
Higher Abstractions for Dynamic Analysis∗

Marcus Denker, Orla Greevy
Software Composition Group

University of Berne
Switzerland

Michele Lanza
Faculty of Informatics
University of Lugano

Switzerland

ABSTRACT
The developers of tools for dynamic analysis are faced with
choosing from the many approaches to gathering runtime
data. Typically, dynamic analysis involves instrumenting
the program under investigation to record its runtime be-
havior. Current approaches for byte-code based systems
like Java and Smalltalk rely often on inserting byte-code
into the program under analysis. However, detailed knowl-
edge of the target programming language or virtual machine
is required to implement dynamic analysis tools. Obtaining
and exploiting this knowledge to build better analysis tools
is cumbersome and often distracts the tool builder from the
actual goal, which is the analysis of the runtime behavior of
a system.

In this paper, we argue that we need to adopt a higher
level view of a software system when considering the task
of abstracting runtime information. We focus on object-
oriented virtual machine based languages. We want to be
able to deal with the runtime system as a collection of reified
first-class entities. We propose to achieve this by introduc-
ing a layer of abstraction, i.e., a behavioral middle layer.
This has the advantage that the task of collecting dynamic
information is not concerned with low level details of a spe-
cific language or virtual machine. The positive effect of such
a behavioral middle layer is twofold: on the one hand it pro-
vides us with a standard API for all dynamic analysis based
tools to use, on the other hand it allows the tool developer
to abstract from the actual implementation technique.

Keywords
Dynamic Analysis, Behavioral Reflection, Meta Program-
ming, Tracing

1. INTRODUCTION
In recent years there has been a revival of interest in dy-

namic analysis [16]. System analysis of runtime behavior is
vital for performance analysis to detect hotspots of activity
and bottlenecks of execution or memory allocation problems
such as unnecessary object retention. In a reverse engineer-
ing context, dynamic analysis is used is to extract high-level
views about the behavior of low-level components to facili-
tate the comprehension of the system [15, 17, 31]. The focus
of analysis determines the relevance and level of detail of the
information captured during dynamic analysis. In the field

∗Proceedings of the 2nd International Workshop on Pro-
gram Comprehension through Dynamic Analysis (PCODA
2006), pp. 32-38

of reverse engineering, there is no consensus on the type or
level of granularity of runtime information that is necessary
for a particular analysis. An inherent requirement of such
tools is that they be easily extensible as the requirements
and the research focus evolves.

Dynamic analysis yields precise information about the
runtime behavior of systems [2]. However, the task of writ-
ing tools to abstract runtime data is not trivial. Developers
of tools are faced with many options as there are numerous
techniques that address the task of collecting runtime data.
The approach to tool development and the abstraction of
dynamic data is therefore not standardized. Each individ-
ual tool adopts a specific technique and focuses on low-level
details of the chosen technique to achieve its goals.

This leads to recurrent problems of all approaches and
techniques:

• all clients need to re-implement large parts of the code
responsible for gathering the runtime data, and

• the abstraction level is too low in the sense that clients
need to know too much about the implementation side.

In this paper we propose the introduction of an abstrac-
tion layer based on behavioral reflection to facilitate the de-
sign and development of tools for dynamic analysis. We in-
troduce our reflection framework and identify its strengths
and shortcomings.

Structure of the paper. In the next section we identify
some typical applications of dynamic analysis. In this con-
text we outline the state of the art in gathering dynamic data
at runtime. Section 3 then shows problems and shortcom-
ings associated with the current approaches. In Section 4
we give an overview of reflection frameworks. In Section 5
we introduce our reflection framework and identify how it
can be used to solve the problems shown, and we identify
what is missing from our implementation with the intention
of initiating a discussion and obtaining feedback. Section 7
outlines our conclusions and future work.

2. DYNAMIC ANALYSIS TECHNIQUES
Dynamic analysis typically involves instrumenting the pro-

gram under investigation to examine or record certain as-
pects of its runtime behavior. Code instrumentation is a
mechanism that allows insertion of code at runtime to mon-
itor and track the runtime behavior of a system. In this
section we review the techniques currently available for ab-
stracting the runtime behavior of a system. The underlying
concepts behind dynamic analysis tools are currently limited



to using these techniques for extracting dynamic information
[17].

The granularity and amount of behavioral data extracted
during the execution of a system varies depending on the
specific focus of a particular analysis tool. Dynamic analy-
sis implies vast amounts of data. A simple execution of a
system’s functionality can result in a large number of events
[10]. Typically, dynamic analysis tools employ filtering and
compression techniques to limit the amount of dynamic data
collected depending on a specific focus of the analysis. For
example, if the goal of the analysis is feature location [11],
this requires that a relationship between the external func-
tionalities of a system and the parts of the code that im-
plement this functionality is established. Therefore, it is
usually sufficient to extract trace events representing the
method calls performed during the execution of a specific
functionality [1, 15]. An example of trace representation is
given by Richner and Ducasse [27]. Each line records the
class of the sender, the identity of the sender, the class of
the receiver, the identity of the receiver and the method
invoked. The order of the calls is maintained.

Analysis techniques that focus on monitoring the state of
objects at runtime require a more detailed analysis to ex-
tract information about variable access. This level of gran-
ularity is required if the focus of the analysis is to infer pro-
gram invariants [12]. Performance analysis tools generally
focus on object creation and deletion and the correct mem-
ory allocation details. Thus the requirements of dynamic
analysis tools vary depending on their specific focus. This
is a drawback, because the analysis goals should not restrict
the type of information to be collected. We want to extract
as much dynamic data as possible and then depending on
the requirements of a particular analysis, extract and use a
appropriate subset of the dynamic data.

There are various approaches and language-specific frame-
works that support the extraction of dynamic information.
We describe the details of the underlying mechanisms used
by dynamic analysis tools in the following paragraphs.

Source code modification. One way to control mes-
sage passing is to instrument the code via source code
modification and recompilation. The main drawback
of this technique is that all controlled methods have
to be reparsed and recompiled. Furthermore, another
recompilation is needed to reinstall the original meth-
ods.

Bytecode modification. Another way to control mes-
sage passing is to directly insert byte-code into the
byte-code of the compiled methods. The introduced
byte-code controls the message passing. However, this
technique relies heavily on profound knowledge of the
bytecode instructions used by the virtual machines.
Another potential danger of this technique is that these
codes are not standardized and can change.

Instrumenting the Virtual Machine. A technique
for collecting runtime information is instrumenting the
runtime environment in which the system runs. For ex-
ample, the Java Virtual Machine can be instrumented
to generate events of interest. The advantage of this
technique is that it does not require modification of
the source code.

The Java Virtual Machine Profiling interface (JVMPI)

[20] provides a set of hooks to the JVM to signal in-
teresting events, such as thread starts or object al-
locations. JVMTI [21] is the sucessor to JVMPI and
provides both a way to inspect the state and to control
the execution of applications running in the Java vir-
tual machine. It provides additional facilities for byte-
code instrumentation. Profilers based on JVMPI or
JVMTI interfaces implement profiling agents to inter-
cept various events, such as method invocations. Un-
fortunately these profiling agents have to be written
in platform native code, contradicting the Java motto
of “write once run anywhere”. Binder developed Ko-
morium, a novel sampling profiler written purely in
Java that directly instruments the bytecode of Java
programs [4]. Another pure Java solution is the Java
Interactive Profiler (JIP) is based on JVMTI and pro-
vides control to turn on and off profiling at runtime
(see http://jiprof.sourceforge.net/).

Method Wrappers. Brant et al, describe a code in-
strumenting technique for Smalltalk based on method
wrappers [5]. Wrappers are mechanisms for introduc-
ing new behavior that is executed before and/or after,
and perhaps instead of, an existing method. Rather
than changing method lookup, they modify the method
objects that the processes return. Wrappers are easy
to build for Smalltalk as it was designed with reflec-
tive facilities that allow programmers to intervene in
the lookup process, while the same is not true for Java
which only supports introspection.

Debuggers. It is possible to run a system under the con-
trol of the debugger. In this case, breakpoints are
set at locations of interest (e.g., entry and exit of a
method). This technique has the advantage of not
modifiying the source code and the environment. How-
ever it slows down the execution of a system consid-
erably, and the instrumentation itself can be cumber-
some. This can be done on the source level before
compilations, or on bytecode at load time (Java) or
runtime (Smalltalk). The abstraction layers we deal
with are either those of the program text or those of
bytecode.

Logging Services. Logging can be used to track the state
of a running system at various points in time. A good
framework for doing this with Java is provided by log4j
(see http://logging.apache.org/). The drawback is
again that this implies modifying the source code.

3. CHALLENGES
As we have seen, there are multiple implementation tech-

niques for gathering runtime data. The key problem is that
every new client application has to re-implement large parts
of the runtime data gathering code depending on the lan-
guage and runtime environment. Furthermore, the abstrac-
tion is too low level, resulting in clients that are concerned
with manipulating too many implementation details.

In the following sections we elaborate on the main prob-
lems of the current approaches.

3.1 Instrumentation re-implemented
Most projects that require to access runtime data typically

re-implement the data gathering mechanism. Instrumenta-



tion code is inserted at all places of interest in the code
(e.g., at message sends). In the case of bytecode manipu-
lation techniques, the actual modification of the bytecode
is achieved using libraries (e.g., Javassist [8, 7] or Bytesur-
geon [9]). Bytecode manipulation provides a very low level
of abstraction and requires detailed knowledge of the byte-
code of the programming language. Moreover, it is prone
to language evolution, i.e., the specification of the VM may
change.

The positive effect of the low level approach is of course
that we build a very specific implementation, tailored ex-
actly towards the information needed for a specific task. The
drawback is that the instrumentation logic is tightly coupled
with the application that requires the dynamic data, thus
in most cases we will have to re-implement the instrumen-
tation logic for each new task. Figure 1 shows an example:
We have two projects that are interested in gathering run-
time data (Tracer1 and Tracer2). Although both run on
a standard virtual machine, both independently implement
the code for bytecode instrumentation. We have seen this
happen often in our research, for example both the trace de-
bugger Unstuck [19] and a test coverage tool both utilized
the same byte-code manipulation library (ByteSurgeon), but
they did not share any instrumentation code.

Virtual
Machine

bytecode
modification

specialized 
Virtual Machine 

Tracer2, 
for specialized 
Virtual Machine

bytecode
modification

Tracer1 Tracer2

Figure 1: Trace tool today

3.2 Implementation Specific Designs
Implementors of tools that gather runtime data are faced

with the decision on which implementation technique to
adopt. Subsequently, they design a tool based on specific
knowledge of the target language and runtime environment.
The resulting tool inevitably is forced to encode implemen-
tation issues into the design of the tool. Thus, the result
is a tool that is tightly coupled with a particular runtime
environment.

This approach has obvious drawbacks. It is very diffi-
cult to change the adopted implementation technique: e.g.,
bytecode manipulation is portable, but a specialized vir-
tual machine might be faster. When the implementation
technique is closely tied to a particular virtual machine, we
are bound to this one implementation, we cannot switch to
a byte-code based implementation on a case-to-case basis.
Figure 1 shows that for a special virtual machine, we need
to re-implement our system.

4. BEHAVIORAL REFLECTION

Systems like Smalltalk and CLOS model their own struc-
tures (classes, methods) as first class objects.

The term introspection defines the ability to query the
system about this information, whereas we talk about in-
tercession when changes to these structures directly change
the structure of the system itself. Systems that provide both
are called reflective.

Structural reflection is concerned with reification of the
program and its abstract types. Behavioral reflection, on
the other hand, is concerned with the ability of the lan-
guage to provide complete reification of its own semantics
and implementation as well as complete reification of the
data and implementation of the runtime system.

Popular object oriented languages provide different de-
grees of introspection or reflective capabilities. Smalltalk is,
to some extent, a reflective system [13, 3]: Classes and meth-
ods are objects, we can change those objects to change the
structure of the system. Java and .NET on the other hand,
have only introspective features (i.e., allows for querying an
object for its class, a class for its methods and construc-
tors, query the details of those methods and constructors,
and tell those methods to execute), and partial intercession
(intercession is limited to method invocation and attribute
manipulation) [6].

Languages that facilitate the description of methods as
first class objects inherently support dynamic analysis. The
method wrappers technique exploits the first class nature
of methods in Smalltalk for providing a way to intercept
method execution [5]. Examples of dynamic analysis tools
built on the method wrapper technique are Greevy and
Ducasse’s TraceScraper tool for feature analysis [15] and
John Brant’s Interaction Diagram and Coverage Tools [5].
However method execution is just an aspect of runtime infor-
mation. For a complete dynamic analysis we need to focus
on other runtime events such as e.g., message sends between
object instances or instance variable access. Thus, we rec-
ognize the need to define a reflective meta representation
that describes all behavioral aspects of systems. We want a
system that can reify those events on demand, providing a
system with full behavioral reflection.

In both Java and Smalltalk, the reflection mechanisms
provided are concerned mostly with structure. They do not
provide an easy way to change the semantics of the run-
time model: Message sends, instance variable access are not
modeled with objects. A true behavioral reflective system
models behavior in a way that it is first class and changes
are possible: e.g., we are able to define our own version of
what a message send is.

Looking back into the history of object oriented systems,
we can find that there has been extensive research on be-
havioral reflective systems, e.g., the work done around Meta
Object Protocols [22] for CLOS. The meta object protocol
provides all operations (e.g., method activation or variable
access) to be reified and re-defined.

In systems like Java and Smalltalk, behavioral reflection
can be realised via special virtual machines or bytecode ma-
nipulation, with the latter being portable. Examples for the
virtual machine approach are Iguana/J[26], Metaxa [14], or
Guarana [25]. The prime example for a bytecode modifica-
tion based meta object protocol is Reflex [30]. Reflex pro-
vides a model for behavioral reflection that allows for a very
fine grained selection of when and what to reify.



5. THE BEHAVIORAL FRAMEWORK
The drawbacks we have identified with current approaches

lead us to suggest that the solution would be to introduce
an additional layer of abstraction to our system, which we
refer to as a behavioral framework.

We now analyze how a behavioral reflection framework
could be used to tackle and solve the problems of previous
approaches to gathering runtime information.

Virtual Machine

Tracer1

Bytecode modification
specialized 

Virtual Machine 

Behavioral Reflection Framework

Tracer2

Figure 2: A common abstraction layer

5.1 A Shared API
With the existence of a behavioral layer, all tools could

use it to hook into runtime events. The individual tools are
no longer concerned with a specific code insertion implemen-
tation. Instead, they just leverage the abstractions provided
by the behavioral layer framework.

In Figure 2 we see again our two tools that are inter-
ested in dynamic information. Now both tools just use the
behavioral layer, thus they do not need to implement the
byte-code modification code themselves, but share it.

5.2 A Pluggable Implementation
Another important requirement of an abstraction layer is

to provide a high degree of flexibility, but at the same time
retain the same interface for clients. The proposed behav-
ioral framework should make it possible to have a pluggable
implementation (the backend): it can be realized via editing
byte-code, a changed virtual machine or other means.

Figure 2 shows how we now can use both programs on
the modified virtual machine, without having to implement
the logic ourselves: All tools using the abstraction layer will
work on both the standard virtual machine and any special-
ized virtual machine that the abstraction layer supports.

5.3 Requirements
In the following we identify a list of requirements for a

behavioral framework to tackle the challenges we identified
previously.

Runtime installation: We need to introduce behavior dy-
namically at runtime. When we are done with the
analysis, it should be possible to revert to the original
state of the system.

Unanticipated use: The behavioral change should be pos-
sible at any time in the deployed system, without the

need to prepare the system in any way at startup.

Fine-Grained Selection: The operation occurrences we
are interested in are different depending on what we
analyze. We want to be able to select the entities up
to the level of the single occurrence in the code.

Implementation Hiding: From a dynamic analysis per-
spective, we are not interested in the underlying mech-
anisms of obtaining runtime information. The fun-
damental goal of a behavioral layer is to allow us to
abstract from the details of a specific implementation
technique (e.g., VM change, byte-code extension, byte-
code modification) used to extract behavioral informa-
tion from an application at runtime.

Performance: To make the framework usable for analyz-
ing real work applications, we need a framework with
low overhead. The best case would be a system where
we pay exactly the same overhead as if we were to
annotate the code with profiling calls by hand.

5.4 Implementation
We have realized a framework for partial behavioral reflec-

tion for Squeak (a dialect of Smalltalk) called Geppetto[28].
Geppetto uses the runtime byte-code transformation frame-
work ByteSurgeon[9] and follows the model of partial behav-
ioral reflection as pioneered by Reflex[30]. Unlike Reflex,
which is constrained by the underlying model of the Java
language, our Geppetto implementation can be used com-
pletely unanticipated: code does not need to be prepared at
load or compile time, reflection can be enabled at runtime
and completely retracted when not needed.

Geppetto allows for reifying message sending, method exe-
cution and variable access (read and write) for both instance
variables and temporary variables. Selection is very fine-
grained: per package, class, object, method, operation and
operation occurrence. Geppetto can be used in any Squeak
program, without the need to adapt it at load or start time.
Installation happens transparently at runtime.

Geppetto uses ByteSurgeon to insert small peaces of code,
so called hooks into the bytecode where a selected operation
(e.g. message send) occurs. Figure 3 shows the model in
detail. Hooks are grouped to hooksets, which are bound
to a metaobject by a link. The link defines the protocol
between the base and the meta layer. Links can be enabled
or disabled based on an activation condition.

activation
condition

hookset

metaobject

links

Figure 3: Hooksets, Links and Metaobjects in Gep-
petto

For a complete description of the Gepetto behavioral re-
flection framework, see [28].



5.5 Usage
The behavioral reflection framework provides a general

API: the reification of runtime events triggers calls to meta
objects, which are instances of normal classes. The tool
developer thus is free to use the framework as needed by
specifying which concepts to reify and which information
to pass on to the meta object. The framework does not
provide a model of the data obtained (e.g., a trace), instead
it provides a model for obtaining data. It can be either
stored for later use as a trace or processed and reacted on
at runtime. The latter has lately become an active topic of
research with systems like PQL [24].

6. DISCUSSION
We now analyze our behavioral framework with respect to

the requirements defined in the preceding section and define
future work. Then we briefly discuss the relationship to
aspect oriented programming and the usefulness of providing
scoping abstractions as part of the framework.

6.1 Next Steps
The implementation as described in section 5.4, already

fulfills some of the requirements stated: It can install (and
retract) behavioral changes at runtime, provides fine-grained
spatial and temporal selection by implementing the Reflex
model [30] and supports unanticipated use.

Two requirements are not yet fulfilled:

1. Geppetto needs to be extended to support pluggable
backends. We are working on providing a backend
based on annotated abstract syntax trees.

2. We need to verify the real world usability: first bench-
marks show good performance characteristics, but Gep-
petto needs to be validated with real world usage. We
plan to move the tools and experiments done that cur-
rently use ByteSurgeon to use Geppetto instead.

6.2 Aspects
This paper presents the solution from the perspective of

behavioral reflection. Another point of view can be that of
Aspect Oriented Programming. The proposed abstraction
layer could use, as a backend, an existing dynamic aspects
implementation. In this case, the aspect framework would
be used as a high-level replacement for byte-code manipula-
tion.

Another possibility would be to formulate the middle layer
in terms of a dynamic aspect framework instead of meta ob-
jects. The problem here is that most aspect systems (e.g.,
AspectJ [23]) are static: weaving happens at compile or load
time. Pure runtime Aspects are not yet very common and
those that exist are based themselves in some cases on be-
havioral reflection facilities, for example AspectS[18] and as-
pect systems based on Reflex[29].

6.3 Scope Abstractions
Modern implementations like Reflex provide very fine-

grained spatial and temporal selection of reification. Here
we can select what and where, in a temporal and spacial
way.

This means we can scope the reification towards collec-
tions of classes (like modules and packages) or single in-
stances, a single methods of a class, or even to one certain

occurrence of a behavioral event. Temporal selection means
that we can switch reifications on and off at will, thus we
can make the gathering of runtime data be controlled by
runtime events.

Another idea of scoping is that of scoping-towards-the-
client: We might be interested in events generated only if
our package under test is called from a certain other pack-
age. This can be useful to limit the amount of unnecessary
data when e.g., analysing system classes like Smalltalks col-
lections.

7. CONCLUSION
In this paper we addressed a fundamental problem that

faces the developers of tools that exploit runtime informa-
tion of an application. We propose an new approach to
designing dynamic analysis tools for virtual machine based
languages that interact with a layer of abstraction, namely
a behavioral layer. The behavioral layer should provide a
framework for tool developers that encapsulate typical ob-
ject oriented language constructs at runtime such as object
instantiation, message sends and instance variable access.
Thus the developer has access to reified first class entities
of runtime behavior and focuses on these high level abstrac-
tions when designing a specific tool. The main advantage of
this layer of abstraction is that the resulting tool should eas-
ily portable to use with other virtual machines as the reified
entities are independent of the underlying implementation
details and byte-codes. Moreover the developer is not con-
cerned with low level details that are specific to a particular
virtual machine.

In this paper we provided a short overview of the avail-
able technologies and approaches to extract runtime data.
We identified problems inherent to these approaches. This
motivates our argument that there is a need to introduce
a layer of abstraction between low level implementation de-
tails and the tools analysing the data.

To better understand the underlying motivation of a be-
havioral layer we provided a short overview of some of the
applications of dynamic analysis. In the field of program
comprehension and reverse engineering dynamic analysis ap-
proaches are becoming more prevalent. However there is no
standard approach to extracting runtime data nor is it clear
which type of runtime information to extract. Therefore
such tools need to be extensible, as requirements change.

We identified a list of requirements for a behavioral layer.
We describe our current implementation of a behavioral
layer and illustrate how it can be used to address the prob-
lems. We show how we simplify the task of implementing
dynamic analysis tools.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the projects “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 - Sept.
2008)) and “NOREX - Network of Reengineering Expertise”
(SNF SCOPES Project No. IB7320-110997).

8. REFERENCES
[1] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature

identification: a novel approach and a case study. In
Proceedings IEEE International Conference on
Software Maintenance (ICSM 2005), pages 357–366,



Los Alamitos CA, September 2005. IEEE Computer
Society Press.

[2] Thomas Ball. The concept of dynamic analysis. In
Proceedings European Software Engineering
Conference and ACM SIGSOFT International
Symposium on the Foundations of Software
Engineering (ESEC/FSC 1999), number 1687 in
LNCS, pages 216–234, Heidelberg, sep 1999. Springer
Verlag.

[3] Alexandre Bergel and Marcus Denker. Prototyping
languages, related constructs and tools with Squeak.
In In Proceedings of the Workshop on Revival of
Dynamic Languages (co-located with ECOOP’06),
July 2006.

[4] Walter Binder. A portable and customizable profiling
framework for Java based on bytecode instruction
counting. In Proceedings of The Third Asian
Symposium on Programming Languages and Systems
(APLAS-2005), volume 3780 of LNCS, pages 178–194,
Tsukuba, Japan, nov 2005.

[5] John Brant, Brian Foote, Ralph Johnson, and Don
Roberts. Wrappers to the rescue. In Proceedings
European Conference on Object Oriented Programming
(ECOOP 1998), volume 1445 of LNCS, pages
396–417. Springer-Verlag, 1998. method wrappers.

[6] Walter Cazzola. Smartreflection: Efficient
introspection in java. Journal of Object Technology,
3(11), August 2004.

[7] S. Chiba and M. Nishizawa. An easy-to-use toolkit for
efficient Java bytecode translators. In Proceedings of
GPCE’03, volume 2830 of LNCS, pages 364–376, 2003.

[8] Shigeru Chiba. Load-time structural reflection in Java.
In Proceedings of ECOOP 2000, volume 1850 of
LNCS, pages 313–336, 2000.

[9] Marcus Denker, Stéphane Ducasse, and Éric Tanter.
Runtime bytecode transformation for Smalltalk.
Journal of Computer Languages, Systems and
Structures, 32(2-3):125–139, July 2006.

[10] Stéphane Ducasse, Michele Lanza, and Roland
Bertuli. High-level polymetric views of condensed
run-time information. In Proceedings of Conference on
Software Maintenance and Reengineering (CSMR
2004), pages 309–318, Los Alamitos CA, 2004. IEEE
Computer Society Press.

[11] Thomas Eisenbarth, Rainer Koschke, and Daniel
Simon. Locating features in source code. IEEE
Computer, 29(3):210–224, March 2003.

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely
program invariants to support program evolution. In
Proceedings of ICSE ’99, May 1999.

[13] Brian Foote and Ralph E. Johnson. Reflective
facilities in Smalltalk-80. In Proceedings OOPSLA ’89,
ACM SIGPLAN Notices, volume 24, pages 327–336,
October 1989.

[14] Michael Golm and Jürgen Kleinöder. Jumping to the
meta level: Behavioral reflection can be fast and
flexible. In Reflection, pages 22–39, 1999.

[15] Orla Greevy and Stéphane Ducasse. Correlating
features and code using a compact two-sided trace
analysis approach. In Proceedings IEEE European
Conference on Software Maintenance and

Reengineering (CSMR 2005), pages 314–323, Los
Alamitos CA, 2005. IEEE Computer Society Press.

[16] A. Hamou-Lhadj. The concept of trace
summarization. In Proceedings of PCODA 2005 (1st
International Workshop on Program Comprehension
through Dynamic Analysis). IEEE Computer Society
Press, 2005.

[17] A. Hamou-Lhadj and T. Lethbridge. A survey of trace
exploration tools and techniques. In Proceedings IBM
Centers for Advanced Studies Conferences (CASON
2004), pages 42–55, Indianapolis IN, 2004. IBM Press.

[18] Robert Hirschfeld. AspectS – aspect-oriented
programming with Squeak. In M. Aksit, M. Mezini,
and R. Unland, editors, Objects, Components,
Architectures, Services, and Applications for a
Networked World, number 2591 in LNCS, pages
216–232. Springer, 2003.

[19] Christoph Hofer, Marcus Denker, and Stéphane
Ducasse. Design and implementation of a
backward-in-time debugger. In Proceedings of
NODE’06, 2006.

[20] Sun microsystems, inc. jvm profiler interface (jvmpi).

[21] Sun microsystems, inc. jvm tool interface (jvmti).

[22] Gregor Kiczales, Jim des Rivières, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

[23] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Proceeding ECOOP 2001,
number 2072 in LNCS, pages 327–353. Springer
Verlag, 2001.

[24] Mickael Martin, Benjamin Livshits, and Monica S.
Lam. Finding application errors and security flaws
using pql: a program query language. In Proceedings
of Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05), pages 363–385, New
York, NY, USA, 2005. ACM Press.

[25] A. Olivia and L. E. Buzato. The design and
implementation of Guaraná. In Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’99), pages 203–216, San Diego,
California, USA, May 1999.

[26] Barry Redmond and Vinny Cahill. Supporting
unanticipated dynamic adaptation of application
behaviour. In Proceedings of European Conference on
Object-Oriented Programming, volume 2374, pages
205–230. Springer-Verlag, 2002.

[27] Tamar Richner and Stéphane Ducasse. Using dynamic
information for the iterative recovery of collaborations
and roles. In Proceedings IEEE International
Conference on Software Maintenance (ICSM 2002),
page 34, Los Alamitos CA, October 2002. IEEE
Computer Society Press.

[28] David Röthlisberger, Marcus Denker, and Éric Tanter.
Unanticipated partial behavioral reflection. In
Proceedings of ISC 2006 (International Smalltalk
Conference), LNCS, to appear, 2006.

[29] Éric Tanter and Jacques Noyé. A versatile kernel for
multi-language AOP. In Proceedings of the 4th ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE
2005), volume 3676 of LNCS, Tallin, Estonia, sep



2005.

[30] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre
Cointe. Partial behavioral reflection: Spatial and
temporal selection of reification. In Proceedings of
OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46,
nov 2003.

[31] A. Zaidman and S. Demeyer. Managing trace data
volume through a heuristical clustering process based
on event execution frequency. In Proceedings IEEE
European Conference on Software Maintenance and
Reengineering (CSMR 2004), pages 329–338, Los
Alamitos CA, March 2004. IEEE Computer Society
Press.


