
1

Coordination of Active Objects by Means of
Explicit Connectors

S. Ducasse, M. Günter

Abstract—Although coordination of multiple activities is a fundamental
goal of object-oriented concurrent programming languages, there is only
limited support for their specification and abstraction at the language level.
This leads to a mismatch between conceptional designs, using high-level
abstractions, and the implementation, using the low-level coordination con-
structs. Often coordination is hard-wired into the components they coordi-
nate, which leads to evolution, maintenance and composibility problems.

We propose a model called FLO/C that relies on the notion of connectors.
A connector is an entity that enforces the coordination of the entities it co-
ordinates. This model supports a clear separation between the coordinated
active objects and their coordination. An active object only defines specific
domain information and a connector only defines coordination between a
group of active objects (its participants). The coordination is abstractly de-
fined refering to components in terms of the object interface. Coordination
and coordinated entities are independant and can evolve separately. Coor-
dination can be composed and replaced easily.

Keywords—coordination, active objects, synchronizers, components and
connectors, laws, separation of concerns, message passing control.

I. INTRODUCTION

Although coordination of multiple activities is a fundamen-
tal goal of object-oriented concurrent programming languages
(OOCPL), there is only limited support for their specification
and abstraction. There is no support for coordination at a high
level of expression. This inability leads to a mismatch between
conceptional designs, using high-level abstractions, and the im-
plementation, using the low-level coordination constructs [1].
The situation complicates the composition of different coordi-
nation policies without changing the implementation of the co-
ordinated entities. Furthermore, as the policies are coded into
the coordinated entities their modification is difficult. As a pos-
sible solution, this paper will introduce explicit connectors as
high-level coordination supporters.

In the area of software architecture design the distinction be-
tween components and connnectors was introduced to address
the need of decoupling domain specific design from collabora-
tion design[2]. Architectural connectors represent design de-
cisions concerning the collaboration of software components.
Allen and Garlan [3] present a specification language for con-
nectors, which has descriptive and analytical properties such as
component substituability or deadlock detection.

We introduce the FLO/C model1, which takes up the compo-
nent/connector distinction and applies it to the implementation
level. Our explicit connectors implement the collaboration of
components, therefore they are the ideal location for coordina-
tion code. Minsky et al. [4] recognized the need for such explicit
entities, that represent and enforce interaction policies. FLO/C’s
connectors are abstractly defined, and only rely on the interfaces

ducasse,mguenter@iam.unibe.ch, University of Bern, IAM-SCG, Switzer-
land, http://www.iam.unibe.ch/ � ducasse,mguenter

�

A prototype that fully implements this models in NEOCLASSTALK (a new
SMALLTALK implementation providing explicit metaclasses) is available at the
authors’ web pages.

of the active objects they coordinate. Thus, they are indepen-
dent from the implementation of the coordinated objects. This
allows a clear separation of concerns: An active object only de-
fines specific domain information and a connector only defines
coordination between a group of active objects (its participants).
A connector restricts the freedom of the coordinated objects by
controlling message passing. The control done by a connec-
tor depends on the state and the history of the coordination. A
connector specifies a temporal ordering such as precedence and
atomicity of the exchanged messages amongst the objects.

In section II we discuss the coordination goals in the context
of active objects and we present the lack of support for coordi-
nation in concurrent object-oriented languages and their conse-
quences. Afterwards, the FLO/C model is presented using the
gas station example [5].

II. MULTI-OBJECT COORDINATION PROBLEMS

We discuss why coordination support in traditional object ori-
ented languages is insufficient. We briefly present our choice to
represent concurrent objects, and we present our coordination
goals.

A. Explicit support for coordinating objects: a Need

Traditional OOCP languages offer little support for synchro-
nisation of groups of concurrent objects [1]. As an exam-
ple, JAVA models coordination at a very low level of abstrac-
tion. Threads model activities, and communicate through un-
protected, shared memory. While the set of provided con-
structs in theory is sufficient to solve any coordination problem,
in practise only expert programmers are able to handle non triv-
ial tasks. JAVA users tend to rely on design pattern collections
[6] to solve common coordination problems. But even with such
approaches, protocols used for establishing the coordination be-
tween a group of activities are hard coded into parts of the activ-
ities resulting in poor abstraction facilities avoiding composition
and evolution of the coordination policies. The main problems
can be summarized as follows:

� No separation of concerns. Expressing coordination abstrac-
tion is difficult because the code that manages the coordination
is intimately tied to the implementation of the coordinated ob-
jects [7].

� Absence of abstraction. The fact that no abstractions are sup-
ported offers a low level of reasoning. There is no declarative
means to specify coordination.

� Lack of composability. Composing different coordination
policies is difficult without changing the code of the coordinated
objects.

� Lack of flexibility. The coordination being not explicitly and
abstracly expressed, it is difficult to modify and to customize the
coordination policies.



2

� Do it yourself. This problem refers to the fact that the pro-
grammer must implement all the mechanisms that will support
the coordination. This task is particularly difficult. Doing so
the programmer should first focus on the tools and mechanisms
instead of just expressing the desired coordination.

B. Modelling Activities as Active Objects

“coordination is managing dependencies between activities”
[8]. Usually, the activities are modelled as threads or processes.
Since these concepts cross object borders, different approaches
tried to map threads to objects, thus enforcing object encapsu-
lation: Actors [9], Actalk [10] and more recently ATOM [11]
allow the definition of activity enhanced objects, so called ac-
tive objects, that possess their own process(es) and communicate
asynchronously. Because ACTALK has been designated to be a
minimal open testbed for active objects [10], we have chosen a
variant of its active object notion for our model.

C. Coordination Goals and Multi-Object Joint Actions

We can build a complete programming model out of two
pieces - the computational model and the coordination model
[12]. FLO/C uses active objects (respectively their methods) to
express computation and connectors to implement coordination.
Carriero and Gelernter state that a coordination language must
provide the ”glue” to bind separate active pieces into software
systems. Such ”glue” must allow these independent pieces to
communicate and synchronize with each other. In the context of
the multi-object coordination:

� Communication. Connectors must provide ways for ac-
tive objects to communicate with each other or eventually with
groups of other active objects (e.g. multi-casting).

� Synchronization. Here, one task is the mutual exclusion of
object groups, the other the conditional synchronization. The
problem is that the conditions might depend on the state of more
than one active object.

We propose a coordination abstraction that extends the state
machine model of a single object. A single active object can ac-
cept requests for computation, check if it is in the right state
and then compute, thereby changing its state. Furthermore,
upon failure of the state checks a request can be denied (balking
guard), or blocked in order to be tried again later.

Inconsistent group state

Synchronized multi-object joint actions

Consistent group state 1

StateB1StateA1 StateA2 StateB1 StateA2 StateB2

[Multi-object constraints]

[Constraints]
ComputationB

[Constraints]

ComputationA

Consistent group state 2

Fig. 1. Multiple object’s conditional state change.

For groups of objects, the group state is defined by the states
of its objects. An object group can accept requests according to
its global state. State changes include computation on different
group members. We call this abstraction synchronized multi-
object joint actions, or simply joint actions. Joint actions pre-
serve the group’s consistency because the constraint checking
and the computations execute atomically; the group state is pro-
tected from third-party acces.

The following constructs are needed to compose joint actions:
Declaration of both styles of guards on several objects. Decla-
ration for a sequence of single computations that lead to a con-
sistent group state. The sequence can be composed using pull-
based flow or push-based flow [6].

FLO/C provides constructs to easily compose such multi-
object joint actions that are used to realize mutual exclusion and
conditional synchronization. Conditional synchronization is al-
ready reflected by the guards for the state transition. Mutual
exclusion of a resource is modeled as object groups, each con-
taining the resource, and each accessing the resource by multi-
object joint actions. Note furthermore that multi-object joint
actions can be used to model pessimistic transactions: Guards
check if all participants are in a proper state or ask them directly
if they can commit to a certain transaction. Then protected com-
putation on different objects do the commitment.

However, in FLO/C multi joint actions do not address opti-
mistic transactions, real-time support, and real distribution.

As we show in the next sections, FLO/C provides ways to
specify such joint-actions plus a low level asynchronous com-
munication based on rules like in CLF [13]. The following table
summarizes the coordination abstractions addressed in FLO/C

and presents the rule operators that support them.

Multi-object joint action Communication

purpose styles operator styles operator
guard balking permittedIf push impliesLater

blocking waitUntil
computation push implies
ordering pull impliesBefore

access protected asynchronous

III. FLO/C: A MODEL FOR COORDINATING ACTIVE

OBJECTS

Conceptionally, the FLO/C model distinguishes between two
entities modeled as active objects: components and connectors.
Components model domain specific properties, while connec-
tors model interaction between components.

[14] presents in detail FLO/C specific features. Due to space
limitations we present FLO/C’s concept of components and
connectors via the example of a gas station simulation [5] be-
cause it is non-trivial and shows most of the FLO/C features.

A. The Gas Station Example

A gas station has several pumps where car drivers can pump
fuel. A car driver decides to pay an amount of money to the
cashier. Only then, the car driver can pump fuel. Car drivers
and cashier are autonomous entities that act concurrently on the
pumps which are also autonomous. Therefore we model all of
them as active objects. Car drivers interact with the cashier to
pay for fuel, and they interact with pumps to get fuel, while the
cashier interacts with the pumps to prepare them for pumping.
The example illustrates several coordination problems:
1. Client-server interaction: The customer accesses the
cashier, in order to get authorization to access a pump. Money
and fuel representations flow between the participants.
2. Shared resources: The pumps are shared by customers.
3. Race: As discussed in [5], when two customers pay to get
fuel from the same pump, the one who is faster can get the fuel
for both.



3

Cashier
cash: Money
receiveCash(a: Money)

tank: Fuel
cash: Money

Pump
tank: Fuel
free: Boolean
load(l: Litre)
releaseLoad(): Fuel
free(): Boolean
free(b: Boolean)

CarDriver

useFuel()

pump()
pay(): Money

[no cash available]

useFuel()[tank empty]

pay()[cash available]pump()

useFuel()[tank not empty]

Fig. 2. Component classes of the gas station example and UML state diagram
of the car driver.

While the car drivers are responsible for their proper behavior
(when to pump, how much to pay), the connectors enforce the
interaction policies (correct amount of fuel and race regulation).

B. Components

A component is an active object [10] or a group of compo-
nents that are composed by connectors. Such a composite group
must provide an interface like the objects of the base object
model2.

As shown by Figure 2, the cashier can receive and store
money. The pump is a fuel server that can be loaded for an
amount of fuel. Its method releaseLoad returns the loaded fuel.
The car driver object stores money and fuel. Its autonomous be-
havior is represented by its methods invoking each other as il-
lustrated in figure 2. It can “drive around”, using up its fuel. If it
has no fuel but still money, it can use this money to pay for new
fuel. Then it pumps as much as possible and drives on.

Note that the car driver does not have to know, how to pay a
cashier, or how to pump on a certain pump. It only knows, that
it wants to pay and pump. Therefore, the CarDriver implemen-
tation can run on its own. However, if it is not connected, it gets
no new fuel, thus stopping soon. It is the connector’s responsi-
bility to implement the concrete interactions, namely the correct
transfer of money and fuel.

C. Connectors

Connectors are specialized active objects that are responsible
for the interaction between the other components. A connector
is independent of its participants, and the participants remain
unaware of the connector. But a connector controls its partic-
ipants by following interaction rules over the message passing
(see section refinteractionrule).

Roles. A connector refers to the components of the interac-
tion, called its participants, by means of the roles they play. A
group of components can play one role, while one component
can play different roles in the same connector. Furthermore, a
component can participate in different connectors.

The following definition of the connector GasStationCon-
nector contains three participant roles: cashier, customer and
pump (line 2). E.g. the car drivers play the role customer in
the gas station interactions. The other part of the definition (lines
3-8) are explained in the next section.

�

In our implementation using SMALLTALK, the interface specification is only
a set of selectors.

Connector subclass: #GasStationConnector;
withRoles: ’customer cashier pump’;
withBehavior: ’

1 [ customer pay
implies cashier receiveCash: result.

connector calcFuelFor: result ]
2 [ connector calcFuelFor: a

implies pump select Next as myPump load: result ]
3 [ customer pump

impliesBefore myPump releaseLoad ]
4 [ pump releaseLoad

implies customer select REC tank: result ]’

Connector lifetime. Connectors are instantiated and de-
stroyed dynamically. Once instantiated, a connector can only
be activated if it has at least one participant per role. When ac-
tivated it controls active objects to enforce its interaction rules
(see III-D). During its active phase, a connector can add or re-
move new participants. A new car driver can be added to the
participants of the connector via its customer role. A connec-
tor terminates explicitly or when not enough participants play
its roles.

The following lines shows how a connector is instantiated.

|gasStation customers pumps cashier|
gasStation := GasStationConnector new.
customers := OrderedCollection with: CarDriver new with: CarDriver new.
pumps := ......
gasStation objects: customers playRole: ’customer’.
gasStation objects: pumps playRole: ’pumps’.
gasStation objects: cashier playRole: ’cashier’.
...
gasStation activate.
customers do: [:c | c useFuel].
...

Connector Behavior. To implement an interaction pattern
(including coordination), a connector intercepts the participant
messages, and it processes its own. It decides if participant
methods (and which ones) should be invoked. The basis for
decisions is a connector specific set of rules and the history of
the interactions.

D. Interaction Rules

Like many other coordination approaches based on rules [13],
[4], FLO/C uses interaction rules. Rules on message sending
and dispatching yield the expressive power needed for coordina-
tion tasks. The advantage of rules are their high level of abstrac-
tion, their incrementality through composition and the ability to
reason on them.

The connector GasStationConnector implements the inter-
actions between the different components of the gas station. It
enforces four rules that are designed to manage role groups (sev-
eral customers and pumps at once). The four rules compose two
sets of multi-object joint actions. The following enumeration
explains the rules of the presented GasStationConnector dec-
laration rule by rule.
Rule 1: The customer invokes its method pay which returns the
amount of money the customer wants to pays. This starts a set of
joint actions. The first rule then ensures that the cashier gets the
money3. As a second sequential consequence, the connector4

�

The strong sequential ordering properties of the implies operator offers the
keyword result for right hand sided arguments.

�

A connector can trigger messages to itself using the default role connector.



4

calculates the amount of fuel the customer payed for. Concep-
tionally this could have been done by the cashier as well, but in
other cases it is not obvious where to put such conversion code.
So the example shows how connectors can host the conversion
in such cases.
Rule 2: When the calculation of the fuel amount is done, this
rule loads the pump for the resulting amount. The rule must
select a particular pump since there can be several components
playing the pump role. The select Next appendix to the role
let the pumps take turn when being loaded. Note that, when
there are less customers than pumps, this guarantees that two
customers cannot select the same pump. Since the selection of
a particular pump is needed later the as myPump appendix to
the role stores each selection in the relative role myPump.
Rule 3: This rule starts a second set of joint action chain. Before
the customer executes its pump method, the pump, that was
selected for it in rule 2, releases its load. This releasing action
triggers the next rule.
Rule 4: The tank of the pumping customer is filled with the
amount of fuel released by the pump, again using the result key-
word. Note that only now, the pump method of the customer is
executed.

Managing Races. The rules 1,2 and rules 3,4 form two sets of
joint actions. The first one handles the payment and preparation
of the pump, the second one the pumping of fuel. The global
process is divided, because it is the customers free choice, when
it wants to pay, and when it wants to pump. As we said in II-C
the joint actions are atomic but because of the gap between them
a race can occur when there are more customers than pumps.
Then it is possible that two customers pay to pump from the
same pump and the customer that pumps first will receive the
fuel for both.

To prevent this kind of problem, the following connector en-
sures that a pump is not loaded twice. It uses the pump’s free
message as a lock. When a pump aready is loaded, further load-
ing requests must wait.

Connector subclass: #PumpLockConnector;
withRoles: ’pump’;
withBehavior: ’

1 [ pump load: a
implies pump select REC free: false ]

2 [ pump load: a
waitUntil pump select REC free ]

3 [ pump releaseLoad
implies pump select REC free: true ]’

The PumpLockConnector only defines the role pump.
Rule 1: When a pump is loaded, it is not free any more.
Rule 2: The loading of a pump must wait until it is free.
Rule 3: When the pump has released the load, it is free again.

The connector bridges the gap between the two joint actions
of the GasStationConnector. It comes in, when the payment
interaction end, and ends, where the pump interaction finishes.
By adding the PumpLockConnector to the example we can
demonstrate how joint actions can be extended. The new guard
in rule 2 locally protects the loading of the pump. But it also
extends the payment joint actions of the GasStationConnector
since the loading of the pump is a part of it. Therefore rule 2
adds a new constraint to these joint actions and rule 1 adds a
new action to it. Rule 3 on the other hand extends the pumping

joint actions.
The extended payment joint actions will therefore explicitly

wait for the selected pump to be free, and explicitly reserve it
when the payment succeeds. The extended pump joint actions
will explicitly release the pumps after successful pumping of
fuel. Therefore each pump only loads fuel for one customer at
once and no race condition can occur.

E. Example evaluation

The FLO/C solution works for an arbitrary number of cus-
tomers and pumps, thus it demonstrates FLO/C’s flexibility.
Furthermore it demonstrates how FLO/C’s group managing
specificators yield expressive power.

We dynamically added a connector, to enforce a new interac-
tion policy, which guarantees race-freeness. This demonstrates
the incrementability of FLO/C. Moreover it illustrates separa-
tion of concerns, which is also demonstrated by the fact, that
e.g. the car driver objects are autonomous. Furthermore, the ex-
ample showed the FLO/C solution techniques to different non-
trivial coordination problems. Note that we implement tradi-
tional and recent coordination examples [14].

Problem Solution
Client-sever Implies-operators carry data in the
interactions. arguments or even propagate the return

value of the precondition. Conversion can
be done in connector methods.

Managing of Specificator maps resources to
shared participants, Transactions protect resources
resources. from inconsistent access.
Avoiding Transactions work together
races. with user-defined locks.

F. Precision on Interaction Rules

Operators Semantics. FLO/C uses five operators to specify
interaction rules. The permittedIf and the waitUntil operator
express guards; the permittedIf operator supports balking style,
the waitUntil operator supports blocking style. The implies and
impliesBefore operators enforce computational ordering; The
implies operator supports push style, the impliesBefore oper-
ator supports pull style. All four operators protect the objects
involved in the rule: left and right hand side of the rule are ex-
ecuted atomically. The low-level communication tasks are met
by the impliesLater operator that features asynchronous conse-
quence sending. A formal description is available in [14].
Collaboration of Connectors. FLO/C composes simultaneous
triggering rules at run-time, and fuses them to multi-object joint
actions in a uniform way.

The sending of a rule triggering message (request) to a con-
nected active object leads to the interception of the message.
Then the FLO/C model’s global reaction covers three phases;
(1) the consequence collecting phase (all the connectors at-
tached to the active object start to collect consequences and re-
turn a list consisting of three different kind of messages: the se-
quential ones (including the intercepted message), their guards,
and their asynchronous consequences) Note that FLO/C detects
and breaks cycles. (2) the protected execution phase (It exe-
cutes multi-object joint actions starting with the internal reser-
vation of all the participants, then the guards are executed. If all



5

the guards succeed, the sequential consequences are executed)
and (3) the unprotected sending phase (the asynchronous con-
sequences of all the methods that were previously executed are
sent asynchronously).
Group Management. In the right part of a rule, a role refers to
a group of objects and per default sending a message to a role
broadcasts it to all the group objects. The appendix select to a
role selects particular objects like the receiver of the controlled
message (REC), all the objects except the receiver (Others) or
the next object in the group (Next) (see rules 2 and 4 of GasSta-
tionConnector. Note that FLO/C also allows user-defined se-
lection policies.
Relative Roles. For coordination of shared resources is often
convenient to refer to a selected object in another rule. FLO/C

supports the definition of relative role name using the role ap-
pendix as relativeRoleName. Without, going into detail, this
associates the selected object with the receiver of the request
that triggers a set of joint actions.

In the GasStationConnector connector, rule 2 defines a
relative role named myPump that refers to the next available
pump. Note that the receiver of the request that triggers the pay-
ment joint actions is a customer an not the connector (compare
rules 1 and 2). Thus rule 2 stores the selected pump for a partic-
ular customer in myPump and the particular selection is used
when a customer will pump fuel later like in rule 3.

IV. CONCLUSION

With FLO/C we introduced an object oriented model for co-
ordinating active objects. Where in traditional programming
language (like JAVA), coordination is implemented in low-level
constructs, FLO/C offers explicit, rule based connectors for
coordination. In order to treat coordination at a higher level
FLO/C introduces five operators, featuring two conditional syn-
chronization policies and three communication policies. The pa-
per demonstrates the sufficiency of the expressive power of this
minimal set. FLO/C divides programming in computation (done
in active objects) and coordination (done in connectors). Thus
it directly maps architectural design, and enforces the separa-
tion of concerns. Composite active objects allow the mapping
of hierarchical design and improve the scalability of the model.
Connectors as explicit rule-based coordinators profit of the in-
crementability of rules. They collaborate through a uniform role
fusion protocol.

Our model addresses the same problem space as the synchro-
nizers of Agha and Frølund [1]. Both introduce independent
support constructs for multi-object coordination of active ob-
jects. However, we extend synchronizers in the following di-
mensions:
1. The coordination is no longer limited to the state of the con-
nector itself. A connector can take into account the state of its
participants and the history of the coordination. Moreover a
connector is not limited to the synchronization of objects. A
connector enforces coordination of objects by invoking partici-
pant object services.
2. A connector is a complete dynamic entity that can be dynam-
ically created and destroyed. FLO/C is completely dynamic, it
can establish and cancel connections at run-time, and it allows
new conectors to be created on the fly.

3. A connector manages group of coordinated objects and sup-
ports dynamic addition or removal of participants.
4. The proposed model is uniform and open: a connector is an
active object and not a specific construct, and the model allows
one to extend its rule semantics.

FLO/C has been fully implemented in NEOCLASSTALK

a new SMALLTALK implementation providing explicit meta-
classes. All the material presented in this paper is freely avail-
able at authors’ web pages.

A. Future work

We implemented the FLO/C model on a single processor ma-
chine, using this fact to simplify the implementation. Future
work will address real distribution. We claim that the FLO/C

model and distributed systems infrastructure such as CORBA
can form a basis for a real distributed FLO/C implementation.
FLO/C’s separation of concerns will pay off even more when
used in a distributed environment. Active objects reside in dif-
ferent physical locations. Connectors form bridges over a net-
work. FLO/C model extensions for distribution include addi-
tional declarations of location and mobility of active objects an
connectors. We also need to address the low-level coordina-
tion tasks (e.g. conversion, real-time support) we omitted in this
work. The handling of communication failures and roll-backs
of synchronized joint actions also need considerable further ef-
forts.

In [14] a formal specification of the presented model has been
defined. An interesting future work could be an automatic trans-
lation of architectural design with formal connectors [15] to
FLO/C code, as well as query languages, to prove properties
of FLO/C examples (like in [5]).

REFERENCES

[1] S. Frølund and G. Agha, “A Language Framework for Multi-Object Coor-
dination,” in Proceeding of ECOOP’93, LNCS 707, 1993, pp. 346–360.

[2] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerg-
ing Discipline, Prentice-Hall, 1996.

[3] R. Allen and D. Garlan, “Formalizing architectural connection,” in Pro-
ceedings of ICSE’94, 1994.

[4] N. H. Minsky and V. Ungureanu, “Regulated Coordination in Open Dis-
tributed Systems,” in Proceedings of Coordination’97, 1997, pp. 81–97.

[5] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. Osterweil, “Applying
static analysis to sofware architectures,” in Proceedings of ESEC/FSE’97,
LNCS 1301, 1997, pp. 77–93.

[6] D. Lea, Concurrent Programming in Java, Addison-Wesley, 1997.
[7] C. V. Lopez and G. Kiczales, “D: A Language Framework for Ditributed

Programming,” Tech. Rep. TR SPL97-010P9710047, Xerox Parc, 1997.
[8] T. W. Malone and K. Crowston, “The interdisciplinary study of coordina-

tion,” ACM Computing Surveys, vol. 26, no. 1, Mar. 1994.
[9] G. Agha, Actors: a Model of Concurrent Computation in Distributed

Systems, MIT Press, 1986.
[10] J.P. Briot, “Actalk: A Testbed for Classifying and Designing Actor Lan-

guages in the Smalltalk-80 Environment,” in Proceedings ECOOP’89,
1989, pp. 109–129.

[11] M. Papathomas, G.S. Blair, and G. Coulson, “A Model for Active Ob-
ject Coordination and its Use for Distributed Multimedia Applications,”
in Object-Based Models and Languages for Concurrent Systems, 1995,
LNCS 924, pp. 162–175.

[12] N. Carriero and D. Gelernter, How to Write Parallel Programs: a First
Course, MIT Press, 1990.

[13] S. Freeman J.-M. Andreoli and R. Pareschi, “The Coordination Language
Facility: coordination of distributed objects,” Journal of Theory and Prac-
tice of Object Systems (TAPOS), vol. 2, no. 2, pp. 77–94, 1996.

[14] M. Günter, “Explicit Connectors for Coordination of Active Objects,”
M.S. thesis, University of Berne, 1998.

[15] Costas Arapis, Dynamic Evolution of Object Behaviour and Object Coop-
eration, Ph.D. thesis, University of Geneva, 1992.


