
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Security Code Smells in Android ICC

Pascal Gadient · Mohammad Ghafari ·
Patrick Frischknecht · Oscar Nierstrasz

Received: date / Accepted: date

Abstract Android Inter-Component Communication (ICC) is complex, largely un-
constrained, and hard for developers to understand. As a consequence, ICC is a com-
mon source of security vulnerability in Android apps. To promote secure program-
ming practices, we have reviewed related research, and identified avoidable ICC vul-
nerabilities in Android-run devices and the security code smells that indicate their
presence. We explain the vulnerabilities and their corresponding smells, and we dis-
cuss how they can be eliminated or mitigated during development. We present a
lightweight static analysis tool on top of Android Lint that analyzes the code un-
der development and provides just-in-time feedback within the IDE about the pres-
ence of such smells in the code. Moreover, with the help of this tool we study the
prevalence of security code smells in more than 700 open-source apps, and manually
inspect around 15% of the apps to assess the extent to which identifying such smells
uncovers ICC security vulnerabilities.

Keywords Security code smells · Vulnerability · Static analysis · Android

1 Introduction

Smartphones and tablets provide powerful features once offered only by comput-
ers. However, the risk of security vulnerabilities on these devices is tremendous:
smartphones are increasingly used for security-sensitive services like e-commerce,
e-banking, and personal healthcare, which make these multi-purpose devices an irre-
sistible target of attack for criminals.

A recent survey in the Stack Overflow website shows that about 65% of mobile
developers work with Android [1]. This platform has captured over 80% of the smart-
phone market, and just its official app store contains more than 2.8 million apps. As a

Pascal Gadient, Mohammad Ghafari, Patrick Frischknecht, Oscar Nierstrasz
Software Composition Group, University of Bern, Switzerland
E-mail: {gadient, ghafari, oscar}@inf.unibe.ch

2 Pascal Gadient et al.

result, a security mistake in an in-house app may jeopardize the security and privacy
of billions of users.

The security of smartphones has been studied from various perspectives such as
the device manufacturer [26], its platform [29], and end users [11]. Numerous secu-
rity APIs, protocols, guidelines, and tools have been proposed. Nevertheless security
concerns are often overridden by other concerns [5]. Many developers undermine
their significant role in providing security [27]. As a result, security issues in mobile
apps continue to proliferate unabated [2].

Given this situation, in previous work we identified 28 security code smells, i.e.,
symptoms in the code that signal potential security vulnerabilities [10]. We studied
the prevalence of ten such smells, and realized that despite the diversity of apps in
popularity, size, and release date, the majority suffer from at least three different
security smells, and such smells are in fact good indicators of actual security vulner-
abilities.

To promote the adoption of secure programming practices, we build on our previ-
ous work, and identify security smells related to Android Inter-Component Commu-
nication (ICC). Android ICC is complex, largely unconstrained, and hard for develop-
ers to understand, and it is consequently a common source of security vulnerabilities
in Android apps.

We have reviewed state-of-the-art papers in security and existing benchmarks for
Android vulnerabilities, and identified twelve security code smells pertinent to ICC
vulnerabilities. In this paper we present these vulnerabilities and their corresponding
smells in the code, and discuss how they could be eliminated or mitigated during
development. We present a lightweight static analysis tool on top of Android Lint
that analyzes the code under development, and provides just-in-time feedback within
the IDE about the presence of such security smells in the code. Moreover, with the
help of this tool we study the prevalence of security code smells in more than 700
open-source apps, and discuss the extent to which identifying these smells can un-
cover actual ICC security vulnerabilities. We address the following three research
questions:

– RQ1: What are the known ICC security code smells? We have reviewed related
work, especially that appearing in top-tier conferences and journals, and identi-
fied twelve avoidable ICC vulnerabilities and the code smells that indicate their
presence. We discuss each smell, the risk associated with it, and its mitigation
during app development.

– RQ2: How prevalent are the smells in benign apps? We have developed a tool that
statically analyzes apps for the existence of ICC security smells, and we applied
it to a repository of 732 apps, mostly available on GitHub. We discovered that
almost all apps suffer from at least one category of ICC security smell, but fewer
than 10% suffer from more than two categories of such smells. Interestingly, only
small teams appear to be capable of consistently building software resistant to
most security code smells. Furthermore, long-lived projects have more issues than
recently created ones, and updates rarely have any impact on ICC security.

– RQ3: To which extent does identifying security smells facilitate detection of secu-
rity vulnerabilities? We inspected the identified smells in 100 apps, and verified

Security Code Smells in Android ICC 3

whether they correspond to any security vulnerabilities. Our investigation showed
that about half of the identified smells are in fact good indicators of security vul-
nerabilities.

To summarize, this work represents an effort to spread awareness about the im-
pact of programming choices in making apps secure, and to fundamentally reduce
the attack surface of ICC APIs in Android. We argue that this helps developers who
develop security mechanisms to identify frequent problems, and also provides devel-
opers inexperienced in security with caveats about the prospect of security issues in
their code. Existing analysis tools often overwhelm developers with too many iden-
tified issues at once. In contrast we provide feedback during app development where
developers have the relevant context. Such feedback makes it easier to react to issues,
and helps developers to learn from their mistakes [22]. This paper goes beyond our
earlier work [10] by (i) providing a completely new study on ICC vulnerabilities, one
of the most prevalent Android security issues, and identifying the corresponding se-
curity smells, (ii) providing more precise, while still lightweight, static analysis tool
support to identify such smells, (iii) integrating our analysis into Android Lint, thus
providing just-in-time feedback to developers, (iv) experimentation on a new dataset
of open-source Android apps, and (v) open-sourcing the lint checks as well as the
analyzed data.1

The remainder of this paper is organized as follows. We provide the necessary
background about the Android OS and ICC risks from which Android apps suffer in
section 2. We introduce ICC-related security code smells in section 3, followed by
our empirical study in section 4. We provide a brief overview of the related work in
section 5, before concluding the paper in section 6.

2 Background

This section covers the necessary background in the Android platform, and briefly
presents common security threats in the context of ICC scenarios.

2.1 Android Architecture

Android is the most popular operating system (OS) for smartphones and other types
of mobile devices. It provides a rich set of APIs for app developers to access common
features on mobile devices.

An Android app consists of an .apk file containing the compiled bytecode, any
needed data, and resource files. The Android platform assigns a unique user iden-
tifier (UID) to each app at installation time, and runs it in a unique process within
a sandbox so that every app runs in isolation from other apps. Moreover, access to
sensitive APIs is protected by a set of permissions that the user can grant to an app.
In general, these permissions are text strings that correlate to a specific access grant,
e.g., android.permission.CAMERA for camera access.

1 We are collaborating with Google to officially integrate these checks into Android Studio.

4 Pascal Gadient et al.

Four types of components can exist in an app: activities, services, broadcast re-
ceivers, and content providers. In a nutshell:

– Activities build the user interface of an app, and allow users to interact with the
app.

– Services run operations in the background, without a user interface.
– Broadcast receivers receive system-wide “intents”, i.e., descriptions of operations

to be performed, sent to multiple apps. Broadcast receivers act in the background,
and often relay messages to activities or services.

– Content providers manage access to a repository of persistent data that could be
used internally or shared between apps.

The OS and its apps, as well as components within the same or across multiple
apps, communicate with each other via ICC APIs. These APIs take an intent object
as a parameter. An intent is either explicit or implicit. In an explicit intent, the source
component declares to which target component (i.e., Class or ComponentName in-
stances) the intent is sent, whereas in an implicit intent, the source component only
specifies a general action to be performed (i.e., represented by a text string), and the
target component that will receive the intent is determined at runtime. Intents can
optionally carry additional data also called bundles. Components declare their ability
to receive implicit intents using “intent filters”, which allow developers to specify the
kinds of actions a component supports. If an intent matches any intent filter, it can be
delivered to that component.

2.2 ICC Threats

ICC not only significantly contributes to the development of collaborative apps, but
it also poses a common attack surface. The ICC-related attacks that threaten Android
apps are:

– Denial of Service. Unchecked exceptions that are not caught will usually cause
an app to crash. The risk is that a malicious app may exploit such programming
errors, and perform an inter-process denial-of-service attack to drive the victim
app into an unavailable state.

– Intent Spoofing. In this scenario a malicious app sends forged intents to mislead
a receiver app that would otherwise not expect intents from that app.

– Intent Hijacking. This threat is similar to a man-in-the-middle attack where a
malicious app, registered to receive intents, intercepts implicit intents before they
reach the intended recipient, and without the knowledge of the intent’s sender and
receiver.

Two major consequences of ICC attacks are as follows:

– Privilege Escalation. The security model in Android does not by default pre-
vent an app with fewer permissions (low privilege) from accessing components
of another app with more permissions (high privilege). Therefore, a caller can es-
calate its permissions via other apps, and indirectly perform unauthorized actions
through the callee.

Security Code Smells in Android ICC 5

– Data Leak. A data leak occurs when private data leaves an app and is disclosed
to an unauthorized recipient.

3 ICC Security Code Smells

In this section we present the guidelines we followed to derive the security code
smells from previous research. Finally, we explain each security smell in detail.

3.1 Literature Review

Although Android security is a fairly new field, it is very active, and researchers in
this area have published a large number of articles in the past few years. In order
to answer the first research question (RQ1), and to draw a comprehensive picture of
recent ICC smells and their corresponding vulnerabilities, our study builds on two
pillars, i.e., a literature review and a benchmark inspection.

We were essentially interested in any paper that matches our scope, i.e., explain-
ing an ICC-related issue, and any countermeasures that involve ICC communication
in Android.

For our analysis we considered multiple online repositories, such as IEEE Xplore
and the ACM Digital Library, as well as the Google Scholar search engine. In each
repository we formulated a search query comprising Android, ICC, IPC and any other
security-related keywords such as security, privacy, vulnerability, attack, exploit,
breach, leak, threat, risk, compromise, malicious, adversary, defence, or protect. In
addition to increase our potential coverage on Android security, we also collected
all related publications in recent editions of well-known software engineering venues
like the International Conference on Software Engineering (ICSE). This search led
initially to 358 publications.

In order to retrieve only relevant information that lies within our scope, i.e., An-
droid application level ICC security, we first read the title and abstract, and if the
paper was relevant we continued reading other parts.

This process led to the inclusion of 47 papers in our study. We recursively checked
both citations and cited papers until no new related papers were found. This added
six new relevant papers in our list that in the end contained 53 relevant papers for an
in-depth study, out a total of 430 papers. During the whole process, which was under-
taken by two authors of this paper, we resolved any disagreement by discussions. The
list of included papers in this study is available on the GitHub page of the project.2

We further studied the well-known DroidBench3 and Ghera4 benchmarks for our
evaluation, both built with a focus on ICC. We relied on their technical implemen-
tation, or description where possible, to extract the desired information, i.e., issues
under test, symptoms, and vulnerabilities. The inspection of these two benchmarks

2 https://github.com/pgadient/AndroidLintSecurityChecks
3 https://github.com/secure-software-engineering/DroidBench
4 https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

https://github.com/pgadient/AndroidLintSecurityChecks
https://github.com/secure-software-engineering/DroidBench
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

6 Pascal Gadient et al.

served two different purposes: on the one hand we wanted to ensure there are no
smells that we might have missed to include in our list. On the other hand, we wanted
to rely on some ground truth while explaining and examining the vulnerability capa-
bilities of the smells.

3.2 List of Smells

We have identified twelve ICC security code smells that are listed in Table 1. For
each smell we report the security issue at stake, the potential security consequences
for users, the symptom in the code (i.e., the code smell), the detection strategy that has
been implemented by our tool for identifying the code smell, any limitations of the
detection strategy, and a recommended mitigation strategy of the issue, principally
for developers.

ID Security code smells ID Security code smells
SM01 Persisted Dynamic Permission SM07 Broken Service Permission
SM02 Custom Scheme Channel SM08 Insecure Path Permission
SM03 Incorrect Protection Level SM09 Broken Path Permission Precedence
SM04 Unauthorized Intent SM10 Unprotected Broadcast Receiver
SM05 Sticky Broadcast SM11 Implicit Pending Intent
SM06 Slack WebViewClient SM12 Common Task Affinity

Table 1 The identified ICC security code smells

We mined this information from numerous publications and benchmark suites,
but only few of these resources provided detailed information about a given security
issue. Therefore we put in a great manual effort to provide a comprehensive descrip-
tion for each smell, while consulting other resources such as the official Android
documentation and external experts. For instance, authors who focused on vulnera-
bility detection generally neglected the aspect of mitigation. This is very problematic,
since it is very common for ICC-related issues to share strong similarities with only
subtle differences, e.g., regular directed inter-app communication and broadcasts both
rely on intents. Furthermore, manifold vulnerability terms that are used in the litera-
ture insufficiently reflect the symptoms as they do not name the involved component,
e.g., “Confused Deputy” instead of “Unauthorized Intent”. Better naming conven-
tions would greatly ease the understanding of security vulnerabilities.

– SM01: Persisted Dynamic Permission. Android provides access to protected re-
sources through a Uniform Resource Identifier (URI) to be granted at runtime.
Issue: Such dynamic access is intended to be temporary, but if the developer for-
gets to revoke a permission, the access grant becomes more durable than intended.
Consequently, the recipient of the granted access obtains long-term access to po-
tentially sensitive data.
Symptom: Context.grantUriPermission() is present in the code with-
out a corresponding Context.revokeUriPermission() call.
Detection: We report the smell when we detect a permission being dynamically

Security Code Smells in Android ICC 7

granted without any revocations in the app.
Limitation: Our implementation does not match a specific grant permission to its
corresponding revocation. We may therefore fail to detect a missing revocation if
another revocation is present somewhere in the code.
Mitigation: Developers have to ensure that granted permissions are revoked when
they are no longer needed. They can also attach sensitive data to the intent instead
of providing its URI.

– SM02: Custom Scheme Channel. A custom scheme allows a developer to reg-
ister an app for custom URIs, e.g., URIs beginning with myapp://, throughout
the operating system once the app is installed. For example, the app could register
an activity to respond to the URI via an intent filter in the manifest. Therefore,
users can access the associated activity by opening specific hyperlinks in a wide
set of apps.
Issue: Any app is potentially able to register and handle any custom schemes used
by other apps.
Consequently, malicious apps could access URIs containing access tokens or cre-
dentials, without any prospect for the caller to identify these leaks [23].
Symptom: If an app provides custom schemes, then a scheme handler exists in the
manifest file or in the Android code. If the app calls a custom scheme, there exists
an intent containing a URI referring to a custom scheme.
Detection: The android:scheme attribute exists in the intent-filter
node of the manifest file, or IntentFilter.addDataScheme() exists in
the source code.
Limitation: We only check the symptoms related to receiving custom schemes.
Mitigation: Never send sensitive data, e.g., access tokens via such URIs. Instead
of custom schemes, use system schemes that offer restrictions on the intended re-
cipients. The Android OS could maintain a verified list of apps and the schemes
that are matched when there is such a call.

– SM03: Incorrect Protection Level. Android apps must request permission to
access sensitive resources. In addition, custom permissions may be introduced by
developers to limit the scope of access to specific features that they provide based
on the protection level given to other apps. Depending on the feature, the system
might grant the permission automatically without notifying the user, i.e., signa-
ture level, or after the user approval during the app installation, i.e., normal level,
or may prompt the user to approve the permission at runtime, if the protection is
at a dangerous level.
Issue: An app declaring a new permission may neglect the selection of the right
protection level, i.e., a level whose protection is appropriate with respect to the
sensitivity of resources [16].
Consequently, apps with inappropriate permissions can still use a protected fea-
ture.
Symptom: Custom permissions are missing the right android:protection-
Level attribute in the manifest file.
Detection: We report missing protection level declarations for custom permis-
sions.
Limitation: We cannot determine if the level specified for a protection level is in

8 Pascal Gadient et al.

fact right.
Mitigation: Developers should protect sensitive features with dangerous or signa-
ture protection levels.

– SM04: Unauthorized Intent. Intents are popular as one way requests, e.g., send-
ing a mail, or requests with return values, e.g., when requesting an image file from
a photo library. Intent receivers can demand custom permissions that clients have
to obtain before they are allowed to communicate. These intents and receivers are
“protected”.
Issue: Any app can send an unprotected intent without having the appropriate
permission, or it can register itself to receive unprotected intents.
Consequently, apps could escalate their privileges by sending unprotected intents
to privileged targets, e.g., apps that provide elevated features such as camera ac-
cess. Also, malicious apps registered to receive implicit unprotected intents may
relay intents while leaking or manipulating their data [7].
Symptom: The existence of an unprotected implicit intent. For intents requesting
a return value, the lack of check for whether the sender has appropriate permis-
sions to initiate an intent.
Detection: The existence of several methods on the Context class for initi-
ating an unprotected implicit intent like startActivity, sendBroadcast,
sendOrderedBroadcast, sendBroadcastAsUser, and sendOrdered-
BroadcastAsUser.
Limitation: We do not verify, for a given intent requesting a return value, if the
sender enforces permission checks for the requested action.
Mitigation: Use explicit intents to send sensitive data. When serving an intent,
validate the input data from other components to ensure they are legitimate.
Adding custom permissions to implicit intents may raise the level of protection
by involving the user in the process.

– SM05: Sticky Broadcast. A normal broadcast reaches the receivers it is intended
for, then terminates. However, a “sticky” broadcast stays around so that it can im-
mediately notify other apps if they need the same information.
Issue: Any app can watch a broadcast, and particularly a sticky broadcast receiver
can tamper with the broadcast [16].
Consequently, a manipulated broadcast may mislead future recipients.
Symptom: Broadcast calls that send a sticky broadcast appear in the code, and the
related Android system permission exists in the manifest file.
Detection: We check for the existence of methods such as sendStickyBroad-
cast, sendStickyBroadcastAsUser, sendStickyOrderedBroad-
cast, sendStickyOrderedBroadcastAsUser, removeStickyBroad-
cast, and removeStickyBroadcastAsUser on the Context object in
the code and the android.permission.BROADCAST_STICKY permission
in the manifest file.
Limitation: We are not aware of any limitations.
Mitigation: Prohibit sticky broadcasts. Use a non-sticky broadcast to report that
something has changed. Use another mechanism, e.g., an explicit intent, for apps
to retrieve the current value whenever desired.

Security Code Smells in Android ICC 9

– SM06: Slack WebViewClient. A WebView is a component to facilitate web
browsing within Android apps. By default, a WebView will ask the Activity
Manager to choose the proper handler for the URL. If a WebViewClient is
provided to the WebView, the host application handles the URL.
Issue: The default implementation of a WebViewClient does not restrict ac-
cess to any web page [16].
Consequently, it can be pointed to a malicious website that entails diverse attacks
like phishing, cross-site scripting, etc.
Symptom: The WebView responsible for URL handling does not perform ade-
quate input validation.
Detection: The WebView.setWebViewClient() exists in the code but the
WebViewClient instance does not apply any access restrictions in WebView.-
shouldOverrideUrlLoading(), i.e., it returns false or calls WebView.-
loadUrl() right away. Also, we report a smell if the implementation of Web-
View.shouldInterceptRequest() returns null.
Limitation: It is inherently difficult to evaluate the quality of an existing input
validation.
Mitigation: Use a white list of trusted websites for validation, and benefit from
external services, e.g., SafetyNet API,5 that provide information about the threat
level of a website.

– SM07: Broken Service Permission. Two different mechanisms exist to start a
service: onBind and onStartCommand. Only the latter allows services to run
indefinitely in the background, even when the client disconnects. An app that uses
Android IPC to start a service may possess different permissions than the service
provider itself.
Issue: When the callee is in possession of the required permissions, the caller will
also get access to the service.
Consequently, a privilege escalation could occur [16].
Symptom: The lack of appropriate permission checks to ensure that the caller has
access right to the service.
Detection: We report the smell when the caller uses startService, and then
the callee uses checkCallingOrSelfPermission, enforceCalling-
OrSelfPermission, checkCallingOrSelfUriPermission, or en-
forceCallingOrSelfUriPermission to verify the permissions of the
request. Calls on the Context object for permission check will then fail as
the system mistakenly considers the callee’s permission instead of the caller’s.
Furthermore, reported are calls to checkPermission, checkUriPermis-
sion, enforcePermission, or enforceUriPermission methods on
the Context object, when additional calls to getCallingPid or getCal-
lingUid on the Binder object exist.
Limitation: We currently do not distinguish between checks executed in Ser-
vice.onBind or Service.onStartCommand, and we do not verify cus-
tom permission checks based on the user id with getCallingUid.
Mitigation: Verify the caller’s permissions every time before performing a privi-

5 https://developer.android.com/training/safetynet/safebrowsing.html

https://developer.android.com/training/safetynet/safebrowsing.html

10 Pascal Gadient et al.

leged operation on its behalf using Context.checkCallingPermission()
or Context.checkCallingUriPermission() checks. If possible, do not
implement Service.onStartCommand in order to prevent clients from start-
ing, instead of binding to, a service. Ensure that appropriate permissions to access
the service have been set in the manifest.

– SM08: Insecure Path Permission. Apps can access data provided by a content
provider using path specifications of the form /a/b/c. A content provider may
restrict access to certain data under a given path by specifying so called path per-
missions. For example, it may specify that other apps cannot access data located
under /data/secret. The Android framework prohibits access to unautho-
rized apps only if the requested path strictly matches the protected path. For in-
stance, //data/secret is different from /data/secret, and therefore the
framework will not block access to it.
Issue: Developers often use the UriMatcher for URI comparison in the query
method of a content provider to access data, but this matcher, unlike the Android
framework, evaluates paths with two slashes as being equal to paths with one
slash.
Consequently, access to presumably protected resources may be granted to unau-
thorized apps [16].
Symptom: A UriMatcher.match() is used for URI validation.
Detection: We look for path-permission attributes in the manifest file, and
UriMatcher.match() methods in the code.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in the Android framework, use your own
URI matcher.

– SM09: Broken Path Permission Precedence. In a content provider, more fine-
grained path permissions e.g., on /data/secret take precedence over those
with a larger scope e.g., on /data.
Issue: A path permission never takes precedence over a permission on the whole
content provider due to a bug that exists in the ContentProvider.enforce-
ReadPermissionInner() method. For example, if a content provider has a
permission for general use, as well as a path permission to protect /data/secret
from untrusted apps, then the general use permission takes precedence.
Consequently, content providers may mistakenly grant untrusted apps access to
presumably protected paths.
Symptom: A content provider is protected by path-specific permissions.
Detection: We look for a path-permission in the definition of a content
provider in the manifest file.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in Android, instead of path permissions use
a distinct content provider with a dedicated permission for each path.

– SM10: Unprotected Broadcast Receiver. Static broadcast receivers are regis-
tered in the manifest file, and start even if an app is not currently running. Dy-
namic broadcast receivers are registered at run time in Android code, and execute
only if the app is running.
Issue: Any app can register itself to receive a broadcast, which exposes the app to

Security Code Smells in Android ICC 11

any other app able to initiate the broadcast.
Consequently, if there is no permission check, the receiver may respond to a
spoofed intent yielding unintended behavior or data leaks [16].
Symptom: The Context.registerReceiver() call without any argument
for permission exists in the code
Detection: We report cases where the permission argument is missing or is null.
Limitation: We are not aware of the permissions’ appropriateness.
Mitigation: Register broadcast receivers with sound permissions.

– SM11: Implicit Pending Intent. A PendingIntent is an intent that executes
the specified action of an app in the future and on behalf of the app, i.e., with the
identity and permissions of the app that sends the intent, regardless of whether
the app is running or not.
Issue: Any app can intercept an implicit pending intent [16] and use the pending
intent’s send method to submit arbitrary intents on behalf of the initial sender.
Consequently, a malicious app can tamper with the intent’s data and perform cus-
tom actions with the permissions of the originator. Relaying of pending intents
could be used for intent spoofing attacks.
Symptom: The initiation of an implicit PendingIntent in the code.
Detection: We report a smell if methods such as getActivity, getBroadca-
st, getService, and getForegroundService on the PendingIntent
object are called, without specifying the target component
Limitation: Arrays of pending intents are not yet supported in our analysis.
Mitigation: Use explicit pending intents, as recommended by the official docu-
mentation.6

– SM12: Common Task Affinity. A task is a collection of activities that users
interact with when carrying out a certain job.7 A task affinity, defined in the man-
ifest file, can be set to an individual activity or at the application level.
Issue: Apps with identical task affinities can overlap each others’ activities, e.g.,
to fade in a voice record button on top of the phone call activity. The default value
does not protect the application against highjacking of UI components.
Consequently, malicious apps may hijack an app’s activity paving the way for
various kinds of spoofing attacks [19].
Symptom: The task affinity is not empty.
Detection: We report a smell if the value of a task affinity is not empty.
Limitation: We are not aware of any limitation.
Mitigation: If a task affinity remains unused, it should always be set to an empty
string on the application level. Otherwise set the task affinity only for specific
activities that are safe to share with others. We suggest that Android set the de-
fault value for a task affinity to empty. It may also add the possibility of setting a
permission for a task affinity.

6 https://developer.android.com/reference/android/app/PendingIntent.
html

7 https://developer.android.com/guide/components/activities/
tasks-and-back-stack.html

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

12 Pascal Gadient et al.

In summary, each security smell introduces a different set of vulnerabilities. We
established a close relationship between the smells and the security risks with the
purpose of providing accessible and actionable information to developers, as shown
in Table 2.

Vulnerabilities Security code smells
Denial of Service SM01, SM02, SM03, SM04, SM06, SM07, SM10, SM12
Intent Spoofing SM02, SM03, SM04, SM05, SM07, SM08, SM09, SM10, SM11
Intent Hijacking SM02, SM03, SM04, SM05, SM10, SM11

Table 2 The relationship between vulnerabilities and security code smells

4 Empirical Study

In this section we first present the Lint-based tool with which we detect security code
smells, and introduce a dataset of more than 700 open-source Android projects that
are mostly hosted on GitHub. We then present the results of our investigation into
RQ2 and RQ3 by analyzing the prevalence of security smells in our dataset, and by
discussing the performance of our tool, respectively.

The results in subsection 4.3 suggest that although fewer than 10% of apps suffer
from more than two categories of ICC security smells, only small teams are capable
of consistently building software resistant to most security code smells. With respect
to app volatility, we discovered that updates rarely have any impact on ICC secu-
rity, however, in case they do, they often correspond to new app features. On the
other hand, we found that long-lived projects have more issues than recently created
ones, except for apps that receive frequent updates, where the opposite is true. More-
over, the findings of Android Lint’s security checks correlate to our detected security
smells.

In subsection 4.4, our manual evaluation confirms that our tool successfully finds
many different ICC security code smells, and that about 43.8% of the smells in fact
represent vulnerabilities. We consequently hypothesize that the tool can offer valu-
able support in security audits, but this remains to be explored in our future work.

We performed analyses similar to our previous work, e.g., exploring the relation
between star rating and smells, or the distribution of smells in app categories, and
we did not observe major differences with our past findings [10]. Our results are
therefore in line with our prior research that did not consider ICC smells, and found
that the majority of apps suffer from security smells, despite the diversity of apps in
popularity, size, and release date.

Security Code Smells in Android ICC 13

4.1 Linting Tool

Our Linting tool is built using Android Lint, a static analysis framework from the
official Android Studio IDE8 for analyzing Android apps. Android Lint provides var-
ious rich interfaces for analyzing XML, Java, and Class files in Android. Using these
interfaces, one can implement a so-called “detector” that is responsible for scanning
code, detecting issues, and reporting them. More specifically, each detector is rep-
resented by a Java class that implements Android Lint interfaces to access Android
Lint’s abstract syntax trees (ASTs) of the app built from XML, source, or bytecode.
In order to ease the AST traversal, Android Lint provides an implementation of the
visitor design pattern with additional helper methods to support further interaction
with the tree. The majority of methods use idiomatic names that closely resemble
the developer’s intention, e.g., UastUtils.tryResolve() to resolve a variable,
or the class ConstantEvaluator to evaluate constants. The latest Android Lint
provides more than 300 different detectors to check several categories of issues such
as, e.g., Accessibility, Usability, Security, etc.

We extended Android Lint by developing twelve new detectors. These detectors
implement UastScanner9 and XmlScanner interfaces to check the presence of
security code smells in source code and manifest files, respectively. We implemented
the detection strategies that we introduced for each security smell in section 3. The
complexity of our detectors varies; the average size of a detector is 115 lines of code.

Android Lint brings analysis support directly into the Android Studio IDE. De-
velopers can therefore receive just-in-time feedback during app development about
the presence of security code smells in their code. For this purpose, the .jar file that
contains our detectors should be copied into the Lint directory. These detectors will
then be run automatically during programming in the latest Android Studio IDE (i.e.,
the Canary build), and notify developers about the security code smells once they
appear in the code under development. Each notification includes an explanation of
the smell, mitigation or elimination strategies, as well as a link to some references.

Linting in batch mode is also possible through the command line interface, given
the availability of the successfully built projects. In our experience, a successful build
often entails changing build paths, and updating Gradle and its project configurations
to a version that is compatible with the current release of Android Lint. We created
a script to automate most of this non-trivial process. After a successful build of each
project, another script runs the executable of Android Lint, and collects the analysis
results in XML files.

The tool is publicly available for download from a GitHub repository.10

8 https://sites.google.com/a/android.com/tools/tips/lint
9 The UastScanner is the successor of the JavaScanner, and, in addition to Java, also supports

Kotlin, a new programming language used in the Android platform.
10 https://github.com/pgadient/AndroidLintSecurityChecks

https://sites.google.com/a/android.com/tools/tips/lint
https://github.com/pgadient/AndroidLintSecurityChecks

14 Pascal Gadient et al.

4.2 Dataset

We collected all open-source apps from the F-Droid11 repository as well as several
other apps directly from GitHub.12 In total we collected 3 471 apps, of which we
could successfully build 1 487 (42%). For replication of our results we explicitly
provide the package names of all successfully analyzed apps,13 instead of a binary
compilation, because of the dataset’s storage space requirements of more than 27
GBytes. In order to reduce the influence of individual projects, in case there existed
more than one release of a project, we only considered the latest one. Finally, we
were left with 732 apps (21%) in our dataset. The median project size in our dataset
is about 1.2 MB, while the median number of data files per project is 108.

4.3 Batch Analysis

This section presents the results of applying our tool to all the apps in our dataset.

4.3.1 Prevalence of Security Smells

Figure 1 shows how prevalent the smells are in our dataset. Almost all apps suffer
from Common Task Affinity issues (99%) followed by the much less prevalent Unau-
thorized Intent smell (11%). The default value of task affinity configurations does not
protect the application against highjacking of UI components, and only few develop-
ers appear to be aware of the issue and set the property accordingly. Custom Scheme
Channel and Implicit Pending Intent each contribute about 8% of the smells. Fur-
thermore, WebViewClient is in line with our observation that apps increasingly rely
on web components for their UI. At the other end of the spectrum, Sticky Broadcast,
Incorrect Protection Level, Broken Service Permission, and Persisted Dynamic Per-
mission cause less than 2% of all issues. The threat of path permissions is not very
common, as no apps suffered from SM08 or SM09.

We were also interested in the relative prevalence of different security smells
in the apps (see Figure 2). Less than 1% did not suffer from any security smell at
all, whereas the majority of apps, i.e., over 90%, suffered from one or two different
smells. 9% of all apps were affected by three or more smells. No apps, fortunately,
suffered from more than seven different types of smells. It is important to recall that
the more issues that are present in a benign app, the more likely it is that a malign app
can exploit it, e.g., with denial of service, intent spoofing, or intent hijacking attacks.

4.3.2 Contributor Affiliation

Figure 3 shows the relationship between the number of contributors participating in
a project and the mean number of security smell categories apps suffer from. For ex-
ample, the second last bar represents the number of all projects maintained by 41 to

11 https://f-droid.org/
12 https://github.com/pcqpcq/open-source-android-apps
13 https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/
dataset/analyzed_apps.csv

https://f-droid.org/
https://github.com/pcqpcq/open-source-android-apps
https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv
https://github.com/pgadient/AndroidLintSecurityChecks/blob/master/dataset/analyzed_apps.csv

Security Code Smells in Android ICC 15

0 0 2 2
8 9

34

49

59 60

82

729

0

20

40

60

80

100

700

720

740

#
 a

p
p

s
su

ff
er

in
g
 f

ro
m

 s
m

el
l

different types of ICC security smells apps suffer

Fig. 1 Distribution of security smells in the apps

70.49 %

19.95 %

4.92 %

3.14 %

0.82 %

0.41 %

0.27 %

0 100 200 300 400 500 600

01

02

03

04

05

00

07

apps

di

ff
er

en
t s

m
el

ls
 f

ou
nd

 in
 a

pp
s

Fig. 2 Prevalence of different security smells in apps

16 Pascal Gadient et al.

0

0.5

1

1.5

2

2.5

3

3.5

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11-15 16-20 21-40 41-60 >60

di

ff
er

en
t s

ec
ur

it
y

sm
el

ls
 f

ou
nd

 in
 a

pp
s

pr

oj
ec

ts

contributors per project

projects # different security smells found in apps

Fig. 3 Relation between number of a project’s participants, its prevalence, and the average number of
different security smells found

60 participants, while the line chart shows that projects with this many participants
suffer on average from 2.5 security smell categories. We see that most apps are main-
tained by two contributors, followed by projects developed by individuals. A trend
exists that projects with many participants are less common than projects with only
a few contributors. The more people are involved in a project the more the security
decreases, especially for large teams. More precisely, we found statistical evidence
that only small teams of up to five people are capable of consistently building projects
resistant to most security code smells, by using the nonparametric Mann-Whitney U
test that does not require the assumption of normal distributions for the dataset. The
mean different smell occurrences in the groups “projects with one contributor” and
“projects with six contributors” were 1.263 and 1.705; the distributions in the two
groups differed significantly (Mann-Whitney U = -2.086, n1 < n2 = 0, P < 0.05 two-
tailed). Similarly, we found that the distributions in the two groups “projects with six
to forty contributors” and “projects with more than forty contributors” were diverse
(Mann-Whitney U = -2.204, n1 < n2 = 0, P < 0.05 two-tailed) with mean different
smell occurrences of 1.655 and 2.750, respectively.

4.3.3 App Updates

We investigated the smell occurrences in subsequent app releases. Of the 732 projects,
33 (4%) of them released updates that either resolved or introduced issues. By inspec-
tion of source code we noticed that many of the updates targeted new functionality,
e.g., addition of new implicit intents to share data with other apps, implementation

Security Code Smells in Android ICC 17

of new notification mechanisms for receiving events from other apps using implicit
pending intents, or registration of new custom schemes to provide further integra-
tion of app related web content into the Android system. We believe this is due to
developers focusing on new features instead of security.

For the majority of the app updates that introduced new security smells, we found
that the dominant cause for decreased security is the accommodation of social inter-
actions and data sharing features in the apps updates. Hence, developers should be
particularly cautious when integrating new functionality into an app.

4.3.4 Evolution

Every new Android version introduces changes that strengthen security. The target-
ing of outdated Android releases will not only limit the supported feature set to the
respective release, but also introduce potential security issues as security fixes are
continuously integrated into the OS with each update.

Figure 4 shows the evolution of security smells across different Android releases.
For those apps that had more than one release in our dataset, we only considered
the latest release. The horizontal axis shows the different Android releases apps are
targeting in their configuration, whereas the vertical axis shows the contribution of a
specific smell to the total amount of smells detected. As in previous work [10], we see
changes in some of the security smells apps suffer from. We believe that the positive
trend in Unauthorized Intent within apps is the consequence of built-in sharing func-
tionalities to external services. The relative growth of Implicit Pending Intent could
correlate to the introduction of a new storage access framework in Android release
19, which heavily relies on intents, and allows developers to browse and open doc-
uments, images, and other files with ease. Google’s efforts to raise the developer’s
awareness of web-related security issues appears to be working: the occurrences of
Slack WebView Client have decreased in more recent releases. Despite the lack of
comprehensive data on API levels 10 and 11 due to the relatively few apps available
for study, the occurrences of the majority of smells remain constant as a result of the
early feature availability since API level 1.

4.3.5 Comparison to Existing Android Lint Checks

In order to compare our findings with other issues in the apps, we correlated the re-
sults from the existing Android Lint framework with security code smells. We wanted
to explore whether frequent reports of specific Android Lint issue categories were
also indicative of security issues, or in other words, if security checks by the Android
Lint framework agree with our security smells and whether other quality aspects of
an app could relate to its security level. We collected all available issue reports for
each app and then extracted the occurrences of each detected issue.

We applied the Pearson product-moment correlation coefficient algorithm for
each ICC security smell category combination according to the following formula:

Pearson(x, y) =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
,where

18 Pascal Gadient et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7 8 9 10 11 14 15 16 17 18 19 21

pe
rc

en
ta

ge
 o

f
al

l i
ss

ue
s

fo
un

d SM12: Common Task Affinity

SM04: Unauthorized Intent

SM11: Implicit Pending Intent

SM02: Custom Scheme Channel

SM10: Unprotected Broadcast Receiver

SM06: Slack WebViewClient

SM05: Sticky Broadcast

SM03: Incorrect Protection Level

SM07: Broken Service Permission

Fig. 4 Evolution of security code smells in different Android releases

x is the array of all apps issue occurrences in category ICC security code smells,

y is the array of all apps issue occurrences in the respective Android Lint category, and

x̄, ȳ represent the corresponding sample means.

It provides a linear correlation between two vectors represented as a value in the
range of −1 (total negative linear correlation) and +1 (total positive linear correla-
tion). The correlation of the Android Lint categories and our ICC smell category in
Table 3 reveals several interesting findings: (1) Our ICC security category strongly
correlates with the Android Lint security category (+0.72), which contains checks for
a variety of security-related issues such as the use of user names and passwords in
strings, improper cryptography parameters, and bypassed certificate checks in Web-
View components. (2) Another discovery is the minor correlation between the ICC
security smells and the Android Lint correctness category (+0.29). This category in-
cludes checks for erroneously configured project build parameters, incomplete view
layout definitions, and usages of deprecated resources. (3) Furthermore, we assume
that usability does not impede security (+0.07), because issues in usability are closely
related to UI mechanics.

(4) Finally, minor correlations are shown for performance, accessibility, and in-
ternationalization. These three categories have in common that they rely heavily on
UI controls and configurations.

To further assess how our tool performs on real world apps against the Android
Lint detections, we take the 100 apps with the most and least prevalent ICC security
smells and compare them to Android Lint’s analysis results. We expect to see sig-
nificant similarities in the increase of issues detected as our security smells correlate
to Android Lint’s security checks, i.e., the least vulnerable apps should suffer less in

Security Code Smells in Android ICC 19

(a) 100 least vulnerable apps

(b) 100 most vulnerable apps

Fig. 5 Prevalence of Android Lint issues in the 100 most and least vulnerable apps

20 Pascal Gadient et al.

Android Lint category Correlation with ICC security smells
Security 0.72
Correctness 0.29
Correctness: Messages 0.27
Accessibility 0.25
Performance 0.25
Usability: Typography 0.21
Internationalization 0.13
Internationalization: Bidirectional 0.11
Usability: Icons 0.11
Usability 0.07

Table 3 Correlation of ICC security smells with Android Lint issue categories

both, the Android Lint checks and our security smell detectors. Figure 5 illustrates
two plots, each presenting our analysis results for the 100 apps suffering the most
and the least from ICC security smells, respectively. The vertical axis represents the
condensed mean number of found issues, that is, we conflated all detected ICC se-
curity smell issues, regardless of their smell categories, into “ICC Security Smells”.
The remaining Android Lint categories on the x-axis are treated accordingly. The
crosses represent the mean value of the number of different issues apps are suffering
from in each category, and, as we hid any outliers to increase readability, these values
can exceed the first quartiles. The least and most affected apps clearly correspond in
terms of issue frequency among specific categories, that is, the mean number of issues
found in each category is between 29% and 332% higher on behalf of the 100 most
vulnerable apps. Besides the ICC Security Smells category with an increase of 219%
in issues found, the Android Lint security category experienced an increase of 152%.
The Correctness: Message and the Usability: Typography categories of Android Lint
achieved, unexpectedly, an increase in issues found of about 332% and 174%, respec-
tively. After manual verification, we discovered that these gains were mostly caused
by flawed language dictionary entries used for internationalization, such as missing or
misunderstood language dependent string declarations, spelling mistakes, and the use
of strings containing three dots instead of the ellipsis character. While the 100 most
vulnerable apps appear to prominently incorporate translations for several different
languages, the 100 least vulnerable apps rarely make use of these features, hence, they
suffer from much fewer issues. The remaining categories encountered an increase of
less than 139%. Interestingly, the internationalization category does not encounter a
noticeable increase in issues due to its limited scope, i.e., it only covers five specific
flaws regarding insufficient language adaption, and the use of uncommon characters
or encodings. We propose that some of these issue detections should be reallocated
to other categories, e.g., spelling mistakes should be assigned to internationalization,
and vice versa the issue SetTextI18n in the category internationalization that reports
any use of methods that potentially fail with number conversions.

4.3.6 Influence of Project Age and Activity

To explore the effect of recent updates, which we believed would improve app se-
curity, we evaluated our ICC category as well as the Android Lint security and cor-

Security Code Smells in Android ICC 21

rectness categories according to time since the last commit. More precisely, we were
interested in the question: Do recent updates improve app security? A related ques-
tion arises from the age of a project, i.e., are mature projects more secure than recent
creations? We investigated these two questions based on available GitHub metadata,
and brought the dates into perspective with the reported issues.

Figure 6 shows the mean number of detected issues per app on the vertical axis,
either for the ICC security smells, or the Android Lint security category. The black
dots reveal the app’s project creation dates, whereas red dots indicate the most recent
commit dates of projects, hence every app is represented by one black and one red
dot in each plot. The creation date for the majority of apps dates back to less than
6.5 years. We can clearly see in every plot a correlation between both the creation
date, and the date of the last commit to the overall issue count, based on the pictured
linear trends (dotted lines). These trends, which are very similar in terms of elevation,
are a further indicator for the close relationship between our tool and the Android
Lint checks. Moreover, the Lint security category shows strong evidence that mature
projects have more security issues than recent ones. We assume that this is caused
by the less comprehensive checks that older IDEs performed on the source code.
Similarly, apps that frequently introduce changes, i.e., receive updates, are prone to
have more issues.

4.3.7 Influence of Code Size

Another popular indicator used in software analysis is the code size, which we mea-
sured in thousands of lines of code (kLOC) with the open-source tool cloc.14 As An-
droid projects consist aside from source code of different configuration, resource and
other utility files, we first ran the analysis of adopted software languages (e.g., Java,
Kotlin, XML) that required each of those items, before we excluded all elements
except the Java code in the main Java source folders for the kLOC measurements.
We conjectured that we would see a trend of small teams developing small apps that
are less likely to have problems. In contrast, we expect that aging projects are more
likely to have smells as they are larger than more recent ones. Figure 7 illustrates the
relation between the kLOC and other relevant properties.

In Figure 7a we categorized projects according to their size on the x-axis, while
the left y-axis displays contributors per project, and the right y-axis the number of
different categories of security smells found in apps, and the number of different
languages used. We see a trend that larger projects rely on more contributors with
a minor exception at 20-24 kLOC. Furthermore, it is interesting to see that projects
of up to 10 kLOC are maintained by five or fewer developers. In addition, we see
that larger projects tend to suffer from more smells, and those projects are also using
more languages. After a manual inspection of apps exploiting different languages
we discovered that those apps are rather collections of frameworks, e.g., for network
penetration tests using a plethora of different tools written in different languages.

Figure 7b uses the same feature for the x-axis, but presents on the left y-axis the
number of projects, and on the right y-axis the number of days since project creation,

14 https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

22 Pascal Gadient et al.

0

1

2

3

4

5

6

7

8

Mar/2009 Jul/2010 Oct/2011 Feb/2013 May/2014 Sep/2015 Dec/2016 Mar/2018

di

ff
er

en
t s

m
el

ls
 a

pp
s

ar
e

su
ff

er
in

g

project creation project last commit Linear (project creation) Linear (project last commit)

(a) Relation of dates to our ICC security smells

0

1

2

3

4

5

6

7

8

Mar/2009 Jul/2010 Oct/2011 Feb/2013 May/2014 Sep/2015 Dec/2016 Mar/2018

di

ff
er

en
t i

ss
ue

s
ap

ps
 a

re
 s

uf
fe

ri
ng

project creation project last commit Linear (project creation) Linear (project last commit)

(b) Relation of dates to Lint security

Fig. 6 GitHub project creation and last commit date in relation to each project’s issue count

Security Code Smells in Android ICC 23

and the number of days since last update. The majority of projects in our dataset
consist of less than 10 kLOC, and especially projects with 1-4 kLOC have been very
prevalent, followed by apps that are less than 500 LOC. Only six projects contained
more than 50 kLOC. Interestingly, we cannot derive clearly any major trend regarding
the age of projects and LOC, although projects of 25-49 kLOC evidently are older
than the others. On the contrary, we can see a minor trend regarding the time since last
update. It appears that smaller apps are updated less frequently than larger apps. We
expect that the larger an application becomes, the more maintenance work is required
due to library updates, obsolete external references, and content changes.

4.4 Manual Analysis

To assess the performance of our tool and show how reliable these findings are to
detect security vulnerabilities, we manually analyzed 100 apps. We invited two par-
ticipants to independently evaluate the precision and recall of our tool. Participant A
is a senior developer with more than 5 years of professional experience in develop-
ment and security of mobile apps. Participant B is a junior developer with less than
two years of experience in Java and C# software development. We provided both par-
ticipants an introduction to Android security, and individually explained every smell
in detail. We subsequently selected the top 100 apps, that is more than 13% of the
whole corpus, with most smells in accordance with our ICC security smell list, for
which we can say with 95% confidence that the population’s mean smell occurrences
of the top 100 apps are between 3.04 and 3.48, while they are between 1.38 and 1.50
for the whole data set of about 732 apps. Then we provided the participants with
our tool, the sources of the top 100 apps, and a spreadsheet to record their obser-
vations. Each participant was asked to import the sources of each app in Android
Studio, which had been prepared to run a customized version of our analysis plug-in,
to verify each reported smell according to the symptoms of any smell described in
section 3. We were also interested in vulnerability detection capability of security
smells,15 thus the participants were asked to investigate if a security smell indicates
the presence of a security vulnerability based on the vulnerability information avail-
able in the benchmarks.

4.4.1 Tool Evaluation

While the assessment of true positives (TPs, reported code that is a smell) and false
positives (FPs, reported code that is not a smell) requires participants to manually
check only the tool’s results, the extraction of true negatives (TNs, unreported code
that is not a smell) and false negatives (FNs, unreported code that is a smell) is re-
source intensive and error prone. Therefore to avoid an exhaustive code inspection,
we developed a relaxed analysis that shows ICC-related APIs in the code to support
the participants.

15 We define a vulnerability capability as the possibility a security issue can compromise a user’s security
and privacy.

24 Pascal Gadient et al.

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

< 0.5 0.5 - 0.9 1 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 49 >=50

di

ff
er

en
t s

ec
ur

it
y

sm
el

ls
 f

ou
nd

 in
 a

pp
s

di

ff
er

en
t l

an
gu

ag
es

 u
se

d

co

nt
ri

bu
to

rs
 p

er
 p

ro
je

ct

kLOC

contributors per project # different security smells found in apps # different languages used

(a) Relation of kLOC to contributors, ICC security smells, and used languages

0

500

1000

1500

2000

2500

0

50

100

150

200

250

300

350

< 0.5 0.5 - 0.9 1 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 49 >=50

da

ys
 s

in
ce

 p
ro

je
ct

 c
re

at
io

n

da
ys

 s
in

ce
 la

st
 u

pd
at

e

pr

oj
ec

ts

kLOC

projects # days since project creation # days since last update

(b) Relation of kLOC to number of projects, days since project creation, and days since last update

Fig. 7 Different project properties in relation to kLOC

Security Code Smells in Android ICC 25

We obtained relatively high smell detection rates, especially for SM02, SM04,
SM10, SM11 and SM12, as indicated by the TPs in Figure 8. The reason is that these
smells occur frequently and are straightforward to detect, mostly relying on some
very specific method calls and permissions.

We encountered above average FPs in SM12 due to the intended use of task affin-
ity features in apps that try to separate activities with empty task affinities. This smell
would require additional semantical, architectural, and UI information for proper as-
sessment. While some of the exposed activities are non-interactive, and thus sup-
posedly secure, some of them are interactive and could be misused in combination
with other spoofing techniques, like clickjacking, in which an adversary unexpectedly
shows the exposed activity to trick users into providing unintended inputs. In partic-
ular, call recorders and various client-server apps for chat, video streaming, home
automation, and other network services have been affected by this issue.

Our participant had to check 7 241 locations in the code to examine the TNs and
FNs in 100 apps. In more than 98.36% of cases participants confirmed that there are
no security smells beyond what the tool could identify; we consider this very low
proportion of FNs, i.e., 1.7%, encouraging.

We are surprised to see only a few FNs in SM04 as we expected much more to
appear due to the countless ways that intents can be created in Android. A substantial
number of FNs were missed because of complex chained executions and calls initi-
ated from sophisticated UI related classes containing URIs. For SM06, we discovered
that the FNs have been frequently caused by lack of context, e.g., unawareness of data
sensitivity, or custom logic that does not mitigate the vulnerability. For example, our
tool was unable to verify the correctness of custom web page white-listing implemen-
tations for WebView browser components, which would actually reduce security if
implemented incorrectly.

We did not encounter any instances of the two smells SM08 and SM09, that is,
we retrieved zero reports on both of them for our 100 app dataset, hence, we excluded
them for all subsequent plots and discussions in this subsection.

We could find common security smells while reviewing the feedback from the two
participants, for example, that some apps were using shouldOverrideUrlLoad-
ing without URL white-listing to send implicit intents to open the device’s default
browser, rather than using their own web view for white-listed pages, thus foster-
ing the risk of data leaks. Another discovery was the use of regular broadcasts for
intra-app communication. For these scenarios, developers should solely rely on the
LocalBroadcastManager to prevent accidental data leaks. The same applies for
intents that are explicitly used for communication within the app, but do not include
an explicit target, which would similarly mitigate the risk of data leaks. Moreover,
unused code represents a severe threat. Several apps requested specific permissions
without using them, increasing the impact of potential privilege escalation attacks.

4.4.2 Tool Performance

Figure 9 presents the tool’s performance based on the precision, recall, and lastly
the F-measure for existing smells in 100 apps. All smells except SM03 and SM06
show outstanding results, nonetheless, some of them could be biased as a result of

26 Pascal Gadient et al.

0

130

260

390

520

650

780

3000

4500

#
 i

ss
u
es

 f
o
u
n
d
 i

n
 1

0
0
 a

p
p
 c

o
rp

u
s

TN

FN

FP

TP

supplementary issues

Fig. 8 Tool evaluation results

their low occurrences which is true for SM01 and SM07. We performed a follow up
manual investigation of SM03 and SM06. Apparently, the detection of SM03 suf-
fers from the difficulty to discern data sensitivity and the need to approximate the
required protection level. Besides that, SM06 is heavily affected by custom web API
implementations that (mis)use security features, which are, in fact, not secure.

4.4.3 Smells and their Vulnerability Capability

Figure 10 shows the vulnerability capability perception of both participants against
the reported smells. For each smell we show two grouped columns: the left column
reports the results from the more experienced participant A (PA), and the right col-
umn reports the results from the less experienced participant B (PB). Each column
consists of three different segments yes, uncertain, and no. The category yes is used
for all reported smells that introduce critical risks, such as plain-text exposure of user
passwords through network sockets. The uncertain category is used for risks that po-
tentially exist, and are challenging to inspect manually, for instance, vulnerabilities
that require prerequisites for successful exploitation such as potentially dangerous
user-defined schemes. Finally, all smells assigned to the no category are not vulnera-
ble to any attacks, either because they do not contain any user information, or because
they are sufficiently secure with respect to the participant’s opinion. Apps that send
static non-sensitive information commonly match this category. For all our consider-
ations the participants were told to treat any user data as sensitive, since they could
potentially contain sensitive information at run time.

Security Code Smells in Android ICC 27

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

precision

recall

F-measure

Fig. 9 Tool performance

According to the reports by PA, 38.5% of smells represent potential threats, i.e.,
uncertain category, and only 5.3% of smells represent critical threats, i.e., yes cate-
gory. In other words, only about 44% of security smells could lead to security vul-
nerabilities.

A further comparison of the reports between the two participants shows that they
expect somewhat similar risks for the smell categories SM05, SM07, and SM12,
whereas the participants tended to interpret diversely the threat caused by Custom
Scheme Channel, Unauthorized Intent, and Slack WebViewClient smells. We reviewed
the feedback of the participants and discovered that for Custom Scheme Channel pre-
defined system schemes are considered less harmful for PA (category no), while PB
assigns them to the category uncertain. For Unauthorized Intent PB assessed the risks
similar to PA, however, PB encountered difficulties to predict adequately the threat
capability of many intent instances, thus PB assigned them to section uncertain. For
the smell Slack WebViewClient PB performed a conservative risk assessment by not
assigning any custom security feature implementations to no, instead PB assigned
them to uncertain, unlike PA who concluded many of them as secure. An example
thereof is an app with a network security penetration test suite that requires opening
insecure web pages for security validation purposes.

It is interesting to observe that PB, in contrast to PA, does consider fewer in-
stances as harmful for SM11 and SM12. For the first smell SM11: Implicit Pending
Intent PB considers intents with assigned actions frequently as secure, while PA con-
siders them as potential risk, which is more accurate. For the second smell SM12:
Common Task Affinity PB considers most apps that used empty task affinity prop-
erties as secure, while PA performed a more thorough analysis of the UI and con-

28 Pascal Gadient et al.

700

600

500

400

300

200

100

0

 no (part. A) no (part. B) uncertain (part. A) uncertain (part. B) yes (part. A) yes (part. B)

Fig. 10 Vulnerability capability of detected issues

sidered additionally the misuse capability of such exposed views, which resulted in
many assignments to the category uncertain. We conclude that the very complex and
flexible ICC implementation provided by Android overwhelms inexperienced devel-
opers, even worse, it could mislead those developers to create insecure code due to
their misunderstanding.

Overall, most of the vulnerabilities seem to emerge from SM10 and SM11 that
collectively contribute to more than 72% of all detected critical issues. On the other
hand, SM04 on its own provides with 77% the largest proportion of false alarms
regarding vulnerability capabilities.

4.5 Threats to Validity

One important threat to validity is the completeness of this study, i.e., whether we
could identify and study all related papers in the literature. Although we could not re-
view all publications, we strived to explore top-tier software engineering and security
journals and conferences as well as highly-cited work in the field. For each relevant
paper we also recursively looked at both citing and cited papers. Moreover, to en-
sure that we did not miss any important paper, for each identified issue we further
constructed more specific queries and looked for any new paper on GoogleScholar.

We were only interested in studying benign apps as in malicious ones it is un-
likely that developers will spend any effort to accommodate security concerns. Thus,
we merely collected apps that were available on GitHub and the F-Droid repository.

Security Code Smells in Android ICC 29

However, our dataset may still have malicious apps that evaded the security checks
of the community or the marketplace.

We analyzed the existence of security smells in the source code of an app, whereas
third-party libraries could also introduce smells.

Our analysis is intra-procedural and suffers from inherent limitations of static
analysis. Moreover, many security smells actually constitute security risks only if
they deal with sensitive data, but our analysis cannot determine such sensitivity.

The Android Lint tool we used for the analysis is prone to errors that could lead to
FNs, for example, when Android Lint crashes due to file parsing issues, an immediate
termination of the inspection occurs which could cause some misses.

Finally, the fact that the results of our analysis tool are validated against manual
analysis performed by the authors is a threat to construct validity through potential
bias in experimenter expectancy. We mitigated this threat by including an external
participant in the process in addition to the co-author who simultaneously played the
senior developer’s role.

5 Related Work

Reaves et al. studied Android-specific challenges to program analysis, and assessed
existing Android application analysis tools. They found that these tools mainly suffer
from lack of maintenance, and are often unable to produce functional output for appli-
cations with known vulnerabilities [18]. Li et al. studied the state-of-the-art work that
statically analyses Android apps [14]. They found that much of this work supports
detection of private data leaks and vulnerabilities, a moderate amount of research is
dedicated to permission checking, and only three studies deal with cryptography is-
sues. Unfortunately, much state-of-the-art work does not publicly share the concerned
artifacts. Linares-Vasquez et al. mine 660 Android vulnerabilities available in the of-
ficial Android bulletins and their CVE details,16 and present a taxonomy of the types
of vulnerabilities [15]. They report on the presence of those vulnerabilities affecting
the Android OS, and acknowledge that most of them can be avoided by relying on
secure coding practices. Finally, Sadeghi et al. review 300 research papers related to
Android security, and provide a taxonomy to classify and characterize the state-of-
the-art research in this area [20]. They find that 26% of existing research is dedicated
to vulnerability detection, but each study is usually concerned with specific types of
security vulnerabilities. Our work expands on such studies to provide practitioners
with an overview of the security issues that are inherent in insecure programming
choices.

Some research is devoted to educating developers in secure programming. Xie et
al. interviewed 15 professional developers about their software security knowledge,
and realized that many of them have reasonable knowledge but do not apply it as they
believe it is not their responsibility [27]. Weir et al. conducted open-ended interviews
with a dozen app security experts, and determined that app developers should learn

16 http://cve.mitre.org — Common Vulnerabilities and Exposures, a public list of known
cyber-security vulnerabilities.

http://cve.mitre.org

30 Pascal Gadient et al.

analysis, communication, dialectics, feedback, and upgrading in the context of secu-
rity [24]. Witschey et al. surveyed developers about their reasons for adopting or not
adopting security tools [25]. Interestingly, they found the perceived prestige of secu-
rity tool users and the frequency of interaction with security experts to be important
for promoting security tool adoption. Acar et al. suggest a high-level research agenda
to achieve usable security for developers. They propose several research questions to
elicit developers’ attitudes, needs and priorities in the area of security [3]. Our work
is complementary to these studies in the sense that we provide an initial assessment
of developers’ security knowledge, and we highlight the significant role of developers
in making apps more secure.

Numerous researchers have dedicated their work to detecting common ICC vul-
nerabilities. Despite the fact that their expression has changed over time, the vulnera-
bility classes have remained largely the same. Chin et al. discuss the ICC implemen-
tation of Android and examine closely the interaction between sent and received ICC
messages [7]. Despite the fact that their work is based on a small corpus containing
only 20 apps, they were able to detect various denial-of-service issues in numerous
application components, and conclude that the message-passing system in Android
enables rich applications, and encourages component reuse, while leaving a large
potential for misuse when developers do not take any precautions.

Felt et al. discovered that permission re-delegation, also known as confused deputy
or privilege escalation attack, is a common threat, and they pose OS level mitigations
conceptually similar to the same origin policy in web browsers [8]. The community
aimed on the one hand for preciseness, as countless tools to detect these flaws in ICC
have been released, notably Epicc [17] and IccTA [13] with a significantly improved
precision. On the other hand, the app coverage began to play a major role, as in the
work of Bosu et al. who recently discovered with their tool inadequate security mea-
sures, including privilege escalation vulnerabilities, among inter-app data-flows from
110 000 real-world apps [6].

Along with passive analysis, active countermeasures and attacks have emerged
in the scientific community. Garcia et al. crafted a state-of-the-art tool to automati-
cally detect and exploit vulnerable ICC interfaces to provoke denial-of-service attacks
amongst others [9]. They identified exploits for more than 21% of all apps appraised
as vulnerable. Xie et al. presented a bytecode patching framework that incorporates
additional self-contained permission checks avoiding privilege issues during runtime,
generating a remarkably low computational overhead [28]. Ren et al. successfully in-
vestigated design glitches in the multitasking implementation of Android, uncovering
task hijacking attacks that affected every OS release and were potentially duping user
perception [19]. They considered in particular the taskAffinity and taskParentRepar-
enting attributes of the manifest file that allow views to be dynamically overlaid on
other apps, and provided proof-of-concept attacks. Wang et al. assessed the threat of
data leakage on Apple iOS and Android mobile platforms and show serious attacks
facilitated by the lack of origin-based protection on ICC channels [23]. Interestingly,
they found effective attacks against apps from such major publishers as Facebook
and Dropbox, and more importantly, indicate the existence of cross-platform ICC
threats. Researchers have found interest in reinforcing the Android ICC core frame-
work. Khadiranaikar et al. propose a certificate-based intent system relying on key

Security Code Smells in Android ICC 31

stores that guarantee integrity during message exchanges [12]. In addition to secur-
ing the ICC-based communication, Shekhar et al. proposed a separation of concerns
to reduce the susceptibility for manipulation of Android apps, by explicitly restrict-
ing advertising frameworks [21]. Ahmad et al. elaborated on problematic ICC design
decisions on Android, and found that missing consistent message types and confor-
mance checking, unpredictable message interactions, and a lack of coherent version-
ing could break inter-app communication and pose a severe risk [4]. They recommend
a centralized message-type repository that immediately provides feedback to devel-
opers through the IDE.

In summary, existing studies have often dealt with a specific issue, whereas we
cover a broader range of issues, making the results more actionable for practitioners.
Moreover, previous work often overwhelms developers with many identified issues
at once, whereas we provide feedback during app development where developers
have the relevant context. Such feedback makes it easier to react to issues, and helps
developers to learn from their mistakes [22].

6 Conclusion

We have reviewed ICC security code smells that threaten Android apps, and imple-
mented a linting plug-in for Android Studio that spots such smells, by linting affected
code parts, and providing just-in-time feedback about the presence of security code
smells.

We applied our analysis to a corpus of more than 700 open-source apps. We ob-
served that only small teams are capable of consistently building software resistant
to most security code smells, and fewer than 10% of apps suffer from more than
two ICC security smells. We discovered that updates rarely have any impact on ICC
security, however, in case they do, they often correspond to new app features. Thus
developers have to be very careful about integration of new functionality into their
apps. Moreover, we found that long-lived projects suffer from more issues than re-
cently created ones, except for apps that are updated frequently, for which that effect
is reversed. We advise developers of long-lived projects to continuously update their
IDEs, as old IDEs have only limited support for security issue reports, and therefore
countless security issues could be missed.

A manual investigation of 100 apps shows that our tool successfully finds many
different ICC security code smells, and about 43.8% of them in fact represent vulner-
abilities, thus it constitutes a reasonable measure to improve the overall development
efficiency and software quality.

We recommend security aspects such as secure default values and permission sys-
tems, to be considered in the initial design of a new API, since this would effectively
mitigate many issues like the very prevalent Common Task Affinity smell. We plan to
explore the extent to which APIs can be made secure by design. While we analyzed
the existence of ICC security smells in apps, studying their absence, i.e., secure ICC
uses, could offer different insights that we plan to pursue in future. Moreover, we are
interested in evaluating the usefulness of our tool during a security audit process, as
well as in an app development session.

32 Pascal Gadient et al.

Acknowledgements We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Analysis” (SNSF project No. 200020-162352, Jan 1, 2016 -
Dec. 30, 2018). We also thank Astrid Ytrehorn for her contribution to the empirical study.

References

1. Stack Overflow developer survey results: http://insights.stackoverflow.com/survey/2017.
2. The ultimate security vulnerability datasource: http://www.cvedetails.com.
3. Yasemin Acar, Sascha Fahl, and Michelle Mazurek. You are not your developer,

either: A research agenda for usable security and privacy research beyond end
users. In IEEE SecDev 2016, 2016.

4. Waqar Ahmad, Christian Kästner, Joshua Sunshine, and Jonathan Aldrich. Inter-
app communication in Android: Developer challenges. In Mining Software
Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages 177–
188. IEEE, 2016.

5. R. Balebako and L. Cranor. Improving app privacy: Nudging app developers to
protect user privacy. IEEE Security Privacy, 12(4):55–58, July 2014.

6. Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang Wang. Collusive
data leak and more: Large-scale threat analysis of inter-app communications. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security, pages 71–85. ACM, 2017.

7. Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Ana-
lyzing inter-application communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services, Mo-
biSys ’11, pages 239–252, New York, NY, USA, 2011. ACM.

8. Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. Permission re-delegation: Attacks and defenses. In USENIX Security
Symposium, volume 30, page 88, 2011.

9. Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. Auto-
matic generation of inter-component communication exploits for Android ap-
plications. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 661–671. ACM, 2017.

10. M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in Android. In 2017
IEEE 17th International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM), pages 121–130, Sept 2017.

11. Beth H. Jones and Amita Goyal Chin. On the efficacy of smartphone security:
A critical analysis of modifications in business students’ practices over time.
International Journal of Information Management, 35(5):561 – 571, 2015.

12. Babu Khadiranaikar, Pavol Zavarsky, and Yasir Malik. Improving Android ap-
plication security for intent based attacks. In Information Technology, Electron-
ics and Mobile Communication Conference (IEMCON), 2017 8th IEEE Annual,
pages 62–67. IEEE, 2017.

13. Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. Iccta: Detecting inter-component privacy leaks in Android apps. In Pro-

Security Code Smells in Android ICC 33

ceedings of the 37th International Conference on Software Engineering - Volume
1, ICSE ’15, pages 280–291, Piscataway, NJ, USA, 2015. IEEE Press.

14. Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexan-
dre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static analysis of An-
droid apps: A systematic literature review. Information and Software Technology,
88:67 – 95, 2017.

15. Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez. An
empirical study on Android-related vulnerabilities. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR ’17, pages 2–
13, Piscataway, NJ, USA, 2017. IEEE Press.

16. Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repository of An-
droid app vulnerability benchmarks. In Proceedings of the 13th International
Conference on Predictive Models and Data Analytics in Software Engineering,
pages 43–52. ACM, 2017.

17. Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communication
mapping in Android with Epicc: An essential step towards holistic security anal-
ysis. In Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), pages 543–558, Washington, D.C., 2013. USENIX.

18. Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise,
Rahul Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza
Karachiwala, Nolen Scaife, Byron Wright, Kevin Butler, William Enck, and
Patrick Traynor. *droid: Assessment and evaluation of Android application anal-
ysis tools. ACM Comput. Surv., 49(3):55:1–55:30, 2016.

19. Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. Towards
discovering and understanding task hijacking in Android. In USENIX Security
Symposium, pages 945–959, 2015.

20. A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. A taxonomy and qualitative
comparison of program analysis techniques for security assessment of Android
software. IEEE Transactions on Software Engineering, PP(99):1–1, 2016.

21. Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit: Separating smart-
phone advertising from applications. In USENIX Security Symposium, 2012.

22. Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. JIT feedback —
what experienced developers like about static analysis. In Proceedings of the 26th
IEEE International Conference on Program Comprehension (ICPC’18), 2018.

23. Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. Unauthorized origin
crossing on mobile platforms: Threats and mitigation. In ACM Conference on
Computer and Communications Security, 2013.

24. Charles Weir, Awais Rashid, and James Noble. Reaching the masses: A new
subdiscipline of app programmer education. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2016, pages 936–939. ACM, 2016.

25. Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. Quantifying developers’ adoption of security
tools. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 260–271. ACM, 2015.

34 Pascal Gadient et al.

26. Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact
of vendor customizations on Android security. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS ’13, pages
623–634, New York, NY, USA, 2013. ACM.

27. J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors?
In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 161–164, Sept 2011.

28. Jiayun Xie, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani. Autopatch-
droid: A framework for patching inter-app vulnerabilities in Android application.
In Communications (ICC), 2017 IEEE International Conference on, pages 1–6.
IEEE, 2017.

29. Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih, Kangjie Lu, Cong Zheng,
Ruian Duan, Yeongjin Jang, Byoungyoung Lee, Chenxiong Qian, et al. Toward
engineering a secure Android ecosystem: A survey of existing techniques. ACM
Computing Surveys (CSUR), 49(2):38, 2016.

