
Pervasive Software Visualizations
(Keynote)

Tudor Gı̂rba

tudorgirba.com

Keynote speaker

Andrei Chiş

University of Bern, Switzerland

Abstract—A picture tells a thousand words. We all know that.
Then why are our development tools showing mainly text with
so much obstinacy? Even when visualizations do make it into
our tools, they typically do not make it past the periphery.
Something is deeply wrong. We argue that visualizations must
become pervasive in software development, and to accommodate
this goal, the integrated development environments must change
significantly.

I. IDES AND THE PROBLEM OF CODE READING

A significant part of the problem stems from the perception

that software development is an activity of producing code.

Yet, we know since a long time that developers spend the

largest chunk of their time on understanding the existing

systems [1].

Nevertheless, the integrated development environment

(IDE) still favors the creation part. Just consider this: the

central and largest part of the state-of-the-art development

environments is taken by an editor. An editor! This is a tool

used to enter or alter text. The IDE highly favors the typing

part, but it overlooks the understanding needs. The I in the

IDE is not as integrated as we might want to believe.

Let us now consider the impact of this choice.

A. The Magnifier Effect

An editor exposes the developer to some 50 lines of code at

a time. This represents a tiny fraction of the overall system. It

is as if we would hire someone to build a city and we would

provide a magnifier glass as the only available inspection tool.

The magnifier glass is a fine tool when we deal with details,

but it is a terrible choice when it comes to understanding the

big picture.

B. The Misleading Sense of Control

Looking at a class in an editor, makes us think of it in

isolation. Its shape is well defined, with a clear begin and a

definite end. Yet, code lives in a context.

To materialize the abstract notion of context, let us look to

the right at an example of a class depicted through the lens of a

System Attraction visualization1. In this visualization, classes

are black, methods are red and attributes are blue. Method con-

tainment, attribute containment, and class inheritance are gray.

Invocations are red. Attribute accesses are blue. Everything is

arranged through a force based layout where each edge has

equal weight.

1http://www.humane-assessment.com/blog/system-attraction/

When observed in isolation, our class, has a clear shape that

looks controllable.

But, when we look at the class in a broader context and

consider the collaborator classes as well, the shape of our class

gets radically different, as the inner parts of our class are pulled

away towards other points of interest.

This is a simple visualization that builds on the premise

that code pieces should go next to their connections. While

the design choices of the visualization, such as the weight

allocated to different edges, can still be debated, the presence

and impact of context is evident.

The simplicity provided by the physical locality of code that

an editor offers is suddenly less suitable for understanding the

complex nature of software systems. The code editor interface

ignores the context altogether, but context matters and ignoring

it will not make its impact go away.

C. The Implicit Nature of Code Reading

Developers approach understanding the system typically by

reading code [2]. This is the most manual way to approach

data, and data is what systems are made of. This needs to

change. It does not scale, it is inaccurate and it is much too

expensive.

Then why do developers read code? One reason is that

reading is the inverse of writing. It is simply what you do with

text. As long as developers will perceive software systems as

being made out of text, reading will continue to be the most

straightforward approach. Of course, developers rarely want

978-1-4673-7526-9/15 c© 2015 IEEE VISSOFT 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

1

http://tudorgirba.com
http://www.humane-assessment.com/blog/system-attraction/


to read code. They mostly want to understand it enough to be

able to act. Reading is just the employed strategy.

Summarizing McLuhan’s work [3], [4], Culkin warned

us since half a century ago that we shape our tools and

thereafter our tools shape us [5]. While he was referring to

media in general, this unwritten law acts silently in software

development as well, with or without our explicit approval.

For example, developers read code all day long, but they do

not talk about it. They talk about the code they read, but not

about how they read that code. The subject is not considered

worthy of attention mostly because reading is something taken

for granted. Essentially, this means that, as an industry, we

are spending the largest chunk of the development budget

on something we never talk about. It does not make sense,

and yet it is a sensible consequence of McLuhan’s prediction.

Developers read because this is what the tool makes it easy

for them to do.

Developers build tools to automate the tedious part of other

people’s decision making, but when it comes to understanding

their own problems, they tend to resort to manual labour.

While this situation is far from optimal, it also presents a

great opportunity: developers already know how to approach

data.

Let us take another example. If a developer needs to figure

something out from 1 million database entries, the developer

would likely start with a query. Yet, if the same developer

receives a 1 million lines of code, the developer likely starts

scrolling and navigating. The main difference between the two

situations is the perception of the nature of the problem: the

database problem is perceived as a data problem, while the

code one is seen as a problem of text with occasional links.

Interestingly, the design of the tools matches that perception,

too. The database tool typically presents a query field with a

powerful enough language behind:

query field

data

n
a

v
ig

a
ti
o

n

At the same time, the typical code tool focuses mainly on

the editor and the navigation:

editor

n
a
v
ig
a
ti
o
n

There certainly exist code query tools, but they are not at

all as prevalent or as integrated as in the case of database

tools. The lack of querying availability makes developers rely

on something else. Nevertheless, when tools like NDepend2

make it in the IDE, queries do get written.

2http://ndepend.com

We shape our tools and thereafter our tools shape us. This

suggests that if we want to change the behavior, we should

start from the tool.

II. ON THE LACK OF VISUALIZATIONS IN IDES

Software visualization has come a long way from the initial

explorations started in the previous century [6], [7] to the

advanced techniques developed more recently [8], [9]. Yet,

several decades after we first observed the problem of code

reading, we still find ourselves starting papers, including this

one, quoting the same mantra of how expensive code reading

is [10]. This implies that all the effort poured in research and

development in program comprehension has made little dent

in the real world.

How are we to affect that trend? Simply providing sophis-

ticated analyses does not seem to be enough.

We advance an extra reason for why this is the case: the

typical alternatives to code reading are rigid, generic tools.

In contrast, code reading is highly malleable. It deals with

any context. And, software systems are highly contextual. To

compete with code reading, we need tools that can be molded

to that context.

Let us take an example. The class shown at the beginning

of this article is part of a tiny student project created by a

team of four students over the course of six weeks. Here is

the whole system:

The project implements a basic calendar app for Android.

The interesting thing about the example is that another team

of four students developed an app with similar functionality

within the same time frame. This second system looks as

follows:

2

http://ndepend.com


Even though both the functionality and the basic technology

are highly similar, the resulting structure is radically different.

This suggests that software structure is an emergent property

that cannot be predicted from outside [11]. A further impli-

cation is that the understanding needs of the first team are

different from those of the second team.

Our tools have to deal with that difference because it is

a necessity inherent to the nature of software systems. If we

want visualizations to become more pervasive, the underlying

engines first have to become moldable.

III. PERVASIVE SOFTWARE VISUALIZATIONS

Visualizations must become prominent in the software de-

velopment world. In our view, there are at least two distinct

directions that have to be pursued in order to achieve this goal:

(a) moldable visualizations, and (b) visual workflows.

A. Moldable Visualizations

Developers represent a special class of users. They are not

clickers. They are primarily programmers. They approach data

through programs, and they should be given the opportunity

to approach the data around their own software systems in the

same way. This implies that the tools dedicated to developers

should not focus on providing ready-made functionality, but

on offering rich programmability. When viewed in this way,

the IDE becomes a language and the question transforms from

how many predefined analyses exist? to how inexpensive is it

to craft a new one?3.

Tools such as Mondrian [12], d34 [13] or Roassal5 [14] offer

models that make defining the visualization concise. Moreover,

these visualization engines come with deep integration with

the underlying runtime and offer rapid prototyping options.

These are but a few examples of the recent trend towards

programmable visualizations, and they show that indeed, the

cost of an effective visualization can be dramatically low.

For example, the circular treemap below expose the exten-

sion points in the Glamorous Toolkit6 — its most important

feature. The visualization code has 38 lines, including data

gathering, and was created within less than one hour7.

3http://humane-assessment.com
4http://d3js.org
5http://agilevisualization.com
6http://gt.moosetechnology.org
7http://www.humane-assessment.com/blog/communicating-pharo-4-0

This drop in cost opens up the option for developers to

go as far as to craft a custom visualization, use it for some

minutes, and then throw it away. This might sound far fetched,

but spreadsheet programs made a similar workflow possible a

long time ago. Such engines must become readily available in

the IDE.

B. Visual Workflows

For these engines to be effective, the IDE has to welcome

visualizations. The code editor must become secondary. It

is important to edit code, but editing comes ideally after

understanding. This challenges the design of current IDEs, as

they are too centered around fixed navigation and code editing:

editor

n
a
v
ig
a
ti
o
n

Visualizations must receive natural places inside the IDE.

For example, if a visualization provides the overview, editing

should be embedded within that experience and be driven by

that overview. Classic, tree-like navigation becomes irrelevant

in many situations, too:

editor

An appealing example is provided by the design of Code

Bubbles [15]. The layout itself is a visualization that can

be affected during development to capture the current work

focus and causality of navigation. Extending this model to

ensure an even deeper connection between visualization and

the manipulating panes can also be imagined:

editor

editor

While most IDEs focus on code, software systems are more

than just code. Configurations, tests, documentation, or logs

are equally important artifacts. Furthermore, the runtime of the

system comes with yet another level of challenge for which

textual representations do not fit at all. All these artifacts are

important for understanding the system.

3

http://humane-assessment.com
http://d3js.org
http://agilevisualization.com
http://gt.moosetechnology.org
http://www.humane-assessment.com/blog/communicating-pharo-4-0


For example, an object inspector is typically a dry tool

displaying every object through a generic tree widget. Through

the Glamorous Toolkit project, we developed the concept of a

moldable inspector that offers multiple views for each object

and tracks the path of the inspection session [16].

The picture from on top shows an inspection session using

a moldable inspector. In the first pane, we write a query, in

this case a simple one retrieving the current folder. The second

pane inspects the resulting object — an instance of FileRef-

erence. As the object corresponds to a folder, the developer

sees the content of that folder. Selecting one subfolder spawns

the third pane which displays a 3D CodeCity visualization

[17] of the subfolder structure, where the blue leaves represent

the files of different dimensions. Selecting one of the folder

(depicted with green) from the visualization spawns another

pane in which we handcraft a custom visualization using a

dedicated Roassal graph builder [18]. Evaluating the script

shows the resulting visualization object to the right with a

view rendering its graphical representation.

The inspector offers different views for each object through

tabs, and these views are defined as extensions of the classes

of the respective objects. The circular treemap visualization

from the previous page shows the amount of extensions that

are distributed through the default Pharo 4.0 release8. Notably,

these extensions have on average 8 lines of code.

This simple example reveals that even basic tools such as

an inspector can offer rich opportunities that are otherwise

overlooked. Furthermore, it shows how standard and custom

visualizations and queries can coexist in a uniform tool. This

is possible because the tool was conceived to welcome this

integration in one visual workflow. This is by no means the

ultimate design, but it is an attestation for how such visual

workflows are achievable when we design with intent.

IV. FINAL WORDS

The IDE has to change radically. Understanding software

systems has to be supported as a critical activity that is

8http://pharo.org

integrated in the overall workflow. Visualizations cannot be

ostracized anymore, and cramming visualizations in the typical

design of current IDEs is not a promising strategy. We need to

start from scratch and make visualizations first class citizens

in the IDE because a picture tells a thousand words, and we

need to tell effectively billions of such words.

Tools are important, but ultimately, it is the behavior of

developers that we need to affect. There certainly exists an

educational side to the problem of adopting visualizations,

or other comprehension tools [10]. From our experience of

working with and training software development teams, the

precondition to this adoption is to get developers to perceive

their own problems as data problems. This can be achieved by

treating developers for what they are: developers. They have

to be empowered with the ability of crafting tools to match

their own problems. Once that happens the alternatives to code

reading become more apparent.

Finally, we should remind ourselves and our fellow en-

gineers that software systems represent perhaps the most

sophisticated creations we have ever built, and that beyond the

challenge of constructing and understanding them effectively,

there is tremendous beauty lying underneath.

4

http://pharo.org


ACKNOWLEDGMENTS

We would like to thank the Glamorous Team and the

communities from around Moose and Pharo for their amazing

work. That work makes dreaming the future easy, and building

that future possible.

REFERENCES

[1] V. Basili, “Evolving and packaging reading technologies,” Journal

Systems and Software, vol. 38, no. 1, pp. 3–12, 1997.
[2] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last

summer – an investigation of how developers spend their time,” in
Proceedings of ICPC 2015 (23rd IEEE International Conference on

Program Comprehension), 2015.
[3] M. McLuhan, Understanding Media: The Extensions of Man. New

York: Mentor, 1964.
[4] M. McLuhan and Q. Fiore, The Medium is the Massage: An Inventory

of Effects. Penguin Books, 1967.
[5] J. M. Culkin, “A schoolman’s guide to marshall mcluhan,” The

Saturday Review, Mar. 1967. [Online]. Available: http://www.unz.org/
Pub/SaturdayRev-1967mar18-00051

[6] H. A. Müller and K. Klashinsky, “Rigi — a system for programming-in-
the-large,” in ICSE ’88: Proceedings of the 10th international conference

on Software engineering. IEEE Computer Society Press, 1988, pp.
80–86. [Online]. Available: http://portal.acm.org/citation.cfm?id=55832

[7] T. Ball and S. Eick, “Software visualization in the large,” IEEE Com-

puter, vol. 29, no. 4, pp. 33–43, 1996.
[8] S. Ducasse and M. Lanza, “The Class Blueprint: Visually supporting

the understanding of classes,” Transactions on Software Engineering

(TSE), vol. 31, no. 1, pp. 75–90, Jan. 2005. [Online]. Available:
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf

[9] D. Holten, “Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 12, no. 5, pp. 741–748, Sep. 2006.
[10] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-

sional developers comprehend software?” in Proceedings of the 2012

International Conference on Software Engineering, ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265.

[11] T. Gı̂rba, “The emergent nature of software architecture,” NDC Maga-

zine, vol. 1, no. 1, pp. 50–55, May 2015.

[12] M. Meyer, T. Gı̂rba, and M. Lungu, “Mondrian: An agile visualization
framework,” in ACM Symposium on Software Visualization (SoftVis’06).
New York, NY, USA: ACM Press, 2006, pp. 135–144. [Online].
Available: http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf

[13] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, Dec. 2011. [Online]. Available: http:
//dx.doi.org/10.1109/TVCG.2011.185

[14] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval, “Agile
visualization with Roassal,” in Deep Into Pharo. Square Bracket
Associates, Sep. 2013, pp. 209–239.

[15] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: a
working set-based interface for code understanding and maintenance,”
in CHI ’10: Proceedings of the 28th international conference on Human

factors in computing systems. New York, NY, USA: ACM, 2010, pp.
2503–2512.

[16] A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel, “The moldable
inspector,” in Proceedings of the 2015 ACM International Symposium

on New Ideas, New Paradigms, and Reflections on Programming &

Software, ser. Onward! 2015. New York, NY, USA: ACM, 2015, p. to
appear. [Online]. Available: http://dx.doi.org/10.1145/2814228.2814234

[17] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-scale
software,” in ICSE Companion ’08: Companion of the 30th ACM/IEEE

International Conference on Software Engineering. ACM, 2008, pp.
921–922.

[18] A. Bergel, S. Maass, S. Ducasse, and T. Gı̂rba, “A domain-specific
language for visualizing software dependencies as a graph,”
in Proceedings of 2nd IEEE Working Conference on Software

Visualization (VISSOFT NIER), 2014. [Online]. Available: https:
//dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf

5

http://www.unz.org/Pub/SaturdayRev-1967mar18-00051
http://www.unz.org/Pub/SaturdayRev-1967mar18-00051
http://portal.acm.org/citation.cfm?id=55832
http://scg.unibe.ch/archive/papers/Duca05bTSEClassBlueprint.pdf
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/2814228.2814234
https://dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf
https://dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf

	IDEs and the Problem of Code Reading
	The Magnifier Effect
	The Misleading Sense of Control
	The Implicit Nature of Code Reading

	On the Lack of Visualizations in IDEs
	Pervasive Software Visualizations
	Moldable Visualizations
	Visual Workflows

	Final Words
	References

