
systems, there is a growing literature on th
evolution of reusable object-oriented softwar
using refactoring transformations [14] and o
the use of design patterns in program
understanding[2]. Also, since some of th
typical problems of first generation object
oriented systems resulted from their lack o
real ‘object-orientation’, some of the ap
proaches and techniques for migrating proc
dural applications to object-oriented
languages [10], [13] are also relevant to th
FAMOOS case studies.

Many of the problems faced in re-enginee
ing object-oriented systems are common
any re-engineering effort. In particular, soft
ware understanding and design recovery. T
ManSART tool developed at MITRE offers
sophisticated source-code queries, called re
ognizers, used for understanding softwa
structure and detecting architectural fea
tures[12].

Several tools for understanding or analy
ing object-oriented applications exist
CIA++[7] and GraphLog [6] tools focus on
static information. CIA++ builds a relationa
database of information extracted from C+
code and provides different views of this in
formation. GraphLog is a visual tool for data
bases where queries are specified by drawi
graph patterns with a graphical editor. IAPR

SNiFF+2.2.1

Audit/C++

… MOOSE

spreadsheets

queries

prolog

displayers

symbol table

abstract syntax tree

Figure 2 tool architecture



9. Using Restructuring Transformations to Reengineer Object-Oriented Systems

m
eir

e
-
-
re

t

u-

-
s
-
t
k
-
nt
-
-

-
he

r-

.

-

[17] provides architectural style recognizers
based on constraint programming and design
pattern matching. These tools extract and ma-
nipulate static information. Several tools han-
dle dynamic information: GraphTrace [18]
offers animated views of graphs method invo-
cations. Object Visualizer [8] and HotWire
[21] analyse dynamic behaviour of applica-
tions and provide visual effects to point out
application anomalies or global behaviour
such as memory allocation. Such tools are in-
teresting as profiler tools and as tools for re-
verse engineering. Look [23] provides calling
views of C++ applications. Scene [20] is a tool
for the Oberon language that extracts interac-
tion diagrams from dynamic trace informa-
tion. In contrast to the tools described above
that operate on either static or dynamic infor-
mation, ProgramExplorer proposes an ap-
proach in which dynamic information is used
to enhance static information for program un-
derstanding [22]. In Program Explorer static
and dynamic information is represented as
Prolog facts derived from parsing and debug-
ging tools. These facts serve as a database on
which queries can be made to extract new ab-
stractions.

6 Conclusions and Future
Work

The case studies provided by the industrial
partners of the FAMOOS project, strongly
suggest the need for two levels of restructur-
ing: low-level transformations clean up the
source code, repairing and refining the struc-
tures and dependencies; and high-level trans-
formations resolve architectural problems.

We have identified some approaches to
low-level and high-level transformations:
low-level restructuring transformations are
based upon the detection and resolution of de-
pendencies; high-level restructuring transfor-
mations are based upon design pattern
transformations. Now that we have identified

these approaches, we can validate the
against the case studies, to investigate th
applicability on an industrial scale.

Open issues include understanding th
scalability of our approach as well as the lim
its of tool support. The scalability of the ap
proach is vital since two of the case studies a
more than two million lines of code. The limit
of tools in terms of automation is importan
since human intervention will ultimately limit
what can be accomplished rather than comp
tational power.

7 Acknowledgements
We gratefully acknowledge funding from ES
PRIT IV project #21975 and from the Swis
National Science Foundation, grant MHV21
41671.94 (to T. Richner) and project gran
2000-46947.96. We would also like to than
the partners in FAMOOS project for the inval
uable input that formed an essential ingredie
of this paper. Finally, we thank Franz Acher
mann for his helpful comments on the manu
script.

All authors contributed equally to the pa
per, as reflected in the alphabetical order of t
names.

8 References
[1] Beck, K., Johnson, R. “Patterns Generate A

chitectures”, InProceedings of ECOOP’94,
LNCS 821, 139-149, Springer Verlag, 1994

[2] Brown, K. “Design Reverse-Engineering and
Automated Design Pattern Detection in
Smalltalk”, Master Thesis, North California
State University, 1996.

[3] Buschmann, F., Meunier, R., Rohnert, H.,
Sommerland, P., Stad, M.,Pattern-Oriented
Software Architecture —A System of Pat-
terns, Whiley, 1996.

[4] Chikofsky, E.J., Cross, J.H. II, “Reverse En
gineering and Design Recovery: A Taxono-
my”, In IEEE Software Engineering,13-17,
January 1990.

[5] Concerto2/Audit-CC++, User Manual, Sema
Group, 1996.



Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 10.

-
-

-
-

.

[6] Consens, M., Mendelzon, A., Ryman, A.
“Visualizing and Querying Software Struc-
tures”. In Proceedings of the 14th Interna-
tional Conference on Software Engineering,
138–156, 1992.

[7] Grass, J.E. “Object-Oriented Design Arche-
ology with CIA++”, In Computing Systems.
vol. 5, (1), 5–67, 1992.

[8] De Pauw, W., Kimelman, D. and Vlissides,
J., “Modelling Object-Oriented Program Ex-
ecution”, InProceedings of ECOOP'94,
LNCS 821, 163–182, 1994.

[9] Elmasri, R., Navathe, S. B. “Fundamentals of
Database Systems, Second Edition”. Ben-
jamin/Cummings, 1994.

[10] Gall, H., Klösch, R., Mittermeir, R., “Object-
Oriented Re-Architecturing”, InProceedings
ESEC ‘95, LNCS 989

[11] Gamma, E., Helm, R., Johnson, R., Vlissides,
J. “Design Patterns”, Addison Wesley, Read-
ing, MA, 1995.

[12] Harris, D.R., Yeh, A.S., Reubenstein, H.B.
“Extracting Architectural Features from
Source Code”, InAutomated Software Engi-
neering. vol. 3, (1-2), 109–139, 1996.

[13] Jacobson, I and Lindström, F., “Re-engineer-
ing of old systems to an object-oriented archi-
tecture”. InProceedings of OOPSLA ‘91,
340-350, ACM Press, 1991.

[14] Johnson, R., Opdyke, W., “Refactoring and
Aggregation”. InProceedings of ISOTAS ’93
LNCS 742, Springer-Verlag, 264-278, 1993.

[15] Johnson, R., Foote, B., “Designing Reusable
Classes”, Journal of Object-Oriented Pro-
gramming, June/July, 1988

[16] Johnson, R.E., “Documenting Frameworks
using Patterns”, InProceedings of
OOPSLA’92, ACM Press, 63-76, 1992.

[17] Kazman, R., Burth, M.,”Assessing Architec-
tural Complexity”, University of Water-
loo,1995. http://www.cgl.uwaterloo.ca/
~rnkazman/assessing.ps

[18] Kleyn, M.F., Ginrich, P.C. “GraphTrace -
Understanding Object-Oriented Systems Us-
ing Concurrently Animated Views”. InPro-
ceedings of OOPSLA’88,191--204, ACM
Press, 1988.

[19] Koenig, A. “Patterns and antipatterns”. Jour
nal of Object-Oriented Programming, March
April 1995.

[20] Koskimies, K., Mossenbock, H., “Scene: Us
ing Scenario Diagrams and Active Test for Il
lustrating Object-Oriented Programs”, 366-
375, InProceedings of the 18th ICSE,1996.

[21] Laffra, C., Malhotra,A. “HotWire –A Visual
Debugger for C++”. InProceedings of USE-
NIX C++ Technical Conference. 109–
122,1994

[22] Lange, D.B., Nakamura, Y. “Interactive Vis-
ualization of Design Patterns can help in
Framework Understanding”. InProceedings
of OPSLA'95,ACM Press 1995.

[23] LOOK, Objective Software Technology Ltd.,
1 Michaelson Square, Kirkton Campus, Liv-
ingston, Scotland,1996. http://www.objec-
tivesoft.com/

[24] Meijler, T.D., Demeyer, S., Engel, R. “Mak-
ing Design Patterns Explicit in FACE”, to ap-
pear in ESEC FSE‘97 Proceedings

[25] Meijler, T.D., Nierstrasz, O., “Beyond Ob-
jects: Components”. InCooperative Informa-
tion Systems, M. Papazoglou (ed.), Academic
Press, London, to appear.

[26] Murphy, G. C.,Notkin, D. “Lightweight
Source Model Extraction”. InSIGSOFT’95
Proceedings,ACM Press 1995. Available on
the world-wide web at "http://
www.cs.ubc.ca/spider/murphy/".

[27] Nebbe R., Richner, T., “Understanding De-
pendencies”, submitted to the ECOOP ‘97
Re-engineering Workshop

[28] Riepula, M. et al. “Industrial Requirements”.
FAMOOS Project Deliverable D1.1. Confi-
dential.

[29] Shaw, M., Garlan, D., “Software Architec-
ture: Perspective on an Emerging Disci-
pline”, Prentice-Hall, 1996

[30] Sniff+2.2.1, TakeFive Software GmbH,1996


