
Why Unified is not Universal
UML Shortcomings for Coping with Round-trip Engineering

Serge Demeyer, St´ephane Ducasse, and Sander Tichelaar

Software Composition Group, University of Berne
Neubrückstrasse 10, CH-3012 BERNE

fdemeyer,ducasse,tichel g@iam.unibe.ch
http://www.iam.unibe.ch/˜scg/

Abstract. UML is currently embraced as “the” standard in object-oriented mod-
eling languages, the recent work of OMG on the Meta Object Facility (MOF) be-
ing the most noteworthy example. We welcome these standardisation efforts, yet
warn against the tendency to use UML as the panacea for all exchange standards.
In particular, we argue that UML is not sufficient to serve as a tool-interoperability
standard for integrating round-trip engineering tools, because one is forced to
rely on UML’s built-in extension mechanisms to adequately model the reality
in source-code. Consequently, we propose an alternative meta-model (named
FAMIX), which serves as the tool interoperability standard within the FAMOOS
project and which includes a number of constructive suggestions that we hope
will influence future releases of the UML and MOF standards.

Keywords: meta model, unified modeling language (UML), meta-object facility (MOF),
interoperability standard, famoos information exchange (FAMIX)

1 Introduction

With the advent of UML, the progress in CASE technology has reached a next stage
of maturity. Indeed, the consensus on a common notation helps both tool vendors and
program designers to concentrate on more relevant issues than the direction in which
arrows should be drawn, or the question whether to represent classes as rectangles or
clouds.

One of these more relevant issues is the notion ofround-trip engineering: the seam-
less integration between design diagrams and source code, between modeling and im-
plementation. With round-trip engineering a programmer generates code from a design
diagram, changes that code in a separate development environment and recreates the
adapted design diagram back from the source code. The object-oriented development
processes with their emphasis on iterative development (see [1], [5], [14], [9], [8]) un-
doubtedly make round-trip engineering a relevant issue.

A second related issue that has become quite relevant is the one oftool interop-
erability. While many of the early CASE tools tried to cover the whole development
process, practice has shown that such a generic approach has trouble competing with
a series of individual specialised tools. Consequently, CASE tools are becoming more

and more open, permitting developers to assemble their favourite development environ-
ment from different tools purchased from different vendors yet co-operating via a single
interoperability standard.

The OMG has anticipated this tool interoperability evolution by encouraging and
adopting the Meta Object Facility (MOF) as a standard. The goal of the MOF is “to
provide the specification of a rich semantics to enable two systems or applications to
meaningfully share information. This goal is achievable by providing domain specific
metamodels (such as the OOAD metamodel - UML) that conform to the MOF meta-
modeling architecture.” ([6] - section 1.1.1.1 - Goals and Objectives).

In its current form, the MOF is primarily intended to serve as an exchange standard
between OOAD tools. Consequently, the first concrete exchange standard that has been
specified using the MOF concerns exchange of UML models. Yet, the increasing de-
mand for round-trip engineering features in OOAD tools will cause tool vendors to use
the built-in extension mechanism of UML to cope with more implementation oriented
data exchange.

This paper argues that UMLin stricto sensuis not sufficient as a tool-interoperability
standard for integrating round-trip engineering tools. Indeed, since UML is specifically
targeted towards OOAD, it lacks some concepts that are necessary in order to ade-
quately model source-code, in particular the concept of a “method invocation” and an
“attribute access”. Of course it is possible to extend UML to incorporate these con-
cepts, but then the protection of the standard is abandoned and with that the reliability
necessary to achieve true interoperability.

We start this paper with the requirement extraction concerning round-trip engineer-
ing tools using a well-known technique of a scenario (section 2). Afterwards we proceed
with an investigation of how to satisfy these requirements using extensions of the UML
meta model (section 3). In the section thereafter, we argue that UML extensions cannot
achieve tool interoperability (section 4) and consequently propose an alternative meta-
model named FAMIX and relate that to the MOF (section 5). Finally, we summarise the
results of this work in the conclusions (section 6).

2 A Round-trip Engineering Scenario

Since we claim that UML is not sufficient to serve as a tool-interoperability standard
for integrating round-trip engineering tools, it is necessary to be precise about what
exactly is a round-trip engineering tool and what kind of requirements it imposes on
an interoperability standard. As commonly accepted in today’s analysis practices, we
define a round-trip engineering tool and its requirements by means of ascenario.

The driving force underlying the scenario is the observation that round-trip engi-
neering tools should at least support a smooth transition between implementation and
design. Thus, it is not that we neglect analysis; it is just that most tools on the mar-
ket cover design and implementation. Note as well that at first glance the scenario may
seem a bit naive to serve in practice. Yet we have successfully applied the described tool

prototypes on a number of industrial case studies.1 As such we assure that the scenario
is bothcharacteristicfor what practitioners expect from round-trip engineering tools
andrealistic in the sense that it is applicable in the context of industrial development
processes.

2.1 Scene 1: Detecting Design Anomalies via Metrics

Carmen is part of a team developing a Geographical Information System called GEOS.
The kind of functionality required in GEOS is quite domain specific, so the project
adopted an iterative development style with C++ as the implementation language. The
development of GEOS started some eight years ago and the system is currently in its
3.7.1 release. Lately, developers have been complaining that it becomes difficult to add
functionality.

Carmen is asked to do some code reviewing to see if it is possible to improve the
GEOS class structure. Unfortunately, the source code has grown quite large (1 million
lines of code - 2837 classes) and Carmen would like some tool support to help her
identifying potential design anomalies. Therefore, she selects a metrics tool that allows
her to measure various aspects of classes (size, inheritance, cohesion, ,...) and focus
her attention on those classes where the measurements exceed certain threshold values.

Character. Carmen is the code reviewer of the team. Like all good code reviewers
she relies mainly on reading the code to form her opinion. Yet, she appreciates all tools
that help her filtering out potential problems.

Goal(s) of this Scene.This scene introduces a metric tool as one possible element
of a round-trip engineering environment. The tool depicted in this scene fits the defini-
tion of a round-trip engineering tool because the metrics are interpreted on the design
level yet are collected from the implementation. Such metric tools are very important
in an iterative development process, because they help to control and steer this process.
(See [11] for a practical treatment on how to incorporate object-oriented metrics in a
development process and [7] for an overview of the state-of-the-art in object-oriented
metrics.)

Data Model Requirements.Metric tools need to access thecompletesource code
model, as they must collect data about the whole system. As such, the schema of the
model must take special precautions concerning the memory footprint of the entities
and especially the associations in the source code model, as the sheer number of them
may be very large.2 To measure object-oriented source code, a metrics tool requires
knowledge about inheritance associations between classes and the containment associ-
ations between classes, methods and attributes. Moreover, for some of the size metrics

1 Both the tool prototypes and the case studies stem from the FAMOOS project, an ESPRIT
project whose goal it is to produce a set of reengineering techniques and tools to support the
development of object-oriented frameworks (seehttp://www.iam.unibe.ch/˜famoos/).

2 We have made the following observation concerning the growth of the number of entities and
associations in a source code model: (a) the number of methods and attributes is an order of
magnitude larges than the number of classes; (b) the number of invocations and accesses grows
almost quadratically with the number of methods. Thus, a project with 150 classes has about
1200 methods and 4000 invocations while for 700 classes this increases untill 7000 methods
and 30,000 invocations.

and all of the cohesion metrics, a tool requires knowledge about method invocations
and attribute accesses.

2.2 Scene 2: Assessing disjoint Classes via Program Visualisation

Carmen has identified one suspicious class which appears quite big, yet has very low
cohesion and a large number of subclasses. Moreover, the class is a core part of GEOS
as it is part of a bridge pattern that is used to make the GEOS objects persistent. She
believes that this class has too many responsibilities and she wants to check whether it
is possible to split the class in two separate classes. She assumes that distributing the
responsibilities over two smaller classes will make subclassing easier and thus improve
the inheritance hierarchy of the GEOS system.

To check whether the class can indeed be split, Carmen applies a special visuali-
sation tool. The tool displays a graph containing attributes and methods as nodes plus
attribute accesses and method invocations as edges. The tool has the special feature to
incorporate a graph layout heuristic that minimises the number of crossings between
edges (see Figure 1). With such a visualisation, Carmen observes two clusters in the
methods and attributes and concludes that the class may indeed be split.

Fig. 1. Visualisation of a class, i.e. the way the methods (in the bottom) access the attributes (on
the top). The two clusters indicate that the class may be split.

Character. Being a good code reviewer, Carmen never relies on a single tool to
help her assess the quality of the code. Rather, she has a whole suite of complementary
tools that she applies when the situation calls for it.

Goal(s) of this Scene.This scene has two main purposes. First, it introduces an-
other round-trip engineering tool, namely program visualisation. Visualising a program
is often interesting because it allows the human brain to study multiple aspects of a
complex structure in parallel and as such can be of great help in program understand-
ing. Consequently, a program visualisation tool like depicted in this scene is a round-trip

engineering tool because its output is interpreted at design level, yet it takes its input
from the implementation (see [13], [10], [3] for examples of program visualisation in
reverse engineering in an object-oriented context).

Second, and more importantly, this scene emphasises the need for various highly
specialised tools within round-trip engineering. Because of this variety and specialisa-
tion, it is unlikely that all these tools will be purchased from the same tool vendor, hence
the need for tool interoperability.

Data Model Requirements.Program visualisation tools are examples of the need
for designated access to portions of the source code model. Flexible integration with
the data model is crucial, as such a tool wants to visualise any kind of dependency
that is present in the source code and needs to customise the lay-out depending on the
type of dependency. Memory footprint is less an issue as only slices of the source code
must be visualised. Therefore, program visualisation tools want to stay relatively close
to a standard model, yet require minor extensions to represent additional information
concerning the type of dependency.

Program visualisation tools mainly serve to analyse dependencies between various
parts of the implementation in order to obtain a better understanding of the inner work-
ings of a system. Within object-oriented systems, dependencies stem from inheritance
associations between classes; containment associations between classes, methods and
attributes; invocation associations between methods; and access associations between
methods and attributes.

2.3 Scene 3: Redistributing Responsibilities via Refactoring

Now that Carmen has identified a class that may be split to improve the class hierarchy
of the GEOS system, she contacts Benedikt to explain him what she has discovered.
After a short discussion, Benedikt is convinced of Carmen’s proposal and he agrees to
restructure the class hierarchy accordingly.

To split the class, Benedikt uses his favourite coding tool which is able to apply a
series of low-level refactorings (such as create new class, move attribute, move method)
to accomplish the desired redistribution of responsibilities. Afterwards, Benedikt runs a
series of regression tests to see whether the split of the class did not affect the working
system.

Character. Benedikt enters the scenario, playing the role of the code warrior. Since
Benedikt is working with code daily, he uses sophisticated development tools (testing,
refactoring, browsers) to make him highly productive.

Goal(s) of this Scene.In this scene, we illustrate the notion of refactoring. A single
refactoring corresponds to a low-level semantic preserving restructuring, for instance
moving an attribute inside the class hierarchy after checking all its references, or for
instance renaming a method and patching all places where it is invoked. The idea is
to combine several low-level refactorings to improve the design of a class hierarchy,
thus refactorings fit our definition of a round-trip engineering. (See the Ph.D. work of
Opdyke for the early definitions of refactoring [12] and [16] for a description of a full-
fledged refactoring tool. Refactorings are applicable in practice, as is illustrated by [4]).

Data Model Requirements.A refactoring tool is an example of a tool that modifies
the source code, thus should know about the exact source code location of data model

entities. Since such a tool must update the corresponding data model items without
breaking any other tool relying on it, refactoring tools want to stay as close as possible
to a standard model of the source code.

To apply refactorings —be it manually or with a tool— it is necessary to check
given preconditions and often patch existing references. For instance, before moving an
attribute, one must check where this attribute is accessed. Or while renaming a method,
one must patch all places where it is invoked. Thus any tool that supports refactorings
must at least know about which methods invoke which other ones and which methods
access which attributes.

2.4 Consequences

Accepting the above scenario (sections 2.1 to 2.3) has some important consequences
concerning what to expect from a round-trip engineering tool.

– Round-trip engineering is more than a mere succession of reverse and forward en-
gineering steps. Rather, it is a succession of activities, where each activity involves
some reverse and some forward engineering aspects.Consequently, round-trip en-
gineering tools should support a tight integration between reverse and forward
engineering.

– A round-trip engineering tool is never a monolithic application. Rather, it consists
of a wide variety of specialised utilities that are applied when the situation calls
for it. Because of this variety and specialisation,it is unlikely that all tools will
be purchased from the same tool vendor, hence the need for tool interoperability
standards.

– Because round-trip engineering demands for a tight interaction between reverse
and forward engineering,the supporting tools need an adequate representation of
source code.At minimum they should incorporate the core object-oriented imple-
mentation model depicted in Figure 2. Thus they should know about (i) classes,
methods and attributes; (ii) the belongs-to relation between classes, methods and
attributes; (iii) the invocation relation between methods;3 (iv) the access relation
between methods and attributes.

3 Embedding Implementation Concepts into UML

Given the core object-oriented implementation model depicted in Figure 2, the question
is whether this can be embedded into UML. Comparing the core implementation model
with the UML meta model [17], [18] we make the following observations (summarised
in Figure 3).

(a) The UML meta model defines a large number of concepts that do not appear in the
implementation model. “Aggregation” and “Constraint” are two examples but there
are many more.

3 Note that the (method) invocation association should take polymorphism into account. This
implies that one invocation has several candidate target methods. The actual target can only be
resolved at run-time.

Fig. 2.The Core Object-Oriented Implementation Model

(b) There is a substantial overlap between the core object-oriented implementation
model and the UML meta model. With some flexibility it is possible to map “In-
heritance” onto “Generalisation” and “Class”, “Method” and “Attribute” on their
respective counterparts bearing the same name.

(c) The implementation model includes two concepts that do not map directly onto
UML equivalents. These two are “(method) Invocation” and “(attribute) Access”.

Fig. 3.Comparing the UML meta model with the Core Object-Oriented Implementation Model

Given observations (a) and (b), it should be possible to embed the core implementa-
tion model within the UML meta model, if only we find a solution for observation (c).
That is, we must find a way to represent the concepts of a method invocation and an at-
tribute access in UML. In the following subsections we will analyse some possibilities
to extend the UML meta model to incorporate these two concepts.

3.1 The Behavioural Elements Approach

There are a number of UML concepts in the Behavioural Elements package (see [18],
part 3) that come close to the “Invocation” and “Access” concepts of the implementation

model (see Figure 2). It is out of the scope of this paper to describe all possibilities in
detail, so we restrict ourselves to an analysis of the most plausible concept, namely
“Action”. This concept is characteristic for other suitable behavioural elements like
“Message”, “MessageInstance”, and “AttributeLink”.

Most notably, the class “Action” has one subclass that is attractive for our purposes,
namely “CallAction”. Checking the UML semantics, we read that “an action is a spec-
ification of an executable statement (...), realised by sending a message to an object or
modifying a value of an attribute” ([18], p. 68). And then “a call action is an action
resulting in an invocation of an operation on an instance” ([18], p. 68). Knowing that
an attribute access can always be mimicked by an invocation of some special purpose
accessor method, a “CallAction” seems a suitable candidate for modeling the imple-
mentation concepts “Invocation” and “Access”. So lets examine these a bit further to
see whether it fulfils our requirements, in particular how to retrieve both origin and
target of an invocation and an access.

Fig. 4.CallAction and how to navigate back to its origin

First, to retrieve the possible targets of an instance of “CallAction”, we must in-
terpret the “target” attribute of the action which, citing the UML semantics “resolves
into zero or more specific Instances which are the intended recipients of the dispatched
Request” ([18], 8.2 Abstract Syntax / Action - p. 68). Second, to retrieve the origin
of an instance of “CallAction”, we must —as is depicted in Figure 4— navigate from
an “Action” over a “Message”, over an “Interaction”, over a “Collaboration” to finally
arrive at the originating “Operation” ([18], Figure 15: Collaborations). Note that, “in a
collaboration it is specified what properties instances should have” ([18], 9.4 Seman-
tics / Collaboration - p. 86), thus the operation retrieved that way is associated with an
“Instance” as well. Therefore, we infer that the “CallAction” is representing a dynamic
association between instances, not a static association between methods.

Consequently, choosing “CallAction” as a representation for the implementation
concepts “Invocation” and “Access” has the following implications.

– Verbose Construct.To express a single method invocation we need to build a quite
complicated construct (a chain of instances from the classes “Operation”, “Collab-

oration”, “Interaction”, “Message” and “Action”) which consumes a considerable
amount of memory and is slow in processing. Remember our metric tools (see sce-
nario 2.1) which must store and analyse thousands of these invocation dependencies
and it is clear that this construct is not always optimal.

– Interpretation Issues.Using “CallAction” as a representation of an “Invocation”
leaves room for interpretation. Indeed, since the “CallAction” is a dynamic asso-
ciation between operations invoked on instances and “Invocation” is supposed to
be a static association between methods, we must supply an instance and interpret
it as a representative of its class. There are several possibilities to do such: one is
choosing a distinct object for each originating and target method, a second is opti-
mising the former by sharing objects representing the most common superclass for
a given method, the third is to have one object for each class. Depending on the tool
requirements, one choice is better than the other, so there is no best interpretation
that suits all purposes.

– (Minor) UML extension.Using the “CallAction” as a representation of an attribute
access implies a minor UML interpretation as we must mimic the attribute access
by means of an invocation of an accessor method (i.e., a set or a get method). To
cope with this problem, tools might consider to create a special purpose subclass of
Action that represents an attribute access.

3.2 The Stereotyped Association Approach

Another possibility for embedding the “Invocation” and “Access” concepts of the im-
plementation model (see Figure 2) in UML is to use stereotypes to extend an existing
UML concept. The concept of “Association” is particularly interesting for our purpose,
because it declares the presence of a relationship between classes and as such may serve
to represent the static relationships between items contained in that class.

Stereotyping an “Association” to represent an invocation or access mainly involves
the specification of a number of tags that are automatically attached to instances of the
stereotyped association. These tags will then maintain (a) a reference to the location in
source code, (b) the name of the actual method that is initiating the invocation or access
(c) the name of the actual attribute being accessed or (d) the name of the actual method
being invoked plus the arguments that are passed, plus all that is necessary to deal with
polymorphism.

Consequently, using a stereotyped association to represent associations and accesses
has the following implications.

– Large Amount of Associations.A stereotyped association remains an association
and will be stored as such in the underlying UML model. The sheer amount of
invocations and accesses is likely to cause problems when other tools try to visu-
alise such a model. Consequently, this approach should only be used when a small
number of associations will be created, thus when we represent small slices of an
implementation.

– (Minor) UML extension. Stereotypes represent one of the built-in extensibility
mechanisms in UML. Thus, by stereotyping we abandon the protection of the UML
standard, but then stereotypes are so common that this should not cause major dif-
ficulties.

– (Minor) Interpretation Issues.There is a minor interpretation issue because an as-
sociation is supposed to connect classes, while our stereotyped associations connect
items contained within classes. Using the appropriate tagged values it is possible
to deal with this issue, however it requires careful naming conventions especially
when dealing with polymorphism.

3.3 The Special Purpose Extension Approach

The final possibility presented in this paper is the usage of the meta meta model under-
neath UML to add the special purpose “Invocation” and “Access” concepts to the meta
model (see [18] Table 1: Four Layer Metamodeling Architecture).

As mentioned in the UML standard “This capability depends on unique features
of certain UML-compatible modeling tools, or direct use of a meta-metamodel facility,
such as the CORBA Meta Object Facility.” ([18], p. 51). Although the operation in itself
is not so difficult —it boils down to the definition of two classes with all the necessary
attributes to hold whatever is required, much in the same way as with stereotypes— the
fact that not all tools will be able to deal with the extension is a major obstacle.

Thus, using the special purpose extensions has the following implications.

– (Major) UML extension.Using the four layer meta modeling architecture to extend
the UML meta model is a major UML extension. Consequently, it should be used
sparingly, as not all tools will be able to benefit from the extensions.

– No overhead.Special purpose extensions are not shared with other tools, hence do
not involve any memory overhead for representing information required by other
tools.

– Displaying the Extensions.One possible drawback of this approach might be that
such special purpose extensions of the meta model cannot be displayed in a tool.
However, by adding two special compartments in the graphical representation of a
class one can deal with this problem. One compartment would then list all invoca-
tions per method, the other compartment would show all accesses per method.

3.4 Consequences

The solutions described in sections 3.1 to 3.3 are probably not the only possibilities
to embed the concepts of an “Invocation” or an “Access” into the UML meta model.
However, they are characteristic for the kind of solutions we may expect when round-
trip engineering tools choose UML for their underlying representation. Hence, from
these three solutions we can derive some important implications.

– There are several solutions for embedding implementation concepts into the UML
meta model. Thus,it is feasible to use UML as an underlying representationfor the
round-trip engineering tools described in section 2.

– Between the several possibilities, there is no optimal solution for all purposes. Thus,
without formal agreement,tools will adopt the solution that is best suited to their
needs.

– Each solution involves either non-standard interpretations of the UML meta model,
or some extensions of the UML standard or both. Thus,none of the solutions is
based on the strict UML standard.

4 Tool Interoperability

Let us now revise our round-trip engineering scenario (sections 2.1 to 2.3) from a tool
oriented perspective, assuming that each of the three tools are supplied by different ven-
dors. Moreover, let us assume that each tool retrieves and stores its knowledge about the
software system using a common repository. Finally, let us assume that this repository
has an API that is specified according to the MOF standard, thus uses the CORBA/IDL
description of the UML meta model.

As you remember, Carmen first applies the metrics tool to measure various aspects
of the classes in the GEOS system and identify suspicious classes. This metrics tool
makes use of the repository’s API to enumerate all classes, methods and attributes and
calculate the corresponding measurements. However, to compute the coupling and co-
hesion metrics the tool needs to know about the (method) invocations and (attribute)
accesses, and these cannot be supplied by the repository. Therefore, the tool instructs
a special purpose propriety utility to parse the method bodies and return the required
invocations and accesses. Of course the tool wants to save this information for later use,
hence uses the “The Special Purpose Extension Approach” (section 3.3) to store this
into the repository. The choice of the extension mechanism is best suited for a metrics
tool because it needs to construct all invocation and access associations that occur in
the system, hence need a representation that has very little memory overhead.

Next, Carmen visualises the access patterns between methods and attributes to
check whether the class can be split. The visualisation tool retrieves the necessary meth-
ods and attributes from the repository, but the attribute accesses are obtained via a pro-
priety utility that parses method bodies on the fly. Again, the tool wants to save this
extra information into the repository. However, this time the “The Stereotyped Associ-
ation Approach” (section 3.2) is best suited, because it stays quite close to the standard
yet allows to represent additional information concerning the type of dependency.

Then, Benedikt splits the class with his refactoring tool. Retrieving the methods and
attributes of the class to be split is of course done via the repository. But then a third
special purpose propriety utility is necessary to collect the invocations and accesses
from the source code. Here as well, the refactoring tool will save this extra information
in the repository. However, since the refactorings modify the internal UML model, a
refactoring tool favours a model that is as close as possible to the UML standard, hence
uses the “The Behavioural Elements Approach” (section 3.1). Unfortunately, after the
class has been split, the refactoring tool cannot instruct the repository how to update
the extra information that is stored there by the metrics and visualisation tool, due to
the fact that these are non-standard UML extensions. Thus, the repository is now in an
inconsistent state and Carmen cannot trust that her tools will function properly.

4.1 Consequences

The revision of the scenario from a tool-oriented perspective reveals why the UML
meta model is not sufficient to serve as an interoperability standard between round-trip
engineering tools. To summarise, the fact that UML lacks the concepts of an “(method)
Invocation” and an “(attribute) Access”, has the following drawbacks.

– Each tool is forced to have its propriety parsing utility that extracts the lacking data
from source code. Anyone who has tried to build a reliable C++ parser will confirm
that this is a highly specialised and difficult task that should be done once and then
reused by others.

– Each tool is forced to extend UML to express the insufficiencies. Worse, each tool
will define its own extensions that are not understood by others.

– Once a tool modifies the implementation, the repository risks to be out of synch
causing malfunctioning of tools.

From these drawbacks we conclude that, to achieve true interoperability between
round-trip engineering tools, it is necessary to build a special purpose meta model that
closely reflects the reality in source code, yet is independent of the implementation
language. The following section briefly introduces such a meta model.

5 An Alternative: FAMIX

Within the FAMOOS project, a number of geographically dispersed programming teams
experimented with various tool prototypes to support reengineering activities. Almost
immediately, we encountered the kind of problems described in section “4 Tool Inter-
operability” and have been looking for a satisfactory solution ever since. Because UML
had clear shortcomings, we defined a language independent meta model named FAMIX
(http://www.iam.unibe.ch/˜famoos/FAMIX/), which we present here as one possible
alternative to UML.

The core of the FAMIX model corresponds to the one in Figure 2. However, this is
too simplistic to serve in practice and we include concepts to represent crucial source
code items like functions, global and local variables, formal parameters, packages, etc.
The complete FAMIX model is depicted in Figure 5.

Fig. 5. The Complete FAMIX Meta Model

At the time of writing, parsing technology exists to generate FAMIX models from
C++, Java, Smalltalk and Ada. The generated information has been successfully em-
ployed in metric and program visualisation experiments [2], [3], [15] and we are cur-
rently investigating how well it could support refactorings. Thus, we are fairly confident
that the FAMIX model may support the scenario presented in Section 2.

Yet, the scenario is only there to show that there is more to round-trip engineering
than obtaining UML models from source code. Of course, tools for UML extraction
are considered quite important in industry and this position has been reflected by the
FAMOOS partners. Therefore, we conducted an experiment to implement a mapping
from FAMIX to UML [19]. Based on this experience, we are convinced that it is advan-
tageous to have a separate source code meta-model instead of embedding source-code
information into the UML meta model (see [6], Table 1: Four Layer Metamodeling Ar-
chitecture). The reason is that with two clearly separated meta-models, it is feasible to
explore different mappings from the one into the other, which is relevant when gener-
ating code as well as when extracting UML from source code. We consider this insight
important and hope that it will influence the development of other MOF meta models
and standards.

6 Conclusions

In this paper, we have supplied a proof-of-concept of the feasibility to use UML as
the underlying representation for a round-trip engineering tool. This proof-of-concept
follows from the three solutions we have presented for embedding the concepts of a
“method invocation” and an “attribute access” into the UML meta model. While these
three solutions are probably not the only possible ones, they are characteristic for the
kind of solutions we may expect when representing implementation constructs in UML.

However, the fact that one must extend UML to represent implementation concepts,
together with the fact that there are several possibilities to do so has dire consequences
on tool interoperability. First of all, it implies that different tool vendors can and will
choose different extensions for modeling the same implementation construct. But more
importantly, it implies that UMLin stricto sensucannot serve as an interoperability
standard between round-trip engineering tools.

Does this imply that OMG’s standardisation work on UML and MOF is wasted?
On the contrary, it implies that the really interesting work is just about to begin. Indeed,
the fact that UML is not the most adequate representation for implementation models
suggests that we need a meta model besides UML. And since the MOF is actually a
meta meta model, it can be used to explore and express various mappings between meta
models to achieve what has been called a “Universal Design Language”[6]. We hope
that the constructive suggestions in this paper will contribute and influence future work
on such a “Universal Design Language”.

Acknowledgements

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96
and BBW-96.0015 as well as by the European Union under the ESPRIT programme Project no.

21975. We thank the partners in the FAMOOS consortium for supporting our work on the FAMIX
model and incorporating it in their tools. We also want to thank the members of the SSEL group
in the University of Brussels for a fruitful discussion on the pros and cons of UML.

References

[1] Grady Booch. Object Oriented Analysis and Design with Applications. The Benjamin
Cummings Publishing Co. Inc., 2nd edition, 1994.

[2] Serge Demeyer and St´ephane Ducasse. Metrics, do they really help ? In Jacques Malenfant,
editor, Proceedings LMO’99 (Languages et Mod`eles à Objets), pages 69–82. HERMES
Science Publications, Paris, 1999.

[3] Serge Demeyer, St´ephane Ducasse, and Michele Lanza. A hybrid reverse engineering plat-
form combining metrics and program visualization. In Franc¸oise Balmas, Mike Blaha, and
Spencer Rugaber, editors,WCRE’99 Proceedings (6th Working Conference on Reverse En-
gineering). IEEE, October 1999.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[5] Adele Goldberg and Kenneth S. Rubin.Succeeding With Objects: Decision Frameworks
for Project Management. Addison-Wesley, Reading, Mass., 1995.

[6] Object Management Group.Meta Object Facility (MOF) Specification. OMG Document
ad/97-08-14. Object Management Group, September 1997.

[7] Brian Henderson-Sellers.Object-Oriented Metrics: Measures of Complexity. Prentice-Hall,
1996.

[8] Ivar Jacobson, Grady Booch, and James Rumbaugh.The Unified Software Development
Process. Addison-Wesley, 1999.

[9] Ivar Jacobson, Martin Griss, and Patrik Jonsson.Software Reuse. Addison-Wesley/ACM
Press, 1997.

[10] Danny B. Lange and Yuichi Nakamura. Interactive visualization of design patterns can help
in framework understanding. InProceedings of OOPSLA’95, pages 342–357. ACM Press,
1995.

[11] Mark Lorenz and Jeff Kidd.Object-Oriented Software Metrics: A Practical Approach.
Prentice-Hall, 1994.

[12] William F. Opdyke.Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois, 1992.

[13] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the behav-
ior of object-oriented systems. InProceedings OOPSLA ’93, pages 326–337. ACM Press,
1993.

[14] Trygve Reenskaug.Working with Objects: The OOram Software Engineering Method.
Manning Publications, 1996.

[15] Tamar Richner and St´ephane Ducasse. Recovering high-level views of object-oriented
applications from static and dynamic information. In Hongji Yang and Lee White, ed-
itors, Proceedings ICSM’99 (International Conference on Software Maintenance). IEEE,
September 1999.

[16] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for smalltalk.Journal
of Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[17] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, i Logix, IBM, ObjecTime, Platinum Technol-
ogy, Ptech, Taskon, Reich Technologies, and Softeam.Unified Modeling Language (version
1.1). Rational Software Corporation, September 1997.

[18] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, i Logix, IBM, ObjecTime, Platinum Tech-
nology, Ptech, Taskon, Reich Technologies, and Softeam.Unified Modeling Language -
UML Semantics (version 1.1). Rational Software Corporation, September 1997.

[19] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to Rational Rose – interoperability
using a common exchange model. InSNiFF+ User’s Conference, January 1999.

