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Abstract
Parser combinators are a popular approach to pars-
ing. Parser combinators follow the structure of an un-
derlying grammar, are modular, well-structured, easy
to maintain, and can recognize a large variety of lan-
guages including context-sensitive ones. However, their
universality and flexibility introduces a noticeable per-
formance overhead. Time-wise, parser combinators can-
not compete with parsers generated by well-performing
parser generators or optimized hand-written code.

Techniques exist to achieve a linear asymptotic per-
formance of parser combinators, yet there is still a sig-
nificant constant multiplier. This can be further lowered
using meta-programming techniques.

In this work we present a more traditional approach
to optimization — a compiler — applied to the do-
main of parser combinators. A parser combinator com-
piler (pc-compiler) analyzes a parser combinator, ap-
plies parser combinator-specific optimizations and, gen-
erates an equivalent high-performance top-down parser.
Such a compiler preserves the advantages of parser com-
binators while complementing them with better perfor-
mance.

1. Introduction
Parser combinators (Wadler 1995; Moors et al. 2008)
represent a popular approach to parsing. They are
straightforward to construct, readable, modular, well-
structured and easy to maintain. Parser combinators are
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also powerful in their expressiveness as they can parse
beyond context-free languages (e.g., layout-sensitive
languages (Hutton and Meijer 1996; Adams and Ağacan
2014)).

Nevertheless, parser combinators yet remain a tech-
nology for prototyping and not for the actual deploy-
ment. Firstly, naive implementations do not handle left-
recursive grammars, though there are already solutions
to this issue (Frost et al. 2007; Warth et al. 2008). Sec-
ondly, the expressive power of parser combinators comes
at a price of less efficiency. A parser combinator uses
the full power of a Turing-equivalent formalism to rec-
ognize even simple languages that could be recognized
by finite state machines or pushdown automata. That
is, parser combinators cannot reach the peak perfor-
mance of parser generators (Levine 2009), hand-written
parsers or optimized code (see section 5 or (Béguet and
Jonnalagedda 2014)§4).

Meta-programming approaches such as macros (Bur-
mako 2013) and staging (Rompf and Odersky 2010)
have been applied to Scala parser combinators (Moors
et al. 2008) with significant performance improve-
ments (Béguet and Jonnalagedda 2014; Jonnalagedda
et al. 2014). In general, these approaches remove compo-
sition overhead and intermediate representations. Many
other parser combinator implementations battle perfor-
mance problems by using efficient structures, macros
etc. (see Parboiled 2,1 attoparsec2 or FParsec3).

Nevertheless, none of the proposed optimizations yet
reach the performance of hand-written code. In our
work we focus on the performance of PetitParser (Reng-
gli et al. 2010; Kurš et al. 2013) — a parser combi-
nator framework utilizing packrat parsing (Ford 2002).
We present a parser combinator compiler (pc-compiler)
1 https://github.com/sirthias/parboiled2
2 http://www.serpentine.com/blog/2014/05/31/attoparsec/
3 http://www.quanttec.com/fparsec/

1 2016/7/8

scg.unibe.ch
swing.fit.cvut.cz
http://www.cs.rug.nl/search
https://github.com/sirthias/parboiled2
http://www.serpentine.com/blog/2014/05/31/attoparsec/
http://www.quanttec.com/fparsec/


that utilizes standard compiler techniques and applies
optimizations tailored to parser combinators. Based on
a compile-time analysis of a grammar, we avoid compo-
sition overhead, reduce object allocations, and optimize
choices to minimize the backtracking overhead when-
ever possible. The result of “compilation” is an opti-
mized top-down parser that provides performance as
fast as hand-written code. In particular, based on our
benchmarks covering five different grammars for Petit-
Parser,4 a pc-compiler offers a performance improve-
ment of a factor ranging from two to ten, depending on
the grammar. Based on our Smalltalk case study, our
approach is 20% slower compared to a highly-optimized,
hand-written parser.

The paper makes the following contributions: i) ap-
plication of compiler-technology approaches to the do-
main of parser combinators; ii) an identification of per-
formance bottlenecks for PetitParser; iii) a description
of optimization techniques addressing these bottlenecks;
and iv) an analysis of their effectiveness.

The paper is organized as follows: In section 2 we
introduce PetitParser, and in section 3 we describe its
performance bottlenecks. In section 4 we introduce a
pc-compiler — a framework to deal with problems de-
scribed in section 3. In section 5 we provide a detailed
performance analysis of a pc-compiler and its optimiza-
tions. In section 6 we describe other approaches to im-
prove parser combinators performance, and we briefly
discuss similarities and differences between them and
our approach. Finally, section 7 concludes this paper.

2. Petit Parser
In this section we introduce PetitParser and inspect in
detail its implementation. In the following section we
describe performance bottlenecks of this implementa-
tion.

PetitParser (Renggli et al. 2010; Kurš et al. 2013)
is a parser combinator framework (Hutton and Meijer
1996) that utilizes packrat parsing (Ford 2002), scanner-
less parsing (Visser 1997) and parsing expression gram-
mars (PEGs) (Ford 2004). PetitParser is implemented
in Pharo,5 Smalltalk/X,6 Java7 and Dart.8

PetitParser uses an internal DSL similar to a stan-
dard PEG syntax as briefly described in Table 1. A
grammar fragment describing a simple programming
language is shown in Listing 1.

A program in this grammar consists of a non-empty
sequence of classes. A class starts with classToken ,
followed by an idToken and body . The classToken

4 arithmetic expressions, Java, Smalltalk and Python
5 http://smalltalkhub.com/#!/˜Moose/PetitParser
6 https://bitbucket.org/janvrany/stx-goodies-petitparser
7 https://github.com/petitparser/java-petitparser
8 https://github.com/petitparser/dart-petitparser

Operator Description
′ ′ Literal string
[ ] Character class
[ ] negate Complement of a character class
#letter Characters [a-zA-Z]
#digit Characters [0-9]
#space Characters [\t\n ]
e? Optional
e∗ Zero or more
e+ One or more
&e And-predicate
!e Not-predicate
e1 e2 Sequence
e1/e2 Prioritized Choice
e map: action Semantic Action
e token Build a token

Table 1. PetitParser operators

rule is a "class " keyword followed by a space. Identi-
fiers start with a letter followed by any number of letters
or digits. Class keyword and identifiers are transformed
into instances of Token , which keep information about
start and end positions and the string value of a token.
There is a semantic action associated to a class rule
that creates an instance of ClassNode filled with an
identifier value and a class body.

A class body is indentation-sensitive, i.e., indent
and dedent determine the scope of a class (instead of
commonly used brackets e.g., { and } ). The indent

and dedent rules determine whether a line is indented,
i.e., on a column strictly greater than the previous line
or dedented, i.e., column strictly smaller than the pre-
vious line. The indent and dednet rules are repre-
sented by specialized action parsers that manipulate an
indentation stack by pushing and popping the current
indentation level, similarly to the scanner of Python.9
The class body contains a sequence of classes and meth-
ods.

2.1 Deep into PetitParser
Figure 1 shows a composition of parser combinators
that are created after evaluating the code in Listing 1.
This composition is created “ahead-of-time” before a
parse attempt takes place and can be reused for multiple
parse attempts.

The root program rule is translated into a Plus
parser referencing the class combinator. The class
rule is an Action parser — a parser that evaluates
a block — specified by a map: parameter, the argu-

9 https://docs.python.org/3/reference/lexical_naalysis.
html#indentation
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letterOrDigit← #letter / #digit
identifier ← (#letter letterOrDigit*)
idToken ← identifier token
classToken ← (’class’ &#space) token

class ← classToken idToken body
map: [:classToken :idToken :body |

ClassNode new
name: idToken value;
body: body]

body ← indent
(class / method)*

dedent
program ← class+

Listing 1. Simple grammar in PetitParser DSL.

ments being collected from the result of an underlying
Sequence parser.

The idToken and classToken rules are Token
parsers, which consume whitespace and create token in-
stances. The ’class’ rule is a Literal parser, which
is a leaf combinator and does not refer to any other com-
binators. The classToken rule contains a sequence of
Literal and AndPredicate combinators (omitted in

the Figure 1). The identifier rule is a sequence of
CharClass and Star parsers. The Choice parser
letterOrDigit shares the CharClass parser with its
identifier grand-parent.

The body rule is a sequence of Indent , Star
and Dedent combinators. The class combinator
is shared by program and body . The structure of
method has been omitted.

All the parser combinators share the same inter-
face, parseOn: context . The context parameter
provides access to the input stream and to other
information (e.g., indentation stack). The result of
parseOn: context is either Failure or any other

output. PetitParser combinators can be easily imple-
mented by following the parseOn: context contract.

In the remainder of this section we discuss how Petit-
Parser handles context-sensitive grammars, how are the
parsers invoked, how the backtracking works and how
PetitParser handles lexical elements as these are impor-
tant for the subsequent performance analysis.

Parsing Contexts Parser combinator frameworks
are very flexible, allowing for modifications of a parser
combinator graph itself. This gives them the expressive-
ness of context-free formalisms. Context-sensitivity fa-
cilitates grammar adaptability (Reis et al. 2012; Chris-
tiansen 2009) or adaptation of other of contextual in-

  
map:

Plus
program

   

Token
classToken

Token
idToken

Sequence
body

Action
class

Sequence
identifier

Sequence

ClassNode new
  id: idToken value
  body: body 

CharClass
#letter

Choice
letterOrDigit

CharClass
#digit

Star

… Indent
indent

Star Dedent
dedent

Choice

Action
method

…

Figure 1. The structure of parser combinators created
after evaluating the code of Listing 1.

formation — parsing contexts (Kurš et al. 2014) in the
case of PetitParser.
Parser Invocation When a root parser is asked to
perform a parse attempt on an input, (i) context is
created; (ii) parseOn: context is called on the root
parser; and (iii) the result of this call is returned. During
an invocation, parser combinators delegate their work
to the underlying combinators.

As an example, consider an Action parser imple-
mentation in Listing 2. The underlying parser is invoked
and its result is forwarded to the block. In case the un-
derlying parser fails a failure is returned immediately.
Backtracking and Memoization PetitParser uti-
lizes backtracking. Thanks to the backtracking capabil-
ities, a top-down combinator-based parser is not limited
to LL(k) grammars (Aho and Ullman 1972) and handles
unlimited lookahead.

In PetitParser, before a possible backtracking point,
the current context is remembered in a Memento in-
stance. In case a decision turns out to be a wrong one,
the context is restored from the memento. The same
memento is used when memoizing the result of a parse
attempt (to allow for packrat parsing). A dedicated
Memoizing parser combinator creates a memento, per-
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forms the parse attempt and stores the memento-result
pair into a buffer. Later, if the memoizing parser is in-
voked again and a memento is found in the buffer, the
result is returned directly.

Creating a memento of a context-free parser is easy;
it is the current position in the input stream. However,
for context-sensitive parsers, a memento is a deep copy
of the whole context (Kurš et al. 2014), e.g., for layout-
sensitive grammars it is a position in the input stream
and a copy of the indentation stack (see Listing 10).

To see how PetitParser backtracks, consider the
Sequence parser implementation in Listing 7. A se-

quence must iterate over all its children, collect their
results and return a collection of the results. In case of
a failure, the context is restored to the original state
and a failure is returned.

Note that a parser returning a failure from parseOn:
is responsible for restoring the context to its initial
state, i.e., as it was on the parseOn: invocation.

In PetitParser, the memoizing parser provides an
ad hoc solution to detect the infinite recursive descent
caused by left-recursion. The Memoizing parser mon-
itors a number of mementos stored for a given parser
and position and fails if a threshold is exceeded.

Trimming and Tokenization Because PetitParser
is scannerless (Visser 1997), a dedicated TokenParser
is at hand to deal with whitespaces. It trims the whites-
paces (or comments if specified) from input before and
after a parse attempt. As a result a Token instance is
returned holding the parsed string and its start and end
positions (see Listing 9).

3. Performance Bottlenecks
In this section, we identify the most critical performance
bottlenecks in PetitParser and explain them using the
example from Listing 1.

3.1 Composition overhead
Composition overhead is caused by calling complex
objects (parsers) even for simple operations.

For example, consider the grammar shown in List-
ing 1 and letterOrDigit* in identifier . This can
be implemented as a simple loop, but in reality many
methods are called. For each character, the following
parsers are invoked: A Star parser (see Listing 8
in Appendix A), a Choice parser (see Listing 5 in Ap-
pendix A) and two CharClass parsers (see Listing 4
in Appendix A). Each of these parsers contains at least
five lines of code, averaging twenty lines of code per
character.

The same situation can be observed when pars-
ing &#space . AndPredicate (see Listing 3) and
CharClass (see Listing 4) are invoked during pars-

ing. The and predicate creates a memento and the char
operator moves in the stream just to be moved back by
the and predicate in the next step. Ideally, the result
can be determined with a single comparison of a stream
peek.

3.2 Superfluous intermediate objects
Superfluous intermediate objects are allocated when an
intermediate object is created but not used.

For example, consider an input "IWST " parsed by
idToken . The return value of idToken is a Token

object containing "IWST " as a value and 1 and 5
as start and end positions. Yet before a Token is cre-
ated, a Star parser (see Listing 8) and a Sequence
parser (see Listing 7) create intermediate collections re-
sulting in (I,(W,S,T)) nested arrays that are later
flattened into "IWST " in TokenParser (see List-
ing 9) again. Furthermore Sequence creates a me-
mento that is never used because the second part of the
identifier sequence (i.e., letterOrDigit* ) never

fails.10

Another example is the action block in the class .
The classToken creates an instance of Token . Yet
the token is never used and its instantiation is in-
teresting only for a garbage collector. Moreover, the
Sequence parser wraps the results into a collection

and the Action parser unwraps the elements from the
collection in the very next step in order to pass them
to the action block as arguments (see Listing 2).

3.3 Backtracking Overhead
Backtracking overhead arises when a parser enters a
choice option that is predestined (based on the next k
tokens) to fail. Before the failure, intermediate struc-
tures, mementos and failures are created and the time
is wasted.

Consider an input "123" and the idToken rule,
which starts only with a letter. Before a failure, the
following parsers are invoked: TokenParser (see List-
ing 9), Sequence (see Listing 7), CharClass (see List-
ing 4). Furthermore, as TokenParser tries to consume
a whitespace (e.g., using #space* ), another Star
(see Listing 8) and CharClass (see Listing 4) are
invoked. During the process, two mementos are cre-
ated. These mementos are used to restore a context
even though nothing has changed, because parsing has
failed on the very first character. Last but not least, a
Failure instance is created.

10 Zero repetitions are allowed, which means that empty strings
are also valid.
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As a different example, consider letterOrDigit or
the more complex choice variant class / method that
can be (for clarity reasons) expanded to:

((’class’ token) idToken body) /
((’method’ token) idToken body)

The choice always invokes the first option and un-
derlying combinators before the second option. In some
cases, e.g., for input "method bark ... " , based on
the first character of the input, it is valid to invoke the
second option without entering the first one. In other
cases, e.g., for input "package Animals ... " , it is
valid to fail the whole choice without invoking any of
the parsers.

Yet the choice parser invokes both options creating
superfluous intermediate collections, mementos and fail-
ures before it actually fails.

3.4 Context-Sensitivity Overhead
In case of PetitParser, the most of the context-sensitivity
overhead is produced in case a context contains com-
plex objects (e.g., an indentation stack). When memo-
izing a parser combinator deep-copies the whole context
(see Listing 10). The copy is needed in remember as
well as in restore: . If we restore a stack from a me-
mento without the copy and the stack is modified, the
memento is modified as well. If the memento is accessed
in the future for another restore operation, we will need
the unmodified version.

This is a valid approach in some cases, e.g., the body
sequence where indent modifies the stack (see List-
ing 6): if any subsequent rule in body fails, the origi-
nal stack has to be restored. In some other cases, e.g.,
the identifier sequence where none of the underly-
ing combinators modify the indentation stack, the deep
copy of the context is superfluous.

4. A Parser Combinator Compiler
The goal of a pc-compiler is to provide a high-performance
parser from a parser combinator while preserving the
advantages of parser combinators.

Figure 2 shows the workflow of parser development
with the approach we present here. First, flexibility and
comprehensibility of combinators is utilized (prototype
phase). Then, a pc-compiler applies domain-specific op-
timizations, builds a top-down parser (compile phase)
and allows an expert to further modify at her will11 to
further improve the performance (hand-tune phase). In
the end, the resulting parser can be deployed as an ordi-
nary class and used for parsing with peak performance
(deployment phase).

11 A pc-compiler recognizes a hand-tuned code and does not
override it unless explicitly stated.

   Compile
 Hand-
tune

    Prototype

Comprehension 
& Flexibility

Expert’s 
Insight

 Optimizations

  Deploy

Performance

Figure 2. Workflow of parser development.

Similar to standard compilers, a pc-compiler trans-
forms from one code to another while performing vari-
ous optimizations on an intermediate representation re-
sulting in more efficient code. However, a pc-compiler
compiles into host code (i.e., the language in which the
parsing framework is implemented), whereas a standard
compiler compiles into machine code.

In the following, we describe the intermediate repre-
sentation of a pc-compiler, and what optimizations do
we perform.

4.1 Intermediate Representation
In general, parser combinators form a graph with cycles.
A pc-compiler uses the very same graph as its interme-
diate representation. The optimizations themselves are
implemented as a series of passes over the graph, each
performing a transformation using pattern matching.
Particular nodes are moved, replaced with more appro-
priate alternatives, or changed and extended with ad-
ditional information. In the final phase, these nodes are
visited by a code generator to produce the optimized
host code.

Contrary to other representations used for perfor-
mance optimizations (e.g., AST,12 Bytecode,13 SSA14

or LLVM IR15) our intermediate representation is high-
level, directly represent the target domain and therefore
allows for different kinds of optimizations. In partic-
ular, the intermediate representation of a pc-compiler
has the following advantages: First of all, parser com-
binators allow us to analyze directly the properties of a
grammar, e.g., to check if a choice is deterministic, or
to determine the set of expected characters.

Second of all, any unknown parser combinator can
be used as is, serving as an intermediate representation
node. A parser combinator allows the referencing parser
combinators to be replaced with an available compiled

12 https://en.wikipedia.org/wiki/Abstract_syntax_tree
13 https://en.wikipedia.org/wiki/Bytecode
14 https://en.wikipedia.org/wiki/Static_single_
assignment_form
15 https://en.wikipedia.org/wiki/LLVM#LLVM_intermediate_
representation
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version which gives the pc-compiler itself great flexibil-
ity.

Third of all, an intermediate representation is exe-
cutable, i.e., at any point it can be used as a parser. If,
for some reason, the compilation to host code fails, the
intermediate representation can be used instead. This
simplifies the development of new optimizations, helps
with testing and allows pc-compiler to optimize even
grammars with custom or third-party extensions.

4.2 Optimizations
In this section we describe pc-compiler optimizations
applied to the performance problems of PetitParser
(section 3). These optimizations are mostly orthogonal,
i.e., they do not depend on each other and can be
implemented without mutual dependencies.

We use the following syntax for rewriting rules. The
specific class of combinators is in angle brackets <> ,
e.g., all the character class combinators are marked
as <CharClass> . Any parser combinator is <Any> .
A parser combinator that is a child of a parent P is
marked P→∗<Any> .

A parser combinator with a property is marked
with : and the property name, e.g., <Any:nullable> .
Adding a property to a parser combinator is marked
with + sign and the property name, for example
<Any+nullable> adds a nullable property.

Delegating parsers embed the parser to which they
delegate in angle brackets, e.g., <Sequence<Any><Any>>
represents a sequence of two arbitrary combinators.
An alternative syntax for sequences and choices and
other delegating operators is to re-use the PEG syntax,
e.g., <Any> <Any> is also a sequence of two arbitrary
combinators. The rewrite operation is ⇒. Merging a
choice of two character classes into a single one is writ-
ten as:

<CharClass> / <CharClass> ⇒ <CharClass>

4.2.1 Specializations
Specializations reduce composition overhead by replac-
ing a hierarchy of combinators by a single specialized
combinator with the corresponding semantics. This spe-
cialized combinator can be implemented more efficiently
and thus improves the performance.

Returning to the problem with letterOrDigit*
in subsection 3.1, the whole rule is specialized as an
instance of the <CharClassStar> combinator. The
#digit / #letter rule is specialized using a sin-

gle CharClass combinator [a-zA-Z0-9] , and a rep-
etition of the character class is replaced by a special-
ized CharClassStar combinator, which can be imple-
mented as a while loop. The letterOrDigit* rule is
rewritten to the following:

letterOrDigit* ← <CharClassStar[a-zA-Z0-9]>

In the final phase, the code generator produces the
following code, which contains only three lines of code
per consumed character:

| retval |
retval ← OrderedCollection new.
[context peek isLetter or:
[context peek isDigit]] whileTrue: [

retval add: context next.
].
↑ retval

Returning to the problem with &#space in sub-
section 3.1, the whole rule is specialized as a single
AndCharClass combinator. The classToken rule is

rewritten as follows:

classToken ← ’class’ <AndCharClass[\t\n ]

In the final phase, the code generator produces for
AndCharClass the following code, which does not cre-

ate any mementos and does not invoke any extra meth-
ods:

↑ context peek isSpace ifFalse: [
Failure message: ’space expected’.

]

We implement several similar specializations, includ-
ing the following:
• A new <CharClass> is created from a choice of char

classes:

<CharClass> / <CharClass> ⇒ <CharClass>

• A new CharClass is created from the negation of
a char class, e.g., [a-z] negate :

<CharClass> negate ⇒ <CharClass>

• CharClassStar is created from a star repetition of
a char class (as we show in the example):

<CharClass>* ⇒ <CharClassStar>

• CharClassPlus is created from a plus repetition of
a char class:

<CharClass>+ ⇒ <CharClassPlus>

• AndCharClass (or NotCharClass ) is created from
char class predicates:

&<CharClass> ⇒ <AndCharClass>
!<CharClass> ⇒ <NotCharClass>

6 2016/7/8



• AndLiteral (or NotLiteral ) is created from lit-
eral predicates:

&<Literal> ⇒ <AndLiteral>
!<Literal> ⇒ <NotLiteral>

• TokenCharClass is created from a single-character
token:

<CharClass> token ⇒ <TokenCharClass>

4.2.2 Data Flow
Data-Flow analyses target the problem of superfluous
object allocations. This improves performance since ob-
ject initialization methods do not need to be run and
because it improves the efficiency of a typical Smalltalk
garbage collector (Wilson 1992).

We perform data-flow analysis in three different do-
mains: (i) in tokens to improve the performance of lex-
ical analysis; (ii) in sequences to avoid superfluous me-
mentos that are never used; and (iii) in action blocks
that are inlined and consequently analyzed for super-
fluous object allocations.

Token Combinators Combinators forming a Token
parser are marked to avoid generating intermediate rep-
resentations — recognizers, because they only return
whether a string is in their language or not.

<Token>→∗<Any> ⇒ <Token>→∗<Any+recognizer>

As an example, the CharClassStar parser special-
ized from letterOrDigit* inside the idToken is
marked to avoid generating an intermediate represen-
tation:

letterOrDigit* ←
<CharClassStar[a-zA-Z0-9]:recognizer>

This results in the following code being generated:

letterOrDigitStar
[context peek isLetter or:
[context peek isDigit]] whileTrue: [

context next.
].

Sequences Sequence combinators are inspected to
determine whether a memento is necessary or not.

Following PEG semantics, if the first parser of a
sequence fails, it restores the context to the initial state
of the sequence and therefore the sequence can return
the failure directly. If the first parser succeeds and the
second parser of the sequence fails, the context is now
that after the invocation of the first parser. Therefore,
the sequence has to restore the context to the state
as it was before the invocation of the first parser and

return the failure. Consider the code generated from
identifier :

identifier
| memento result1 result2 |
memento ← context remember.
result1 ← self letter.
result1 isFailure ifTrue: [

"no restore, letter did it"
↑ result1.

]
result2 ← self letterOrDigitStar.
result2 isFailure ifTrue: [

"but restore here"
context restore: memento.
↑ result2

]
↑ Array with: result1 with: result2

A nullable combinator accepts an empty string ε and
thus cannot fail (Backhouse 1979; Fabio Mascarenhas
2013). If a sequence is formed of combinators where
all but first are nullable, the sequence is marked to not
create a memento, because such a memento would never
be used.

<Sequence<Any><Any:nullable>> ⇒
<Sequence<Any><Any>+nobacktack>

<Sequence<Any:nullable><Any:nullable>> ⇒
<Sequence<Any><Any>+nobacktack>

For example, the identifier sequence is marked
to avoid a memento. It is also marked to avoid an
intermediate representation, because it is inside a token:

letterOrDigit* ←
CharClassStar[a-zA-Z0-9]:recognizer,nullable>

identifier ←
<Sequence <#letter>
<letterOrDigit*>:nobacktrack,recognizer>

This results in the following code being generated:

identifier
| result1 |
result1 ← self letter.
result1 isFailure ifTrue: [ ↑ result ].
self letterOrDigitStar.

Actions PetitParser actions introduce a level of in-
direction that is difficult to optimize because an action
can be an arbitrary user code. Consider the rule class
from Listing 1. Without specialized optimizations the
generated code looks like this (error handling has been
omitted for clarity):

class
| collection |

collection ← OrderedCollection new.
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collection at: 1 put: self classToken.
collection at: 2 put: self idToken.
collection at: 3 put: self body.

↑ block valueWithArguments: collection

Clearly the collection is used only to pass ar-
guments to the action block via the reflective API
( valueWithArguments: ). Both the allocation and the
block invocation impose a performance overhead.

To reduce this overhead, the parser compiler (i) in-
lines the action, and (ii) replaces collection by local
variables. After these optimizations the generated code
for class rule looks like this:

class
| idToken body |
self classToken.
idToken ← self idToken.
body ← self body.
↑ ClassNode new

name: idToken value;
body: body

This way the superfluous allocation and block in-
vocation are avoided. Furthermore, such code can be
further optimized by the underlying just-in-time com-
piler (Hölzle 1994).

4.2.3 Guards
Guards prevent unnecessary invocations and allocations
caused by backtracking. Guards allow for an early failure
of a parse attempt using the peek character of an input
stream retrieved from a precomputed first-set.

During a dedicated optimization phase, character-
based first sets (Redziejowski 2009; Grune and Jacobs
2008b) are computed.16 The nodes with a reasonably
small first set (e.g., digits only) are marked to be suit-
able for a guard ( +guard ). A guard is a combinator
that prepends an underlying combinator with a code
that fails immediately, without entering the underlying
combinator.

Sequences Sequences with a guard property are
wrapped with a SeqGuard combinator:

<Sequence:guard> ⇒ <SeqGuard<Sequence>>

For example, identifier is prepended with the
following code, which prevents extra invocations:

identifier ←
<SeqGuard <Sequence <#letter>
<letterOrDigit*>:nobacktrack,recognizer,guard>>

This results in the following code being generated:
16 Because PetitParser is scannerless, the characters represent
tokens.

context peek isLetter ifFalse: [
↑ Failure message: ’letter expected’ ]

self letter.
self letterOrDigitStar.

Choices A variant of guards is used to guide Choice
combinators. A choice option is entered only if the
stream peek is in the first set of the given option.
Any choice option marked for guarding <Any:guard>
is wrapped with OptionGuard . Some options do not
need to be guarded:
<Any:guard> / <Any:guard> ⇒

<OptionGuard<Any>> / <OptionGuard<Any>>
<Any:guard> / <Any> ⇒ <OptionGuard<Any>> / <Any>
<Any> / <Any:guard> ⇒ <Any> / <OptionGuard<Any>>

For example the class / method choice is wrapped
with OptionGuard like this:
body ← indent

(<OptionGuard<class:guard>>/
<OptionGuard<method:guard>>)*

dedent

This results in the following code being generated
from the class / method choice:
(context peek == $c) ifTrue: [ self class ].
(context peek == $m) ifTrue: [ self method ].

4.2.4 Context-Sensitive Memoization
Context-sensitive memoization reduces the overhead of
context-sensitive grammars. The deep copy of a con-
text is performed only if necessary, i.e., for the context-
sensitive parts of a grammar. The context-free expres-
sions use only a position in a stream as a memento.

By default, combinators are marked as context-
free ( +contextFree ). The context can be changed
only in Action parsers, therefore the action blocks
of Action are analyzed to search for mutating oper-
ations. If they mutate the context, they are marked
as context-sensitive ( +contextSensitive ). The ded-
icated indentation combinators Indent and Dedent
are also marked as context sensitive. Finally, all the
combinators delegating to the context-sensitive combi-
nators are marked as context-sensitive:
<Any>→∗<Any:contextSensitive> ⇒

<Any+contextSensitive>→∗<Any:contextSensitive>

The memoization strategy of context-free parser
combinators is changed to use only a position in a
stream as a memento.

As an example, the sequence ’class’ &#space in-
side classToken is marked as context-free and the po-
sition is used instead of a full memento.
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class ← <Sequence
<classToken> <id> <body>:contextSensitive>

classToken ← <Sequence
<’class’> <AndCharClass[\t\n ]>:contextFree>

Therefore classToken can be optimized using only
position as a memento:
classToken

| memento result predicate |
memento ← context position.
result ← self classLiteral.
result isPetitFailure ifTrue: [

↑ result.
]
predicate ← self andSpace.
predicate isPetitFailure ifTrue: [

context position: memento.
↑ predicate

]
↑ Array with: result with: predicate

5. Performance analysis
In this section we report on performance of compiled
parsers compared to the performance of plain Petit-
Parser.17 We also report on the impact of a particular
optimization on the overall performance. Lastly, we pro-
vide a detailed case-study of Pharo’s native Smalltalk
parser.

5.1 PetitParser Compiler
PetitParser Compiler is an implementation of a pc-
compiler for PetitParser. The PetitParser Compiler ap-
plies the pc-compiler techniques and outputs a class
that can serve as a top-down parser equivalent to the
input combinator.

PetitParser Compiler is available online18 for Pharo
and Smalltalk/X. It is being used in real environments,
for example a language for Live Robot Programming19

and the Pillar markup language.20

Validation. The PetitParser pc-compiler is covered
by more than two thousand unit tests. Furthermore,
we validated the pc-compiler by taking several existing
PetitParser combinators and comparing their results
with results produced by the compiled variant of a
particular parser. In particular, we validated results of:
• Java parser21 on OpenJDK 6 source code,22

17 The pre-prepared image with sources and benchmarks
can be downloaded from http://scg.unibe.ch/research/
petitcompiler/iwst2016.
18 http://scg.unibe.ch/research/petitcompiler
19 http://pleiad.cl/research/software/lrp
20 http://smalltalkhub.com/#!/˜Pier/Pillar
21 http://smalltalkhub.com/#!/Moose/PetitJava/
22 http://download.java.net/openjdk/jdk6

• Smalltalk parser23 on Pharo source code,24

• Ruby and Python semi-parsers25 on several github
projects: Cucumber, Diaspora, Discourse, Rails, Va-
grant, Django, Reddit and Tornado.

The validation corpus with all the validation test-cases
is available online.26

5.2 Benchmarks
We measure performance on the following benchmarks:

1. Identifiers is a microbenchmark measuring the per-
formance of a simple parser. The input consists of
a list of identifiers. The parser contains one single
grammar rule — a repetition of an identifier tokens.

2. Arithmetics is a benchmark measuring perfor-
mance while parsing arithmetic expressions. The in-
put consists of expressions with operators ( , ) ,
* , + and integer numbers. The brackets must

be balanced. The operator priorities are considered.
Backtracking is heavily used as the grammar is not
refactored to be LL(1). The parser contains eight
rules.

3. Smalltalk is a benchmark measuring performance
of a Smalltalk parser. The input consists of a source
code from a Pharo 5 image.27 The parser contains
approximately eighty rules.

4. Java is a benchmark measuring the performance of
a Java parser. The input consists of standard JDK
library files. The parser contains approximately two
hundred rules.

5. Python is a benchmark measuring the performance
of an indentation-sensitive semi-parser. The input
consists of several github Python projects.28 The
parser contains approximately forty rules. The parser
utilizes islands (Moonen 2001) — it is not a full
Python parser, but extracts structural elements and
skips the rest.

The presented benchmarks cover a variety of gram-
mars from small ones to complex ones, ranging in
size from one grammar rule to two hundred. They
cover grammars with possibly unlimited lookahead
(arithmetic expressions) and almost LL(1) grammars
(Smalltalk).29 They also cover standard grammars

23 http://smalltalkhub.com/#!/˜Moose/PetitParser
24 http://files.pharo.org/get-files/50/sources.zip
25 http://smalltalkhub.com/#!/˜JanKurs/PetitParser
26 http://scg.unibe.ch/research/petitcompiler/iwst2016
27 http://files.pharo.org/get-files/50/sources.zip
28 Cucumber, Diaspora, Discourse, Rails, Vagrant, Django, Red-
dit and Tornado.
29 The implementors did not bother to make it LL(1) as parser
combinators allow for unlimited lookahead.
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(Java, Smalltalk), island grammars, context-free gram-
mars (Identifier, Java, Smalltalk), and context-sensitive
ones (Python).

How we measured. We ran each benchmark ten times
using the latest release of the Pharo VM for Linux. We
measured only parse time, all parsers and inputs being
initialized in advance. We computed mean and standard
deviation of the results.

We report on the speedup (ration between original
PetitParser and compiled version) and average time
per character. The speedup and time per character
are represented by boxes. The standard deviation is
visualized using error bars.

Results. The speedup of a compiled version compared
to an original version is shown in Figure 3. We also
visualize the average time per character for each of the
grammars in Figure 4.
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Figure 3. The speedup of compilation for different
grammars.
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Figure 4. The time per character for compiled and
non-compiled versions of the measured grammars.

The speedup in Identifiers is caused by the fact that
we avoid unused collection allocations when parsing the
identifier token. The speedup of Arithmetics is only a
factor of two. We attribute such a mediocre result to the

fact that Arithmetics performs a lot of backtracking and
the simplicity of the grammar does not allow for many
optimizations.

The trend for Arithmetics, Smalltalk and Java gram-
mars shows that the more complex the grammar is,
the more speedup is gained. The Python grammar is
not very complicated, yet it is very slow (see time per
character in Figure 4). This is caused by the overhead
of copying an indentation stack, which our pc-compiler
mostly removes.

5.3 Performance Details
The speedup with a particular optimization turned off
is shown in Figure 5. We also visualize the average time
per character in Figure 6. The graphs show how much
a particular optimization contributes to the overall per-
formance of the grammars.
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Figure 5. The speedup of compilation for different
grammars with a specific optimization turned off.
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Figure 6. The time per character for compiled and
non-compiled versions of the measured grammars with
specific optimization turned off.

Different optimizations have different effects on the
benchmarked grammars. The Identifiers grammar is op-
timized mostly by specializations and data-flow opti-
mizations.
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Interestingly, the Arithmetics grammar performs
even better when guards are turned off. This can be
explained by the fact that tokens in the Arithmetic
grammar are very short and the guards may do redun-
dant work, so their early reporting on failures does not
outweigh this overhead.

The Smalltalk grammar is slightly improved by each
of the optimizations. The major impact for the Java
grammar is caused by the context analysis which sug-
gests that the Java grammar creates a lot of mementos.
The fact that specializations have no impact on the Java
grammar indicates that the tokens in Java are complex
and not sufficiently optimized in the current implemen-
tation.

The Python grammar is optimized only by the con-
text analysis. Probably, other optimizations are not
suitable for a semi-parsing nature of a grammar.

5.4 Smalltalk Case Study
In this case study we compare performance of a Smalltalk
parser implemented in PetitParser (plain and compiled
versions) and that of a hand-written Smalltalk parser
used natively in Pharo. All of the parsers create an
identical abstract syntax tree from the given Smalltalk
code.

1. PetitParser is an implementation of a Smalltalk
parser in PetitParser.

2. PetitParser Compiled is a compiled version of the
above parser.

3. Hand-written parser is a parser used natively by
Pharo. It is a hand-written and optimized parser
and contrary to the previous parsers, it utilizes a
scanner. This parser can serve as a baseline. It is
probably close to the optimal performance of a hand-
written parser as it is heavily used throughout the
system and has therefore been extensively optimized
by Pharo developers.

4. SmaCC is a scanning and table-driven parser com-
piled by a SmaCC tool (Brant and Roberts) from a
LALR(1) Smalltalk grammar.

The speedup comparison is shown in Figure 7. Aver-
age time per character for each of the parsers is shown
in Figure 8.

The native parser is approximately five times faster
than its PetitParser counterpart. The compiled version
is approximately four times faster. The SmaCC parser
is approximately two times faster. The native parser’s
time per character is 0.27µs, the compiled parser’s time
is 0.33µs, the SmaCC parser time is 0.59µs, while Pe-
titParser’s time is 1.33µs. The compiled version is ap-
proximately 20% slower than the hand-written parser
and two times faster than the SmaCC parser.
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Figure 7. Performance speedup of Smalltalk parsers
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Figure 8. Time per character of Smalltalk parsers

6. Discussion and Related Work
In this section we discuss limitation of a pc-compiler
and other approaches focusing on high-performance
parsers.

6.1 Limitations
Even though the pc-compiler is designed with flexibil-
ity in mind, there are some limitations. The pc-compiler
does not compile non-functional methods, i.e., parsers
that invokes methods referencing instance variables.
The pc-compiler also cannot handle grammar adapta-
tions, i.e., situations, when the parser graph changes
on-the-fly. Last but not least, the support for hand-
tuning is in the current implementation limited and still
experimental.

6.2 Related Work
There has been recent research in Scala parser combi-
nators (Odersky 2007; Moors et al. 2008) that is closely
related to our work. The general idea is to perform
compile-time optimizations to avoid unnecessary over-
head of parser combinators at run-time. In the work
Accelerating Parser Combinators with Macros (Béguet
and Jonnalagedda 2014) the authors argue to use
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macros (Burmako 2013) to remove the composition
overhead. In Staged Parser Combinators for Efficient
Data Processing (Jonnalagedda et al. 2014) the authors
use a multi-stage programming (Taha 2003) framework
LMS (Rompf and Odersky 2010) to eliminate interme-
diate data structures and computations associated with
a parser composition. Both works lead to a significant
speedup at least for the analyzed parsers: an HTTP
header parser and a JSON parser.

Similarly to our approach, ahead-of-time optimiza-
tions are applied to improve the performance. In con-
trast, our work does not utilize meta-programming to
manipulate compiler expression trees in order to op-
timize parser combinators. Instead we implemented a
dedicated tool from scratch. In our work, we consider
several types of optimizations guided by a need to pro-
duce fast and clean top-down parsers.

Other approaches leading to better combinator per-
formance are memoization (Frost and Szydlowski 1996)
and Packrat Parsing (Ford 2002) (already utilized by
PetitParser). In Efficient combinator parsers (Koop-
man and Plasmeijer 1998) Koopman et al. use the
continuation-passing style to avoid intermediate list cre-
ation.

There are table-driven or top-down parser genera-
tors such as YACC (Johnson 1975), SmaCC (Brant
and Roberts), Bison (Levine 2009), ANTLR (Parr
and Quong 1995) or Happy (Happy) that provide
very good performance but they do not easily support
context-sensitivity. The table-driven approaches can-
not compete with the peak performance of top-down
parsers (Pennello 1986).

Our work is also related to compilers supporting cus-
tom DSLs and providing interfaces for optimizations,
e.g., Truffle (Humer et al. 2014). Yet our approach is
focused on concrete optimization techniques for parser
combinators and we do not aspire for general DSL sup-
port.

7. Conclusion
In this work we present a pc-compiler, an ahead-of-
time optimizer for PetitParser. The pc-compiler per-
formance speedup ranges from a factor of two to ten
while preserving the advantages and flexibility of Pe-
titParser. Based on our Smalltalk case study, the pc-
compiler provides two times better performance than a
table-driven parser compiled by SmaCC, and approx-
imately 20% worse performance than a hand-written
optimized parser.

Even though the results of our PetitParser pc-
compiler are satisfying, there is a lot of room for im-
provements. The Arithmetics grammar was not com-
piled into an optimal one and the Smalltalk grammar
is still two times slower than the hand-written parser.

ActionParser>>parseOn: context
| result |
"evaluate the underlying combinator"
result ← child parseOn: context.
"return if failure"
result isFailure ifTrue: [ ↑ result ]

"evaluate block with result as an argument"
↑ block withArguments: result

Listing 2. Implementation of ActionParser .

AndPredicateParser>>parseOn: context
| memento |
memento ← context remember.
result ← parser parseOn: context.
context restore: memento.
↑ result isPetitFailure ifTrue: [

↑ result
] ifFalse: [

↑ nil
]

Listing 3. Implementation of AndPredicate .

The Java and Python grammars were not sufficiently
optimized by specializations as well. We would like to
focus on these shortcomings and improve them.

We would like to apply some grammar rewriting rules
(e.g., to refactor choices to be LL(1)), add more ad-
vanced specializations, improve the support for semi-
parsers, add smarter guards that do not perform re-
dundant operations and improve the support for user
optimizations. Last but not least, we would like to
experiment with just-in-time optimizations.
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A. Implementation of Combinators
In this section we provide an implementation of all the
combinators mentioned in this work to help the reader
better understand the overhead of a combinator library.
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