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Abstract

We propose a reflective model to express and to
automatically manage dependencies between ob-
jects. This model describes reflective facilities
which enable the changing of language semantics.
Although the importance of inter-object dependen-
cies is well accepted, there is only limited object-
oriented language support for their specification and
implementation. In response to this lack of express-
iveness of object models, the FLO language integ-
rates dependency management into the object ori-
ented paradigm. Dependencies are described as
first class objects and FLO automatically maintains
the consistency of the dependency graph.

In this paper, we first show how a user can de-
clare dependencies and how the system maintains
the consistency of the graph of expressed dependen-
cies. In a second part, we focus on the implement-
ation of this management by controlling the mes-
sages sent to linked objects. In order to make de-
pendency management orthogonal to other applica-
tion concerns, we propose an abstraction of message
handling, implemented with meta-objects. We illus-
trate the extensibility of our language with different
control behavior implementations, in particular we
study different implementations of the global control
of message propagation flow.

Keywords: Dependencies, Computational
reflection, Control of message passing, Me-
taobject Protocol

1 Introduction

Although the importance of inter-object dependen-
cies is well accepted [BC89, BELR92, SRHB89],
there is only limited object-oriented language sup-
port for their specification and implementation.
Confronted with this lack of expressiveness in ob-
ject models, the programmer has to use traditional
object features, such as attributes, to store the ref-
erences to linked objects, accessors, or daemons, in
order to manage constraints and interactions among
objects.

Models such as MvC attempt to address this prob-
lem by integrating the notion of an object having
dependents. A dependency mechanism, based upon
the appropriate message sending, allows the user to
manage the consistency of dependencies. However,
such designs of behavioral relationships [HHG90]
lead to several drawbacks. The dependency se-
mantics is not clearly expressed, and dependen-
cies are often hard-wired into object functionalities.
Consequently, object structures and functionalities
are polluted by non-intrinsic information [HO93].
This goes against the principle of modularity. It is
then difficult to modify, specify, or maintain objects
and dependencies. Reuse capabilities also decrease
[BBB93]. Moreover, relationships between objects
induce a dependency graph in which messages are
propagated to maintain the global consistency of the
dependencies. As relational information is mixed
with intrinsic information, traditional implementa-
tions do not highlight the problem of controlling
the message propagation flow and do not offer the



ability to express different controls of the method
propagation according to the application needs.

In response to this lack of expressiveness of object
models, the FL.o! [DF93] language is an extension of
the object-oriented paradigms integrating depend-
ency management.

In FLO, the user defines dependencies specifying
which methods have to be controlled. Next, he/she
can declare the objects involved in the dependen-
cies, without altering object classes. FLO then auto-
matically maintains the consistency of the graph of
declared dependencies, by controlling the messages
sent to the related objects. The language is cur-
rently used for knowledge representation [DFP91]
and in the domain of User Interface Management
[DF94].

In this paper, we present the language imple-
mentation based upon meta-objects. This aspect
of the language is transparent to the user; more
often the standard behavior of dependency man-
agement in FLO is sufficient for his/her applica-
tion. However, when the application is complex,
the computational reflection allows one to reason
and to redefine the dynamic behavior of compu-
tation within the language framework®. Thus, the
work presented in this paper is in the same line as
[Mae87, Coi88, Fer89, Ish91, Kic92] : “The metaob-
ject protocol approach,..., is based on the idea that
one can and should “open languages up”, allowing
users to adjust the design and implementation to
suit their particular needs.” [KdRB91].

To implement the mechanism of dependency con-
sistency management, in such a way that it can be
modified or even extended, we are faced with three
difficulties:

e How to integrate the maintenance mechanism
in a class-based language, so that only related
objects are controlled?

e How to control the reacting propagation flow?

e How to adapt, trace and extend the language?

'¥1L0, standing for First class Links between Objects, is
a scheme-based object-oriented language.

2Now, extensions are more often implemented by the FLO
implementors.

This paper is organized in two main parts: we
first give an intuitive view of definition and main-
tenance of dependencies in FLO, and then we focus
on the implementation based upon computational
reflection. More precisely, section 2 illustrates the
relational capabilities of FLO. Section 3 justifies
the choice of meta-objects in order to implement
the management of dependencies and presents the
standard implementation of the control of the mes-
sage propagation flow. Extensions of the language
capabilities in terms of relational expressiveness and
of message propagation flow control end this section.
Finally, we give an overview of related work and we
conclude.

2 An intuitive approach of de-
pendencies in FLO

In this section, throughout of a simple example, we
describe the FLO language, i.e the nature of our de-
pendencies, the way they are defined, and the pro-
cess of consistency maintenance.

2.1 Dependency declarations

popped values
stored values
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Figure 1: Stack, memory and stack representation.

Suppose the user has created two independent ob-
jects: a stack object s1 and a memory object ml.
The class stack defines four methods: pop, push,
empty?, and empty. The class memory defines the
methods store, unstore and not-full?. Now, he/she
wishes to express a dependency, called memorized-
by, between sl and ml, without altering the two
class definitions of these objects (see Figure 1). The



user defines a link?, named memorized-by, between
a stack instance and a memory instance. This link
is expressed by referring to stack and memory meth-
ods, as shown in Figure 2, so that all popped values
of the stack are stored in the linked memory, until
the memory is full.

1 (deflink memorized-by ;; (:stack :memory)
2 :behavior
3 (((pop :stack) implies (store :memory :result))

;; a popped value is stored in the memory
4 ((pop :stack) permitted-if (not-full? :memory))))
;; stack can pop an element only if memory is not full

5 (define s1 (send stack mew))
;; we create a stack and a memory
6 (define m1 (send memory mew))
;; we create a link between these instances
7 (define s1—)m1
(send memorized-by mew :stack sl :memory ml))
;; Once the link s1—Ym1 is created
;; the pop method is controlled. sl and m1 are
;; considered as participants of the link s1—)ml

Figure 2: One simple dependency concerning stacks
and memories: definition and instantiation of the
memorized-by link.

Line 3 of Figure 2 shows that, when pop is
called to the object denoted by the :stack variable?,
store must be sent to the object designated by the
:memory variable, with the result of the pop call as
argument, we call such a message, (store :memory
result), a compensating message. The implies
operator associates a compensating message to a
method so that, after applying a specified method,
the system automatically performs the associated
compensating message. Likewise, in line 4, pop will
only be performed on :stack, if :memory is not full.
Thus, the semantics of the permitted-if operator
is that the method can be applied only if the ex-
pression following such a permitted-if operator is

®This term always refers to a reification of a dependency.

“These variables look like Lisp keywords because we want
the user to keep in mind such variables refer to objects which
are associated with such initarg keywords at link creation
time.

true. We call such an expression a guard® ( not-full?
:memory).

The link memorized-by can be used for linking
any instance of stack with any instance of memory.
The instances associated to the variables sl and
ml become dependent when an instance of the
memorized-by link is created between them (see line
7 in Fig. 2). The system associates them respect-
ively with the two variables :stack and :memory
of this instance of memorized-by link. After that,
FLO automatically ensures the consistency of the
memorized-by link, controlling the messages sent to
those instances, in accordance with the link defini-
tions (see section 2.2).

Let us now suppose that the user wants to have
a graphic representation of a stack. On the one
hand he/she has defined the stack object s1, on the
other hand he/she has defined a possible graphic
(graphic-sl) representation with appropriate meth-
ods. To link these objects s1 and graphic-s1, he/she
can define a new dependency, called graphically-
represented-by, such that pop method calls imply
the removal of the corresponding graphic value, push
calls lead to the addition of a new graphic value,
empty calls reset the representation and a selection
of the bottom of the representation implies sending
the pop message to the stack (see Figure 1).

This definition is independent of the memorized-
by definition even if such links concern the same
objects. Thus, the stack instance sl can be linked
at the same time to the memory instance ml and
to the graphic representation graphic-sl. Adding or
removing dependencies is independent of the other
links and of the other linked objects.

From this simple example, we point out some
characteristics of FLO:

FLO preserves the encapsulation principles:
The semantics of the links is only expressed
using the interfaces of the related objects. As

5The guards are used to express constraints on objects,
but the permitted-if operator could be used to check pre-
conditions as in software engineering [Mey90] (with a de-
pendency on a single object). However, such pre-conditions
are intrinsic to the behavior of the object itself, and are not
relational information. For us, this possible use of this oper-
ator seems in contradiction with the initial guard semantics.



the dependency implementation is not buried
into the object code, dependencies are defined
in an independent way of the linked objects, en-
forcing the principle of encapsulation [Sny&6].
Conversely, the code of the objects is independ-
ent from the dependencies, thus enabling higher
modularity.

Links are dynamic: The creation and the de-
struction of links are completely dynamic. In
the above example, one can dynamically add or
remove new representations for a stack or relate
it to other objects without interfering with the
methods of the stacks or with the other links on
the stack.

Links are multi-directional: Objects do not ha-
ve an explicit role of master or slave in a de-
pendency. For example, messages sent to the
stack can imply compensating messages to the
graphic representation. Conversely, messages
sent to the representation can imply compens-
ating messages to the stack.

Links are reified: Links are first class objects,
they can be manipulated and documented. We
can express links on links, such as implica-
tion (subset in [BELR92]), inverse or exclusion

[NECH92].

Reusability: An immediate benefit of FLO links is
the object reusability induced by the non modi-
fication of classes (contrary to MVC model, no
subclass definitions are necessary). Moreover,
the definition of links can be incremental using
inheritance between links.

Programming: Once links are defined and instan-
tiated, FLO ensures their consistency. The pro-
grammer is free from management of link con-
sistency, and so his/her code is more clear and
more accurate. Let us note that some prim-
itives allow the user to ask about the existing
links concerning an object.

Moreover, links are n-nary: we did not present
this aspect of the language in this example, but a de-
pendency in FLO can relate several objects through

different variables. In particular, when the cardin-
ality of a link is undefined (set of objects), FLO
provides primitives to add or remove objects in the
link.

Once dependencies are defined, FLO ensures their
consistency. We detail FL.LO dependency consistency
management in the following section.

2.2 Dependency consistency manage-
ment

Before becoming a “participant” [HHG90] of a link,
an object is free, and its messages are handled nor-
mally. On the other hand, as soon as an object is
related to another one, FLO has to control some of
its messages in order to enforce the consistency of
the dependencies. Each object can be participant of
several links. The set of links constitutes a graph.
Thus, we distinguish two complementary kinds of
message control: the local and the global control.
When a message is sent to an object participant
of some links, the local control ensures the consist-
ency of the links on this object. The global control
ensures the consistency of the whole link graph.

We describe the standard behavior of these two
controls in this section.

2.2.1 Local control

The local control examines the immediate ac-
tions to perform when a message is sent to a linked
object.

When a linked object receives a message, all
the guards defined on this message in the differ-
ent dependencies concerning this object have to be
checked before applying the invoked method. If each
guard is verified, the invoked method is applied,
otherwise the message is not performed. After the
method is applied, all the compensating messages
are called. The standard behavior of the local con-
trol executes these messages in the order of the link
instance creation.

In the example illustrated by Figure 1, a stack sl
is linked to a memory ml and to a graphic object
graphic-sl. Thus a call to the pop method of the
instance s1 implies: (a) the verification of the guard
concerning the state of the memory, and (b) if this



guard is verified, applying the pop method to sl, and
calling the store method of ml and the remove-top
method of the object graphic-sl.

However compensating messages may themselves
be controlled. This last point induces the need of
a global control of the propagation flow, that we
describe next.

2.2.2 Global control

As we said above, compensating messages are called
in reaction to a message. These compensating mes-
sages may in turn involve new compensating mes-
sage calls for the re-establishment of the consistency
of other dependencies. The standard behavior of the
global control in FLO is to repeat the local control on
all the compensating messages. Thus, the message
propagation is realized in a depth first order.

Figure 3 illustrates the message propagation in
a graph of links where a stack sl is memorized-
by a memory ml and is graphically-represented-by
an object graphic-sl; the memory is also represen-
ted by a graphic object graphic-ml. A pop mes-
sage to the stack s1 implies storing the popped value
in the memory ml; the execution of this last mes-
sage implies reporting this modification to the ob-
ject graphic-m1. Next, the pop message to the stack
sl implies sending the corresponding compensating
message to the object graphic-sl.

pop(’ oy

Qﬂ)ve—top

°

o

Figure 3: Example of a global propagation

The underlying graph of dependencies may be
complex. Thus, causality cycles may appear due
to the propagation of compensating messages. In
order to solve this problem, we propose two ortho-

gonal solutions.

— FLO offers the ability to cut some cycles
by providing a way of detecting whether
the compensating messages need to be
called: when this is possible the program-
mer can statically associate an invariant to
the link definition, such an invariant will
be checked before applying the compens-
ating messages.

— Some other cycles may occur during the
management of dependency consistency,
if one of the compensating messages re-
enters in the same propagation flow. A
mechanism of interruption of these cycles
is implemented as standard in FLOS.

2.2.3 TFLO standard control limitations

FLO has been used in different applications: to
enforce the separation between application and
graphic objects in graphic interface [DF94], for
knowledge representation in the domain of build-
ing [DFPI1], for studying inheritance mechanisms
[Duc95], and for tracing message propagation flows.
These experiments have highlighted the limitations
of the standard behavior of the consistency manage-
ment, leading us to “open up” the language to allow
more accurate controls according to user needs.

In particular, some new operators were needed
according to the applications. We present the
introduction of a new operator at section 3.3.1.
Moreover, the standard evaluation order chosen in
FLO may not always be well adapted. Indeed, ac-
cording to the user applications, a breadth first or-
der may be more interesting because the consistency
of the dependency graph is more rapidly satisfied.
Moreover, as some messages may be redundant in
a reaction chain, a global control could eliminate
them. At the moment, we are working on this point
to reduce the list of compensating messages.

Another problem arises when the propagation
cannot lead to a global consistency state. It is the

SFor the detection of cycles, we recall the sequence of calls
that have already implied compensating messages during the
link consistency re-establishment [DF93].



case when one of the guards is not verified in the
chain of reaction or when there is no fixed point
to stabilize the reactivity. A mechanism of back-
track could be implemented. For example with
graphical objects, the actions could be performed
on object “phantoms” and not objects themselves
[CFZ94]. When the link graph consistency can be
re-established, the system performs actions on real
objects or substitutes “phantoms” to objects (when
it is possible).

Finally, one drawback of this kind of “reaction
oriented programming” is the difficulty in tracing
and debugging such applications.

3 FLO implementation: a meta-

object approach

In this section, we first explain why meta-objects are
well adapted to implement the control of depend-
encies in FLO. Secondly, we describe the standard
implementation of the language by means of meta-
objects. Finally, we conclude with some examples
of extensions of local and global control.

3.1 Meta-object: a concept well adap-
ted to the implementation of an ex-
tensible control in FLO

The dependency consistency management involves
checking guards and automatically performing com-
pensating messages. Moreover, the tracing and con-
trol of message propagation are necessary, and users
need to redefine the message sending algorithm ac-
cording to their application needs.

The meta-objects as defined by Maes in [Mae87,
Mae88] allow abstraction of the computation of an
object, that is why they are well adapted to im-
plement the FLO’s dependency management. “The
meta-object holds information about the implement-
ation and interpretation of the object... It is pos-
sible to create abstraction of the behavior of an ob-
ject (i.e. ready-made meta-objects), and to tempor-
arily attach such a special behavior to an object.”
[Mae87].

To manage the consistency of dependencies, we
associate a meta-object with each linked object,

thus conferring on FLO the following three proper-
ties:

e First, separation of object and dependency
management functionalities is clear:
ject exclusively represents information about
the domain entity that it represents.

an ob-

e Second, abstraction of the message handling al-
lows one to implement the consistency mainten-
ance mechanism.

e And third, as dependencies link instances, a
meta-object approach allows FLO to only con-
trol necessary objects instead of penalizing the
entire system.

These three features are necessary to offer an ef-
ficient and extensible management of dependencies.
We will show in section 3.3 how we can use the meta-
objects to extend the expressiveness of the language
and to propose different controls.

Many researches which deal with procedu-
ral [Smi82] or computational reflection [BKK*86,
BDGT88, Mae87, KdRB91] have been realized. We
have chosen to base our meta-object implementation
on Ferber’s work [Fer89]. Ferber replies to the fol-
lowing question: how can we represent meta-objects
in a class-based language? He proposes three solu-
tions: using classes as meta-objects, meta-objects
as instances of a class Meta-Object, and reification
of communications. The second one is well adapted
to our purpose because it allows us to control the
dependencies at the instance level.

Indeed in FLO, the system does not penalize all
the instances of a class to manage dependency con-
sistency if only some instances of a class are re-
lated. Whereas with the first solution, controlling a
single object is not impossible, but it does require a
new class: every instance of a class shares the same
meta-object, its class. Moreover, to quote Ferber
himself, reification of communications “does not say
anything on objects: it is impossible to monitor ob-
jects, to represent specific information about receiv-
ers, or to represent the behavior of a single object.”
Thus, our need of instance control leads us to elim-
inate this third solution. Note that, this solution is



orthogonal to both the other ones and can easily be
mixed with them.

With the chosen solution, classes are used for
structural description (definition of an instance
structure and a set of applicable operations) and
meta-objects for computational description (how a
message is interpreted, a method is applied, and
controlled). In FLO, the meta-object of an object
is called its controller. A controller can be shared
between several objects, and these objects share the
same control of methods.

3.2 Implementation of standard control
in FLO

In order to present the behaviors of controllers, we
use the same syntactic conventions as Ferber in
[Fer89]: the object model 0BJvLISP [Coi87], the syn-
tax of FLAVORS for the definition of methods, the
cLOS [Ste90] one for class definition. We choose the
following syntax for message passing (message) ::=
( send (object) (selector) (arguments)) and in-
ternal slots are accessed as variables.

(define send (obj sel . args)
(let ((meta (meta-of obj)))
(if meta ;; if there is a meta-object
(send meta :HandleMsg ;; delegate message to it
(send Message new

:sender meta :receiver obj
:selector sel :arguments args))

;; else default message handling

(apply (default-lookup obj sel) obj args))))

(defmethod (Meta-Object HandleMsg) (msg)

(let* ((sel (send msg :selector))
(args (send msg :arguments))
(rec (send msg :receiver))
(meth (send self :lookup (class-of rec) sel)))

(if (null? meth)

(send rec :doesnotunderstand sel args)
(send meth :apply method rec args))))

Figure 4: Ferber’s send primitive and HandleMsg
method

In order to embed meta-objects, Ferber explains
that some changes should be made in the kernel of
the language: each object must have a slot meta

and the send primitive must be modified”. Asshown
in Figure 4, the send primitive checks if the receiver
object is bound with a meta-object. In this case,
the message is delegated to the meta-object through
the call to the method HandleMsg. Otherwise, the
default message handling is performed. Note that
Ferber reifies the communications.

1 (define send (obj sel . args)

2 (let ((meta (meta-of obj)))

3 (if meta

4 (send meta :handlemsg obj sel args
(default-lookup obj sel))

5 (apply (default-lookup obj sel) obj args))))

;; Assuming default-lookup manage unknown messages

Figure 5: FLO’s send primitive

In FLO, the HandleMsg method definition is dif-

ferent. Indeed, the role of a FLO meta-object (con-
troller) is to control the execution of messages to
enforce dependency consistency. Therefore, when
a message is sent to a linked object, its control-
ler checks whether the guards are satisfied. If yes,
after applying the accepted message, it must apply
compensating messages (see 2.2). This standard be-
havior of controllers is described in the HandleMsg
method of a controller (see Figure 6).
The HandleMsg method implements the main steps
when a message is handled: the link search, the
guard verification and the compensating message
calls. These steps are key points of our protocol.
Each of them is implemented by a method associ-
ated to the controllers. Thus, to adapt or to extend
the standard behavior, one just has to redefine them.
Let us show more precisely these methods: get-links,
combine-firings, and combine-guards.

o get-links allows the controller to know whether
links exist (lines 4 and 7 of Fig. 6) for a triplet:
object (the receiver of the message), method
(the controlled one) and operator (implies or
permitted-if).

“In order to avoid an infinite loop, it is important to notice
that accessing meta and class slots must not use message
passing.



1(defmethod (StandardController HandleMsg)
(rec sel args method)
2 (if (null? method) ;; if no method has been found
;; we signal it
3 (send rec :doesnotunderstand sel args)
;; else before applying method, we check if
;; application is authorized.
4 (let ((lkgs (send self :get-links 'permitted-if rec sel)))
;; all guards of links are checked
(if (and (pair? lkgs)
5 (send self :combine-guards
lkgs sel rec args))
;; method is applied

6 (let* ((result (send method :apply rec args))
;; and all compensating messages are performed
7 (Ikfs (send meta :get-links "implies sel rec)))
(unless (null? 1kfs)
8 (send meta :combine-firings

Ikfs rec sel args result))
;; result of applied method is returned

9 result)))))

Figure 6: FLO’s standard HandleMsg method

e combine-guards: Its role is to specify the com-
bination of guards (line 5 of Fig. 6). For ex-
ample, specifying this method allows one to ex-
press that only certain kinds of guards must be
checked. By default, such a verification returns
true if all the link guards are verified.

e combine-firings: Its role is to combine compens-
ating messages. By default, combine-firings has
no result and only sends the compensating mes-
sages in the link declaration order (line 8 of
Fig. 6). You can see an example of another
behavior in section 3.3.2.

Some remarks must also be made about the im-
plementation of the HandleMsg method in Figure 6.

e Iirst, we do not reify the message in the send
definition. Reifying messages does not appear
necessary in our use of meta-objects; however,
it could easily be done as in [Fer89].

e Second, in the same way as in the default mes-
sage passing handling (line 5 of Fig. 5), we
distinguish, in the send definition, the lookup

phase and the application method phase for the
meta-level shift (line 4 of Fig. 5). Therefore, we
add a fourth argument to the HandleMsg (line 1
of Fig. 6)). This new argument is the method®
corresponding to the lookup result. As an ad-
vantage, this argument emphasizes extension
facilities, avoiding calling the lookup method
twice when we change the semantics of control
(as shown in the following section 3.3.1).

Discussion about the standard implementa-
tion: The standard behavior of the consistency al-
gorithm mixes local and global propagation of the
reacting flows. Indeed, the proposed algorithm is
an implicitly depth first algorithm, due to the eval-
uation of compensating messages.

As a consequence the control of the reacting flow
is not simply modifiable; for example, the elimin-
ation of some redundant compensating messages is

difficult to implement.

3.3 Examples of extensions of the lan-
guage

In this section, we highlight the extensibility of our
approach: first, we show how the language express-
iveness can be extended for the benefit of the ap-
plication concerns, by adding a new operator: the
corresponds operator. Second, we outline how the
extensibility of FLO might overcome some of the pre-
vious drawbacks of the standard approach by imple-
menting different message sending algorithms.

3.3.1 Corresponds: a new operator in FLO

for propagating messages

We agree with Ibrahim “It is frequently desirable to
modily the behavior of an object without changing
the behaviors of other instances of its class ... Ad-
hoc specialization should also allow the developer to
create objects with new behaviors without requir-
ing generalization to class definitions” [IBC91], and
claim that an object can have more functionalities
due to the existence of dependencies. However, as

8This method is the one normally applied to the controlled
object when there is no link.



soon as such an object becomes free, such function-
alities must vanish. Therefore, the idea is to allow
an object to answer to some new messages (defined
by the dependency) as soon as it belongs to a de-
pendency, so we propose a new operator: the cor-
responds operator.

For example, corresponds can be used to manage
a kind of composition problem between whole-part
entities, exposed by Blake in [BC87]: “The whole
protocol which a part understands ...will have to
be re-implemented as the protocol of the whole. The
net result is that the part hierarchy is replaced by a
single monolithic whole as far as the external world
is concerned” [BC8T7].

The new operator, corresponds, allows one to
declare that a message received by one object of the
link has to be re-sent to another object of this link.
In this sense and with the same syntax as in fig-
ure 2, (method]1 :object] argn) corresponds (method?2
:object2 (fct argn)) means that when a corresponding
message to the methodl is not defined, the controller
of the message receiver object sends another (or the
same) message, using (or not) calling arguments, to
another object (or to itself).

For example if the user defines a dependency in-
tegrating the following definition : (color :whole)
corresponds (color :part). If we link a car (the
whole) to a coach-work (the part), when we ask the
car for its color, this message will be re-sent to the
part which is able to respond to this message.

With the corresponds operator, “the whole pro-
tocol which a part understands” need not be re-
implemented, the corresponding messages can be
introduced thanks to dependencies.

As shown in Figure 7, adding the corresponds op-
erator only requires the definition of a new controller
and to specialize the HandleMsg method®. When the
method which has been sent is found, the standard
HandleMsg method is performed (line 8). On the
other hand, when no method is found, the control-
ler checks whether links with a corresponds operator
exist (lines 4 and 5 of Fig. 7). In such a case, the
controller returns the result of the combination of
the corresponding messages (line 6 of Fig. 7). If

?Note the use of the get-links method with another oper-
ator at line 4.

1 (defclass Corresponding-Controller
(StandardController) ()

2 (defmethod (Corresponding-Controller HandleMsg)
(rec sel args method)
3 (if (null? method)
;; Instead of saying we don’t understand a message
;; we try to ask some other related objects
4 (let ((Ikds (send self :get-links *corresponds rec sel)))
5 (if (pair? lkds)
;; we return the combination of
;; the corresponding actions
6 (send self :combine-corresponds
lkds sel rec args))
;; if nobody can perform the asking message,
;; we signal it
7 (send rec :doesnotunderstand sel args)
;; if a method has been found,
;; we perform the standard behavior
8 (send super :HandleMsg rec sel args method)))

Figure 7: HandleMsg method for corresponds oper-
ator

the method sent has no corresponding messages, an
error is signaled (line 7 of Fig. 7). As we need a dif-
ferent combination of the corresponding messages,
we define a new combination method, which returns
the result of such a combination: by default a list of
the corresponding message’s results.

Note that a dependency using the corresponds op-
erator may be declared on an object with an inad-
equate meta-object, and the consistency of the de-
pendency will not be ensured.

3.3.2 Extending the global control of de-
pendency consistency

As explained in 2.2, the consistency of dependen-
cies is re-established in a local way: each time an
object receives a controlled message, the same con-
trol is performed without taking care of the other
compensating messages. We now present a control
which integrates a global view of the propagation
algorithm, such as depth first, breadth first, or step-
ping propagation. Suppose for example, controlling
my implies my; as compensating messages, which
implies sending messages m;;, we can then obtain



a depth first or a breath first reacting flow, as shown
in Figure 8.

As described in Figure 6, our standard behavior is
implicitly a depth first algorithm. In order to imple-
ment new behaviors, such as a breadth propagation
flow, we make the structure of the control apparent.

ml

——= reacting flow ' depth first propagation

~_~~ ™ breadth propagation

Figure 8: Two flows of reaction during compensat-
ing phase: depth first or breadth first propagation

Thus, we create a new controller class, called Ab-
stractController with a new instance variable place,
(line 2 of Figure 9). This instance variable will
be used to stock compensating messages. Three
methods are provided to manage it: put, get, and
empty?. Defining such abstract methods allows us
to specialize the behavior of message passing con-
trol, as shown in Figure 10. We redefine combine-
firing method: instead of calculating, combining and
applying compensating messages this method must
calculate, combine and return a list of compensating
messages. These returned messages are put (line
11) in the slot place of the controller and get (line
13) at convenience.

Depth first control or standard behavior In
order to have depth first propagation, we create a
new controller inheriting from AbstractController.
Then, place must be considered as a stack. There-
fore the put method must have a push semantics and
the get method a pop one (if the stack is empty, the
get method returns nil).

Breadth propagation of control: For a breadth
propagation scheme we create a new controller

1 (defclass AbstractController (StandardController)
((place))

3 (defmethod (AbstractController HandleMsg)

(rec sel args method)

(]

4 (if (null? method)
5 (send rec :doesnotunderstand sel args)
;; as in default behavior before applying method,
;; we check if application is authorized

6 (let ((lg (send self :get-links ’permitted-if rec sel)))
7 (if (and (pair? lg)

(send self :combine-guards lg sel rec args))
8 (let* ((result (send method :apply rec args))
9 (Ikfs (send meta :get-links

‘implies sel rec)))

;; and all “compensating messages”

;; are calculated and put into place
10 (unless (null? 1kfs)
11 (for-each (send meta :put x)
12 (send meta :combine-firing

Ikfs rec sel args result)))

;; one compensating message is applied
13 (let ((m (send meta :get)))
14 (unless (null? m)
15 (send m :apply rec args)))
16 result)))))

Figure 9: HandleMsg method for propagation with
apparent structure



which inherits from AbstractController. The only
specifications needed are: place of the controller
must be considered as a queue; the put method
must have enqueue semantics and the get method
a dequeue one. The HandleMsg method is not mod-

ified.

Stepping control: Such an implementation of
control makes the addition of new functionalities
easier. In particular, we introduce some stepping or
debugging features in dependency control by decom-
posing all the compensating messages. As shown in
Figure 10, we create a new controller subclass of
DepthFirstController (or BreadthController), with
a new instance variable step-mode which indicates
if the control is normal or in a step by step state
propagation. We define two new methods: toggle-
step-mode to switch the step mode and apply-next-
implied which calls the get method and applies the
returned value. Moreover, to have alternatively nor-
mal and step by step propagation, the get method
must be changed.

Discussion: These control behaviors are quite
simple, however they exemplify the extensibility
of our model. Similar behaviors have been used
to eliminate redundant compensating messages in
some simple reaction chains and to implement an
algorithm of propagation with backtrack.

However, note that the use of meta-objects to de-
pendency management is not completely safe. In-
deed, the success of our approach is based on the
correspondence between the dependencies on the
controlled object and the behavior of its meta-
object. This problem is quite similar to prob-
lems due to the metaclass compatibility presented
in [Gra89, SD94] and it outlines the need of com-
position between meta-objects (when it is possible)

[MMC].

4 Related work

Multiple attempts to express and to ensure consist-
ency of dependencies between objects exist, and we
present here the most significant ones.

andard—controlle
// ‘\\
Corresponding AbstractController
ontrolle

N

A\
Depth first
Controller
4
Stepping
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Figure 10: Hierarchy of controllers
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FLO controls messages rather than only instance
variable accesses, so active values [SBK86] can be
seen as a subset of our control capabilities.

“Relations between objects are very important
modeling entities that, unfortunately, are not sup-
ported by the conventional object model that is gen-
erally used to implement the analysis and design
model” [Bos94]. In response to the lack of uniform-
ity of the object model Jan Bosch defines relation-
ships as first class entities. However, Bosch’s rela-
tions are modeled as layers encapsulating the object
whose behavior is influenced by the relation; rela-
tions are not separate entities next to objects as in
FLO. Moreover, as there is no compensating mes-
sage as in FLO, we consider that Bosch’s relations
are not reactive.

The MVC model [KP88] uses the Smalltalk de-
pendencies which are based on message propaga-
tion between objects. In the MVC model, when
a model changes (changed method), it broadcasts
a change message (udpates method) to its depend-
ents. At first glance, the philosophy of the MVC
model, which was the clear independence of the dif-
ferent agents, is respected. However, the use of the
Smalltalk dependencies has several drawbacks. The
programmer must know a priori which objects are
susceptible to being linked. He/she must subclass
some classes only to implement the reacting beha-
viors. Indeed, the programmer must manage all the
state modifications of the model and the reaction
of its dependents: he/she must program the change
notifications in all the necessary methods of the re-
lated objects (adding the self changed message and
programming the update methods). Furthermore, a



class of dependent objects is specific to a class of
model objects: contrary to the initial MVC philo-
sophy, these classes are strongly linked. Moreover,
from a specification point of view, the Smalltalk de-
pendencies are spread across all the classes: “Pro-
tocols are sometimes difficult to understand because
one has to browse the whole class library to track
the message flow” [BBB93]. The advantage of this
approach is that the model does not explicitly know
or refer to its dependents.

To make integration and evolution of tools easier,
Sullivan and Notkin in [SN92] propose a model
based on mediators, separate components designed
to integrate independent tools, and implicit invoc-
ation. A component announces some events, the
other components can register an interest in such
events by associating procedures. Thus when one
event is announced, the system itself invokes all the
registered procedures of that event. This model can
ensure that update methods are invoked only when
necessary.

In order to mediate object collaboration, Pintado
in [Pin93] proposes gluons. However, his approach
of object collaboration is not based on dependencies
between cooperating objects, as our model is. In
fact, he emphasizes collaboration between objects
as exchanges of services, which provide additional
flexibility such as type conversion, by interposing
an object, a gluon, between the provider of a service
and its clients. Contrary to our approach, an object
sends a message to a gluon in order to have services
provided by another object.

In ksL [IBCI91] a pure object-oriented language,
the authors emphasize the importance of ad-hoc in-
stance specialization. In particular, they introduce
the notion of traps on instances: KSL traps can al-
ter or add any type of behavior. Thus, KsL, as
FLO, supports unique instance behaviors without
implementing delegation or sacrifiing code sharing.
However, FLO provides a mechanism for dependency
expression and management. Moreover, FLO links
are reified in objects that represents all the depend-
ency semantics. KSL traps can be implemented in
FLO using unary link (dependency on single object).

The RENDEzZVOUs [HBRT94] system is based
upon CLOS, which authors have extended with a

constraint maintenance system and an event-based
scheduling to process user input. The Abstraction-
Link-View paradigm [Hil92] emphasizes a clean sep-
aration of user interfaces from applications. ALV
links are objects whose sole responsibility is to fa-
cilitate communication between abstraction objects
(application) and the view objects (user interfaces).
ALV links are bundles of constraints that main-
tain consistency between views and abstraction. No
communication support is coded into the view or
abstraction objects: they ignore each other. There
are many similarities between RENDEZVOUS and
FLO: we use FLO links to ensure communication
between abstraction and presentation in the pAcC
model [Cou87, DF94]. However, FLO allows one
to control any method, whereas RENDEZVOUS limits
link definition to instance variable. Both approaches
are valuable but we consider FLO one enforces en-
capsulation.

Frolund and Agha [FA93] propose synchronizers
which allow the coordination of multi-objects in a
concurrent and distributed language. Synchronizers
are, as links, expressed with interfaces of objects,
strengthening modularity. There are two important
differences between synchronizers and links: first,
synchronizers propose specific operators for the syn-
chronization of distributed messages such as the
atomic operator; second, the proposed operators up-
dates and disables only take synchronizer’s states
into account and not the state of the related objects
as with our implies and permitted-if operators.

In order to express cooperation between objects,
Helm et al. in [HHG90] propose contracts. Con-
tracts are specified through type obligations, which
define variables and external interfaces to be sup-
ported, and causal obligations, which define a se-
quence of messages to be sent and an invariant to
be maintained. However, our approach differs sig-
nificantly from that of contracts. Indeed, with a
contract, classes of related objects are structured by
and around relationships. To quote the authors, “the
specification of a class becomes spread over a num-
ber of contracts and conformance declarations, and
is not localized to one class definition” [HHG90].
On the contrary, our approach emphasizes the equal
importance of relationships and of the objects they



relate.

On the opposite side of our approach, in lan-
guages based on constraint solvers, dependencies
are expressed in terms of constraints between in-
stance variables. When the value of such a con-
strained variable is modified, a propagation al-
gorithm tries to satisfy the constraint, modify-
ing linked variables ([FBB92, MGZ92, San93]).
However, constraints are not expressed in terms of
object interactions, so some inter-object dependen-
cies are difficult to express as constraints between
instance variables. Moreover, some limitations on
types of components are imposed by the constraint
solver. Finally, as Wilk said in [Wil91], “Encapsu-
lation was violated by the constraint expressions”.

5 Conclusion

FLO language is an object-oriented language, im-
plemented with sTKLOs [Gal94], integrating the
concept of dependencies in a declarative way. The
user can define dependencies, declare dependen-
cies between objects and the language automatically
manages their consistency. Towards dependencies,
the behavior of related objects is changed (methods
are controlled). Moreover it is possible to associate
new behaviors to normal object behavior through
a dependency. Therefore, behaviors of the related
objects are enriched. As Agha said “ ..the behavi-
ors of objects depend on the context in which they
exist” [FA93]. In FLO, this context is given by the
dependencies on objects.

The language is based on the reification of de-
pendencies, control of message passing, and a small
open protocol [DF93]. As dependencies are ex-
pressed in terms of the object interfaces, and as
they can dynamically be added or removed without
interfering with the object implementation, modu-
larity is strengthened. Moreover, the code of related
objects is kept pure: no relational information is
spread across the classes of the related objects. On
the contrary, as links are first class objects, they
contain this relational information. In such a way,
dependency semantics is more clear and easily doc-
umented. Moreover, knowledge about dependencies
can be expressed, in particular links between links.

The use of these “meta-links” increases the robust-
ness of the applications and makes the programming
easier.

During the implementation, we were faced with
two problems. First, how can we integrate main-
tenance of dependency consistency in a class-based
language, in a way that only messages to related
objects are controlled? Second how can we provide
a dependency consistency management with exten-
sion possibilities? The response is based on the
reification of the message sending algorithm. The
use of meta-objects allows: a clear separation of ob-
jects and dependency functionalities, a control and
extensibility of the consistency management and a
minimal control of sent messages (only related ob-
jects are controlled).

Some critical points of FLO have been highlighted
in this paper. The extensibility of FLO responds
to some of them. We have shown in this paper for
example that adding expressiveness in the depend-
ency declaration is possible due to a new operator
definition and management. We have also extended
the control of the dependency graph by implement-
ing some new propagation algorithms. To improve
the FLO language, some extensions should be con-
sidered for future work. We can cite five of these
research axes:

— FLO is based on control of message
passing. Only one object, the receiver of
the message, is controlled. As some sys-
tems, like cLos [Pae93], sTkLOS [Gal94]
or DYLAN, provide generic functions which
are applied to a set of objects instead of
message passing on a single object, we
would like to investigate if our approach
is able to manage dependencies with sys-
tems based on generic functions instead of
message passing.

— As dependencies tie instances together,
we foresee the evaluation of our model in
a prototype language with a meta-object

protocol such as MOOSTRAP [MC93].

— The success of our implementation is
based on the correspondence between the
dependencies on the objects and the be-



havior of their meta-objects. This remark
outlines the need to investigate the com-
position between meta-objects [MMC].

We plan to reify the heritance mechan-
ism of FLO by means of links. This will
give FLO a uniform and reflective defin-
ob-

jects and dependencies. Inheritance will

ition only based on two concepts:

not be a built-in language mechanism any
more, but will become described by the
language itself: inheritance will be man-
aged as other dependencies.

A static analysis of the link graph is im-
portant in order to detect problems due to
the global control of dependencies more
precisely and rapidly. The semantics of
FLO language is described in CENTAUR
[Bor87], and we are now working on static
detection of cycles and computation of re-
action chains [San93].
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