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a b s t r a c t

Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust
parsing, error recovery, lexical analysis, and rapid development of parsers for data
extraction. An island grammar precisely defines only a subset of a language syntax
(islands), while the rest of the syntax (water) is defined imprecisely.

Usually water is defined as the negation of islands. Albeit simple, such a definition of
water is naïve and impedes composition of islands. When developing an island grammar,
sooner or later a language engineer has to create water tailored to each individual island.
Such an approach is fragile, because water can change with any change of a grammar. It is
time-consuming, because water is defined manually by an engineer and not automatically.
Finally, an island surrounded by water cannot be reused because water has to be defined
for every grammar individually.

In this paper we propose a new technique of island parsing — bounded seas. Bounded
seas are composable, robust, reusable and easy to use because island-specific water is
created automatically. Our work focuses on applications of island parsing to data
extraction from source code. We have integrated bounded seas into a parser combinator
framework as a demonstration of their composability and reusability.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Island grammars [1] offer a way to parse input without complete knowledge of the target grammar. They are especially
useful for extracting selected information from source files, reverse engineering and similar applications. The approach
assumes that only a subset of the language syntax is known or of interest (the islands), while the rest of the syntax is
undefined (the water). During parsing, any unrecognized input (water) is skipped until an island is found.

A common misconception is that water should consume everything until some island is detected. Rules for such water
are easy to define, but they cause composability problems. Consider a parser where local variables are defined as islands
within a method body. Now suppose a method declaring no local variables is followed by one that does. In this case the
water might consume the end of the first method as well as the start of the second method until a variable declaration is
found. The method variables from the second method will then be improperly assigned to the first one.

In practice, language engineers define many small islands to guide the parsing process. However it is difficult to define
such islands in a robust way so that they function correctly in multiple contexts. As a consequence they are neither reusable
nor composable.
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To prevent our variable declaring island from skipping to another method, we have to make its water stop at most at the
end of a method. In general, we have to analyze and update each particular island's water, depending on its context. Yet
island-specific water is fragile, hard to define and it is not reusable. It is fragile, because it requires re-evaluation by a
language engineer after any change in a grammar. It is hard to define, because it requires the engineer's time for detailed
analysis of a grammar. It is not reusable, because island-specific water depends on rules following the island, thus it is
tailored to the context in which the island is used — it is not general.

In this paper we propose a new technique for island parsing: bounded seas [2]. Bounded seas are composable, reusable,
robust and easy to use. The key idea of bounded seas is that specialized water is defined for each particular island
(depending on the context of the island) so that an island can be embedded into any rule. To achieve such composability,
water is not allowed to consume any input that would be consumed by a following rule.

To prevent fragility and to improve reusability, we compute water automatically, without user interaction. To prove
feasibility, we integrate bounded seas into Petit Parser [3], a PEG-based [4] (see Appendix A) parser combinator [5]
framework.

In addition to our previous work [2] we evaluate the usability of bounded seas in two case studies, we present a
performance study, and we provide more details about the implementation. The contributions of the paper are:
�
 the definition of bounded seas, a composable, reusable, robust and easy method of island parsing;

�
 a formalization of bounded seas for PEGs;

�
 an implementation of bounded seas in a PEG-based parser combinator framework; and

�
 case studies of semi-parsing of Java and Ruby using bounded seas.
Structure: Section 2 motivates this work by presenting the limitations of island grammars with an example. Section 3
presents our solution to overcoming these limitations by introducing bounded seas. Section 4 introduces a sea operator for
PEGs, which creates a bounded sea from an arbitrary PEG expression. Section 5 presents our implementation of bounded seas
in PetitParser. Section 6 discusses the applicability of bounded seas to GLL parsers, design decisions and some limitations of
bounded seas. Section 7 analyzes how well bounded seas perform compare to other island parsers. Section 8 analyzes usability
of bounded seas for context-sensitive grammars, particularly for indentation-sensitive grammars. Section 9 surveys other
semi-parsing techniques and highlights similarities and differences between them and bounded seas. Finally, Section 10
concludes this paper with a summary of the contributions.

2. Motivating example

Let us consider the source code in Listing 1 written in some proprietary object-oriented language. We don't have a
grammar specification for the code, because the parser was written using ad hoc techniques, and we do not have access to
its implementation. Let us suppose that our task is to extract class and method names. Classes may be contained within
other classes and we need to keep track of which class each method belongs to.

Listing 1. Source code of the Shape class in a proprietary language.
2.1. Why not use regular expressions?

To extract a flat list of method names, we could use regular expressions. We need, however, to keep track of the nesting
of classes and methods within classes. Regular expressions are only capable of keeping track of finite state, so are formally
too weak to analyze our input. To deal with nested structures, we need at least a context-free parser.

Modern implementations of regular expression frameworks can parse more than regular languages (e.g., using recursive
patterns2). Such powerful frameworks can handle our rather simple task. However regular expressions are not meant to
specify complex grammars since they tend to be hard to maintain when the complexity of the grammar grows.
2 http://perldoc.perl.org/perlre.html

http://perldoc.perl.org/perlre.html
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2.2. A naïve island grammar

To write a parser, we need a grammar. Because the grammar can easily consist of a hundred rules (e.g., � 80 for Python,
� 180 for Java) and since we are only interested in specific parts of the grammar, we define an island grammar as a PEG (see
Appendix A) with fewer than ten rules as in Listing 2. We initially assume that each class body contains just one method.3

Since we are interested in extracting method names, we define the method rule as an island inside of the methodWater

rule which surrounds it with water. The methodWater rule is defined imprecisely: water skips everything until the string
“method” is found.

We also define the block rule, which consumes an open curly brace and then skips everything until the closing curly
brace is found.

Listing 2. Our first island grammar.
The methodWater rule in the grammar in Listing 2 uses a naïve definition of water. It will work as long as we do not
complicate the grammar.
2.2.1. Composability problems
Suppose that in order to allow multiple classes in a single file we modify the start rule to allow repetition

(start’classn). Parsing the input in Listing 3 should fail because Shape does not contain a method. The result,
however, no matter whether we use PEG or CFG, is only one class — Shape (instead of Shape and Circle) —with a method
getDiameter, which is wrong. We see that our water is too greedy here, trying to find a method at any cost and ignoring
the ‘endclass’ and the Circle definition.

Listing 3. Source code of Shape and Circle classes.
3 We use an almost standard PEG formalism for grammar definitions (see Appendix A). A terminal is quoted ‘terminal’, a non-terminal is not quoted
nonterminal, a sequence is a concatenation of expressions, prioritized choice is marked as /, repetition as *, a not-predicate as !, and . stands for any
character.



J. Kurš et al. / Computer Languages, Systems & Structures 44 (2015) 114–140 117
Things do not get better when we allow multiple repetitions of methodWater within classBody

(classBody’methodWatern). The parser will stay confused, and, depending on the technology (CFG, PEG), the result
will be either ambiguous (CFG) or incorrect (PEG).

The language engineer has to use either (a) disambiguation rules and filters [6,7] to filter out unwanted results of CFGs;
or (b) predicates to prevent the incorrect decisions of CFGs and PEGs. Since predicates are applicable for both technologies
(CFGs and PEGs), we focus on this approach.
2.3. An advanced island grammar

To make the methodWater rule composable we must make it possible for it to be embedded into optional (?) or
repetition (þ , *) rules. We consequently define the grammar as in Listing 4. This new definition can properly parse multiple
classes in a file with an arbitrary number of methods in a class. We achieve composability by forbidding the water to go
beyond the ‘endclass’ keyword and by forbidding the water to consume any method definition.

Listing 4. Complete and final island grammar.
One can see that the syntactic predicates in the methodWater are more complicated. They have been inferred from the
rest of the grammar by analyzing which tokens can appear after the method island. In case we decide to allow for nested
classes, i.e., if we extend the rule classBody to:

we have to revise the predicates of methodWater to add !‘class’, and we have to find the proper predicates for the
classWater rule.
2.3.1. Ease of use, robustness, and reusability problems
The limitations of defining methodWater and classWater by hand illustrate the general problems of semi-parsing [8,9]

with island grammars:
1.
 Water rules are hard to define correctly because they require the entire grammar to be analyzed.

2.
 The definition of water is fragile because predicates need to be re-evaluated after any change in a grammar.

3.
 Finally, the water rules are tailored just for a specific grammar and cannot be reused in another grammar with

different rules.
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3. Bounded seas

3.1. The sea operator in a nutshell

We have shown that water must be tailored both to the island within the water and to the surroundings of the water
(e.g., methodWater in Listing 4). In this paper, we define a bounded sea to be an island surrounded by context-aware water.

To automate the definition of bounded seas we introduce a new operator for building tolerant grammars: the sea
operator. We use the notation � island� to create sea from island, which can be a terminal or non-terminal. Instead of
having to produce complex definitions of sea, a language engineer can use the sea operator which will do the hard work.
Listing 5 shows how the grammar of Listing 4 can be defined using the sea operator.

Listing 5. Island Grammar from Listing 4 rewritten with the sea operator.
A rule defined with the sea operator (e.g., � method� ) maintains the composability property of the advanced grammar
since by applying the sea operator we search for the island in a restricted scope. Moreover, such a rule is reusable, robust,
and simple to define.

Bounded seas are based on two ideas:
1.
 Water never consumes any input from the right context of the bounded sea, i.e., any input that can appear after
the bounded sea. This is very different from the water of “traditional” island grammars, where water is not guaranteed
to not consume a part of a valid input (cf. Section 2.2.1). The water of bounded seas is unambiguous, thus improving
composability.
2.
 Everything is fully automated. The sea is created using the sea operator � island� . Once the sea is placed in the
grammar, the grammar is analyzed and appropriate water is created without user interaction. This way the sea can be
placed in any grammar. In case the grammar is changed, the water is recomputed automatically. Automatic water
computation eases grammar definition, and ensures robustness and reusability of rules.
Bounded seas can be integrated into a parser combinator framework, a highly modular framework for building a parser
from other composable parsers [10]. The fact that a bounded sea can be implemented as a parser combinator demonstrates
its composability and flexibility.
3.2. The sea boundary

Ideally water should never consume any input that can appear after a bounded sea, i.e., it should never consume an input
from its right context. We will call the right context the boundary of a sea. The right context of the sea consists of the inputs
accepted by parsing expressions that appearafter the island. In the case of A’� ‘a’� ðB=CÞ, the right context of � ‘a’� is
any input accepted either by B or by C.

Being aware of the boundary, a tolerant parser can search for methods in a class without the risk that other classes will
interfere. Bounded seas would correctly parse the input in Listing 3 because water of a method sea would not be allowed to
consume endclass, which is a boundary of the methodSea.

The island-specific water has to stop in two cases: first, when an island is reached; second, when a boundary is reached.
If a boundary is reached before an island is found, the sea fails. The fact that sea can fail implies that sea can be embedded
into optional or repetition expressions without ambiguous results. For example, we can define the superclass specification



Table 1
The seas A and B recognize different inputs depending on the context.

Rule Input Result

1 R1’A “‥a‥b‥” Arecognizes ‘‥a‥b‥’
2 R1’A “‥a‥c‥” Arecognizes ‘‥a‥c‥’
3 R2’B “‥a‥b‥” Brecognizes ‘‥a‥b‥’
4 R2’B “‥a‥c‥” Bfails
5 R3’A‘b’ “‥a‥b‥” Arecognizes ’..a..’ ‘b’ recognizes ’b’
6 R3’A ‘b’ “‥a‥c‥” Arecognizes ‘‥a‥b‥’ ‘b’ fails
7 R4’A ‘c’ “‥a‥b‥” Arecognizes ‘‥a‥b‥’ ’c’fails
8 R4’A ‘c’ “‥a‥c‥” Arecognizes ‘‥a‥’ ’c’recognizes ’c’
9 R5’A B “‥a‥b‥” Arecognizes ‘‥a‥’ Brecognizes ‘‥b‥’
10 R5’A B “‥a‥c‥” Arecognizes ‘‥a‥c‥’ B fails
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as an optional island:

If superclassSpec is not present for the particular class, it will simply fail upon reaching classBody instead of
searching for superclassSpec further and further. The same holds for repetitions.

This rule will consume only methods until it reaches “endclass” in the input string, since endclass is in the boundary
of � method� , so methods in another class cannot be inadvertently consumed.

We first define bounded seas generally, and subsequently provide a PEG-specific definition.

Definition 1 (Bounded sea). A bounded sea consists of a sequence of three parsing phases:
1.
 Before-water: Consume input until an island or the right context appears. Fail the whole sea if we hit the right context.
Continue if we hit an island.
2.
 Island: Consume an island.

3.
 After-water: Consume input until the right context is reached.

3.3. The context sensitivity of bounded seas

In order to preserve the unambiguity of water in bounded seas, they need to be context-sensitive. A bounded sea
recognizes different substrings of an input depending on what surrounds the sea. There are two cases where context-
sensitivity emerges:
1.
 A bounded sea recognizes different input depending on what immediately follows the sea.

2.
 A bounded sea recognizes different input depending on what immediately precedes the sea.
Let us demonstrate context sensitivity of bounded seas using rules from Listing 6 and two inputs, “‥a‥b‥” and “‥a‥c‥”.
On its own, A recognizes any input with ‘a’ and B recognizes any input with ‘b’ (see rows 1–4 in Table 1), because they are
not bounded by anything.

Listing 6. Rules for demonstrating context-sensitive behavior.
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However, when the two islands are not alone, their boundary can differ, depending on the context. The right context of A
is ‘b’ in R3, and the right context of A is ‘c’ in R4. Therefore A consumes different substrings of input depending whether it is
called from R3 or R4 (see rows 5–8 in Table 1).

A more complex case of context-sensitivity, which we call the overlapping sea problem, arises when one sea is
immediately followed by another. Consider, for example, rule R5, where the sea A has as its right context B, which is also a
sea. Note that the before-water of B should consume anything up to its island ‘b’ or its own right context, including the island
of its preceding sea A. Now, the before-water of A should consume anything up to either its island ‘a’ or its right context B.
But the very search for the right context will now consume the island we are looking for, since B's before-water will
consume ‘a’! We must therefore take special care to avoid a “shipwreck” in the case of overlapping seas by disabling the
before-water of the second sea. Therefore B recognizes “‥a‥b‥” when called from R2 and “b‥” when called from R5 (see
rows 3 and 9 in Table 1). For the detailed example of the � a� � b� sequence, see B.3.

4. Bounded seas in parsing expression grammars

Starting from the standard definition of PEGs (see Appendix A), we now show how to add the sea operator to PEGs while
avoiding the overlapping sea problem. To define the sea operator, we first need the following two abstractions:
1.
 The water operator consumes uninteresting input. Water (E) is a new PEG prefix operator that takes as its argument an
expression that specifies when the water ends. We discuss this in detail in Section 4.1.
2.
 The NEXT function approximates the boundary of a sea. Intuitively, NEXT(e) returns the set of expressions4 that can
appear directly after a particular expression e. The details of the NEXT function are given in Section 4.2.

Definition 2 (Sea operator). Given the definitions of E and NEXT, we define the sea operator as follows: � e� is a
sequence expression

where nextiANEXTðeÞ for i¼ 1‥n and n¼ jNEXTðeÞj.
That is, the before-water consumes everything up to the island or the boundary, and the after-water consumes

everything up to the boundary.

4.1. The Water operator

The purpose of a water expression is to consume uninteresting input. Water consumes input until it encounters the
expression specified in its argument (i.e., the boundary). We must, however, take care to avoid the overlapping sea problem.

If two seas overlap (one sea is followed by another),the right boundary of the first sea starts with the second sea. Yet it
should only start with the island of the second sea as illustrated in Section 3.3. In order to do so, the second sea has to
simply disable its before-water.

We detect overlapping seas as follows: if sea s2 is invoked from the water of another sea s1, it means that the water of s1 is
testing for its boundary s2 and thus s2 has to disable its before-water. To distinguish between nested seas (e.g.,
‘� x’ � island� ‘x’� ) and overlapping seas (e.g., � ‘x’� � ‘y’� ), we test the position where this sea was invoked. In
case of nested seas the positions differ, and in case of overlapping seas they are the same.

Definition 3 (Extended semantics of PEGs). In order to detect overlapping seas and to compute the NEXT set, we extend the
original semantics of a PEG G¼ fN; T ;R; esg (see Definition 8 in Appendix A) with a stack of invoked expressions and their
positions. For standard PEG operators there is no change except that an explicit stack S is maintained. We define a relation
) from tuples of the form ðx; SÞ to the output o, where xATn is an input string to be recognized, S is a stack of tuples ðe; pÞ,
where e is a parsing expression and pZ0 is a position, and oATn [ ff g indicates the result of a recognition attempt. The
distinguished symbol f =2T indicates failure. Function len(x) returns the length of an input x. Function ðe; pÞ: S denotes a stack
with tuple (e,p) on the top and stack S below. S is initialized with the pair ðes;0Þ.
We define ) inductively as follows (without any semantic changes for standard PEG operators)5:

Empty:
xATn

ðx; ðϵ; pÞ: SÞ ) ϵ
4 The NEXT function is modeled after FOLLOW sets from parsing theory, except that instead of returning a set of tokens, it returns a set of parsers.
5 Note that in these rules p is implicitly defined as the current position in the input.
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Terminal success caseð Þ: aAT xATn

ðax; ða; pÞ: SÞ ) a

Terminal failure caseð Þ: aab ða; ϵ; SÞ ) f
ðbx; ða; pÞ: SÞ ) f

Nonterminal:
A’eAR ðx; ðe; pÞ: SÞ ) o

ðx; ðA; pÞ: SÞ ) o

Sequence success caseð Þ:

ðx1x2y; ðe1; pÞ: SÞ ) x1
ðx2y; ðe2; pþ lenðx1ÞÞ: SÞ ) x2
ðx1x2y; ðe1e2; pÞ: SÞ ) x1x2

Sequence failure caseð Þ: ðx; ðe1; pÞ: SÞ ) f
ðx; ðe1e2; pÞ: SÞ ) f

Sequence failure case 2ð Þ:

ðxy; ðe1; pÞ: SÞ ) x

ðy; ðe2; pþ lenðxÞÞ: SÞ ) f

ðxy; ðe1e2; pÞ: SÞ ) f

Alternation case 1ð Þ: ðxy; ðe1;pÞ: SÞ ) x
ðx; ðe1=e2; pÞ: SÞ ) x

Alternation case 2ð Þ:

ðx; ðe1; pÞ: SÞ ) f

ðx; ðe2;pÞ: SÞ ) o

ðx; ðe1=e2; pÞ: SÞ ) o

Repetitions repetition caseð Þ:

ðx1x2y; ðe;pÞ: SÞ ) x1
ðx2; ðen;pþ lenðx1ÞÞ: SÞ ) x2
ðx1x2y; ðen; pÞ: SÞ ) x1x2

Repetitions termination caseð Þ: ðx; ðe; pÞ: SÞ ) f
ðx; ðen; pÞ: SÞ ) ϵ

Not predicate case 1ð Þ: ðxy; ðe; pÞ: SÞ ) x
ðxy; ð!e; pÞ: SÞ ) f

Not predicate case 2ð Þ: ðxy; ðe; pÞ: SÞ ) f
ðxy; ð!e; pÞ: SÞ ) ϵ

A detailed example can be found in B.3.

Definition 4 (Water operator). With the extended semantics of PEGs we can define a prefix water operatorE . It searches
for a boundary and consumes input until it reaches a boundary. If the water starts a boundary of another sea, it stops
immediately. Function seasOverlapðS; p1Þ returns true if there is a pair ð � e; p2Þ on a stack S where p1 ¼ p2 and e is any
parsing expression and returns false otherwise. xATn, yATn, zATn.

Overlapping seas:
seasOverlapðS; pÞ
ðx; ð � e; pÞ: SÞ ¼ ϵ

Boundary found:

ðyz; ðe; pÞ: SÞ ) y

ðx″; ðe; pþ lenðx0ÞÞ: ð � e; pþ lenðx0ÞÞ: SÞ ) f

8x¼ x0x″x‴
ðxyz; ð � e; pÞ: SÞ ¼ x

In case of directly nested seas (e.g., � � island� � ) we obtain the same behavior as with � island� . The function
seasOverlap returns true in case a sea is directly invoked from another sea without consuming any input. Applying the rule
Overlapping seas from Definition 4, water of the inner sea is eliminated and the boundary is the same for the both seas.
Therefore � � island� � is equivalent to � island� .

4.2. The NEXT function

Any input that can appear after the sea forms a boundary of a sea. The NEXT function returns a set of expressions that can
appear directly after a particular expression.

Consider the grammar in the example from Listing 7. The code rule is defined in such a way that it accepts an arbitrary
number of class and structure islands in the beginning (classes and structures can be in any order) and there is a main
method at the end. Intuitively, another class island, a structure island or a main method can appear after a class island.
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The NEXT set approximates the boundary. Its expressions recognize prefixes of the boundary and not necessarily the
whole boundary. The reason for using NEXT is the limited backtracking ability of PEGs. PEGs are not capable of taking
globally correct decisions because they are not able to revert choices that have already been taken.6

Listing 7. Definition of code that consists of classes and structures followed by main method.
For practical reasons, elements of NEXT cannot accept an empty string. For example,an optional expression is not a
suitable approximation of a boundary, because it succeeds for any input. Consider a simple expression � e� ‘a’? ‘b’. The
‘a’? can appear after the ‘island’ but ‘b’ as well if ‘a’ fails. Therefore NEXT has to return ‘a’? ‘b’ , not just ’a’?.

We will use abstract simulation [4] in order to recognize an expression that accepts an empty string.

Definition 5 (Abstract simulation). We define a relation,consisting of pairs (e,o), where e is an expression and oAf0;1; f g. If
e 0
,
, then e can succeed on some input while consuming no input. If e 1

,
, then e can succeed on some input while consuming

at least one terminal. If e f
,

, then e may fail on some input. We will use variable s to represent a , outcome of either 0 or 1.
We will define the simulation relation , as follows:
1.
6

ϵ,0.

2.
 t,1, tAT .

3.
 t,f , tAT .

4.
 A,o if e,o and A’e is a rule of the grammar G.

5.
 e1e2,0 if e1,0 and e2,0.

e1e2,1 if e1,1 and e2,s.
e1e2,1 if e1,s and e2,1.
6.
 e1e2,f if e1,f

7.
 e1e2,f if e1,s and e2,f .

8.
 ðaÞ e1=e2,0 if e1,0

ðbÞ e1=e2,1 if e1,1

9.
 e1=e2,o if e1,f and e2,o.
10.
 en,1 if e,1

11.
 en,0 if e,f

12.
 !e,f if e,s

13.
 !e,0 if e,f
Because this relation does not depend on the input string, and there are a finite number of expressions in a grammar, we
can compute this relation over any grammar [4]. An example of abstract simulation can be found in Appendix B.1.

Definition 6 (NEXT). Let S be a stack of (expression, position) pairs representing positions and invoked parsing expressions,
where ▵ðSÞ pops an element from the stack S returning a stack S0 without the top element, sn, sn�1, …s2, s1 are expressions
on the stack S (top of the stack is to the left, bottom to the right), $$ is a special symbol signaling end of input, and E1 � E2 is
a product of two sets of parsing expressions, E1 and E2, such that E1 � E2 ¼ feiejjeiAE1; ejAE2g, we define NEXT(S) as a set of
expressions such that:
�
 if sn ¼ e1 and sn�1 ¼ e1e2 and e2=,0 then NEXTðSÞ ¼ fe2g
�
 if sn ¼ e1 and sn�1 ¼ e1e2 and e2,0 then NEXTðSÞ ¼ fe2g � NEXTð▵ðSÞÞ
See for example: http://www.webcitation.org/6YrGmNAi7.

http://www.webcitation.org/6YrGmNAi7
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�
 if sn ¼ e1 and sn�1 ¼ e1e2 then NEXTðSÞ ¼ fe2g
�
 if sn ¼ e2 and sn�1 ¼ e1e2 then NEXTðSÞ ¼NEXTð▵ðSÞÞ

�
 if sn ¼ e1 or sn ¼ e2 and sn�1 ¼ e1=e2 then NEXTðSÞ ¼NEXTð▵ðSÞÞ

�
 if sn ¼ e and sn�1 ¼ en then NEXTðSÞ ¼ e [ NEXTð▵ðSÞÞ

�
 if sn ¼ e and sn�1 ¼ !e then NEXTðSÞ ¼ fg

�
 if sn ¼ eAN then NEXTðSÞ ¼NEXTð▵ðSÞÞ

�
 if n¼0 (stack is empty) then NEXTðSÞ ¼ f$$g
An example of NEXT computation can be found in Appendix B.2.

5. Implementation

As a validation of bounded sea composability and reusability we report on an implementation of bounded seas in the
PetitParser framework.7 The bounded sea extension of PetitParser is part of Moose — a platform for software and data
analysis.8

5.1. PetitParser internals

PetitParser [3,11] is a PEG-based parser combinator [5] framework utilizing scannerless parsing [12] and packrat parsing
[13]. Implementations of PetitParser exist for Pharo Smalltalk9 (the version we extended), Java10 and Dart.11

PetitParser combinators are subclasses of the PPParser class, which defines an abstract method parse:anInput. If
parsing fails, PPFailure is returned, otherwise a result is returned. For example, the PPSequence combinator is subclass
of PPParser, having two extra instance variables referring to two parsers that should be in sequence as you can see in
Listing 8. The method parse:anInput is implemented as shown in Listing 9. The method returns a failure if either of the
two parsers fails, and returns both results in an array if they both succeed.

Listing 8. PPSequence has two instance variables, p1 and p2.
Listing 9. Implementation of PPSequence44parse: in PetitParser.
5.2. Implementation of BoundedSeas in PetitParser

To support bounded seas, we changed the interface of the parse: anInput method to parse: aPPContext.
PPContext is an object that provides access to the stack of invoked expressions. PPContext as well implements the
interface of the InputStream so that it can be used as InputStream. In order to manage the stack of invoked expressions,
a parser is dispatched via PPContext⪢invoked: and a value is returned via PPContext⪢return: or PPContext⪢fail:.
7 http://scg.unibe.ch/research/IslandParsing/CLSS2015
8 http://moosetechnology.org
9 http://smalltalkhub.com/#!/�Moose/PetitParser
10 https://github.com/petitparser/java-petitparser
11 https://github.com/petitparser/dart-petitparser
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PPBoundedSea is defined as in Listing 10. Even though a bounded sea consists of a sequence of three parsers, it has only
one instance variable island, before-water and after-water being created dynamically depending on the state of
PPContext. The parse: method of PPBoundedSea is in Listing 11. The three phases of parse: correspond to the phases
in Definition 1. In order to detect an overlapping sea, there is a check in parseBeforeWater: (see Listing 12).

Listing 10. PPBoundedSea has only one instance variable island, before and after-water are created dynamically,
depending on the state of the PPContext.
Listing 11. Implementation of a parse: method in PPBoundedSea. The three phases correspond to the phases in
Definition 1.
Listing 12. Implementation of a beforeWater: method in PPBoundedSea.
PPContext manages the parsing expression invocation stack, computes the next set and detects the overlapping seas.
Thanks to the fact that the method invocation stack can be accessed in the Pharo environment, PPContext can reuse the
method invocation stack to access the invoked expressions. Because the method invocation stack does not contain the
invoked position, PPContext manages this separately and only for PPBoundedSea parsers (see Listing 13). Overlapping
seas can be detected trivially (see Listing 14). The NEXT function implementation follows straightforwardly from recursive
Definition 6 (see Listing 15).

Listing 13. Implementation of an invoked: method and return: method in PPContext.
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Listing 14. Implementation of a seasOverlap method in PPContext.
Listing 15. Fragment of a next method in PPContext.
5.3. Performance

In this section we briefly report on the performance of bounded seas. We focus on the time complexity of the three
different placements of a sea: standalone seas, repetition of a sea and a nested sea.

We performed measurements on the following parsers and inputs:
1.
 Stand-alone sea � ‘a’� searches for the island “a” in an input. An input consists of randomly generated string of dots .
(representing water) and a single character “a” at a random position.
2.
 Repetition of a sea � ‘a’� þ searches for sequences of islands “a” in an input. An input consists of a randomly generated
string of dots . (for water) and island characters “a”, e.g., “‥a…‥a‥‥a…aa‥”.
3.
 Nested sea block’� ‘f’blockþ=� ϵ� ‘g’� þ searches for sequences of nested blocks in an input. An input consists of
block starting with “f”and ending with“g”. A block contains a possibly empty sequence of other blocks, e.g.,
“f…fg:f:f‥g:g…g”.
Fig. 1 shows that the time complexity is linear compared to the input size for a stand-alone sea and a repetition of a sea.
For the nested sea, we measured an exponential complexity. All of the measured parsers used a memoized version [13,14] of
bounded seas.
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Fig. 2 reports on equivalents of bounded seas implemented without using the bounded sea operator. The complexity of
these parsers is linear. We see that there is room for improvement and this still remains an open issue.

In the case studies we performed (Sections 7 and 8), bounded seas showed performance comparable to the non-bounded
seas versions. We assume that the typical size of the input and parser complexity used in the case studies is below the
threshold where the exponential complexity manifests itself. To support our assumption, Fig. 3 compares a bounded sea
parser and a non-bounded sea equivalent. Both parsers extract Java methods from Java standard library files (details about
extracting Java methods are provided in Section 7) with a comparable time performance.
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6. Discussion

In this section we discuss some implementation decisions of bounded seas as well as an implementation of bounded seas
for generalized LL grammars and parser combinator libraries. We also discuss why the NEXT set is needed instead of the
simpler FOLLOW sets.
6.1. Bounded seas as meta-syntactic sugar

Bounded seas can be implemented in two ways: as a meta-syntactic sugar or as a parser extension. In this work we take
the latter approach. There are several reasons why we did not choose a grammar transformation that transforms a sea
expression into a standard PEG expression.

First, it is easier to implement the NEXT function and detect overlapping seas during parsing than detecting overlapping
seas statically and transforming the boundary in such a way that the overlapping seas problem cannot arise. Second,
PetitParser is a very agile framework where a parser can be updated simply by changing an object reference at any time.
Furthermore, the graph of parser combinators corresponds exactly to the grammar, which makes PetitParser easy to
understand and debug. Grammar transformation would add an extra level of complexity into the implementation and it
would complicate comprehension and debugging.
6.2. Generalized LL parsing

In this paper we have discussed bounded seas for PEGs. However, the essence of bounded seas is not in the grammar
formalism used but in the fact that water is specific for each island and it is computed automatically from a stack of invoked
expressions. We argue that bounded islands are useful for Context Free Grammars (CFGs) [15] as well.

The key difference between PEGs and CFGs is that CFGs may return ambiguous results whereas PEGs cannot.
Implementing an island grammar as a CFG may lead to ambiguous results even though only one of the results is desired.
The undesired, remaining results are present only because of vaguely defined water. This is problematic since it is hard to
decide which of the results is the correct one.

Bounded seas eliminate ambiguities by adopting a more precise definition of water. Water of a bounded sea never
consumes any input that might be valid in a given parsing context. Even though we define a bounded sea with an island ‘y’

and we run such a rule on the input “xyzy”, the water of the bounded sea consumes only “x”, never “xyz”, thus avoiding
ambiguities.

Generalized LL Parsing [16] can handle any CFG, allows all the choices of CFGs to be explored in parallel, and, in case of
ambiguity returns all possible results. Bounded seas can be implemented in a GLL parser because their top-down nature
allows for a stack of parsing expressions and they support syntactic predicates used in a boundary.
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6.3. Integration with monadic parser libraries

To compute NEXT(e1) in a sequence e1e2 we need to know what e2 is. However in some cases, e.g., in monadic parser
combinator [5] libraries, e2 could be a closure. For example, when parsing the HTTP header containing a value indicating the
length of a content,12 we might read that value and use it to create the parser that reads the content itself (i.e., by length-
times reading a character):

Now, if we want to use a bounded sea to extract the length, i.e.,

we cannot determine the boundary of � length� , because it depends on the result of the length. As a consequence we
can only use bounded seas in a sequence e1e2 if we can compute e2 before parsing the e1.

Bounded seas do not allow for context-sensitive dependencies between an island and its border, but for one exception:
when a sea is bounded by another sea, we disable water if another water is already invoked at the same position.

6.4. FOLLOW vs. NEXT

The NEXT function introduces extra complexity into bounded seas, even though it resembles the FOLLOW function from
LL parsing theory [17, pp. 235–361]. The key difference between FOLLOW and NEXT is that the former returns only
terminals, while the latter returns parsing expressions.

Why is it not sufficient to use the well-known FOLLOW sets instead of the more complicated NEXT function? The reason
is that the right context (boundary) of a sea is in general an LLðkÞ; kZ1 language, and a simple FOLLOW set is not usually
sufficient to recognize the boundary.

As an example, consider the grammar from Listing 7. The boundary of class is NEXTðclassÞ ¼
f � class� ; � struct� ; mainMethodg. Suppose that instead we take as the boundary of class its FOLLOW set, i.e.,
FOLLOWðclassÞ ¼ f‘class’; ‘struct’; ‘public’g. If there are other elements in the input that start with ‘public’ (e.g.,
“public int i¼0;”), they will be indistinguishable from the mainMethod and the water of bounded seas would finish in
an invalid position.

Bounded seas are supposed to work only with a skeleton of an original grammar with as little information as possible.
Therefore, information about other input that can interfere with a boundary (e.g., “public int i¼0;”) is not usually
available. If bounded seas are provided with a baseline grammar this would not be problem as the techniques described by
Klusener and Lämmel [18] can then be applied.

7. Java parser case study

The goal of this case study is to demonstrate the suitability of bounded seas for extracting data from Java sources without
any baseline grammar provided. First we focus on a simpler task without considering nested classes. Because bounded seas
target extensibility we subsequently investigate the effort required to extend the parser with nested classes.

We compare four kinds of Java parsers and we measure how well can they extract classes and their methods from a Java
source code.13
1.
 PetitJava is an open-source Java parser using PetitParser [3] provided by the Moose analysis platform community [19].
We used version 159.14
2.
 Naïve Island Parser is an island parser with water defined simply as the negation of the island we are searching for. The
sea rules in this parser can be reused, because they do not consider their surroundings and they are grammar-
independent. The sea rules are defined in a simple form: consume input until an island is found, then consume an island.
3.
 Advanced Island Parser is a more complex version of the naïve island parser. The water is more complicated to prevent
the most frequent failures of island parsers. The sea rules in this parser are hard-wired to the grammar and cannot be
reused. The sea rules are customized for a particular islands.
4.
 Island Parser with Bounded Seas is an island parser written using bounded seas. The sea rules were defined using the
sea operator.
12 https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
13 The case study and instructions can be found at the following prepared web-page: http://scg.unibe.ch/research/IslandParsing/CLSS2015.
14 http://smalltalkhub.com/#!/�Moose/PetitJava/
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The PetitJava parser parses Java 6 code. All the island parsers (island, advanced and bounded) are very similar, with
approximately 20 rules per each. PetitJava itself contains over 200 rules. The island parsers were designed to extract classes
and the methods that belong to them. None of the parsers was optimized to provide a better performance.

We compare the three island parsers (almost identical in a structure) written by the first author. It is very likely that the
advanced island parser can be modified to achieve better precision and better performance, but at the cost of considerable
engineering work. We demonstrate that naïve water rules do not work and that the advanced version of water is needed.
We further show that with bounded seas we can obtain high precision and performance without needing to define an
advanced island parser. Finally, we show that extending an island parser is a highly demanding task, unless bounded seas
are used.

Test data: For our case study we randomly selected 50 files (N) containing 50 classes from the JDK 6 library. These 50
classes contain 81 nested classes and a total of 1380 methods M. We extract the reference data using the VerveineJ15 parser.

Each parser returns a set m of fully qualified method names,16 some of which are true positives mtp. If a parser fails, an
error is returned and the set of all errors is e. Failure is treated as though no classes or methods were found. We measure
precision P ¼ jmtpj=jmj), recall R¼ jmtpj=jMj, error rate err ¼ jej=N and time per file t ¼ ttotal=N.
7.1. Without nested classes

First of all, we evaluate our parsers on extracting method names without considering the nested classes and their
methods. We can easily skip the nested classes by defining properly paired blocks starting with ‘{’ and ending with ‘}’ and
ignoring everything inside.

Results: As we see in Table 2, PetitJava parser provides perfect precision, but recall is poor because of the high error rate.17

On the other hand, the error rate of all island parsers (island, advanced and bounded) is very low,18 but precision and recall
are not perfect, even though they are relatively good. Amongst the imprecise parsers, the Bounded parser provides the best
precision and recall.
7.2. With nested classes

In this step, we extend our island parsers to include nested classes and their methods. We do this by making a single
change, where we extend the classBody rule from this19:

to this:

Results: As we see in Table 3 the PetitJava parser performs as in the previous case. Yet the imprecise parsers (Island,
Advanced) start to struggle. Their error rate has increased and recall has dropped dramatically. The errors were mostly due
either to parsing timeouts (when parsing took more than ten seconds per file) or various parsing errors. On the other hand,
the Bounded parser maintains high precision and recall, zero error rate, and improves time per file slightly.

In Table 3 we also measured the Advanced' parser, which made use of refined rules for water to take into account the
grammar changes.20 This improved recall, parsing time and the error rate. We would, however, need to invest even more
effort to reach the quality of the Bounded parser.
8. Ruby parser case study

The standard approach to recognize the structure of the input is to track all language elements that affect structure, as we
did in the Java case study where we defined a rule for blocks. As it turns out, almost anything can affect the structure of a
Ruby program. For this reason, we turned to indentation as it turns out to be a good proxy for structure [20]. In this case
study we focus on using bounded seas to extract the structure of a Ruby program by exploiting indentation.21
15 https://gforge.inria.fr/projects/verveinej
16 http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.7
17 The PetitJava failures are due to bugs in the grammar specification.
18 Failures of the imprecise parsers are due to parsing timeout (set to 10 s).
19 island here creates either an island, an advanced island or a bounded sea depending on the parser we use.
20 We investigated the reasons for failures and added an extra boundary to classBody.
21 The case study and instructions can be found at the prepared web-page: http://scg.unibe.ch/research/IslandParsing/CLSS2015.
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8.1. The dangling end problem

Ruby poses interesting parsing challenges even for imprecise parsers. The biggest problem we faced is the dangling end
problem: Normally a control structure like an if statement terminates with end. However there is also an if modifier, as in
return error if check?, which does not require an end.

Such modifiers pose problems for parsing. There exist numerous such modifiers in Ruby,22 which resemble conditional
blocks, but have a different syntax. From the perspective of an imprecise parser, it is hard to distinguish between a modifier,
loops and conditional blocks.

Ruby structures (such as classes, methods, blocks) end with the ‘end’ keyword (see Listing 16). To capture the structure of
Ruby code, we need to define rules for these structural elements, including conditional blocks and others, such as loops, do
blocks, and brace pairs.

Listing 16. Example of a Ruby code.
Ruby modifiers are not paired with any ‘end’ as we can see in Listing 17. If we incorrectly pair ‘end’ we change the
structure of a program. Unfortunately, it is hard to recognize when ‘if’ belongs to a modifier and when to a conditional
block, unless we specify a complete grammar to recognize all the constructs that it could possibly modify.

Listing 17. Example of Ruby code where ‘if’ is not paired with any ‘end’.
8.2. Indentation

It is known that indentation is a good proxy for structure in programming languages [20]. We can exploit this fact to
define a context-sensitive parser that uses both indentation and bounded seas to recognize modifiers. From the perspective
of indentation, modifiers look like loops or conditional blocks with a single line scope.

Because PetitParser produces scannerless parsers [12] and it doesn't use any preprocessing (i.e., tokenizing), an
indentation-sensitive parser is context-sensitive since the question whether code is indented or not depends on the results
of previously invoked parsers.

Inspired by Landin's offside rule [21], indentation in PetitParser uses a stack of indentation levels and adds extra layout-
oriented parsing expressions (e.g., align, inOffside). These expressions consult the stack and the current indentation level to
verify that the input complies with the given layout criteria [22].

Although we have seen earlier that bounded seas are incompatible with monadic parser libraries where a boundary may
depend on what has been parsed earlier, indentation parsing is a special case that does not interfere with bounded seas. As
we shall see, the use of indentation-sensitive parsers simplifies the implementation of the parsers and even improves the
overall performance.
22 http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#if-mod, http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#unless-mod, http://docs.
huihoo.com/ruby/ruby-man-1.4/syntax.html#while-mod, http://docs.huihoo.com/ruby/ruby-man-1.4/syntax.html#until-mod
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Table 2
Precision, recall error rate and time of the four tested parsers without considering nested classes.

Parser Precision Recall Time (ms) Error rate

PetitJava 1.00 0.71 308 0.28
Island 0.87 0.90 1225 0.04
Advanced 0.92 0.90 1336 0.04
Bounded 0.96 1.00 941 0.00

Table 3
Precision, recall, time and error rate including nested classes.

Parser Precision Recall Time (ms) Error rate

PetitJava 1.00 0.67 299 0.28
Island 0.87 0.54 934 0.12
Advanced 0.94 0.32 1734 0.34
Advanced' 0.91 0.68 847 0.03
Bounded 0.97 0.99 627 0.00
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We define a context-sensitive grammar that recognizes modules, classes, methods and class methods in Ruby code by
utilizing indentation and bounded seas. The scope of a class or method extends as far as code appears to the right of the
class or method declaration (i.e., in the onside position). The class definition is in Listing 18.

Listing 18. Indentation sensitive definition of a Ruby class.
8.3. Parsing results

In this section we report on the complexity, performance, precision and recall of three parsers: a classical island parser
(46 grammar rules, 9K characters), a bounded parser that does not utilize indentation (41 rules, 8.5K characters), and an
indent bounded parser that utilizes indentation (27 rules, 4K characters).

The island parser and the bounded parser are almost identical. The sea parser uses bounded seas, while the island parser
uses manually defined islands and water. From the number of methods, we can see that indentation simplifies the
implementation. The bounded parser and the island parser must implement additional rules to recognize the dangling end.

The bounded parser shows its flexibility here. For example, the method definition in the bounded grammar does not
require arguments (Listing 19) contrary to the method definition in the island grammar (Listing 20).

Listing 19. Method definition in the bounded grammar.
Listing 20. Method definition in island grammar.
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To measure precision and recall, we used jruby-parser23 as a reference parser. We compared the structure (modules,
classes, methods and class methods) of Ruby code as detected by jruby-parser with the structure detected by our parsers.
We describe the structure as a set of methods where each method is prepended with a path consisting of other methods,
classes and modules depending on the location of the method in a code, similar to Java's fully qualified names. For example:

refers to a method draw defined in the class Shape. The Shape belongs to the graphics module. On the other hand:

refers to the class-side method Instance of the Shape's inner class Renderer.
Test data: We performed our study on a sample of N¼100 files of six popular projects on Github: Rails,24 Discourse,25

Diaspora,26 Cucumber,27 Valgrant28 and Typhoeus.29 The sampled files contain a total of 520 methods.
Parsers return a set of fully qualified methods m, where some of them are true positives mtp. If a parser fails, an error is

returned. The set of all errors is e. We measure precision P ¼ jmtpj=jmj), recall R¼ jmtpj=jMj, error rate err¼ jej=N and time
per file t ¼ ttotal=N. Failure is treated as though no classes or methods are found.

Table 4 shows precision and recall are rather high in all of the cases. The island parser has perfect precision, but recall is
not perfect due to some failures. The bounded parser has worse precision, because it did not fail for one of the inputs, but
misplaced the methods into the wrong module. The indent bounded parser can parse any of the files with very high
precision and recall. It misplaced only one30 of all the methods.

As we have seen, the island parser contains 46 rules, the bounded parser 41, and the indent parser 27. This shows that
both bounded seas and indentation help to reduce the complexity of the Ruby grammar. Bounded seas perform better than
traditional islands. The indentation parser is even better than the bounded parser, because fewer rules are needed to
determine the boundaries.
9. Related work

Agile parsing: Agile parsing [8] is a recent paradigm for source analysis and reverse engineering tools. In agile parsing the
effective grammar used by a particular tool is a combination of two parts: the standard base grammar for the input
language, and a set of explicit grammar overrides that modify the parse to support the task at hand. There are several agile
parsing idioms: (i) rule abstraction (grammar rules can be parametrized); (ii) grammar specialization (grammar rules can be
specialized based on the semantic needs); (iii) grammar categorization (to deal with context-free ambiguities); (iv) union of
grammars (to unify multiple grammars); (v) markup (to match and mark chunks of interest); (vi) semi-parsing (to define
islands and lakes); and (vi) data structure grammars (separate grammars that hold auxiliary data structures).

The semi-parsing idiom [8] uses the not predicate to prevent water from consuming islands. This approach is the same as
that taken by bounded seas. Contrary to the semi-parsing idiom, bounded seas are able to infer the predicates on their own.
The agile parsing idioms are based on a transformation of a well-defined baseline grammar, whereas bounded seas do not
expect such a well-defined grammar and must infer the predicates only from the available skeleton.

Island grammars: Island grammars were proposed by Moonen [1] as a method of semi-parsing to deal with irregularities
in the artifacts that are typical for the reverse engineering domain. Island grammars make use of a special syntactic rule
called water that can accept any input. Water is annotated with a special keyword avoid that will ensure that water will be
accepted only if there is no other rule that can be applied.

Contrary to Moonen, we propose boundaries (based on the NEXT function) that limit the scope in which water can be
applied. Because each island has a different boundary, our solution does not use the single water rule; instead our water is
tailored to each particular island.

Non-greedy rules: Non-greedy operators are well-known from regular expressions introduced in Perl.31 ??, n?, and þ?

are non-greedy versions of ?, n and þ , which match as little of a string as possible while preserving the overall match. The
backtracking algorithm admits a simple implementation of non-greedy operators: try the shorter match before the longer
23 https://github.com/jruby/jruby-parser
24 https://github.com/rails/rails
25 https://github.com/discourse/discourse
26 https://github.com/diaspora/diaspora
27 https://github.com/cucumber/cucumber
28 https://github.com/mitchellh/vagrant
29 https://github.com/typhoeus/typhoeus
30 If a method declaration with a modifier follows an inner class defined on a single line, the method with the modifier is incorrectly assigned to the

inner class.
31 http://perldoc.perl.org/perlre.html
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Table 4
Precision, recall error rate and time of compared parsers.

Parser Precision Recall Time (ms) Error rate

Island parser 1.00 0.96 495 0.03
Bounded parser 0.97 0.96 283 0.01
Indent bounded parser 0.99 0.99 203 0.00
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one. For example, in a standard backtracking implementation, e? first tries using e and then tries not using it; e?? uses the
other order.32

Non-greedy operators are also available in ANTLR as parser operators. A non-greedy parser matches the shortest
sequence of tokens that preserves a successful parse for a valid input sentence. Contrary to regular expressions, a non-
greedy parser never makes a decision that will ultimately cause valid input to fail later on during the parse. The central idea
is to match the shortest sequence of tokens that preserves a successful parse for a valid input sentence.33

Bounded seas are distinct from non-greedy rules in two ways. First, bounded seas do not require globally correct
decisions, since they are not available in traditional PEGs. Though PEGs can backtrack while choosing between alternatives,
once the choice is made it cannot be changed, thus making a globally correct decision impossible. In order to realize non-
greedy repetitions, PEGs feature predicates, which have to be specified by an engineer (as illustrated in Section 2). Bounded
seas remove the burden of predicates from a language engineer by computing the NEXT set automatically.

Second, bounded seas target transparent composability. A language engineer can treat a bounded sea like any other PEG
rule without bothering about its implementation. For example, the following grammar can be easily modified by changing
the body to body’sean, body’sea? or body’sea? sea?.

If we define sea using lazy repetition *?, the normal sea can be defined as

the optional version as

the repetition version as

and the sequence of two optional seas as

Noise skipping parsing: GLRn is a noise-skipping parsing algorithm for context-free grammars able to parse any input
sentence by ignoring unrecognizable parts of the sentence [23]. The parser nondeterministically skips some words in a
32 https://swtch.com/�rsc/regexp/regexp1.html
33 https://theantlrguy.atlassian.net/wiki/display/ANTLR4/WildcardþOperatorþandþNongreedyþSubrules
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sentence and returns the parse with fewest skipped words. The parser is a modification of Generalized LR (Tomita) parsing
algorithm [24].

The GLRn application domain is parsing of spontaneous speech. Contrary to bounded seas, GLR* itself decides what is
noise (water in our case) and where it is. In the case of bounded seas the positions of the noise (water) are explicitly defined.

Fuzzy parsing: The term fuzzy parser was coined for Sniff [25], a commercial Cþþ IDE that uses a hand-made top-down
parser. Sniff can process incomplete programs or programs with errors by focusing on symbol declarations (classes,
members, functions, variables) and ignoring function bodies. In linguistics or natural language processing [26], the notion of
fuzzy parsing corresponds to an algorithm that recognizes fuzzy languages.

The semi-formal definition of a fuzzy parser was introduced by Koppler [27]. Fuzzy parsers recognize only parts of a
language by means of an unstructured set of rules. Compared with whole-language parsers, a fuzzy parser remains idle until its
scanner encounters an anchor in the input or reaches the end of the input. Thereafter the parser behaves like a normal parser.

Skeleton grammars: Skeleton grammars [18] address the issue of false positives and false negatives when performing
tolerant parsing by inferring a tolerant (skeleton) grammar from a precise baseline grammar.

Our approach tackles the same problem as skeleton grammars: improving the precision of island grammars. They both
maintain the composability property and both can be automated. Skeleton grammars use the standard first and sets known
from standard parsing theory [17, pp. 235–361] for synchronization with the baseline grammar.

Bounded seas do not require a precise baseline grammar and they have to find point of synchronization based only on the
main grammar itself. Therefore the main grammar has to contain all the relevant information (e.g., when extracting classes and
methods with bounded seas block definitions are essential to place methods properly). Because the main grammar of bounded
seas is typically far from complete, bounded seas use the NEXT set (instead of first and follow) to reach the required precision.
If bounded seas are provided with the baseline grammar, the boundaries can be computed from the baseline.

Bridge parsing: Bridge parsing is a novel, lightweight recovery algorithm that complements existing recovery techniques
[28]. Bridge parsing extends an island grammar with the notion of bridges and reefs. Islands denote tokens that open or
close scopes. Reefs are attributed tokens and they add information (e.g., indentation) to nearby islands. Islands and reefs are
created in a tokenizing phase. Bridges connect matching opening and closing islands in a bridge-building phase. The
corresponding islands are searched with the help of reefs (e.g., indentation can be used to find matching brackets). If some
islands are not connected (e.g., if the opening or closing scope island is missing), the bridge repair phase tries to repair them
with the help of information from reefs.

The focus of bounded seas is on data extraction rather than on error recovery and bounded seas are missing advanced error-
recovery techniques available in the bridge parsing. Bounded seas are meant to be used on valid inputs without errors. If an
erroneous chunk appears, bounded seas skip such a chunk until a valid chunk is found. To our best knowledge, techniques used
in bridge parsing are complementary to bounded seas and might help improve precision of bounded seas on erroneous inputs.

Permissive grammars: The main idea of permissive grammars [29,30] is to derive a permissive grammar from a standard
grammar. Such a permissive grammar accepts programs with minor errors (missing brackets, etc.). A permissive grammar is
also a normal grammar and can be tweaked by the language engineer. Using a specialized version of the GLR algorithm, both
syntactically correct and incorrect programs can be efficiently parsed using these grammars [29].

Contrary to bounded seas, which target the area of rapid data extraction, permissive grammars are supposed to help IDE
developers with interactive parsing and error recovery as the user is writing a program. Similar to bounded seas, permissive
grammars extend the concept of island grammars and use water for error recovery. Even though bounded seas can be used to
skip over noise in an input, bounded sea handle missing or misspelled input simply by ignoring the whole erroneous chunk
until a valid chunk is found. Permissive grammars try to find the best way to fix an erroneous chunk (and not only skip over it).
10. Conclusion

In this paper we have presented bounded seas — composable, reusable, robust and easy to use islands. Contrary to the
traditional approach of island parsing, bounded seas compute the scope within which water can consume the input. We have
extended the semantics of PEGs to implement useful and practical bounded seas. Boundaries are computed by a NEXT function,
inspired by the follow function from standard parsing theory. The automation of the process that creates the bounded sea
ensures that bounded seas are easy to use and are not error-prone. Bounded seas as presented in this work are context-sensitive.

As a validation of the composability and reusability of bounded seas, we have presented an implementation of bounded seas as
a parser combinator in the PetitParser framework. Furthermore we have presented two case studies applying bounded sea parsers
to extracting method names from Java and Ruby code, and we have compared these parsers to conventional parsers based on a
precise grammar and based on island grammars. We show that bounded seas provide both good precision and performance.
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Appendix A. Parsing expression grammars

PEGs were first introduced by Ford [4] and the formalism is closely related to top-down parsing. PEGs are syntactically
similar to CFGs [15], but they have different semantics. The main semantic difference is that the choice operator in PEG is
ordered — it selects the first successful match — while the choice operator in CFG is ambiguous. PEGs are composed using
the operators in Table A1.

Definition 7 (PEG definition). We use the standard definition as suggested by Ford [4]. A parsing expression grammar (PEG)
is a 4-tuple G¼{N, T, R, es}, where N is a set of nonterminals, T is a set of terminals, R is a set of rules, es is a start expression.
N \ T ¼∅. Each rAR is a pair (A, e), which we write A’e, where AAN, e is a parsing expression. Parsing expressions are
defined inductively. If e, e1 and e2 are parsing expressions, then so is:
�
 ϵ, the empty string

�
 a, any terminal where aAT

�
 A, any nonterminal where AAN

�
 e1e2, a sequence

�
 e1=e2, a prioritized choice

�
 en, zero or more repetitions

�
 !e a not-predicate
The following operators are syntactic sugar:
�
 Any character: � is character class containing all letters

�
 Character class: ½a1; a2;…an� character class is a1=a2=‥=an

�
 Optional expression: e? is ed=ϵ, where ed is desugaring of e

�
 One-or-more repetitions: eþ is ededn, where ed is desugaring of e

�
 And-predicate: &e is !ð!edÞ, where ed is desugaring of e
We will use text in quotation marks to refer to terminals e.g., ‘a’, ‘b’, ‘class’. We will use identifiers A, B, C, class or
method to refer to nonterminals. We will use e or indexed e: e1, e2, … to refer to parsing expressions.

Definition 8 (PEG semantics). To formalize the semantics of a grammar G¼{N, T, R, es}, we define a relation ) from pairs of
the form ðe; xÞ to the output o, where e is a parsing expression, xATn is an input string to be recognized and oATn [ ff g
indicates the result of a recognition attempt. The distinguished symbol f =2T indicates failure.

Empty:
xATn

ðϵ; xÞ ) ϵ

Terminal success caseð Þ: aAT ; xATn

ða; axÞ ) a

Terminal failure caseð Þ: aab; ða; ϵÞ ) f
ða; bxÞ ) f

Nonterminal:
A’eAR ðe; xÞ ) o

ðA; xÞ ) o
Table A1
Operators for constructing parsing expressions.

Operator Description

0 0 Literal string
½� Character class
� Any character
ðeÞ Grouping
e? Optional
en Zero-or-more repetitions of e
eþ One-or-more repetitions of e
&e And-predicate, does not consume input
!e Not-predicate, does not consume input
e1 e2 Sequence
e1 / e2 Prioritized choice



Fig. B1. State of a stack after parsing “class Foo” in the input “class Foo endclass”.
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Sequence success caseð Þ:

ðe1; x1x2yÞ ) x1
ðe2; x2yÞ ) x2

ðe1e2; x1x2yÞ ) x1x2

Sequence failure case 1ð Þ: ðe1; xÞ ) f
ðe1e2; xÞ ) f

Sequence failure case 2ð Þ: ðe1; x1yÞ ) x1 ðe2; yÞ ) f
ðe1e2; x1yÞ ) f

Alternation case 1ð Þ: ðe1; xyÞ ) x
ðe1=e2; xÞ ) x

Alternation case 2ð Þ: ðe1; xÞ ) f ðe2; xÞ ) o
ðe1=e2; xÞ ) o

Repetitions repetition caseð Þ:

ðe; x1x2yÞ ) x1
ðen; x2Þ ) x2

ðen; x1x2yÞ ) x1x2

Repetitions termination caseð Þ: ðe; xÞ ) f
ðen; xÞ ) ϵ

Not predicate case 1ð Þ: ðe; xyÞ ) x
ð!e; xyÞ ) f

Not predicate case 2ð Þ: ðe; xyÞ ) f
ð!e; xyÞ ) ϵ

Appendix B. Examples

B.1. Example of abstract simulation

Let us compute the abstract simulation (see Definition 5) for the following grammar:

Because of the recursive nature of the definition, we will compute,for terminals first and we will infer the,for more
complex expressions once we have computed,for the simpler ones:
�
 ‘a’,1 (rule 2), same for ‘b’ and ‘c’

�
 ‘a’,f (rule 3), same for ‘b’ and ‘c’

�
 ϵ,0 (rule 10)

�
 E1,0 (rule 9)

�
 E2,1 (rule 5)

�
 E2,f (rule 6)

�
 S,1 (rule 5)

�
 S,f (rule 7)
B.2. Example of NEXT computation

Let us compute NEXT of the method island defined in the island grammar in Listing 5. Let us suppose we have already
parsed “class Foo” in the input “class Foo endclass”. The stack now looks as shown below in Fig. B1.



Fig. B3. The inference rule for sequence.

Fig. B4. Rewrite rule according to Definition 2.

Fig. B5. The inference rule for sequence.

Fig. B2. The inference rule for nonterminal.
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Fig. B6. The inference rule for water.

Fig. B7. The inference rule for sequence (failure case).
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To parse � method� we need to compute NEXTð � method� Þ. We do this in the following steps.34
1.
 Initialize: NEXTðmethodSeaÞ ¼ fg;n¼ 2
34 To simplify, we start from stack position 2, because NEXTð � method� Þ (stack position 3) is trivially NEXT(methodSea) (stack position 2).



Fig. B8. The inference rule for overlapping seas.
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2.
 Check stack:
sn ¼ s2 ¼ methodSea and
sn�1 ¼ s1 ¼ en, where e¼ methodSea
3.
 Apply rule for en: NEXTðmethodSeaÞ ¼ fmethodSeag [ NEXTðmethodSeanÞ
(a) Call: NEXT(methodSean)
(b) Initialize: NEXT(methodSean)¼{}, n¼1
(c) Check stack:

sn ¼ s1 ¼ methodSean and
sn�1 ¼ s0 ¼ e1e2e3e4, e3 ¼ methodSean, e4 ¼ ‘endclass’

(d) Apply the rule for sequence, where e4=,0: NEXTðmethodSeanÞ ¼ f‘endclass’g
(e) Return: NEXTðmethodSeanÞ ¼ f‘endclass’g
4.
 Return: NEXTðmethodSeaÞ ¼ fmethodSea ‘endclass’g
B.3. PEG example

Let us go through the grammar S’� a� � b� using “‥a‥b‥” as an input. As we see in Fig. B2, the stack is initialized
with ðS;0Þ and the whole result is “‥a‥b‥”, because it is a result of nonterminal expansion S’� a� � b� . The sequence
on the top is straightforward, as � a� consumes “‥a‥” and � b� consumes “b‥”, and the result is then “‥a‥b‥” (see Fig.
B3).

In order to get result of � a� invoked in position 0, we first follow Definition 2 (see Fig. B4). It is a sequence of three
parsers (generalization from the sequence of two to the sequence of three is straightforward). In Fig. B5 we see that before-
water consumes “..”, the island itself consumes the desired “a” and another “..” is consumed by after-water.

Let us investigate what happens in before-water of � a� . First of all, we need to determine the NEXT(� a� ). In this
case it is � b� (see B.2 for more complex example). Once we know the boundary, before-water tries to find the island a or
its boundary � b� at positions 0 and 1 until it finds the island at the position 2 (see Fig. B6). We return a substring of all the
positions for which we failed, i.e., “..”

Overlapping seas: The interesting question is, why does � b� fail in position 0? We already explained the problem with
overlapping seas in Section 3.3, and now we show the computation formally. First of all, we rewrite the sea on top of the
stack according to Definition 2. The new sequence on top of the stack fails because before-water returns ϵ and there is no b

at position 0 (see Fig. B7).
The before-water of � b� returns ϵ, because of the overlapping seas case. It analyzes the stack and notices the before-

water of � a� invoked on the position 0 (using the seasOverlap function) and returns ϵ (see Fig. B8).
If there is no case of overlapping seas in the grammar, the before-water of � b� consumes “‥a‥” contrary to the correct

parse ϵ (see Fig. B8). This means that the before-water of � a� (see Fig. B6) would be x0 ¼ ϵ. This would then fail the whole
� a� and consequently the whole � a� � b� .
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