Using Restructuring Transformations to
Reengineer Object-Oriented Systems

A Position Paper on the FAMOOS Project

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamat Richner

Software Composition Group, University of Berne

Abstract. Applying object-oriented design methods and languages does not guarantee that
the resulting software systems will be flexible and adaptable. The industrial partners in the FA-
MOOS project have learned this lesson the hard way: they are now faced with large and rigid
software systems that hamper them in meeting a diverse and evolving set of customer require-
ments. Object-oriented frameworks are touted as a promising solution, but it is unclear how to
transform object-oriented legacy systems into framewaorks. This paper proposes an approach —
i.e, a methodology and tools— for re-engineering object-oriented systems towards frameworks
by means ohigh-levelandlow-level restructuring transformatioribat detect and resolve archi-
tectural and detailed design anomalies, and improve application flexibility and adaptability.

1. Authors’ addresstnstitut fir Informatik (IAM), Universitéat Bern, Neubriickstrasse 10, CH-3012
Berne, Switzerlandlel: +41 (31) 631.4430ax: +41 (31) 631.396F-mail: famoos@iam.unibe.ch.
WWW:http://iamwww.unibe.ch/~famoos/

1 Introduction needs and evolving requirements. A frame-

Surprising as it may seem, many of the earK‘/ork is a semi-.finished applicat?on architgc-

adopters of the object-oriented paradigm iure together with a component library, which

ready face a number of problems typically erSUpports the construction of families of sys-

countered in large-scale legacy systems. In tims for a specific problem domain. The soft-

FAMOOS project we are confronted with mil-ware industry has accepted the principle of
lions of lines of industrial source code, devefframeworks but now demands an approach —
oped using object-oriented design method®, a methodology and tools— to transform

and languages of the late 80s. These systetheir object-oriented legacy systems into ob-
exhibit a range of problems, effectively preject-oriented frameworks.

venting them from satisfying the evolving re- .
quirements imposed by their customers. This paper reports on the FAMOOS ap-

Although object-oriented design methodgroach fgr evolving object-qriented Iegagy
and programming languages are consideré_}flSte_ms into framewgrks. This approach dis-
valuable for building flexible and adaptabldinguishes between high-level problemsinthe
systems, experience has shown that app|yiﬁ§pllcat|on architecture, and low-level prob-
these techniques in isolation is not sufficientems in the detailed object-oriented design. In
This is now well-accepted in the object-oriboth cases we are seeking to identify sets of
ented community and the state-of-the-art etsseful restructuring transformations that re-
courages the constructionfoAmeworkq15] solve architectural and design problems, and
to cope with the wide variety of customercan be used to gradually transform specific ap-

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 2.

plications into more flexible, framework-2 The Case Studies
based applications. In the FAMOOS project, two industrial part-

The following section presents the conteXi€rs (Nokia, Finland and Daimler-Benz, Ger-

of the FAMOOS project and the case studieLgany) provide re_al-world cases tq be S.'IUd'ed
. . two academic partners (University of
on which we base our observations an

) _)) erne, Switzerland and Forschungs Zentrum
against which we will validate our work. Welnformatik, Germany) with the aid of tools

then briefly introduce the readers to some tesupplied by the tool providers (SEMA Group,
minology before describing the ideas behin8pain and TakeFive, Austria).

the methodology and presenting the prototypg, e industrial partners have provided five leg-
tools we are developing to aid in re-engineegcy systems, as shown in Figure 1, written in
ing. Finally, we conclude with a discussion oC++ (four case studies) and Ada (one case

related work and future directions. study).
lines of code 2,500,000
2,000,000
extract increase portability
design flexibility scalability

350,000

network
management

mail
sorting

space
mission

user
interface

pipeline
planning

Figure 1 FAMOOS case studies

The five case studies are described briefly
below:

» pipeline planning: This software sys-

functionality and enhance tailorability
to meet the needs of different customers,
all to increase the flexibilityf the soft-

tem supports the planning of liquid flow
in a pipeline between many stations. The
industrial partner wants textract de-
sign from source-code, in order to re-
duce the cost of implementing similar
systems, probably in other languages.

user interface This software provides
graphical representations of telecommu-
nication networks to telecom operators.
The industrial partner wants to improve
portability, facilitate the addition of

ware.

» mail sorting: This is software to control

machines which sort surface mail. The
software is highly configurable, to deal
with the different ways the customers
handle letters. The software itself is
based on an internally developed distrib-
uted architecture but the industrial part-
ner want toimprove the portability and

scalability of the system, and is consid-

3. Using Restructuring Transformations to Reengineer Object-Oriented Systems

ering adopting new technology (e.gexploitation of new technolo@s a solution to
CORBA, Java, HTML) to achieve this. the problem of scalability and portability and
« cellular network management This is this theme recurs with two other case studies

a network management system for digitWhere the industrial partner would like to ex-
al networks. The main goal of the re-enPloit new features of the programming lan-

gineering project is tainbundle the ap- 94age.
plication, i.e. split the system into sub- The industrial partners also specify the
products that can be developed and softfoblems they see as obstacles to meeting
separately. these goals and to arriving at more flexible and
space mission managementA set of maintainable code. Problems with the soft-
ware system occur at different levels of granu-
rity and we group these as high-level
roblems and low-level problems.

applications that —in different combi-
nations— form systems to support th
planning and execution of space misP
sions. The industrial partner seeks t
identify component® order to improve

reliability and facilitate system mainte-These problems are perceived as the central
nance. issues in achieving the re-engineering goals

During the first six months of the projectand the industrial partners accept that solving

the industrial partners made a thorough anal{eSe Problems willrequire significant human
sis of each of the case studies and the kinds'8fervention.

problems they face, resulting in a 60-page re- * insufficient documentationAll of the
port [28]. The documentis an excellentsource ~ case studies face the problem of non-ex-
of material and we summarise here its main istent, unsatisfactory or inconsistent
points as a starting point for developing our documentation. Tools are required

Icl|igh-level Problems

approach. which would help to generate module
interfaces, maintain existing documen-
Goals and Motivations tation and visualise the static structure

: . . n nami haviour of their systems.
A first observation is that the goals and moti- and dynamic behaviour of their systems

vations for re-engineering the software sys- * lack of modularity Four of the five case
tems are quite diverse, yet some common Studies suffer from a high degree of cou-
themes emerge. Two case studies mention ex- PliNg between classes / modules / sub-

plicitly that they want tounbundlethe soft- systems that hampers further software
ware system into subsystems that can be development (compilation, mainte-
tested, delivered and marketed separatety. nance, versioning, testing). A solution
proving performancéds a goal of two case will involve metrics to help detect such

studies: two name it as a potential problem dependencies and refactoring tools to
once the system is transformed into a frame- Nelp in resolving them.

work. Two case studies stgpertingto other ¢ duplicated functionalityln three of the
user-interface platforms an explicittarget;one case studies several modules implement
case study mentions it as a desirable aim but similar functionality in a slightly differ-
hard to achieve with the current architecture. ent way. This common functionality
One case study statakesign extractioras should be factored out in separate class-
their primary goal, although all other case es / components, but tools are missing
studies mention this as a required step indoc- which help in recognizing similarities
umenting the system. One case study specifies and restructuring the source code.

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 4.

» improper layering In two case studies tool support for recognising and correct-
the user-interface code is mixed in with ing such design flaws.
the “basic” functionality, creating prob-
lems in porting to other user-interfacd-°W-level Problems
platforms. A general lack of separation] he code must also be “cleaned up” at a lower
or layering, is observed with regard tdevel, in order to improve its maintainability.

other aspects (distribution, database, OB’he industrial partners perceive many of these

erating system) in other case studies. Irr)]roblems as arising from the Iack_ offamlllarl-
. ty of developers with the new object-oriented
contrast to a lack of layering, one cas

aradigm. Furthermore, several years of de-
study suffers from unnecessary layerggionment with sometimes geographically
Overly layered modules resulted fro”blispersed programming teams that have
each successive developer encapsulghanged over time have exacerbated these
ing the module with a new concept inproblems. Table 1 shows a summary of typical
stead of revising it. This problem needgroblems encountered in the case studies.

Table 1. Perceived problems with Object-Oriented Concepts

o . cellular o
pipeline mail user space missiom
: ! : network
planning sorting interface management
management

misuse of inheritance .
missing inheritance . . .
misplaced operations .
violation of encapsulation
missing encapsulation °

* misuse of inheritancelnheritance is violation of encapsulationThis was ob-
used as a way to add missing behaviour served in extensive use of the C++

to one superclass. Thisis aresult of hav- friend mechanism. Also, software engi-

ng a method in asubclass_ being a moa- neers rely on the strong typing of the

ified clone of the method in the super- . . .
compiler to ensure certain constraints,

class. .
leading in some cases to redundant type

* missing inheritancdn some cases, soft- L , :
ware engineers had duplicated code in- definitions which contaminate the name

stead of creating a subclass. In other Space.
parts, long case statements that discrim-
inate on the value of a variable are used

instead of method dispatching on a type.
. . P g. P though it was observed in Ada as well. It
* misplaced operationsOperations on

objects were defined outside the corre- refers to the usage of the C++ classes as

sponding class. Sometimes this was nec- & Structuring mechanism for namespac-
essary in order to patch “frozen” de- €s. Sometimes this was necessary to in-

signs. terface with external systems.

missing encapsulationThis problem
has been named “C style C++”, al-

5. Using Restructuring Transformations to Reengineer Object-Oriented Systems

Summary: Low-Level and High- from application specific aspects makes for
Level Restructuring better adaptability and maintainability of the

From the analysis of the FAMOOS case stud°tware.

ies, we see that are-engineering methodology
. : rameworks
for object-oriented legacy systems must sup-

port two conceptually separate activities. The framework is a software structure which
low-level problems listed in Table 1 must bé_Jrowdes a skeletal software architecture and a
addressed by what we cadiw-level restruc- llorary of components[15], [25]. The skeletal
turing: the restructuring of the code to a new@rchitecture factors outthe commonalities of a
functionally equivalent system, by repairingam”y of applications and can be specialized
the system’s implementation to facilitate sup©r creating a specific application. The com-
sequent maintenance. This kind of restructupOnent library provides an extensible collec-
ing has to do with problems that can b&0n of softwgre _artefacts _ addressing a
identified quite mechanically. Many of thes@articular application domain. Successful
problems are also encountered when restrfi@meworks are usually domain specific (as
turing non-object-oriented systems to objecRPP0sed to completely general), so that the
oriented systems [10]. The second activity i§amework architecture is in a sense an em-
what we calhigh-level restructuringand ad- Podiment of requirement and design knowl-
dresses the technical challenges and archit&€lge for a specific application domain.

tural problems associated with the high-level How does one acquire this application do-
problems. This kind of restructuring shouldnain knowledge ? Framework development
also preserve the overall system behavio@nd application development are often paral-
but requires changes to enhance the systemlgttasks. An initial framework can be used to
chitecture to better support future extensionsteate a new framework-based application.
High-level structuring is an activity which re-The specific application requirements may re-
guires human intervention. quire an extension of the framework compo-
gent library and a refinement of the skeletal

In the remainder of this document, we ela Frw hitect A df k th
orate on each of these activities to define a if> v & € AICNIECUTe. AAgoodiramework thus

itial approach for transforming Object_evolves iteratively with the acquisition of

oriented legacy systems into framework-basg°® domain knowledge and with experience

applications. But first, we provide some in!n building new applications. Clearly, com-

R : pleted and running systems embody a great
sightin framework related techniques. deal of domain-specific knowledge, which

3 From Legacy Systems to when recovered ar]d c.oupled with experience
and an understanding its problems can be used

Frameworks to build a framework. In FAMOOS we seek to

Whereas a specific application is designed tg-engineer applications into framework-

meet specific application requirements, Based applications, from which full-fledged

framework provides a generic solution tharameworks can be derived.

can be easily adapted to different needs. Inor-

der to reengineer applications into framéP€sign Patterns

works, one must detect where applicatioA design pattern provides a general solutionto

specific and generic aspects are intertwinechmmon software design problems|[3], [11].

and attempt to separate them. This kind @esign patterns provide design guidelines or

work is often required in other kinds of re-enfules of thumb. They are important in the con-

gineering efforts: factoring out genericitytext of re-engineering for two reasons. First

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 6.

the detection of design patterns[2], or near- design patterns and application or do-
design patterns in the code gives insight into main specific knowledge.

concepts) and top-down (mapping application
3.1 FAMOOS Approach specific concepts to semantic concepts) re-
In section 2 we saw that two kinds of restruccovery in program understanding.
turing are needed to support the re-engineer-\\e now discuss how our model may help to
ing of the case studies: low-level restructuringestructure object-oriented systems.
and high-level restructuring. The former deals

with repairing what is considered bad stylg¢ qg\.-L evel Restructuring
(i.e., overuse of inheritance, missing inherit-

ance, misplaced operations, misuse of encdp-the FAMOOS project, we see low-level re-
sulation and missing encapsulation). Thelructuring as a normalisation process, corre-
latter is concerned more with understandir:gjond'r_‘g_to the one of relational databases[9].
and improving the architecture of a systerformalizing a database schema improves the
(i.e., documentation, modularity, factoring’r9anization of the |_nformat|on but does not
out common functionality, proper Iayering)Pha”Qe the |_nformat|on content. Each normal
The methodological difference between thfrm (in particular 2NF, 3NF and BCNF) for-
two kinds of activities relates to their automaMalizes certain desirable properties in terms
tion. Low level problems can be detected méf various kinds of dependencies. Moreover,
chanically, though their proper resolution magfter normalization the schema more clearly
require some human intervention. High_|evé|eflects the semantics of the problem domain.
restructuring, on the other hand, requires a Correspondingly, our semantic view focus-
good deal of human expertise. es on different kinds of dependencies between
In the FAMOOS project, we defined a‘primitive” object-oriented concepts (classes,
three-tiered model to support both kinds of renethods and state). Once we detected certain
structuring activities. The three levels are dgpatterns of dependencies (by defining the ap-
fined as follows: propriate recognizers[12]) in the semantic
. Source ViewA view of the system as view, we can apply some restructuring opera-
expressed in terms of programming larfion (typically class refactoring [14]) to re-

guage mechanisms and representsatrﬁﬁ've the associated problem in the source,
ial interpretation of the source code. this way “normalising” the class hierarchy.

« Semantic ViewA language-independ- Partial dependencies between parts of in-
ent view of the system representing thBeritance tree and client@.e., different cli-
concepts presentin the source code rat@ots only use different parts of the inheritance
er than the language mechanisms usé&#@e) indicate misuse of inheritance. The solu-
to express it. tion is to analyse those dependencies to deter-

. Pragmatic Views Semantic views are Mine where the inheritance tree can be
based on the semantic view augmentect?”ap%d and where it must be refactored.
with knowledge not present of inferable A common pattern of dependencies be-
from the source code such as codinggyveen unrelated classes or inside branches of
conventions, architectural styles[29]controls statementéf , case, ...) indicate

7. Using Restructuring Transformations to Reengineer Object-Oriented Systems

missing inheritance. The solution is to factoularity of a system and avoid duplicated func-
the pattern out into another superclass. tionality.

Circular dependencies between methods Design patterns like Observer, Bridge,
indicate at least one misplaced method [27$trategy[11], Layers, Pipes and Filters [3] are
The solution is to move the method to the Cogspecially well suited for layered designs. Ap-
rect class; however the dependencies of tg;ing the corresponding design pattern oper-
clients on this method must also be updatedyiong incorporate a layered architecture into a

Circular dependencies between method®ftware system.
and statandicate violation of encapsulation.
The solution is to analyse those dependencieuirrent status

to determine where the breaking of encapsula- _ . o
tion is actually needed and what should b@tthetime ofwriting, the FAMOOS projectis
made public to eliminate this need. still in its initial stages. The above ideas have

_)) been tested in smaller experiments [24][27]
P_artlal (_jependenmes betwee_n clasges, but not yet on the industrial case studies.
a client will only use part of the interface de-

fined for the class) indicates missing encapsz— Tool S t
lation. The solutionis to factor out each part o 00 uppor

that class into different classes. In order to understand a software system we
)) regard it as essential to be able to recover mul-
High-Level Restructuring tiple views of the software and to combine in-

In the FAMOOS project, we see high-level reformation obtained from different views

structuring as a chain of design pattern tranB2][20][12]. Since none of the tools to which
formations. That is, we want to detect an#e currently have access allow a rich enough
correct overly rigid architectural patterns thaget of views to be generated, we are now de-
hinder flexibility. veloping a prototype tool called MOOSE as

Our approach is based on the idea of i enywonment to aid in the_program under-
standing and problem detection.

patterns [19] linked with corresponding reso-
lutions in design pattern form[11]. Once we The architecture of MOOSE corresponds to
detected a certain anti-pattern (using pattetfe basic re-engineering tool architecture [4]:
detection techniques like described in[2]) angy information base is generated using parsers
apply the corresponding pattern we can tacklg,§ semantic analysers and this information
aspects of the high-level problems. base is used to extract new views of the code
Design patterns are known to form a goodsing queries, graph viewers, etc. The
basis for documenting frameworks [1][16], SMOOSE information base explicitly repre-
once detected or applied a pattern we madeants the concepts that are present in the code,
valuable contribution to the documentatiog g. classes, methods, instances, method invo-
problem. cation, etc. This explicit representation allows

Most design patterns in [11] decouple imfor manipulating the code at a higher level
portant aspects (creation, structure and behdan textual editing and allows to formulate
iour) of object interaction. Thus, desigrhypotheses based on queries about the con-
pattern transformations can improve the modaepts presentin the code.

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 8.

MOOSE is an attempt to integrates third-

SNiFF+2.2.1 spreadsheets

]
e C = it
abstract syntax tree ﬂ D prOIOg
8 MOOSE \\D‘ D displayers

Figure 2 tool architecture

party tools into a coherentwhole. As an examween classes and allows the detection of
ple, we import information from the symbolproblems in the application [20].

tables maintained in the Sniff+2.2.1[30] and

Concerto/Audit-CC++[5] environments andd Related Work

export to public domain graph lay-out toolsrhoyugh not much work is yet reported on the
(XVCG). We are a|so_exper|ment|ng W't_h %e-engineering of large-scale object-oriented
wide range of analysis tools —perl-scriptsgystems, there is a growing literature on the
spreadsheets, query languages, prolog infe§olution of reusable object-oriented software
ence engines, graphical displayers— to tegkjng refactoring transformations [14] and on
their applicability in re-engineering. Furtherthe yse of design patterns in program
more, we consider that a dynamic view of thgnderstanding[2]. Also, since some of the
softwqre is also important for code_ undertypica| problems of first generation object-
standing and plan to integrate dynamic analyriented systems resulted from their lack of

sis tools into MOOSE. real ‘object-orientation’, some of the ap-
.) . proaches and techniques for migrating proce-

Mixing Static and Dynamic dural applications to object-oriented

Information languages [10], [13] are also relevant to the

A static view of software is based on thdAMOOS case studies.

source code and consists of the classes, methiMany of the problems faced in re-engineer-
ods and instances which describe the sofiig object-oriented systems are common to
ware. A dynamic view is based on theany re-engineering effort. In particular, soft-
software as it exists during execution and ware understanding and design recovery. The
viewed in terms of instances. The two viewManSART tool developed at MITRE offers
overlap at those instances which exist bo#bphisticated source-code queries, called rec-
statically and dynamically. ognizers, used for understanding software

The mixing of static and dynamic informa-Structure and detecting architectural fea-
tion is invaluable for understanding progranftres[12].
structure [22]. Dynamic information must Several tools for understanding or analys-
evolve within the constraints expressed intheg object-oriented applications exist.
static information and static information carCIA++[7] and GraphLog [6] tools focus on
be understood at a coarser-grained level whetatic information. CIA++ builds a relational
coupled with dynamic information. Mixing database of information extracted from C++
both kinds of information can generate severabde and provides different views of this in-
new views of the application. For exampleformation. GraphLog is a visual tool for data-
analysing the sequence of calls between obases where queries are specified by drawing
jects can provide us with dependencies bgraph patterns with a graphical editor. IAPR

9. Using Restructuring Transformations to Reengineer Object-Oriented Systems

[17] provides architectural style recognizerthese approaches, we can validate them
based on constraint programming and desiggainst the case studies, to investigate their
pattern matching. These tools extract and mapplicability on an industrial scale.

nipulate static information. Several tools han- open issues include understanding the

dle dynamic information: GraphTrace [18kcalability of our approach as well as the lim-
offers animated views of graphs method invqts of tool support. The scalability of the ap-
cations. Object Visualizer [8] and HotWireproach is vital since two of the case studies are
[21] analyse dynamic behaviour of applicamore than two million lines of code. The limit
tions and provide visual effects to point oupf tools in terms of automation is important
application anomalies or global behaviousince human intervention will ultimately limit
such as memory allocation. Such tools are ivhat can be accomplished rather than compu-
teresting as profiler tools and as tools for reational power.

verse engineering. Look [23] provides calling

views of C++ applications. Scene [20]isatodf Acknowledgements

for the Oberon language that extracts interae\-/e gratefully acknowledge funding from ES-

tion diagrams from dynamic trace informaiDRIT IV project #21975 and from the Swiss
tion. In contrast to the tools described abovﬁational Science Foundation, grant MHV21-
that operate on either static or dynamic infor41671 94 (to T. Richner) an’d project grant
mation, ProgramExplorer proposes an apynn 46947.96. We would also like to thank
proach in which dynamic information is Usegy ¢ 4 ners in FAMOOS project for the inval-
to enhance static information for program Unyjape input that formed an essential ingredient
derstanding [22]. In Program Explorer staligy this paper. Finally, we thank Franz Acher-

and dynamic information is represented d§,nn for his helpful comments on the manu-
Prolog facts derived from parsing and debu%‘cript.

ging tools. These facts serve as a database o

which queries can be made to extract new ab-r'L‘II authors contributed equally to the pa-
stractions per, asreflected in the alphabetical order of the

names.

6 Conclusions and Future g References
Work

[1] Beck, K., Johnson, R. “Patterns Generate Ar-

. . . . chitectures”, InProceedings of ECOOP’94
The case studies provided byl the industrial LNCS 821, 139-149, Springer Verlag, 1994,
partners of the FAMOOS project, strongly o o
suggest the need for two levels of restructul?l ~ Brown. K."Design Reverse-Engineering and

. . Automated Design Pattern Detection in
ing: low-level transformations clean up the Smalltalk”, Master Thesis, North California

source code, repairing and refining the struc- State University, 1996.
tures and dependencies; and high-level trar[§T Buschmann. E.. Meunier. R.. Rohnert. H
formations resolve architectural problems. Sommerland, P., Stad, MPattern-Oriented

. - Software Architecture —A System of Pat-

We have identified some approaches to terns Whiley, 1996. y

low-level and high-level transformations: ’
ow-level and g. cve ansto . atio Sgl] Chikofsky, E.J., Cross, J.H. Il, “Reverse En-
low-level restructuring transformations ar gineering and Design Recovery: A Taxono-
based upon the detection and resolution of de- my”, In IEEE Software Engineerint3-17,

pendencies; high-level restructuring transfor- January 1990.

mations are based upon deSig_n pattefs) Concerto2/Audit-CC++, User Manual, Sema
transformations. Now that we have identified Group, 1996.

Serge Demeyer, Stéphane Ducasse, Robb Nebbe, Oscar Nierstrasz, Tamar Richner 10.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Consens, M., Mendelzon, A., Ryman, A. [19]
“Visualizing and Querying Software Struc-
tures”. In Roceedings of the 14th Interna-
tional Conference on Software Engineering
138-156, 1992. [20]

Grass, J.E. “Object-Oriented Design Arche-
ology with CIA++”, In Computing Systems
vol. 5, (1), 5-67, 1992.

[21]
De Pauw, W., Kimelman, D. and Vlissides,
J., “Modelling Object-Oriented Program Ex-
ecution”, InProceedings of ECOOP'94
LNCS 821, 163-182, 1994.

22
Elmasri, R., Navathe, S. B. “Fundamentals ot[]
Database Systems, Second Edition”. Ben-
jamin/Cummings, 1994.

Gall, H., Klésch, R., Mittermeir, R., “Object- 23]
Oriented Re-Architecturing”, IRroceedings
ESEC ‘95, LNCS 989

Gamma, E., Helm, R., Johnson, R., Vlissides,
J. “Design Patterns”, Addison Wesley, Read[—24]
ing, MA, 1995.

Harris, D.R., Yeh, A.S., Reubenstein, H.B.
“Extracting Architectural Features from
Source Code”, Iutomated Software Engi-
neering vol. 3, (1-2), 109-139, 1996.

[25]

Jacobson, | and Lindstrom, F., “Re-engineer-
ing of old systems to an object-oriented archi-
tecture”. InProceedings of OOPSLA ‘91 [26]
340-350, ACM Press, 1991.

Johnson, R., Opdyke, W., “Refactoring and
Aggregation”. InProceedings of ISOTAS '93
LNCS 742Springer-Verlag, 264-278, 1993.

Johnson, R., Foote, B., “Designing Reusablé
Classes”, Journal of Object-Oriented Pro-
gramming, June/July, 1988

[28]

Johnson, R.E., “Documenting Frameworks
using Patterns”, liProceedings of
OOPSLA'92, ACM Pres$3-76, 1992.

[29]

Kazman, R., Burth, M.,”Assessing Architec-
tural Complexity”, University of Water-
100,1995. http://www.cgl.uwaterloo.ca/
~rnkazman/assessing.ps [30]

Kleyn, M.F., Ginrich, P.C. “GraphTrace -
Understanding Object-Oriented Systems Us-
ing Concurrently Animated Views”. IRro-
ceedings of OOPSLA’88,191--204, ACM
Press, 1988.

Koenig, A. “Patterns and antipatterns”. Jour-
nal of Object-Oriented Programming, March-
April 1995.

Koskimies, K., Mossenbock, H., “Scene: Us-
ing Scenario Diagrams and Active Test for II-
lustrating Object-Oriented Programs”, 366-
375, InProceedings of the 18th ICSE96.

Laffra, C., Malhotra,A. “HotWire —A Visual
Debugger for C++". IrProceedings of USE-
NIX C++ Technical Conferencd.09—
122,1994

Lange, D.B., Nakamura, Y. “Interactive Vis-
ualization of Design Patterns can help in
Framework Understanding”. IRroceedings
of OPSLA'95ACM Press 1995.

LOOK, Objective Software Technology Ltd.,
1 Michaelson Square, Kirkton Campus, Liv-
ingston, Scotland,1996. http://www.objec-
tivesoft.com/

Meijler, T.D., Demeyer, S., Engel, R. “Mak-
ing Design Patterns Explicitin FACE”, to ap-
pear in ESEC FSE'97 Proceedings

Meijler, T.D., Nierstrasz, O., “Beyond Ob-
jects: Components”. I€ooperative Informa-
tion Systemsvl. Papazoglou (ed.), Academic
Press, London, to appear.

Murphy, G. C.,Notkin, D. “Lightweight
Source Model Extraction”. IBIGSOFT'95
ProceedingsACM Press 1995. Available on
the world-wide web at "http://
www.cs.ubc.ca/spider/murphy/".

Nebbe R., Richner, T., “Understanding De-
pendencies”, submitted to the ECOOP ‘97
Re-engineering Workshop

Riepula, M. et al. “Industrial Requirements”.
FAMOOS Project Deliverable D1.1. Confi-
dential.

Shaw, M., Garlan, D., “Software Architec-
ture: Perspective on an Emerging Disci-
pline”, Prentice-Hall, 1996

Sniff+2.2.1, TakeFive Software GmbH,1996.

