Open Surfaces for Controlled Visibility

Stéphane Ducasse, Nathanael Schaerli, and Roel Wuyts

Software Composition Group, University of Bern,
Bern, Switzerland
{ducasse, schaerli, wuyts}@iam.unibe.ch

Abstract. Current languages contain visibility mechanisms such as pri-
vate, protected, or public to control who can see what. However, these
visibility mechanisms are fized once for all. Moreover, they do not solve
all problems related to the visibility, and are typically of a static nature.
In this position paper we present an open and uniform way of dealing
with visibility and introduce surfaces : i.e., list of methods that con-
trol the way the behavior of an object is accessible. We introduce two
problems that other visibility mechanisms cannot solve, and show how
surfaces can.

Right access, Visibility, Permissions, Implementation surface,
Specification surface, Smalltalk

1 Visibility Mechanisms and their Problems

Several languages provide visibility mechanisms that allows classes to
control which other classes can see (and send) their methods. For exam-
ple, C++ [5], like Java [1], has public, private, and protected modifiers to
control the visibility of methods. On top of these, C++ also provides the
friends mechanism (which controls visibility among a group of classes
that are not necessarily related in a single class hierarchy) and qualified
inheritance. The advantage of such mechanisms is clear: it makes it pos-
sible for classes to control the visibility of the functionality they offer
towards clients, promoting encapsulation.

However, we also several drawbacks in these approaches. For starters,
the visibility mechanisms are purely used for static checking. It is for
example not possible to promote a private message to become public
at runtime. Moreover, there are also some problems statically. First of
all, there is only a limited number of visibility modifiers (as said before,
typically public, private and protected). Moreover, this set cannot be
extended to suit particular usage scenarios.

To address these problems we propose surfaces. Surfaces are sets of
selectors (method names). Classes can define one or more surfaces, and
by default always have an A1l surface that includes all selectors for that
class. Clients can, statically or at runtime, indicate through which surface
they want to access an object. Last but not least, surfaces are first class
objects.

Surfaces solve the problems that classic visibility mechanisms face since
they are open (i.e., there is no restriction on the number of surfaces or
over what they contain), and are applicable statically and at runtime.



2 S. Ducasse, N. Schaerli, and R. Wuyts

managedMorph: aMorph

MorphManager managedMorph := aMorph
managedMorph_____ F--"" "~
managedMorph: aMorph

Collection
add: anElement
Morph remove: anElement
submorphs ] _—]do: action
addMorph: aMorph
removeMorph: aMorph
subMorphs f---

~=~~[addSubMorph: aMorph

/ S self subMorphs add: aMorph

Canvas >,
subMorphs

drawMorph: aMorph

\ A subMorphs
\
\

\
drawMorph: aMorph

aMorph submorphs do: [...]

Fig. 1. The Squeak class Morph, containing an instance variable submorphs that con-
tains a collection of Morphs, and a class Canvas, on which morphs can be drawn.

The rest of the paper is structured as follows. Section 2 discusses a moti-
vating problem that gives a more detailed example about the shortcom-
ings of current visibility mechanisms. Section 3 then introduces surfaces
in detail. Section 4 talks about our motivations in designing the surfaces,
and discusses some open issues. Section 5 concludes the paper.

2 Problem Illustration: Morph

The Squeak Smalltalk system includes a GUI paradigm called Mor-
phic [2]. The basis of this system is formed by morphs, entities that
combine model and view elements in a single place. This is implemented
by the class Morph. Since morphs can have submorphs, this class con-
tains an instance variable submorphs, that holds a collection of Morph
objects. Morph has a number of methods to add, remove, and enumerate
its submorphs. The idea is that subclasses and other clients have to use
this protocol instead of directly manipulating the collection of morphs.
Morph has two clients: the class MorphManager that only needs to use
the methods addMorph: and removeMorph:, and the class Canvas that
only needs to enumerate morphs (and not add or remove them). This
setup is shown in Figure 1.



Uniform and Open Surfaces

2.1 Problem 1

In order to force clients to use the methods addMorph: and removeMorph:
whenever they need to add or remove submorphs, we want to make sure
that the method subMorphs returns a read-only collection of submorphs.
This problem is very hard to solve cleanly. We see three possible solu-
tions, all with their specific drawbacks:

— the method submorphs of class Morph can return a copy of the col-
lection. Depending on the situation, this solution can become very
expensive, and is therefore not generally applicable.

— all the enumeration methods of the class Collection can be imple-
mented on the class Morph. The methods dealing with enumeration
can be made public, while the ones dealing with adding or removing
can be made private. The big drawback of this approach is that a lot
of methods have to be duplicated, which is not a good thing from
the point of reuse and code duplication.

— we can create a subclass from the class Collection that defines the
methods add: and remove: from Collection as being private. Then
we can make the class Morph a friend of this new collection. Thus
the class Morph can invoke the private methods because of the friend
relationship, while other classes that get passed this collection can
only invoke the enumeration method do:. However, although it solves
the problem this solution is undesirable in a number of ways. First of
all, a subclass has to be made just so that the access modifiers from
collection can be changed. Even when we could destructively go in
to modify the class Collection, there is still another problem. This
is that the friends relationships that is needed is much too coarse
grained. Suddenly, Morph has access to the complete private life of
class Collection. Furthermore, it has access not only to the inner
parts of the collection containing submorphs, but actually to any
collection.

In general, we conclude that there is currently no generally applicable
clean way to solve these kinds of problems. All the approaches have some
severe drawbacks, employing tricks to address the problem. As we will see
in Section 3, giving Collection two surfaces solves this problem cleanly.

2.2 Problem 2

A second problem is that the visibility modifiers that are required for
the classes MorphManager and Canvas are opposite. As far as the class
Canvas is concerned, the methods addMorph: and removeMorph would
need to be private, while for the class MorphManager they need to be
public. No C++ friends construct or Java package-based solution can
solve this seemingly trivial problem.

3 Surfaces To The Rescue

This section defines what a surface is, how it solves the two problems
from section 2, and then shows how the surface is actually described.
The following defines a surface:



4 S. Ducasse, N. Schaerli, and R. Wuyts

managedMorph: aMorph

managedMorph := aMorph asModifiable

MorphManager i~
managedMorph
managedMorph: aMorph
Collection
add:

Morph asReadOnly
addMorph: aMorph asWriteOnly
removeMorph: aMorph asEnumerable
subMorphs asModifiable
asEnumeratable
asModifiable

Canvas subMorphs
drawMorph: aMorph A subMorphs asEnumerable

\
\
\

\
drawMorph: aMorph

aMorph submorphs do: [...]

Fig. 2. The Squeak class Morph, containing an instance variable submorphs that con-
tains a collection of Morphs, and a class Canvas, on which morphs can be drawn.

Definition: A surface is a list of method names that a client can use to
invoke behavior of an object.

Once a surface is defined, objects can expose themselves through a sur-
face. Clients that get passed such an object can only invoke the methods
defined by the service. An object can restrict or change its visibility and
can propose different surfaces to the same or to different clients. One of
the surfaces can be assigned to be the default service (to be used when
a client does not ask for a specific surface). By default, the all surface
is used as the default, an implicit surface that returns all the selectors
of the class.

The next sections have a detailed look at how the surfaces solve the
problems mentioned in the previous section. Figure 2 shows the solution.

3.1 Solving Problem 1

Let’s see how this solves the first problem described in Section 2.2.
First of all we define two surfaces on the class Collection: enumerable
(containing selector do:) and modifiable (containing selectors add: and



Uniform and Open Surfaces 5

remove: ). Then we implement the following methods on the classes Morph
and Collection, where the class Morph returns a read-only collection
as a result of the message subMorphs. Note the new message |, which is
used to expose an object through an interface (and which we’ll discuss
in more detail after this example).

Morph>>subMorphs
"returns all the morphs owned by the receiver"
" submorphs asModifiable

Morph>>addMorph: aMorph
"add aMorph in the list of submorphs. Access instance variable directly."

" subMorphs add: aMorph.

Collection>>asModifiable
’’return myself exposed as a modifiable morph’’

~ self | modifiable

Collection>>asEnumeratable
’’return myself exposed as an enumerable morph’’

~ self | enumerable

An important design point is that only the class which defines the surface
can use it to expose its objects through it. So the receiver of the |
message is always self, and can never be anything else. So the following
expression is not allowed:

Morph>>subMorphs
"returns all the morphs owned by the receiver"
" submorphs | readOnly

Note that this point also applies to classes and their instances: Since
an instance is another object than its class, a class cannot explicitly
change the surface of an instance (of course it can change it by sending a
message such as ”asReadonly” if there is one). However, this means that
the methods that explicitly change the surface must be implemented on
the instance side.

In short, this example shows that surfaces provide a mechanism that
allow a class to expose groups of methods under a certain name. More-
over, the mechanism is open so that new surfaces can be added. What
we haven’t shown explicitly is that different instances of the same class
could see the same object with different surfaces, since the services are
not applied on classes but on objects.



S. Ducasse, N. Schaerli, and R. Wuyts

3.2 Solving Problem 2

To solve the problem described in Section 2.2 we give the class Morph two
surfaces, analogously to the interfaces on the class Collection: default
(containing the selector submorphs:) and modifiable (containing the
selectors addMorph: and removeMorph:). Moreover, we set the default
surface to be the default one.

We then implement the following two methods on the classes Canvas and
MorphManager

Canvas>>drawMorph: aMorph
’’Draw a morph on the canvas’’

aMorph submorphs do: [:eachSubMorph | self drawMorph: eachSubMorph].

MorphManager>>manageMorph: aMorph
’’Mutator method to set the morph that will be managed’’

manageMorph := aMorph asModifiable.

In short, this example shows that surfaces support parametrised usage,
where the client can choose between different options that are offered.

3.3 Describing Surfaces Declaratively

At first we though of describing a surface as an explicit collection return-
ing selector names. However, this would mean a lot of overhead maintain-
ing this set. Suppose in our example that we add another enumeration
method collect: on the class Collection. Then we have to remember
to update the surfaces that we want this method to appear in. This would
make the system cumbersome to use, even with proper browser support.
Therefore we propose to tag the methods themselves with the surfaces
where they want to occur. The surface definition itself then simply de-
scribes which tag it used. So, in the previous example, the methods add:,
remove: and do: would look as follows (we only show the tages for the
methods):

Collection>>add: anObject
<#modifiable>

Collection>>remove: anObject
<#modifiable>



Uniform and Open Surfaces

Collection>>do: action
<#enumerable>

Then a surface definition could simply assemble all methods with a cer-
tain tag. We are undecided yet if we want to do this explicitly in the
class definition, or leave it implicitly. Making it implicit, where one just
have to tag methods, and the tags can then automatically be used as
surfaces, has the advantage of being simpler. However, it has the disad-
vantage that simple spelling mistakes result in the unwanted definition
of new surfaces. Moreover, an explicit definition mechanism would al-
low composition of surfaces. For example, we could define the surface
modifiable to be the surface all minus the surface enumerable:

Object subclass: #Collection
instanceVariables: ’a b’
classVariables: ’°
poolDictionaries: ’’
surfaces:

#enumerable -> #(do: ... ).
#modifiable -> #ALL - enumerable.

4 Discussion

Mutual Contract. Every class defines the surfaces that clients can use,
and a default one that is used when the client does not specify anything
specific. Moreover, every class automatically has a surface all, that con-
tains all the selectors for that class. Therefore any class that is not happy
with the provided surfaces can use that surface to still access everything.
This makes the surfaces fit with the Smalltalk environment that we en-
visage, since in Smalltalk instance variables are private but all methods
are public. However we agree that this is a negotiable feature (strong en-
capsulation versus strong encapsulation with an overriding mechanism),
but omitting the all interface makes the system strong, even though the
client can still choose which surface it wants to use. This was shown in
the second example in Section 3.2.

About the Notion of Identity in Presence of Surface The question of
identity in presence of surface has to be addressed. Indeed is a reference
to an object the same For example, is submorphs == self subMorphs
true? We propose to have different methods to check if the references to
the same object are made via the same surface.

Implementation There is currently no implementation that supports
surfaces. We have a very good idea on how to add surfaces to the Squeak



S. Ducasse, N. Schaerli, and R. Wuyts

Smalltalk system [2], and we hope that by the time of the workshop we
will have something to show. The implementation boils down to doing a
clever management of method dictionaries, a technique that was already
employed for the aliasing mechanism as found in the Traits system [4].
As such it should constitute only a minor overhead in space, and not in
time. Of course, next revisions of this paper will go more in detail once
the system is implemented and working.

Related Work The most relevant related work that we found is in the
ACE and JAC projects [3]. In these projects, aliasing of objects wants
to be supported in an encapsulated way. As such it addresses the issues
raised by our first problem in Section 2: how to share the collection of
submorphs, but control who can modify it. The main concept presented is
“readonly types”: through a reference of a readonly type it is not possible
to change any part of the transitive state of the referenced object.

The main difference with surfaces is that surfaces are open, and allow one
to add visibility schemes when needed. We envision a system where every
object has several interfaces, that are not only used to control aliasing
but also to control other aspects of relevance to that application. We
propose surfaces as the foundation for such systems.

5 Conclusion

This paper proposes surfaces, a mechanism to control visibility in object-
oriented programming languages. The distinctive features of surfaces are
that it is open (making it easy to specify visibility rules, and they are not
limited to a set of built-in ones), and that they are applied on objects.

References

1. K. Arnold and J. Gosling. The Java Programming Language. Addison
Wesley, 1996.

2. M. Guzdial. Squeak - Object Oriented Design with Multimedia Appli-
cations. Prentice-Hall, 2001.

3. G. Kniesel and D. Theisen. Jac - acces right based encapsulation for
java. Software: Practice and Ezperience (Special issue on Aliasing in
object-oriented systems), 31(6), 2001.

4. N. Schérli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Compos-
able units of behavior. In Proceedings ECOOP 2003, LNCS. Springer
Verlag, July 2003.

5. B. Stroustrup. The C++ programming language — reference manual.
Computing Science Technical Report 108, AT&T Bell Laboratories,
Murray Hill, New Jersey 07974, Jan. 1984.



