
Efficient Parsing with Parser CombinatorsI

Jan Kurša,∗, Jan Vranýb, Mohammad Ghafaria, Mircea Lunguc, Oscar
Nierstrasza

aSoftware Composition Group, University of Bern, Switzerland, scg.unibe.ch
bSoftware Engineering Group, Czech Technical University, Czech Republic,

swing.fit.cvut.cz
cSoftware Engineering and Architecture Group, University of Groningen, Netherlands,

http://www.cs.rug.nl/search

Abstract

Parser combinators offer a universal and flexible approach to parsing. They
follow the structure of an underlying grammar, are modular, well-structured,
easy to maintain, and can recognize a large variety of languages including
context-sensitive ones. However, these advantages introduce a noticeable per-
formance overhead mainly because the same powerful parsing algorithm is used
to recognize even simple languages. Time-wise, parser combinators cannot com-
pete with parsers generated by well-performing parser generators or optimized
hand-written code.

Techniques exist to achieve a linear asymptotic performance of parser combi-
nators, yet there is a significant constant multiplier. The multiplier can be low-
ered to some degree, but this requires advanced meta-programming techniques,
such as staging or macros, that depend heavily on the underlying language
technology.

In this work we present a language-agnostic solution. We optimize the per-
formance of parsing combinators with specializations of parsing strategies. For
each combinator, we analyze the language parsed by the combinator and choose
the most efficient parsing strategy. By adapting a parsing strategy for different
parser combinators we achieve performance comparable to that of hand-written
or optimized parsers while preserving the advantages of parsers combinators.

Keywords: optimizations, parsing expression grammars, parser combinators

1. Introduction

A parser combinator is a higher-order function that takes one or more parsers
as input and produces a new parser as its output. Parser combinators [53, 39]

IFinal published version: https://doi.org/10.1016/j.scico.2017.12.001.
∗Corresponding author
Email address: kurs@inf.unibe.ch (Jan Kurš)

Preprint submitted to Science of Computer Programming October 30, 2017

scg.unibe.ch
swing.fit.cvut.cz
http://www.cs.rug.nl/search
https://doi.org/10.1016/j.scico.2017.12.001

represent a popular approach to parsing. They are straightforward to construct,
readable, modular, well-structured and easy to maintain. Parser combinators5

are also highly expressive as they can parse not only context-free languages but
also some context-sensitive ones (e.g., layout-sensitive languages [24, 2]).

Nevertheless, parser combinators at the moment are considered more a tech-
nology for prototyping than for actual deployment, since the expressive power
of parser combinators comes at the price of less efficiency. A parser combinator10

uses the full power of a Turing-equivalent formalism to recognize even simple
languages that could be recognized by finite state machines or pushdown au-
tomata. Consequently, parser combinators cannot reach the peak performance
of parser generators [37], hand-written parsers, or optimized code [6] (see sec-
tion 5).15

Meta-programming approaches such as macros [9] and staging [47] have been
applied to Scala parser combinators [39] with significant performance improve-
ments [6, 28]. In general, these approaches remove composition overhead and
intermediate representations. Other approaches attack performance problems
using more efficient structures, macros etc. (see Parboiled 2,1 attoparsec2 or20

FParsec3).
While Scala optimizations rely on the power of the Scala compiler, and other

solutions exploit knowledge about the internal implementation, our solution pro-
vides optimizations based on the domain knowledge of the parsing formalism, is
language-agnostic, and does not rely on specifics of the internal implementation.25

In this work we build on our idea of a parser compiler [34], which optimizes
the parser for a language by using specialized parsing strategies for different
parser combinators. A strategy is selected based on the language the given
parser combinator parses. Different subsets of a language are matched to differ-
ent parsing strategies. Each of these strategies fits the best for the given subset.30

Our approach preserves all the advantages of parser combinators and does not
impose any restrictions on their expressiveness.

We choose as a case study the performance of PetitParser [46, 31] — a
parser combinator framework using the parsing expression grammar (PEG) for-
malism [16]. As a validation of the ideas presented in this work, we imple-35

ment a parser combinator compiler (for short, a parser compiler): an ahead of
time source-to-source translator. This compiler (i) analyzes parser combinators
of PetitParser, (ii) chooses the most appropriate parsing strategy for each of
them, and (iii) integrates these strategies into a single top-down parser, which
is equivalent to the original parser. Based on our measurements covering six40

different grammars for PetitParser,4 our parser compiler offers a performance
improvement of a factor ranging from two to ten, depending on the grammar.
Based on our Smalltalk case study, our approach is only 10% slower than a

1http://www.webcitation.org/6k6195CiS
2http://www.webcitation.org/6k61DC2EA
3http://www.webcitation.org/6k61HcnHU
4Expressions, Smalltalk, Java, Ruby, and Python

2

http://www.webcitation.org/6k6195CiS
http://www.webcitation.org/6k61DC2EA
http://www.webcitation.org/6k61HcnHU

highly-optimized, hand-written parser.
To summarize, this paper makes the following contributions: i) a discussion45

of performance bottlenecks of parser combinators, ii) a description of optimiza-
tion techniques addressing these bottlenecks, and iii) a detailed analysis of their
effectiveness.

The paper is organized as follows: We explain the parsing overhead of parser
combinators using a concrete example in section 2. In section 3 we introduce50

a parser compiler, which reduces the existing overheads of parser combinators.
In section 4 we describe in detail how we identify and apply different parsing
strategies. In section 5 we analyze the performance impact of different parsing
strategies. In section 6 we briefly discuss related work and finally, section 7
concludes this paper.55

2. Motivating Example

In this section, we present, as an example, the parsing overhead of Petit-
Parser. PetitParser [46, 31] is a parser combinator framework [24] that uses
packrat parsing [15], scannerless parsing [52], and parsing expression grammars
(PEGs) [16].60

We identify the most critical performance bottlenecks of PetitParser and
explain them using an example with a grammar describing a simple program-
ming language as shown in Listing 1 (we use a simplified version of the actual
PetitParser DSL as described in detail in Table B.2).

A program conforming to this grammar consists of a non-empty sequence of65

classes. A class starts with classToken , followed by an idToken and body .

The classToken rule is a ’class’ keyword that must be followed by a space
that is not consumed. This is achieved by using the and predicate & followed

by #space , which expects a space or a tabulator. Identifiers start with a letter

followed by any number of letters or digits. The class keyword and identifiers70

are transformed into instances of Token , which maintain information about
start and end positions and the string value of a token. There is a semantic
action associated to a class rule that creates an instance of ClassNode
filled with an identifier value and a class body.

A class body is indentation-sensitive, i.e., indent and dedent determine75

the scope of a class (instead of commonly used brackets e.g., { and }). The

indent and dedent rules determine whether a line is indented, i.e., on a
column strictly greater than the previous line or dedented, i.e., column strictly
smaller than the previous line. The indent and dedent rules are represented
by specialized action parsers that manipulate an indentation stack by pushing80

and popping the current indentation level, similarly to the scanner of Python.5

The class body contains a sequence of classes and methods.

5http://www.webcitation.org/6k637RJ7V

3

http://www.webcitation.org/6k637RJ7V

letterOrDigit← #letter / #digit
identifier ← #letter letterOrDigit*
idToken ← identifier token
classToken ← (’class’ &#space) token
class ← classToken idToken body

map: [:classToken :idToken :body |
ClassNode new

name: idToken value;
body: body

]
methodToken ← (’method’ &#space) token
method ← methodToken idToken body

map: [:methodToken :idToken :body |
MethodNode new
name: idToken value;
body: body

]
body ← #indent

(class / method)*
#dedent

program ← class+

Listing 1: Example grammar defined in a simplified version of the PetitParser DSL.
More details about the syntax are in Appendix B.

2.1. Parser Combinators in PetitParser

Figure 1 shows a composition of parser combinators that are created after
evaluating the code in Listing 1 in PetitParser. This composition is created85

“ahead-of-time” before a parse attempt takes place and can be reused for mul-
tiple parse attempts.

The root program rule is translated into a Plus parser referencing the

class combinator. The class rule is an Action parser — a parser that
evaluates a block — specified by a map: parameter, the arguments being90

collected from the result of an underlying Sequence parser.

The idToken and classToken rules are Token parsers, which discard

whitespace and create token instances. The ′class′ rule is a Literal parser,
which is a leaf combinator and does not refer to any other combinators. The
classToken rule contains a sequence of Literal and AndPredicate95

combinators (omitted in the Figure 1). The identifier rule is a sequence

of CharClass and Star parsers. The Choice parser letterOrDigit

shares the CharClass parser with its identifier grand-parent.

The body rule is a sequence of Indent , Star and Dedent combina-

tors. The class combinator is shared by program and body . The structure100

of method has been omitted.

4

map:

Plus
program

Token
classToken

Token
idToken

Sequence
body

Action
class

Sequence
identifier

Sequence

ClassNode new
 id: idToken value
 body: body

CharClass
#letter

Choice
letterOrDigit

CharClass
#digit

Star

…
indent

Star
dedent

Choice

Action
method

…

Figure 1: The structure of parser combinators created after evaluating the code
of Listing 1.

All the parser combinators share the same interface, parseOn: context .

The context parameter provides access to the input stream and to other in-
formation (e.g., indentation stack). The result of parseOn: context is

either Failure or any other output. In case of failure, it is the responsibility105

of the combinator to restore the context. PetitParser combinators can be easily
implemented by following this contract.

The identifier rule would be implemented in PetitParser by the fol-
lowing method:6

6Please note, Smalltalk code is shown with a white background.

5

110

identifier
↑ letter letterOrDigit*

This code snippet illustrates three aspects of defining combinators in Petit-
Parser: (i) there is one method per grammar rule, (ii) combinators are objects115

from a set of classes of which many useful ones are predefined (e.g., *), and
(iii) combinators are composed via a DSL that is inspired from standard PEG
syntax7.

Appendix B presents more detail about how PetitParser handles context-
sensitive grammars, how are the parsers invoked, how backtracking works, and120

how PetitParser handles lexical elements as these are important for the subse-
quent performance analysis. In the remainder of this section we discuss four
kinds of overhead caused by the parser combinators of PetitParser.

2.2. Composition Overhead

Composition overhead is caused by calling complex objects (parsers) even125

for simple operations.
For example, consider the grammar shown in Listing 1 and letterOrDigit∗

in identifier . This can be implemented as a simple loop, but with parser
combinators many methods are called. For each character, the following parsers
are invoked: A Star parser (see Listing B.9), a Choice parser (see List-130

ing B.5) and two CharClass parsers (see Listing B.4). Each of these parsers
contains at least five lines of code, averaging twenty lines of code per character.

The same situation can be observed when parsing &#space .

AndPredicate (see Listing B.3) and CharClass (see Listing B.4) are in-
voked during parsing. The and predicate creates a memento and the char135

operator moves in the stream just to be moved back by the and predicate in
the next step. All this happens even though the result could be determined
with a single comparison to the next character in the input stream.

2.3. Superfluous Intermediate Objects

Superfluous intermediate objects are allocated when an intermediate object140

is created but not used.
For example, consider an input ’SCP’ parsed by idToken . The return

value of idToken is a Token object containing ’SCP’ as a value and 1

and 4 as start and end positions. Yet before a Token is created, a Star
parser (see Listing B.9) and a Sequence parser (see Listing B.8) create in-145

termediate collections resulting in (S,(C,P)) nested arrays that are later

7See Appendix B for details

6

flattened into ’SCP’ in TokenParser (see Listing B.10) again. Further-

more Sequence creates a memento that is never used because the second part

of the identifier sequence (i.e., letterOrDigit∗) never fails.8

Another example is the action block in the class . The classToken cre-150

ates an instance of Token . Yet the token is never used and its instantiation
is interesting only for a garbage collector. Moreover, the Sequence parser

wraps the results into a collection and the Action parser unwraps the ele-
ments from the collection in the very next step in order to pass them to the
action block as arguments (see Listing B.2).155

2.4. Backtracking Overhead

Backtracking overhead arises when a parser enters a choice option that is
predestined (based on the next k tokens) to fail. Before the failure, intermediate
structures, mementos and failures are created and the effort spent is wasted.

Consider an input ’123’ and the idToken rule, which starts only with a160

letter. Before a failure, the following parsers are invoked: TokenParser

(see Listing B.10), Sequence (see Listing B.8), CharClass (see List-

ing B.4). Furthermore, as TokenParser tries to consume a whitespace

(i.e., by using #space∗), another Star (see Listing B.9) and CharClass

(see Listing B.4) are invoked. During the process, two mementos are created.165

These mementos are used to restore a context even though nothing has changed,
because parsing has failed on the very first character. Last but not least, a
Failure instance is created.

As a different example, consider class/method , which for clarity reasons

can be expanded to:170

((’class’ token) idToken body) /
((’method’ token) idToken body)

The choice always invokes the first option and underlying combinators before175

the second option. In some cases, e.g., for input ’method bark’ based on
the first character of the input, it is valid to invoke the second option without
entering the first one. In other cases, e.g., for input ’package Animals’ ,
it is valid to fail the whole choice without invoking any of the parsers. Yet the
choice parser invokes both options creating superfluous intermediate collections,180

mementos and failures before it actually fails.

2.5. Context-Sensitivity Overhead

In the case of PetitParser, most of the context-sensitivity overhead is pro-
duced when a parsing context contains complex objects (e.g., an indentation
stack). When remembering or restoring contexts, a parser combinator deep185

8Zero repetitions are allowed, which means that empty strings are also valid, see A.2.2.

7

copies the whole parsing context [33] (see implementation in Listing B.11). A
deep copy is, however, needed only in some cases, e.g., in the case of a body

sequence where indent modifies the stack (see Listing B.6): if any subsequent

rule in body fails, the original stack has to be restored. In some other cases,

e.g., in the case of the identifier sequence where none of the underlying190

combinators modify the indentation stack, the deep copy of the context is su-
perfluous.

3. A Parser Combinator Compiler

The goal of a parser compiler is to generate a high-performance parser from
a parser combinator while preserving all the advantages of parser combinators.195

To achieve this goal, a parser compiler analyzes the given PEG grammar, selects
the most appropriate parsing strategy for each of its rules and creates a top-
down parser where each method represents a rule of the grammar with the
selected strategy implemented in the method body.

Figure 2 shows the work-flow of parser development with the parser compiler200

we present. First, the flexibility and ease of expression of combinators is used
by a language engineer to define a grammar (prototype phase). Then, the parser
compiler analyzes the grammar to choose the most suitable parsing strategies,
builds a top-down parser (compile phase), and allows an expert to further modify
the compiled parser at their will to further improve the performance (hand-tune205

phase). In the end, the resulting parser can be deployed as an ordinary class to
be used for parsing with peak performance (deployment phase).

 Compile
 Hand-
tune

 Prototype

Comprehension
& Flexibility

Expert’s
Insight

 Optimizations

 Deploy

Performance

Figure 2: In the prototype phase a language engineer uses the advantages of parser
combinators that are later compiled to a high performance parser, possibly tuned by

the engineer and deployed.

3.1. Adaptable Strategies

As mentioned in section 2 there are four different kinds of overhead: (i) com-
position overhead, (ii) superfluous intermediate objects, (iii) backtracking over-210

head, and (iv) context-sensitivity overhead. We introduce several strategies that
can significantly reduce these four kinds of overhead.

8

The parser compiler makes use of two different, interleaved modes: a scan-
ning mode, in which tokens are recognized by a dedicated tokenizer, and a
scannerless mode, in which tokens are recognized by the parser itself. A parser215

compiler in a scanning mode uses an adaptable scanner (see Appendix 3.2) to
parse regular parsing expressions (see Appendix A.1) and to guide choices to
choose the correct alternative based on the next token. The scanning mode
provides better performance but cannot be used for all expressions, because not
all of them are scannable. In case a scanner cannot be used, a parser compiler220

falls back to a scannerless mode with character-based alternatives. Furthermore,
context-free expressions are optimized to reduce the overhead of remembering
and restoring contexts. In the following we describe each of the strategies.
An overview of the strategies for scannerless and scanning modes can be found
in Figures 3 and 4, respectively.225

Scannerless
mode

Regular
languages Context-free

languages

Context-sensitive
languages

Parsing
expressions

Specializations

Scannerless
LL(1) choices

Non-deterministic
scannerless LL(1) choices

Context-free
combinators

Context-sensitive
parsing expressions

Context-sensitive
combinators

Recognizers

Figure 3: Classification of parsing strategies applied in a scannerless mode.

Combinators serve as a fallback option. Whenever a parser compiler does not
identify a suitable strategy, the original combinator is used. This ensures
that the parser compiler does not impose any restrictions and works even
for unknown combinators.

Context-Sensitive Parsing Expressions (CS-PEs) reduce the overhead of230

composition, because they perform loop unrolling [4] of choices (see the
implementation in Listing B.5) and sequences (see the implementation
in Listing B.8).

Parsing Expressions (PEs) reduce composition overhead of context-
sensitive combinators and context-sensitivity overhead by (i) performing235

loop unrolling, and (ii) using only context-free mementos instead of more
complex context-sensitive ones.

9

Scanning
mode

Regular
languages Context-free

languages

Context-sensitive
languages

Regular parsing
expressions

LL(1) choices

Non-deterministic
LL(1) choices

Context-free
combinators

Context-sensitive
parsing expressions

Context-sensitive
combinators

Parsing
expressions

Figure 4: Classification of parsing strategies applied in a scanning mode.

Nondeterministic Choices reduce backtracking overhead by rejecting an al-
ternative based on the next character (or token) of input. They are not
deterministic because even if an alternative is rejected, it is not clear which240

of the remaining alternatives should be selected.

Deterministic Choices reduce backtracking overhead by choosing the correct
alternative based on the next character (or token) of input.

Regular Parsing Expressions (RPEs) reduce composition overhead by re-
placing a hierarchy of combinators by a finite state automaton, which can245

be implemented more efficiently than a recursive top-down parser.

Specializations reduce composition overhead by replacing a hierarchy of com-
binators by a simple programming construct such as a loop or a compari-
son, which is more efficient than interactions of combinators.

Recognizers reduce superfluous intermediate allocations by avoiding interme-250

diate representations. Recognizers return true or false instead of a parse
tree. This improves performance since new objects do not need to be allo-
cated, object initialization methods do not need to be run, and the garbage
collector has less work to do [54].

Different strategies target different kinds of languages. In the scannerless255

mode, combinators describing regular languages are optimized with the help of
specializations, parsing expressions and recognizers. In the scanning mode they
are handled by regular parsing expressions. The recognizers strategy of a scan-
nerless mode can be combined with either specializations or parsing expressions.

10

The combinators describing context-free languages are optimized by LL(1)260

choices, nondeterministic choices, and again by parsing expressions. Further-
more, combinators can be optimized to use only context-free memoizations, thus
there are also context-free combinators. We are not aware of many opportuni-
ties to optimize combinators describing context-sensitive restrictions, although
some combinators can be optimized using context-sensitive parsing expressions.265

3.2. Adaptable Scanner

An adaptable scanner is a component of a parser that is responsible for con-
suming input. Contrary to the traditional pipeline in which scanning and pars-
ing are performed in separate phases (e.g., Lex and YaCC [36, 26]), an adaptable
scanner is directly invoked by the parser. An adaptable scanner can be used270

to parse scannerless grammars [52] such as SDF [51] or PEGs [16]. Scannerless
grammars are especially useful for describing languages with embedded sub-
languages (e.g., embedded SQL or regular expressions). An adaptable scanner
has to adapt to the rule from which it is invoked, because in scannerless gram-
mars the same string can represent different tokens for different sublanguages.275

To achieve such adaptability, the scanner must have multiple scan methods, one
for each grammar nonterminal. The method is based on first set analysis [44, 19]
of the given nonterminal (see subsections 4.2.1 and 4.2.2)

Memoization. In order to integrate with the unlimited lookahead of PEGs, the
scanner has backtracking capabilities. In a PEG parser, the state is a position in280

a stream, and in PetitParser, the state is a deep copy of a context (including the
position). The adaptable scanner adds information about the current token and
its value to the context. When parsing in scanning mode, the context (including
the current token and its value) is remembered and is restored to its original
value in case of failure.285

4. Parser Optimizations

Parser combinators form a graph with cycles (see Figure 1 and Appendix B
for more detail). The parser compiler uses this graph of combinators as its
intermediate PEG-aware representation. The optimizations themselves are im-
plemented as a series of passes over the graph, each performing a transformation290

using pattern matching. Particular nodes are moved, replaced with more ap-
propriate alternatives, or changed and extended with additional information.
In the final phase, these nodes are visited by a generator that produces code in
the host language, i.e., for the Pharo version of PetitParser, the code generator
produces Pharo Smalltalk code. There also exist Java9 and Dart10 implemen-295

tations of PetitParser. To the best of our knowledge, there is no obstacle to
implementing parser compiler for these implementations of PetitParser.

9http://www.webcitation.org/6k62uAxHz
10http://www.webcitation.org/6k62vRsWA

11

http://www.webcitation.org/6k62uAxHz
http://www.webcitation.org/6k62vRsWA

Code generation results in a class where each method represents a combina-
tor in the modified graph of parser combinators. In the case of PetitParser, the
class contains two instance variables: context and (if applicable) scanner .300

The context variable keeps the value of a context argument: the input pa-
rameter to the parser combinator (see the contract of a parseOn: method

in Appendix B) The scanner is an adaptable scanner as described in subsec-
tion 3.2.

The intermediate representation of a parser compiler is high-level, directly305

representing the target domain, and thus allowing for domain-specific optimiza-
tions. For example, a parser compiler can directly check if an expression is
nullable or if a choice is deterministic. This would be difficult with lower-level
representations used for performance optimizations (e.g., AST [1], Bytecode,
SSA [11], LLVM IR [35]).310

The following section describes the optimizations in detail. We use the
following syntax for rewriting rules: The class of a combinator is given in
angle brackets <> , e.g., all the character class combinators are marked as

<CharClass> . Any parser combinator is <Any> . We denote a single-

step derivation of a parent P to a child C as P→C . A parser combina-315

tor that is a (recursive) descendent D of a parent P is marked P→∗D . We
use this syntax to refer to all the successors of a given parent P . For exam-

ple, program→∗<Any> refers to all the parsing expressions in the grammar

from Listing 1.
A parser combinator with a property is marked with : and the property320

name, e.g., <Any:nullable> .
Delegating parsers embed the parser that they delegate to in angle brackets,

e.g., <Sequence<Any><Any>> represents a sequence of two arbitrary com-
binators. An alternative syntax for sequences and choices and other delegating
operators is to re-use the PEG syntax, e.g., <Any> <Any> is also a sequence325

of two arbitrary combinators. The rewrite operation is ⇒. As an example,
merging a choice of two character classes into a single one is written as:

<CharClass> / <CharClass> ⇒ <CharClass>
330

4.1. Regular Optimizations

Regular optimizations are performed at the level of tokens, i.e., on expres-
sions recognizing identifiers, numbers or keywords. Some of these expressions
can be expressed by finite state automata, but since PEGs are scannerless and
have different semantics than regular expressions this is not always possible335

(see Appendix A.1).

4.1.1. Regular Parsing Expressions

Regular parsing expressions (RPEs) (see Appendix A.1) are expressions rec-
ognizable by finite state automata (FSAs). FSAs can be implemented more ef-
ficiently than parsing expressions, without backtracking, composition overhead,340

or superfluous object allocations.

12

During a dedicated optimization phase all expressions are analyzed, and
those recognized as regular expressions are marked :regular . All regular

expressions are wrapped with a <Scanner> combinator.
345

<Any:regular> ⇒ <Scanner<Any>>

A <Scanner> combinator represents a scan method in an adaptable scan-

ner that uses a FSA to parse input. For example, identifier is a regular
parsing expression and can be parsed with <Scanner> :350

identifier ⇒ <Scanner<#letter <#letter / #digit>*>

In the final phase, the code generator produces the following code from the
identifier sequence:355

scanner scan_identifier

4.1.2. Specializations

Specializations reduce composition overhead by replacing a hierarchy of com-360

binators by a simple programming construct such as a loop or a comparison.
Returning to the problem with letterOrDigit∗ in subsection 2.2 (let us

suppose that a scanner is not used), the whole rule is specialized as an instance

of the <CharClassStar> combinator. The #digit / #letter rule

is specialized using a single CharClass combinator [a-zA-Z0-9] , and a365

repetition of the character class is replaced by a specialized CharClassStar

combinator, which can be implemented as a while loop. The letterOrDigit∗
rule is rewritten to the following:

letterOrDigit* = <CharClass[a-zA-Z]>/<CharClass[0-9]>*370

⇒ <CharClass[a-zA-Z0-9]>*
⇒ <CharClassStar[a-zA-Z0-9]>

In the final phase, the code generator produces the code as shown in Listing 2,
which contains only three lines of code per consumed character.

letterOrDigitStar
| retval |
retval ← OrderedCollection new.
[context peek isLetter or:
[context peek isDigit]] whileTrue: [

retval add: context next.
].
↑ retval

Listing 2: The code produced from the letterOrDigitStar repetition after applying

the specialization optimization.

13

375

Returning to the problem with &#space in subsection 2.2, the whole rule

is specialized as a single AndCharClass combinator. The classToken rule
is rewritten as follows:

classToken ← ’class’ <AndCharClass[\t\n]>380

In the final phase, the code generator produces for AndCharClass the code
as shown in Listing 3, which does not create any mementos and does not invoke
any extra methods.

↑ (context peek isSpace) ifFalse: [
Failure message: ’space expected’.

]

Listing 3: The code produced from the &#space character class after applying the

specialization optimization.

We implement several similar specializations, including the following:385

<CharClass> / <CharClass> ⇒ <CharClass>
<CharClass> negate ⇒ <CharClass>
<CharClass>* ⇒ <CharClassStar>
<CharClass>+ ⇒ <CharClassPlus>390

&<CharClass> ⇒ <AndCharClass>
!<CharClass> ⇒ <NotCharClass>
&<Literal> ⇒ <AndLiteral>
!<Literal> ⇒ <NotLiteral>
<CharClass> token ⇒ <TokenCharClass>395

<CharClass>? ⇒ <OptionalCharClass>

Note that the OptionalCharClass combinator can return directly nil

without intermediate failure.

4.1.3. Recognizers400

A recognizer simply recognizes a sublanguage, returning true or false

rather than a parse tree. In cases where parse trees are not needed, we can
replace parsers by recognizers and thus avoid superfluous object allocations
(i.e., unneeded parse trees). Combinators forming a Token parser are marked

to avoid generating intermediate representations (:recognizer) because to-405

kens do not have an internal structure (as described in Appendix B). The token
itself can be created as a substring of the input stream, where start and end
positions are positions before and after parsing the given token.

The same strategy of avoiding creation of intermediate objects is used also
for and & and not ! predicates, which return only true or false and discard410

their results.

14

The following reduction rules are used to illustrate formally the rules for
applying this strategy in the three aforementioned cases.

<Token>→∗<Any> ⇒ <Token>→∗<Any:recognizer>415

<AndPredicate>→∗<Any> ⇒ <AndPredicate>→∗<Any:recognizer>
<NotPredicate>→∗<Any> ⇒ <NotPredicate>→∗<Any:recognizer>

As an example, consider the CharClassStar parser specialized from the

rule letterOrDigit∗ inside the idToken , which is marked to avoid generating420

an intermediate representation:

letterOrDigit* ← <CharClassStar[a-zA-Z0-9]:recognizer>

In the final phase, the code generator produces the code as shown in Listing 4.

letterOrDigitStar
//no need to create an intermediate collection
[context peek isLetter or:
[context peek isDigit]] whileTrue: [
context next.

].
↑ true

Listing 4: The code produced from the letterOrDigitStar rule after applying the

recognizer optimization.

425

4.2. Context-Free Optimizations

Optimizations in this category focus primarily on lookahead and backtrack-
ing. PEG choices are analyzed and backtracking is reduced, if possible.

4.2.1. Deterministic choices

Deterministic choices limit invocations and allocations caused by backtrack-430

ing. During a dedicated optimization phase, character-based or token-based

first sets [44, 19] are computed. If all n choice alternatives a1/a2/.../an have

distinct first sets (i.e., their first sets do not overlap) the choice is marked as
being deterministic (:dch) and choices with the dch property are replaced
with a deterministic choice combinator.435

<Choice <Any> <Any>:dch> ⇒ <DeterministicChoice <Any> <Any>>

For example, the class/method choice is marked as dch and the whole body

is rewritten to:440

body ⇒ indent
<DeterministicChoice <class> <method>)*

dedent
445

15

In the final phase, the code generator produces the code as shown in Listing 5
from this choice (since a class definition starts with class and a method with

def). If a scanner is used, it produces code as in Listing 6.

classOrMethod
| result |
(context peek == $c) ifTrue: [↑ self class].
(context peek == $d) ifTrue: [↑ self method].

Listing 5: The code produced from the classOrMethod rule after analyzing
deterministic choices.

classOrMethod
| token |
token ← scanner scan_classOrMethod.
(token == #class) ifTrue: [↑ self class].
(token == #def) ifTrue: [↑ self method].

Listing 6: The code produced from the classOrMethod rule after analyzing
deterministic choices and using a scanner.

4.2.2. Nondeterministic choices

Nondeterministic choices partially prevent invocations and allocations450

caused by backtracking. In case alternatives of a choice overlap and the choice
is not deterministic, it may still be optimized using guards. Guards allow for
an early failure of a parse attempt using the peek character or the next token.
When suitable (e.g., the character-based first set is reasonably small) choice
alternatives are marked for a guard (:guard). Any choice alternative marked455

for guarding <Any:guard> is wrapped with Guard . Some alternatives do
not need to be guarded:

<Any:guard> / <Any:guard> ⇒ <Guard<Any>> / <Guard<Any>>
<Any:guard> / <Any> ⇒ <Guard<Any>> / <Any>460

<Any> / <Any:guard> ⇒ <Any> / <Guard<Any>>

Guard is a combinator that prepends an underlying combinator with code
that fails immediately, without entering the underlying combinator. As an ex-
ample, let us slightly modify class and method from Listing 1 to allow for465

private definitions:

classToken ← ’class’ &#space token
defToken ← ’def’ &#space token
method ← privateToken? defToken idToken ...470

class ← privateToken? classToken idToken ...
privateToken ← ’private’ token

16

In such a case, the alternatives of a class/method can be wrapped with

Guard .475

body ← indent
<Choice <Guard<class>> <Guard<method>)*

dedent
480

In the final phase, the code generator produces the code as in Listing 7 from
the choice of class and method . Alternatively, if a scanner is used, the code
generated is as shown in Listing 8.

classOrMethod
| result |
(context peek == $c or: [context peek == $p]) ifTrue: [

(result ← self class) isSuccess ifTrue: [
↑ result

]
].
(context peek == $d or: [context peek == $p]) ifTrue: [

(result ← self method) isSuccess ifTrue: [
↑ result

]
].

↑ Failure message: ’neither class nor method found’

Listing 7: The code produced from the classOrMethod choice after applying guard
optimizations.

4.3. Context-Sensitive Optimizations

Optimizations in this category address (i) performance problems of parser485

combinators that are too generic, and (ii) superfluous context-sensitive memo-
izations.

4.3.1. Context-Sensitive Parsing Expressions

In a combinator implementation the children of sequences and choices are
called in a loop (see Listing B.8 and Listing B.5, noting that children do: is490

an iterative construct in Smalltalk). The parser compiler improves performance
of sequences and choices by loop unrolling.

The choices are simply unrolled; no further analysis is performed. For a

choice of two alternatives, e.g., class/method (if no optimizations from the

previous section are applied), the code without loop, which saves the loop book-495

keeping11, is generated as in Listing 9.

11by unrolling the loop from Listing B.5.

17

classOrMethod
| result memento |
memento ← scanner remember.
(scanner guard_privateOrClass) ifTrue: [

(result ← self class) isSuccess ifTrue: [
↑ result

]
scanner restore: memento.

].
(scanner guard_privateOrMethod) ifTrue: [

(result ← self method) isSuccess ifTrue: [
↑ result

]
scanner restore: memento.

].
↑ Failure message: ’neither class nor method found’

Listing 8: The code produced from the classOrMethod choice after applying guard
optimizations with a scanner.

classOrMethod
| retval |
(retval ← self class) isSuccess ifTrue: [
↑ retval

].
(retval ← self method) isSuccess ifTrue: [
↑ retval

].
↑ Failure message: ’neither class nor method found’

Listing 9: The code produced from the classOrMethod choice after loop unrolling
without any other optimizations.

However, the children of sequences are analyzed for the nullability property
(see Definition A.7) and marked as nullable (:nullable) if so. Nullable
expressions never fail (see Definition A.6) and error handling can be omitted.
The restore after the first element of a sequence is also omitted. It is superfluous,500

because in case of failure the underlying code will have restored the context
already (see the parseOn: contract in Appendix B).

As an example, consider the identifier rule, a sequence of a letter and a
letter or digit repetition. If no regular parsing expression optimization has been
applied, the code as in Listing 10 can be generated.505

Such code is rather inefficient. First of all, if letter fails, letter
itself has to restore the context to the point upon its invocation, which is the
point when memento was created. There is no need to restore (line 7) for

18

1 identifier
2 | memento retval |
3 memento ← context remember.
4 retval ← Array new: 2.
5 result ← self letter.
6 result isFailure ifTrue: [
7 context restore: memento.
8 ↑ result
9].

10 retval at: 1 put: result.
11 result ← self letterOrDigitStar.
12 result isFailure ifTrue: [
13 context restore: memento.
14 ↑ result
15].
16 retval at: 2 put: result
17 ↑ retval

Listing 10: The code produced from the identifier without applying regular parsing
expression optimizations.

the second time. Second of all, letterOrDigitStar never fails because it can

accept epsilon, i.e., it is nullable, therefore the restore (line 13) is never called.510

Last but not least, there is no need to create a memento (line 3) because it is
not needed at all, and the code as in Listing 11 can be used instead.

identifier
| retval |
retval ← Array new: 2.
(result ← self letter) isFailure ifTrue: [
↑ result

].
retval at: 1 put: result.
retval at: 2 put: self letterOrDigitStar.
↑ retval

Listing 11: The code produced from the identifier after applying regular parsing
expression optimizations.

To generate such code, we replace the sequences with their nullable variants:

<Sequence <Any> <Any:nullable>>515

⇒ <SecondNullableSequence <Any> <Any>>

There is no <FirstNullableSequence> because a restore after the first

19

element of a sequence is superfluous.12

In practice, sequences can have more children. For example, the repetition520

in the body rule is marked as nullable:

body ⇒ indent
<Star <class/method>:nullable>

dedent525

and the body rule is rewritten as follows:

body ⇒ <SecondNullableSequence <indent>
<Star <class/method>:nullable>530

<dedent>>

The rewrite rules for sequences with three children are straightforward:

<Sequence <Any> <Any:nullable> <Any>>535

⇒ <SecondNullableSequence <Any> <Any>>
<Sequence <Any> <Any> <Any:nullable>>

⇒ <ThirdNullableSequence <Any> <Any>>
<Sequence <Any> <Any:nullable> <Any:nullable>>

⇒ <SecondAndThirdNullableSequence <Any> <Any>>540

However, in practice when sequences have any number of children, we do not
rewrite sequences. Instead the parser compiler checks the nullable property

of each child and omits the restore code if the nullable property is set. In
the final phase, the code generator produces the code in Listing 12.545

4.3.2. Context-Free Memoization

Context-free memoization reduces the overhead of context-sensitive expres-
sions by turning them into context-free expressions. Context-free expressions
use only a position in a stream as a memento. The deep copy of a context is
performed only when necessary, i.e., for the context-sensitive parts of a gram-550

mar.
We describe two approaches. The first one is more universal and can be ap-

plied to a context-sensitive grammar, e.g., a grammar using grammar rewriting.
The other one is tailored to our context-sensitive extension using the push O

and pop M operators to modify the parsing contexts (full details are in the555

PhD thesis of Kurš [30]).
The context-sensitive analysis traverses the combinators and marks a com-

binator as context-sensitive (:cs) whenever a combinator performs context-
sensitive operations. This might be, for example, a combinator depending on an
external context or performing a grammar modification. If a combinator refers560

to a context-sensitive combinator, the combinator is marked as context-sensitive
as well:

12If the first element of a sequence fails, it has to restore the context to its original state
(see the parseOn: contract in section B), which is the original state of the sequence itself.

20

body
| memento indent dedent classOrMethodCollection |
memento ← context remember.
[indent ← self indent] isFailure ifTrue: [

"no context restore needed here"
↑ indent

]
"classOrMethodStar is nullable, no error handling needed"
classAndMethodCollection ← self classOrMethodStar.
[dedent ← self dedent] isFailure ifTrue: [

context restore: memento.
↑ dedent

]
↑ Array with: indent

with: classAndMethodCollection
with: dedent

Listing 12: The code produced from the body sequence after applying the

context-sensitive parsing expressions optimization.

<Any>→∗<Any:cs> ⇒ <Any:cs>→∗<Any:cs>
565

The push–pop analysis (see Definition A.9) also traverses the combinators,
but takes advantages of well-defined context-manipulation semantics of push
O and pop M , and marks each combinator as push :push , pop :pop ,

context-sensitive :cs or context-free :cf . With push–pop analysis more
expressions are marked as context-free, because a consecutive O and M result570

in a context-free expression (in the sense that the expression does not change
the context). Furthermore, a sequence can be restored after a push O by

calling pop M . Only expressions in sequences after the pop must be restored

using the full context-sensitive memento. For example, consider #indent and

#dedent from Listing 1. After #indent , which pushes to the indentation575

stack (see Listing B.6), the indentation stack can be restored to the state before

#indent by popping the top of the indentation stack. On the other hand,

after #dedent , which pops an element from the indentation stack, the popped
element cannot be be restored by push, because we have lost the popped item
that needs to be pushed back again. The solution we use is to restore from the580

full context-sensitive memento.
For simplicity, we discuss only one context-sensitive feature in this paper:

indentation, for which we manage one default stack: indentation stack. Indent
. corresponds to push O to the indentation stack and dedent / corresponds

to pop M from the indentation stack. In general, there might be more context-585

sensitive features and for each of them a separate stack has to be maintained.

21

The push–pop analysis is then done for each of the stacks separately, and the
:push and :pop properties have to be used for each of the stacks as well.

As an example of a push–pop analysis, consider the body sequence, which

is marked as context-free by push–pop analysis:590

body ← <<indent:push>
<Star<classOrMethod>:cf>

<dedent:pop>:cf>
595

Even though the body sequence contains the context-sensitive rules #indent

and #dedent , no context-sensitive memento is used in the generated code (see

Listing 13).

body
| memento indent dedent classAndMethodCollection |
memento ← context position.
(indent ← self indent) isFailure ifTrue: [

"no context restore needed here, indent did it"
↑ indent

]
"classOrMethodStar is nullable, no error handling needed"
classAndMethodCollection ← self classOrMethodStar.
(dedent ← self dedent) isFailure ifTrue: [

context indentationStack pop.
context position: memento.
↑ dedent

]
↑ Array with: indent

with: classAndMethodCollection
with: dedent

Listing 13: The code produced from the body sequence after applying the context-free

memoizaton optimization.

For this optimization, we do not use any rewrite rules, because the context-
free memoization can be combined with almost any combinator and we would600

have to introduce a context-free and context-sensitive variants for each of the
combinators. This is a typical use case for the strategy pattern [18], which we use
to implement the context-free memoizations. We use two memoization strategies
(context-free and context-sensitive) that are assigned to each of the combinators
based on the result of a push–pop analysis. The memoization strategies are used605

by a parser compiler to generate appropriate remember and restore code.

4.3.3. Combinators

Combinators are the last resort if no other parsing strategy can be applied.
This can happen, for example, if a parser compiler optimizes a combinator whose

22

semantics is unknown to it. This might happen when a user of PetitParser has610

implemented their own extension of PetitParser.
The question is, how to include such an unknown combinator into the trans-

lated code so that it effectively interoperates well with the generated parser?
Our parser compiler has no other choice but to call the parseOn: method
of the combinator itself, and let it do whatever it wants. Nevertheless, such615

a simple approach is not very effective: the combinator itself probably invokes
other combinators (its children), which are again (unoptimized) combinators.
All the parsing done by the unknown combinator is not optimized at all.

Luckily, we can do better. If possible, the parser compiler inspects and
optimizes the children of the unknown combinator. The result of such an opti-620

mization consists of new methods (one for each child) in the generated class. In
the next step, the parser compiler rewires the links from an unknown combina-
tor to its children and replaces them with links to the optimized methods. The
children of the unknown combinator are substituted by a Bridge combinator

whose parseOn: method invokes an method that is an optimized equivalent625

of the original child.
If <Unknown> represents a combinator unknown to a parser compiler, the

rewrite rule is:

<Unknown <Any>> ⇒ <Unknown <Bridge<Any>>>630

As an example, let us suppose we re-define body with a new combinator

representing the longest choice || 13

body ← (class||method)*635

This definition of body is transformed to the following combinator graph

(the rules class and method are compiled as usually):

body ← <Unknown<<Bridge<class> <Bridge<method>>*640

In the final phase, the code generator produces the following code, where the
variable unknown is an instance of a LongestChoice parser:

body645

| retval result |
retval ← OrderedCollection new.
[result ← unknown parseOn: context] isFailure

whileFalse: [retval add: result].
↑ retval650

By calling unknown>>parseOn: an implementation of a

LongestChoice combinator is called. The children of the longest

13i.e., a choice that returns the alternative that consumes the longest part of input.

23

choice are replaced by a Bridge combinator that forwards to the compiled
code:655

Bridge>>parseOn: context
"in our example, the selectors are ‘method’ or ‘class’"
↑ compiledParser perform: selector

660

5. Performance analysis

In this section we report on the performance of compiled parsers compared
to the performance of plain PetitParser.14 We also report on the impact of a
particular optimization on the overall performance. Moreover, we measure the
performance impact of a push–pop analysis and scanning as well. Last but not665

least, we provide a case-study of performance of Smalltalk parsers available in
Pharo [7].

5.1. PetitParser Compiler

The PetitParser compiler applies the parser compiler techniques described
in this paper and outputs a Smalltalk class that serves as a top-down parser670

equivalent to the input combinator.
PetitParser Compiler is available online15 for Pharo and Smalltalk/X. It is

being already used in two production environments: the language for Live Robot
Programming environment16 and the Pillar markup language.17

Validation. The PetitParser compiler is covered by more than three thousand675

unit tests. Furthermore, we validated the parser compiler by taking several
existing PetitParser combinators and comparing their results with the results
produced by their equivalent compiled variant. In particular, we validated re-
sults of four parsers: (i) a Java 6 parser,18 (ii) a Smalltalk parser,19 (iii) a Ruby
semi-parser,20 and (iv) a Python semi-parser.21 The parsers were validated on680

several open-source projects that were also used in the performance benchmarks.

5.2. Benchmarks

We measure performance on the following benchmarks:

14A replication package containing an image with sources and benchmarks can be down-
loaded from http://scg.unibe.ch/research/petitcompiler/scp2016.

15http://scg.unibe.ch/research/petitcompiler
16http://pleiad.cl/research/software/lrp
17http://smalltalkhub.com/#!/˜Pier/Pillar
18http://smalltalkhub.com/#!/˜Moose/PetitJava/
19http://smalltalkhub.com/#!/˜Moose/PetitParser
20http://smalltalkhub.com/#!/˜JanKurs/PetitParser
21Ibid.

24

http://scg.unibe.ch/research/petitcompiler/scp2016
http://scg.unibe.ch/research/petitcompiler
http://pleiad.cl/research/software/lrp
http://smalltalkhub.com/#!/~Pier/Pillar
http://smalltalkhub.com/#!/~Moose/PetitJava/
http://smalltalkhub.com/#!/~Moose/PetitParser
http://smalltalkhub.com/#!/~JanKurs/PetitParser

1. Expressions is a benchmark measuring performance of arithmetic expres-
sions. Input consists of expressions with operators (,) , * , + and685

integers. The parentheses must be balanced. Operator priorities are con-
sidered. The grammar is not in a deterministic form, i.e., it uses unlimited
lookahead and backtracks heavily. The parser contains eight rules.

2. Smalltalk is a benchmark measuring the performance of a Smalltalk
parser. Input consists of the source code from a Pharo 5 image.22 The690

parser contains approximately eighty rules.

3. Java is a benchmark measuring performance of a Java parser provided
by the Moose analysis platform community [40]. We used version 167.23

Input consists of the standard JDK 6 library files. The parser contains
approximately two hundred rules.695

4. Ruby is a benchmark measuring the performance of the Ruby parser.
Input consists of several GitHub Ruby projects.24 The parser contains
approximately forty rules. The parser is not complete. It uses indenta-
tion [22], bounded seas [32], and a special version of island parsing to
extract modules, classes, methods, method calls, and their receivers.700

5. Python is a benchmark measuring performance of an indentation-
sensitive Python parser. Input consists of several open source Python
projects.25 The parser contains approximately forty rules. The parser is
not complete. It uses islands [38] to extract structural elements and skips
the rest. The structural elements that are extracted are: classes, methods,705

if , while , for and with statements.

6. JSON is a benchmark measuring performance of a standard JSON parser.
Input consists of randomly generated JSON files. The parser contains
approximately twenty rules.

The presented benchmarks cover a variety of grammars from small ones to710

complex ones, ranging in size from eight to two hundred grammar rules. They
cover grammars with possibly unlimited lookahead (arithmetic expressions) and
almost LL(1) grammars (Smalltalk, Java, JSON).26 They also cover standard
grammars (Java, Smalltalk, JSON), island grammars (Python, Ruby), context-
free grammars (Java, Smalltalk, JSON), and context-sensitive ones (Python,715

Ruby).

22http://files.pharo.org/get-files/50/sources.zip
23http://smalltalkhub.com/#!/˜Moose/PetitJava/
24Rails, Discourse, Diaspora, Cucumber and Vagrant
25Django, Tornado and Reddit
26The implementors did not bother to make it LL(1) as parser combinators allow for un-

limited lookahead.

25

http://files.pharo.org/get-files/50/sources.zip
http://smalltalkhub.com/#!/~Moose/PetitJava/

How we measure. We run each benchmark ten times using the release of the
Pharo VM for Linux from September 8, 2016. All the parsers and inputs are
initialized in advance, and then we measure the time to parse. The input size
is set up so that even the fastest benchmark runs at least a second.720

We report on speedup (the ratio between the best time original PetitParser
serving as a baseline and the best time of its compiled version) and time per
character. To estimate the impact of a garbage collector, we report total run
time with and without garbage collection included.

Results. The speedup of a compiled version compared to an original version is725

shown in Figure 5.

0

5

10

15

20

25

30

Expressions

Smalltalk

Java
Ruby

Python
JSON

S
p
e
e
d
u
p

Speedup of Dynamic Strategies

GC excluded
GC included

Figure 5: The speedup of compilation for different grammars.

The Expressions parser shows a 2x speedup. We attribute this result to
the fact that the Expressions parser performs a lot of backtracking and the
simplicity of the underlying grammar does not allow many optimizations.

The Smalltalk and Java parsers exhibit a speedup slightly below a factor of730

four, respectively three. The Python, Ruby and JSON parsers undergo a 10x
speedup. The Python and Ruby parsers are context sensitive, and their original
versions are very slow (see time per character in Figure 6). This is caused by the
overhead of copying an indentation stack, which is to a great extent removed
by a parser compiler. The JSON parser itself is relatively fast (see time per735

character in Figure 6), but its performance can be greatly improved, mainly
thanks to the tokenization, as we show in subsection 5.3.

5.3. Performance Details
In order to provide insight into how particular parsing strategies affect the

overall performance, we divide the parsing strategies into three main groups;740

26

0.01

0.1

1

10

100

Expressions

Smalltalk

Java
Ruby

Python
JSON

Ti
m

e
 [

m
ic

ro
se

co
n
d
s]

Time per Character

Standard
GC time

Compiled
GC time

Figure 6: Time per character of plain PetitParser and its compiled version for different
grammars. Please note the logarithmic scale.

1. Regular (RE) – presented in Section 4.1

2. Context-free (CF) – presented in Section 4.2

3. Context-sensitive (CS) – presented in Section 4.3

We enable different parsing strategies during compilation and report on
these. Because of the limitations of PetitParser compiler, some parsing strate-745

gies cannot be applied without transforming the parser into the context-sensitive
parsing expressions (PE). The context-sensitive parsing expressions are there-
fore always included.

We use the configurations summarized in the following table:

PE RE CF CS
PE •

PE+RE • •
PE+CF • •
PE+CS • •

PE+RE+CF • • •
PE+RE+CS • • •
PE+CF+CS • • •

All • • • •

750

For example, configuration PE transforms combinators of PetitParser to
context-sensitive parsing expressions, performing loop unrolling as described
in subsubsection 4.3.1, and configuration PE+RE applies all the transformations
from subsection 4.1 to context-sensitive parsing expressions (PE).

27

We briefly summarize the configurations here:755

PE+RE If possible regular parsing expressions are used (4.1.1), otherwise spe-
cializations (4.1.2) and recognizer strategies (4.1.3) are used.

PE+CF Only character-based deterministic choices (4.2.1) and guards (4.2.2)
are used because RE techniques (4.1) are not applied and therefore tokens
cannot be detected.760

PE+CS Parsing expressions are analyzed with the push–pop analysis. For
context-sensitive parsing expressions (4.3.1) standard mementos are used
and for context-free parsing expressions (4.3.2) context-free mementos are
used. For unknown parsing expressions, combinators are used (4.3.3).

PE+RE+CF If possible regular parsing expressions are used (4.1.1), other-765

wise specializations (4.1.2) and recognizer strategies (4.1.3) are used. Only
character or token based deterministic choices (4.2.1) and guards (4.2.2)
are used.

PE+RE+CS If possible regular parsing expressions are used (4.1.1), other-
wise specializations (4.1.2) and recognizer strategies (4.1.3) are used. For770

context-sensitive parsing expressions (4.3.1) standard mementos are used
and for context-free parsing expressions (4.3.2) context-free mementos are
used. For unknown parsing expressions, combinators are used (4.3.3).

PE+CF+CS Only character-based deterministic choices (4.2.1) and guards
(4.2.2) are used because RE techniques (4.1) are not applied and there-775

fore tokens cannot be detected. For context-sensitive parsing expressions
(4.3.1) standard mementos are used and for context-free parsing expres-
sions (4.3.2) context-free mementos are used. For unknown parsing ex-
pressions, combinators are used (4.3.3).

All Applies all the possible optimizations from subsection 4.1, subsection 4.2780

and subsection 4.3.

The speedup of a particular configuration is shown in Figure 7. The graphs
illustrate how much a particular configuration contributes to the overall perfor-
mance of the parsers.

Different strategies have different impact on the parsers. Regular expression785

strategies (PE+RE), for example, optimize the JSON and Smalltalk parsers
well, but they are worse than standalone parsing expressions (PE) in the case
of Expressions. This is caused by a scanner that provides the best performance
when combined with the context-free optimizations as we illustrate in subsec-
tion 5.4.790

Context-free strategies (PE+CF) affect Python and Java parsers a lot.
Context-sensitive strategies (PE+CS) significantly affect the context-sensitive
parsers, i.e., Ruby and Python parsers. In other cases context-sensitive strate-
gies slightly improve performance because of more efficient memoization: me-
mentos are integers and not objects.795

28

0

5

10

15

20

25

Expressions

Smalltalk

Java
Ruby

Python
JSON

S
p
e
e
d
u
p

Speedup of Dynamic Strategies

PE
PE+RE

PE+CF
PE+CS

PE+RE+CF
PE+RE+CS

PE+CF+CS
All

Figure 7: Speedup against plain PetitParser for different configurations.

Combination of strategies brings even better results. The regular and
context-free strategies (PE+RE+CF) almost reach the top performance of
context-free grammars (Expressions, Smalltalk and Java), while regular and
context-sensitive (RE+CS) strategies almost reach the top performance of
context-sensitive grammars (Ruby, Python).800

5.4. Scanner Impact

In order to evaluate the impact of scanning strategies, we compare a parser
compiled with the configuration that uses scanning strategies with one that does
not (and which serves as a baseline). The speedup using scanning strategies
varies greatly from 10% to 600% (see Figure 8), depending on the grammar.805

The current implementation of the scanner limits its usage to the Expres-
sions, Smalltalk, and JSON parsers. Other grammars either do not use regu-
lar parsing expressions to consume input (Python and Java), or are context-
sensitive (Ruby and Python).

5.5. Memoization Impact810

The context-sensitive optimizations affect the context-sensitive parsers for
Ruby and Python. In order to investigate in detail the impact of the context-
sensitive analysis and push–pop analysis as described in subsection 4.3 we com-
pare the performance of parsers compiled using both of the analyses. The
baseline is a configuration without any context-sensitive optimizations, i.e., the815

PE+RE+CF configuration.

29

1

10

Expressions

Smalltalk

JSON

S
p
e
e
d
u
p

Speedup of Tokenization

GC excluded GC included

Figure 8: Speedup of a scanning strategy when applied to the Expressions and
Smalltalk parsers.

The impact of the context-sensitive analysis and the push–pop analysis on
performance is visualized in Figure 9. In the case of Ruby and Python, context-
sensitive analysis shows a speedup of 1.5, and push–pop analysis offers a speedup
of 2.5.820

5.6. Smalltalk Case Study

In this case study we compare the performance of a Smalltalk parser com-
piled by a parser compiler (i.e., serving as a baseline) with other implementa-
tions of Smalltalk parsers available in the Pharo environment. All of the parsers
create an identical abstract syntax tree from the given Smalltalk code:825

1. PetitParser is an implementation of a Smalltalk parser in PetitParser.

2. Compiled PetitParser is a version of the above parser compiled with the
PetitParser compiler. This parser serves as a baseline.

3. SmaCC is a scanning table-driven parser compiled by a SmaCC [8] frame-
work from an LALR(1) Smalltalk grammar.830

4. Hand-written parser is a parser used natively by Pharo. It is a hand-
written and optimized parser and uses a scanner. We believe it to be close
to the optimal performance of a hand-written parser as it is heavily used
throughout the system and has therefore been extensively optimized by
Pharo developers.835

30

0

0.5

1

1.5

2

2.5

3

Ruby
Python

S
p
e
e
d
u
p

Speedup of Memoization Strategies

CS Analysis Push-Pop Analysis

Figure 9: The impact of context-sensitive analysis and push–pop analysis on
context-sensitive memoization.

The speedup comparison is shown in Figure 10. The only parser
that can keep up with the compiled version is the hand-written parser, which
is approximately 10% faster. The SmaCC parser is approximately two times
slower, and the original PetitParser is roughly 3.5 times slower. The native
parser’s time per character is 0.27µs, the compiled parser’s time is 0.29µs, the840

SmaCC parser time is 0.59µs, while PetitParser’s time is 1.33µs.

5.7. Time Complexity

In this section we report on the complexity of the parser execution time com-
pared to the input size. As the parser compiler does not modify the underlying
grammar (it only optimizes the parser execution) the complexity of the parser845

does not change. The difference is in the constant overhead. This can be seen
in (i) Figure 11, where compiled Expressions27 simply reduce the exponential
complexity by a constant (compared to its original version), and (ii) Figure 12,
where compiled JSON28 reduces the linear complexity by a constant as well.

6. Discussion and Related Work850

In this section we summarize the limitations of a parser compiler and related
technologies, focusing on the performance of parsers.

27the slowest grammar
28the fastest grammar

31

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

PetitParser Compiled SmaCC Hand-written

S
p
e
e
d
u
p

Parse time of Smalltalk parsers compared to the Compiled Parser

GC included
GC excluded

Figure 10: Performance speedup of Smalltalk parsers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10000 20000 30000 40000 50000

Ti
m

e
 [

m
s]

Input size [bytes]

Expressions Complexity

Compiled Expressions
Expressions

Figure 11: Time to parser Expressions compared to the input size.

6.1. Limitations

The idea of adaptable parsing strategies does not impose any limitations
on the underlying grammar. The worst case scenario is that a parser is not855

optimized at all and its performance remains unchanged. This might happen,
for example, if all of the parser combinators are created on-the-fly, i.e., there is

32

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1M 2M 3M 4M 5M 6M 7M

Ti
m

e
 [

m
s]

Input size [bytes]

JSON Complexity

Compiled JSON
JSON

Figure 12: Time to parse JSON source compared to the input size.

no combinator graph to be analyzed and optimized before parsing starts, or if
none of the combinators can be be specialized.

Another limitation arises when a framework user implements a new combi-860

nator with unknown semantics. In such a case, the analysis framework has to
expect the worst case scenario and use the combinator as is, without optimiza-
tions. It is up to the implementor of the new combinator to extend the analyses
to properly optimize their combinator.

6.2. Extensibility865

Grammar implementors might extend our framework to support their own
parser combinators. This include several steps: (i) extend the first/follow anal-
ysis; (ii) extend the push-pop analysis; (iii) extend abstract simulation analysis;
(iv) add dedicated specializations rules (if applicable) with specialized inter-
mediate nodes; and last but not least (v) write a routine to compile the new870

combinator to Smalltalk code. In practice, this might be complicated, because
the parser compiler architecture has not been especially designed with extensi-
bility in mind.

We consider this to be an engineering issue, with no fundamental obstacles
preventing extensibility. In fact, we have started a new engineering project, Pe-875

titParser2,29 building on our experience with the parser compiler, and which al-
lows for such extensibility. The analyses are implemented in the form of visitors,
which can be easily extended by overriding the default (universal) implemen-

29http://www.webcitation.org/6r063VwVZ

33

http://www.webcitation.org/6r063VwVZ

tation. Furthermore, PetitParser2 itself reports unknown nodes and hotspots
(frequently invoked or memoization intensive combinators). Nevertheless, ex-880

tending the framework is work for experienced users with good knowledge of
PEGs and their analyses.

6.3. Hand-tuning.

Our parser compiler accommodates a use case in which a grammar engineer
notices a potential for optimization even in the generated code. In such a case,885

the engineer can manually tune an arbitrary method generated by the parser
compiler. The compiler remembers the modified method and does not override
the changes made by the engineer. The parser compiler provides basic tooling to
identify frequently executed methods, so that engineers know on which methods
they should focus.890

The disadvantage is that the optimized code does not get updated if the
underlying grammar is changed. Therefore, we recommend this step only in
the final stages of development, when the original grammar is stable. We used
this feature to quickly verify if it is worthwhile to implement a particular op-
timization (e.g., to quickly measure the impact of postponing instantiations of895

collections).

6.4. Future Work

There are several issues we would like to address in the future. Our first
concern is the complexity of the parser compiler. In the current (first) imple-
mentation, analysis and optimization phases have many hidden dependencies,900

are hard to understand, extend and debug. We would like to experiment with
a simplified architecture that can offer reasonably good performance improve-
ments (as we started with PetitParser2, mentioned above).

Furthermore, we would like to make the scanner more universal. Currently
the whole grammar has to be scannable (all input has to be consumed by tokens)905

for the scanner to work with good performance. We would like to investigate
possibilities for integrating a scanner into an arbitrary grammar, using the scan-
ner only for rules that are scannable.

We would like to include ideas of LL(*) to properly guide choices and limit
backtracking as well. Last but not least, there is an interesting and exciting910

question of run-time compilation (instead of our ahead-of-time approach), which
imposes challenges in hot-spot analysis and fast-path compilation.

6.5. Related Work

There has been recent research in Scala parser combinators [41, 39] that
is closely related to our work. The general idea is to perform compile-time915

optimizations to avoid unnecessary overhead of parser combinators at run-time.
In the work Accelerating Parser Combinators with Macros [6] the authors argue
for the use of macros [9] to remove the composition overhead. In Staged Parser
Combinators for Efficient Data Processing [28] the authors use a multi-stage
programming [49] framework LMS [47] to eliminate intermediate data structures920

34

and computations associated with a parser composition. Both works lead to a
significant speedup at least for the analyzed parsers: an HTTP header parser
and a JSON parser.

Similarly to our approach, ahead-of-time optimizations are applied to im-
prove the performance. In our work we implemented a dedicated tool from925

scratch. In contrast, the other approaches use meta-programming to manip-
ulate compiler expression trees to optimize parser combinators. In our work,
we consider several types of domain-based optimizations guided by a need to
produce fast and clean top-down parsers.

While the authors of Accelerating Parser Combinators with Macros report930

throughput of JSON to be 16MB/s, and the authors of Staged Parser Combi-
nators for Efficient Data Processing report throughput of JSON to be 58MB/s,
our tokenized version of JSON parser has throughput of roughly 15MB/s. The
reported performance of JSON parser written in Parboiled 230 is 5MB/s [6, 28].
These numbers show that the performance of parsers produced by parser com-935

piler is comparable to optimized Scala parser combinators, even though the un-
derlying Java VM is considered roughly 3-30x times faster than the Smalltalk
VM.31

Other approaches leading to better combinator performance are memoiza-
tion [17] and Packrat Parsing [15] (which are already used by PetitParser). In940

Efficient combinator parsers [29] Koopman et al. use the continuation-passing
style to avoid intermediate list creation.

In Faster Scannerless GLR parsing [12] the authors apply the Right-Nulled
Generalized LR parsing algorithm (RNGLR) [48, 13] to scannerless parsing [52].
They adapt Scannerless Generalized LR parsing and a filtering algorithm based945

on Farshi’s version of GLR [50].
RNGLR is a recent derivate of Tomita’s GLR algorithm that limits the

cost of non-determinism in GLR. The authors show that using RNGLR for
SGLR is faster on real applications than SGLR, with speedup up to 16% for
mainstream languages such as C, C++, Java and Python. This is a performance950

improvement similar to that we measured when evaluating the impact of the
adaptable scanner in subsection 5.4.

There are table-driven or top-down parser generators such as YACC [26],
SmaCC [8], Bison [37], ANTLR [42] or Happy [21] that provide very good
performance but they do not easily support context-sensitivity. The table-driven955

approaches cannot compete with the peak performance of top-down parsers [43].
Our work is also related to compilers supporting custom DSLs and providing

interfaces for optimizations, especially specializations such as in Truffle [23]. Our
parser compiler also provides specializations for different parsing expressions
resulting in better overall performance.960

30http://www.webcitation.org/6k6195CiS
31http://www.webcitation.org/6rUPEZhDh

35

http://www.webcitation.org/6k6195CiS
http://www.webcitation.org/6rUPEZhDh

7. Conclusion

In this work we investigate the idea of using adaptable parsing strategies
to optimize the performance of parser combinators. As a proof of concept, we
present a parser compiler — an ahead-of-time source-to-source optimizer for
PetitParser. The speedup of parsers produced by the parser compiler ranges965

from a factor of two to four for context-free grammars and ten to twenty for
context-sensitive grammars. The parser compiler does not impose any restric-
tions on the underlying grammars and preserves the advantages and flexibility
of parser combinators. Based on our Smalltalk case study, the parser compiler
provides two times better performance than a table-driven parser compiled by970

SmaCC, and approximately 10% worse performance than a hand-written opti-
mized parser that uses a scanner.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Sci-
ence Foundation for the project “Agile Software Analysis” (SNSF project No.975

200020-162352, Jan 1, 2016 - Dec. 30, 2018).

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation
of computer programs. MIT electrical engineering and computer science
series. McGraw-Hill, 1991.

[2] M. D. Adams and O. S. Ağacan. Indentation-sensitive parsing for Parsec. In980

Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell’14,
pages 121–132, New York, NY, USA, 2014. ACM.

[3] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and
Compiling Volume I: Parsing. Prentice-Hall, 1972.

[4] A. V. Aho and J. D. Ullman. Principles of Compiler Design (Addison-985

Wesley Series in Computer Science and Information Processing). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1977.

[5] R. C. Backhouse. Syntax of Programming Languages: Theory and Practice.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1979.

[6] E. Béguet and M. Jonnalagedda. Accelerating parser combinators with990

macros. In Proceedings of the Fifth Annual Scala Workshop, SCALA ’14,
pages 7–17, New York, NY, USA, 2014. ACM.

[7] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and M. Denker.
Pharo by Example. Square Bracket Associates, 2009.

[8] J. Brant and D. Roberts. SmaCC, a Smalltalk Compiler-Compiler.995

http://www.refactory.com/Software/SmaCC/.

36

[9] E. Burmako. Scala macros: Let our powers combine!: On how rich syntax
and static types work with metaprogramming. In Proceedings of the 4th
Workshop on Scala, SCALA ’13, pages 3:1–3:10, New York, NY, USA,
2013. ACM.1000

[10] H. Christiansen. Adaptable grammars for non-context-free languages. In
J. Cabestany, F. Sandoval, A. Prieto, and J. Corchado, editors, Bio-Inspired
Systems: Computational and Ambient Intelligence, volume 5517 of Lecture
Notes in Computer Science, pages 488–495. Springer Berlin Heidelberg,
2009.1005

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[12] G. Economopoulos, P. Klint, and J. Vinju. Compiler Construction: 18th
International Conference, CC 2009, Held as Part of the Joint European1010

Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, chapter Faster Scannerless GLR Parsing,
pages 126–141. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[13] G. R. Economopoulos. Generalised LR parsing algorithms. PhD thesis,
University of London, 2006.1015

[14] R. I. Fabio Mascarenhas, Sérgio Medeiros. On the relation between context-
free grammars and parsing expression grammars. CoRR, abs/1304.3177,
2013.

[15] B. Ford. Packrat parsing: simple, powerful, lazy, linear time, functional
pearl. In ICFP 02: Proceedings of the seventh ACM SIGPLAN interna-1020

tional conference on Functional programming, volume 37/9, pages 36–47,
New York, NY, USA, 2002. ACM.

[16] B. Ford. Parsing expression grammars: a recognition-based syntactic foun-
dation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 111–122, New1025

York, NY, USA, 2004. ACM.

[17] R. A. Frost and B. Szydlowski. Memoizing purely functional top-down
backtracking language processors. Science of Computer Programming,
27(3):263–288, Nov. 1996.

[18] E. Gamma. Extension object. In Pattern languages of program design 3,1030

pages 79–88. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[19] D. Grune and C. J. Jacobs. Parsing Techniques — A Practical Guide,
chapter 8: Deterministic Top-Down Parsing, pages 235–361. Volume 1 of
Parsing Techniques — A Practical Guide [20], 2008.1035

37

[20] D. Grune and C. J. Jacobs. Parsing Techniques — A Practical Guide.
Springer, 2008.

[21] Happy — the parser generator for Haskell, 2010. http://tfs.cs.tu-
berlin.de/agg/index.html.

[22] A. Hindle, M. W. Godfrey, and R. C. Holt. Reading beside the lines: In-1040

dentation as a proxy for complexity metrics. In ICPC ’08: Proceedings
of the 2008 The 16th IEEE International Conference on Program Com-
prehension, pages 133–142, Washington, DC, USA, 2008. IEEE Computer
Society.

[23] C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A domain-1045

specific language for building self-optimizing AST interpreters. SIGPLAN
Not., 50(3):123–132, Sept. 2014.

[24] G. Hutton and E. Meijer. Monadic parser combinators. Technical Re-
port NOTTCS-TR-96-4, Department of Computer Science, University of
Nottingham, 1996.1050

[25] ISO. Information technology – syntactic metalanguage – Extended
BNF. ISO 14997, International Organization for Standardization, Geneva,
Switzerland, 1996.

[26] S. Johnson. Yacc: Yet another compiler compiler. Computer Science Tech-
nical Report #32, Bell Laboratories, Murray Hill, NJ, 1975.1055

[27] S. P. Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

[28] M. Jonnalagedda, T. Coppey, S. Stucki, T. Rompf, and M. Odersky. Staged
parser combinators for efficient data processing. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems1060

Languages & Applications - OOPSLA ’14, pages 637–653, New York, New
York, USA, 2014. ACM Press.

[29] P. Koopman and R. Plasmeijer. Efficient combinator parsers. In In Im-
plementation of Functional Languages, LNCS, pages 122–138. Springer-
Verlag, 1998.1065

[30] J. Kurš. Parsing For Agile Modeling. PhD thesis, University of Bern, Oct.
2016.

[31] J. Kurš, G. Larcheveque, L. Renggli, A. Bergel, D. Cassou, S. Ducasse,
and J. Laval. PetitParser: Building modular parsers. In Deep Into Pharo,
page 36. Square Bracket Associates, Sept. 2013.1070

[32] J. Kurš, M. Lungu, R. Iyadurai, and O. Nierstrasz. Bounded seas. Com-
puter Languages, Systems & Structures, 44, Part A:114 – 140, 2015. Special
issue on the 6th and 7th International Conference on Software Language
Engineering (SLE 2013 and SLE 2014).

38

[33] J. Kurš, M. Lungu, and O. Nierstrasz. Top-down parsing with parsing con-1075

texts. In Proceedings of International Workshop on Smalltalk Technologies
(IWST 2014), 2014.

[34] J. Kurš, J. Vraný, M. Ghafari, M. Lungu, and O. Nierstrasz. Optimizing
parser combinators. In Proceedings of International Workshop on Smalltalk
Technologies (IWST 2016), pages 1:1–1:13, 2016.1080

[35] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004.
IEEE Computer Society.1085

[36] M. Lesk and E. Schmidt. Lex — A lexical analyzer generator. Computer
Science Technical Report #39, Bell Laboratories, Murray Hill, NJ, 1975.

[37] J. Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, 2009.

[38] L. Moonen. Generating robust parsers using island grammars. In E. Burd,
P. Aiken, and R. Koschke, editors, Proceedings Eighth Working Confer-1090

ence on Reverse Engineering (WCRE 2001), pages 13–22. IEEE Computer
Society, Oct. 2001.

[39] A. Moors, F. Piessens, and M. Odersky. Parser combinators in Scala. Tech-
nical report, Department of Computer Science, K.U. Leuven, Feb. 2008.

[40] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of Moose: an agile1095

reengineering environment. In Proceedings of the European Software En-
gineering Conference (ESEC/FSE’05), pages 1–10, New York, NY, USA,
Sept. 2005. ACM Press. Invited paper.

[41] M. Odersky. Scala language specification v. 2.4. Technical report, École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, Mar.1100

2007.

[42] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator.
Software Practice and Experience, 25:789–810, 1995.

[43] T. J. Pennello. Very fast LR parsing. SIGPLAN Not., 21(7):145–151, July
1986.1105

[44] R. R. Redziejowski. Applying classical concepts to parsing expression gram-
mar. Fundam. Inf., 93(1-3):325–336, Jan. 2009.

[45] d. S. Reis, L. Vieira, d. S. Bigonha, Roberto, D. Iorio, V. Oliveira,
de Souza Amorim, and L. Eduardo. Adaptable parsing expression gram-
mars. In F. de Carvalho Junior and L. Barbosa, editors, Programming1110

Languages, volume 7554 of Lecture Notes in Computer Science, pages 72–
86. Springer Berlin Heidelberg, 2012.

39

[46] L. Renggli, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Practical dynamic
grammars for dynamic languages. In 4th Workshop on Dynamic Languages
and Applications (DYLA 2010), pages 1–4, Malaga, Spain, June 2010.1115

[47] T. Rompf and M. Odersky. Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled dsls. In Proceedings of
the Ninth International Conference on Generative Programming and Com-
ponent Engineering, GPCE ’10, pages 127–136, New York, NY, USA, 2010.
ACM.1120

[48] E. Scott and A. Johnstone. Right nulled glr parsers. ACM Trans. Program.
Lang. Syst., 28(4):577–618, July 2006.

[49] W. Taha. A gentle introduction to multi-stage programming. In Domain-
Specific Program Generation, pages 30–50, 2003.

[50] M. Tomita. Generalized LR Parsing. Springer US, 2012.1125

[51] E. Visser. A family of syntax definition formalisms. Technical Report
P9706, Programming Research Group, University of Amsterdam, jul 1997.

[52] E. Visser. Scannerless generalized-LR parsing. Technical Report P9707,
Programming Research Group, University of Amsterdam, July 1997.

[53] P. Wadler. Monads for functional programming. In J. Jeuring and E. Mei-1130

jer, editors, Advanced Functional Programming, volume 925 of LNCS.
Springer-Verlag, 1995.

[54] P. R. Wilson. Uniprocessor garbage collection techniques, 1992.

[55] N. Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions? Commun. ACM, 20(11):822–823, 1977.1135

A. Parsing Expression Grammars

Parsing expression grammars (PEGs), developed by Ford [16], offer an al-
ternative, recognition-based formal foundation for language syntax. PEGs are
stylistically similar to CFGs with regular expression-like features resembling Ex-
tended Backus-Naur Form (EBNF) notation [55, 25]. The key difference is that1140

in place of the unordered choice operator | used to indicate alternative expan-

sions for a non-terminal in EBNF, PEGs use the prioritized choice operator / .

This operator lists alternative patterns to be tested in order, unconditionally
using the first successful match. The EBNF rules

1145

A → a b | a
A → a | a b

are equivalent in CFGs, but the PEG rules

40

1150

A ← a b / a
A ← a / a b

are different. The second alternative in the latter PEG rule will never succeed
because the first choice is always taken if the input string to be recognized begins1155

with ’a’ .
A PEG may be viewed as a formal description of a top-down parser. PEGs

are more syntactically expressive than the LL(k) language class typically asso-
ciated with top-down parsers and can express all deterministic LR(k) languages
and many others, including some context-sensitive languages. All PEGs can be1160

parsed in linear time using a memoizing packrat parser [15].

Operator Description

′ ′ Literal string

[] Character class

• Any Character

e? Optional
e∗ Zero or more
e+ One or more

&e And-predicate

!e Not-predicate
e1 e2 Sequence

e1/e2 Prioritized Choice

. Indent
/ Dedent

Table A.1: PEG operators

The set of operators used to express PEG definitions is in Table A.1. An ex-
ample of a definition describing identifiers can be seen in Listing A.1. Table A.1
is extended with two context-sensitive operators: indent and dedent. They are
part of our context-sensitive extension of parsing expression grammars based on1165

parsing contexts [33].

id ← idStart idCont* spacing
idStart ← [a-zA-Z]
idCont ← idStart / [0-9]1170

spacing ← space*
space ← ’ ’ / ’\t’ / ’\n’ / ’\r\n’ / ’\r’

Listing A.1: Example of a PEG definition

The PEG syntax resembles EBNF. In addition to (i) prioritized choice / ,

the differences are (ii) syntactic predicates ! and & , and (iii) non-terminal1175

41

assignment ← instead of → . The semantics are also similar, yet with im-
portant differences: (i) PEGs use the PEG formalism (instead of regular ex-
pressions) to describe the lexical syntax, (ii) choice is prioritized (ordered), and
(iii) repetitions are greedy. The unified syntax frees lexical elements from the re-
strictions of regular languages (e.g., a language engineer can express Pascal-like1180

nested comments as tokens).32 Moreover prioritized choices, greedy repetitions
and syntactic predicates allow one to express disambiguation meta-rules on the
grammar definition level (e.g., syntax of lambda abstractions, let expres-
sions and conditionals in Haskell [27], which are ambiguous in CFGs and have
to be disambiguated by the longest-match meta-rule).1185

Definition A.1. (Layout-Sensitive Parsing Expression Grammar (LS-PEG))
A layout-sensitive parsing expression grammar is a 4-tuple G = (N,Σ, R, es)
where N is a finite set of nonterminals, Σ is a finite set of terminal symbols,
R is a finite set of rules, es is a starting expression. Each rule r ∈ R is a pair
(A, e) which we write A ← e, A ∈ N and e is a parsing expression. Parsing1190

expressions (PEs) are defined inductively; if e1, e2 are parsing expressions, then
so is:

• ε , an empty string

• ’t+’ , any literal, t ∈ Σ

• [t+] , any character class, t ∈ Σ1195

• A , any nonterminal, A ∈ VN

• e1e2 , a sequence

• e1/e2 , a prioritized choice

• e∗ , zero-or-more repetitions

• !e , a not-predicate1200

• . , an indent

• / , a dedent

Definition A.2 (PEG Semantics). To formalize the semantics of a layout-
sensitive grammar G = (N,Σ, R, es), we extend the standard semantics of PEGs1205

(defined by Ford [16]) as follows: input is a triple (e, x, Sin) (expression, input,
stack), output is a triple (o, y, Sout) (output, suffix, new stack), where (i) e is

32e.g., (* this is (* a nested comment *) which continues here *)

42

a parsing expression, (ii) x ∈ Σ∗ is an input string to be recognized, (iii) S is
an indentation stack of indentation levels in : ... : i2 : i1 : [], (iv) [] denotes an
empty stack, (v) i1 is the bottom element, (vi) in is the top element, (vii) ((i:S))1210

denotes a stack S with i on top, (viii) o ∈ Σ∗ ∪ {f} indicates the result of a
recognition attempt, and (ix) the distinguished symbol f 6∈ Σ indicates failure.
The function col(x) returns column on which the string x begins.

Empty: x ∈ Σ∗

(ε, x, S)⇒ (x, ε, S)
1215

Terminal
(success case):

a ∈ Σ, x ∈ Σ∗

(a, ax, S)⇒ (x, a, S)

Terminal
(failure case):

a 6= b, (a, ε, S)⇒ (a, f, S)

(a, bx, S)⇒ (bx, f, S)

Nonterminal: A← e ∈ R (e, x, S)⇒ (y, o, S′)

(A, x, S)⇒ (y, o, S′)
1220

Sequence
(success case):

(e1, x, S)⇒ (y1, o1, S1)
(e2, y1, S1)⇒ (y2, o2, S2)

(e1e2, x, S)⇒ (y2, o1o2, S2)

Sequence
(failure 2):

(e1, x, S)⇒ (x, f, S)

(e1e2, x, S)⇒ (x, f, S)

Sequence
(failure 2):

(e1, x, S)⇒ (y, o, S1)
(e2, y, S1)⇒ (y, f, S1)

(e1e2, x, S)⇒ (x, f, S)

1225

Alternation
(case 1):

(e1, x, S)⇒ (y, o, S′)

(e1/e2, x, S)⇒ (y, o, S′)

Alternation
(case 2):

(e1, x, S)⇒ (x, f, S)
(e2, x, S)⇒ (y, o, S′)

(e1/e2, x, S)⇒ (y, o, S′)
1230

Repetitions
(repetition):

(e, x, S)⇒ (y1, o1, S1)
(e∗, y1, S1)⇒ (y2, o2, S2)

(e∗, x, S)⇒ (y2, o1o2, S2)

Repetitions
(termination):

(e, x, S)⇒ (x, f, S)

(e∗, x, S)⇒ (x, ε, S)

43

Not predicate
(success):

(e, x, S)⇒ (y, o, S′)

(!e, x, S)⇒ (x, f, S)
1235

Not predicate
(failure):

(e, x, S)⇒ (x, f, S)

(!e, x, S)⇒ (x, ε, S)

Indent
(success):

i = col(x) i > i′

(., x, (i′ :S))⇒ (x, ε, (i:(i′ :S)))
1240

Indent
(failure):

col(x) <= i′

(., x, (i′ :S))⇒ (x, ε, (i′ :S))

Dedent
(success):

j = col(x) j = i′

(., x, (i:(i′ :S)))⇒ (x, ε, (i′ :S))

Dedent
(failure):

j = col(x) j 6= i′

(., x, (i:(i′ :S)))⇒ (x, ε, (i:(i′ :S)))
1245

Syntactic sugar. The following expressions are syntactic sugar and can be ex-

pressed as follows: (i) an optional expression e? is equivalent to e/ε , (ii) one

or more repetitions e+ is equivalent to ee∗ , and (iii) a character class is1250

equivalent to a choice of one-character literals ′a′/′b′/′c′/... .

Reductions of repetitions. As in CFGs, repetition expressions can be eliminated
from a PEG by converting them into right-recursive nonterminals [16]. If ex-
pression e in repetiton e∗ accepts ε, the nonterminal is left-recursive and cannot
be handled by PEGs in general. To simplify our definitions we treat repetitions1255

as a possibly infinite sequence of the same expression.

Parsing Expression Languages. Expression e accepts a string x if ∃(e, x,) ⇒+

(ε, x,). Expression e succeeds on a string xy if ∃(e, xy,)⇒+ (y, x,).

Definition A.3. (Parsing Expressions Languages (PELs)) Parsing expression
language L(e) (as defined by Ford) of a parsing expression e over the alphabet
Σ is the set of strings x ∈ Σ∗ for which the e succeeds on x:

L(e) = {xy | (e, x,)⇒+ (y, x,)}

Note that in this definition, e does not need to consume all of xy , since1260

even partially consumed strings are in the language. For example a language
for a trivial expression a contains all the strings with ’a’ as a prefix.

44

A.1. Regular Parsing Expressions

The traditional parsing technology is built on top of context-free grammars
(CFGs) and their subset, regular expressions (REs), which are equivalent to1265

FSAs. In this work, we focus on a PEG parsing technology and consequently
we introduce a subset of parsing expressions, regular parsing expressions, which
can be recognized by FSAs.

Definition A.4 (Regular Parsing Expressions (RPEs)). A regular parsing ex-
pression (RPE) is a parsing expression that can be recognized by a finite state1270

automaton.

Note that it is not trivial to recognize which parsing expressions are recogniz-
able by FSAs and which are not. Consider the rather simple parsing expression

(′PetitParser′/′Petit′)′P′ . The language L of this expression looks like this:

L((′PetitParser′/′Petit′)′P′) =

’PetitP’

’PetitPa’
...

’PetitParse’

’PetitParserP’
...

Note that the string ’PetitParser’ (or any string starting with

’PetitParser’ and not followed by ’P’) is not in the language even

though other strings starting with ’Petit’ are in the language. Such cases
have to be carefully checked, because they cannot be expressed with traditional1275

FSAs.
To be able to use traditional FSAs, we consider regular parsing expression

such parsing expressions that satisfy the following two properties:

1. An expression e cannot refer to itself, e.g., A← aAa.33

2. If a parsing expression e accepts x, e also accepts any string xy (x being1280

its prefix).

A.2. PEG Analysis

For the parser compiler optimizations, we would like to analyze the behavior
of a particular grammar over arbitrary input strings. While many interesting
properties of PEGs are undecidable in general, conservative analysis proves use-1285

ful and adequate for many grammar optimizations as demonstrated in section 5.

33Note that A← aA can be expressed as a∗

45

A.2.1. First Set

The first set from traditional parsing theory [20, pp. 235-361] can be com-

puted even for PEs [44]. For example, any character in the [a− zA− Z] char-

acter class is in the first set of id (see Listing A.1). We provide the formal1290

definition of the first set for PEGs used in this work in Definition A.5. The first
set can be used to optimize superfluous invocations, for example, to fail id

directly if the peek character of the input is not a letter avoiding a superfluous
invocation of the underlying sequence of idStart , idCont∗ and spacing .

The following first set analysis is used to optimize choices of parsing expres-1295

sions (see subsection 4.2):

Definition A.5 (First Set). We define the first set FIRST(e) of an expression
e as a set of expressions such that:

Nonterminal a ∈ Σ
FIRST(a) = {a}

1300

Empty String

FIRST(ε) = {ε}

Sequence
(case 1):

ε 6∈ FIRST(e1)

FIRST(e1e2) = FIRST(e1)

Sequence
(case 2):

ε ∈ FIRST(e1)

FIRST(e1e2) = FIRST(e1) ∪ FIRST(e2)
1305

Choice

FIRST(e1/e2) = FIRST(e1) ∪ FIRST(e2)

Repetition

FIRST(e∗) = FIRST(e) ∪ {ε}
1310

Not Predicate
case 1

ε 6∈ FIRST(e)

FIRST(!e) = {!f1 !f2 . . . !fn | fi ∈ FIRST(e)}

Not Predicate
case 2

ε ∈ FIRST(e)

FIRST(!e) = {}

Indent

FIRST(.) = {.}1315

Dedent

FIRST(/) = {/}

46

A.2.2. Abstract Simulation1320

Furthermore, PEs can be interpreted abstractly to decide if an expression
can accept an empty string, can succeed on some string, or can fail on some
string. For example, idCont can succeed on some input, e.g., ’a’ . It can
also fail on some input, e.g., ’*’ and it can never accept an empty string ε .

On the other hand, idCont∗ can succeed on some input, e.g., ’a’ and cannot1325

fail on any input because it can accept ε . Because an abstract simulation does
not depend on the input string, and there is a finite number of expressions in
a grammar, we can compute an abstract simulation over any grammar [16].
We provide the formal definition of an abstract simulation in Definition A.6.
The abstract simulation can be used to optimize superfluous memoization, for1330

example, to omit memoization before parsing idCont∗ because, based on the

abstract simulation, idCont∗ cannot fail and the created memento is therefore
never used.

Definition A.6 (Abstract Simulation). We define a relation ⇀ consisting of
pairs (e, o), where e is an expression and o ∈ {0, 1, f}. If e ⇀ 0, then e can1335

succeed on some input string while consuming no input. If e ⇀ 1, then e can
succeed on some input string while consuming at least one terminal. If e ⇀ f ,
then e may fail on some input string. We will use variable s to represent an
abstract result of either 0 or 1. We will define the simulation relation ⇀ as
follows:1340

1. ε ⇀ 0.

2. (a) t ⇀ 1, t ∈ T .

(b) t ⇀ f , t ∈ T .

3. A ⇀ o if e ⇀ o and A← e is a rule of the grammar G.

4. (a) e1e2 ⇀ 0 if e1 ⇀ 0 and e2 ⇀ 0.1345

(b) e1e2 ⇀ 1 if e1 ⇀ 1 and e2 ⇀ s.

(c) e1e2 ⇀ 1 if e1 ⇀ s and e2 ⇀ 1.

(d) e1e2 ⇀ f if e1 ⇀ f

(e) e1e2 ⇀ f if e1 ⇀ s and e2 ⇀ f .

5. (a) e1/e2 ⇀ 0 if e1 ⇀ 01350

(b) e1/e2 ⇀ 1 if e1 ⇀ 1

(c) e1/e2 ⇀ o if e1 ⇀ f and e2 ⇀ o.

6. (a) e∗⇀ 1 if e ⇀ 1

(b) e∗⇀ 0 if e ⇀ f

47

7. (a) !e ⇀ f if e ⇀ s1355

(b) !e ⇀ 0 if e ⇀ f

8. (a) . ⇀ 0

(b) . ⇀ f

9. (a) / ⇀ 0

(b) / ⇀ f1360

Nullable and accepts epsilon analyses are used in a parser compiler to reduce
the overhead of backtracking. There can be different definitions of nullability [5,
14]; we define nullability with the help of abstract simulation:

Definition A.7 (Nullable Expression). We call an expression e nullable, if

e ⇀ 0 ∧ e 6⇀ f

1365

In other words, e is nullable if it can succeed on some input string while
consuming no input and cannot fail. For example, zero or more repetitions of
a Ruby class (class∗) is a nullable expression. A repetition accepts an empty
string (zero repetitions are allowed) and it never fails.

Definition A.8 (Accepts Epsilon). We say that an expression e accepts epsilon,
if

e ⇀ 0

1370

In other words, e accepts epsilon if it can succeed on some input string while
consuming no input. For example, the start of a line ˆ accepts epsilon. If
invoked in start of a line position, it succeeds while consuming no input, but it
can also fail when in other positions.

A.2.3. Push-Pop Analysis1375

Push–pop analysis shows how a particular expression changes a stack in a
context. Based on the push–pop analysis, there are four possible outputs:

1. If an expression e does not modify the stack, the result is 0 . This is the
case for standard parsing expressions.

2. If an expression e pushes to a stack, the result is O .1380

3. If an expression e pops from a stack, the result is M .

4. If an expression modifies a stack in some other way, e.g., M∗ , which pops
all the elements from a stack and we don’t know how many elements are
popped, the result of the push–pop analysis is 1 .

48

The formal definition of the push–pop analysis is in Definition A.9.1385

Definition A.9 (Push–pop analysis). We define a push–pop relation ↪→ con-
sisting of triples (e, S, o), where e is an expression, S is a stack in a parsing
context and o ∈ {0,O,M, 1}. If e ↪→

S
0, then e does not modify the stack S. If

e ↪→
S
O, then e pushes an element to the stack S. If e ↪→

S
M, then e pops an

element from the stack S. If e ↪→
S

1, then e modifies the stack S in some other1390

way than push or pop. We define the push-pop relation ↪→ as follows:

1. ε ↪→
S

0.

2. t ↪→
S

0, t ∈ T .

3. . ↪→
S
O

4. / ↪→
S
M1395

5. (a) e1e2 ↪→S
0 if e1 ↪→S

0 and e2 ↪→S
0.

(b) e1e2 ↪→S
0 if e1 ↪→S

O and e2 ↪→S
M.

(c) e1e2 ↪→S
O if e1 ↪→S

O and e2 ↪→S
0.

(d) e1e2 ↪→S
O if e1 ↪→S

0 and e2 ↪→S
O.

(e) e1e2 ↪→S
M if e1 ↪→S

M and e2 ↪→S
0.1400

(f) e1e2 ↪→S
M if e1 ↪→S

0 and e2 ↪→S
M.

(g) e1e2 ↪→S
1 otherwise

6. (a) e1/e2 ↪→S
0 if e1 ↪→S

0 and e2 ↪→S
0

(b) e1/e2 ↪→S
O if e1 ↪→S

O and e2 ↪→S
O

(c) e1/e2 ↪→S
M if e1 ↪→S

M and e2 ↪→S
M1405

(d) e1/e2 ↪→S
1 otherwise

7. (a) e∗ ↪→
S

0 if e ↪→
S

0

(b) e∗ ↪→
S

1 otherwise

8. !e ↪→ 0

9. k(e) ↪→ o if e ↪→
S
o1410

As a practical example, consider the body rule from Listing 1:

heredoc ← #indent
(method / class)*1415

#dedent

The indent and dedent rules are push O and pop M respectively. The

whole body sequence does not change the context, because the initial push in

the rule indent is reverted by the last pop in dedent .1420

49

B. PetitParser

In this section we discuss in detail the implementation of PetitParser. Petit-
Parser is implemented in Pharo Smalltalk,34 Smalltalk/X,35 Java36 and Dart.37

PetitParser uses an internal DSL similar to a standard PEG syntax as briefly
described in Table B.2.1425

Operator Description

′ ′ Literal string

[] Character class

[] negate Complement of a character class

#letter Characters [a-zA-Z]

#digit Characters [0-9]

#space Characters [\t\n]

#indent Python-like indent

#dedent Python-like dedent

e? Optional
e∗ Zero or more
e+ One or more

&e And-predicate

!e Not-predicate
e1 e2 Sequence

e1/e2 Prioritized Choice

e token Trim spacing and build a token

e map : action Semantic Action

Table B.2: PetitParser operators

Parsing Contexts. Parser combinator frameworks are very flexible, allowing for
modifications of a parser combinator graph itself. This gives them the ex-
pressiveness of context-free formalisms. Context-sensitivity facilitates grammar
adaptability [45, 10] or adaptation of other of contextual information — parsing
contexts [33] in the case of PetitParser.1430

A parsing context is a list of stacks that (i) can be used to steer a parser’s
decisions, (ii) can be manipulated via push and pop operators, and (iii) allow
context-sensitive restrictions to be expressed.

34http://smalltalkhub.com/#!/˜Moose/PetitParser
35http://www.webcitation.org/6k62sGRlg
36http://www.webcitation.org/6k62uAxHz
37http://www.webcitation.org/6k62vRsWA

50

http://smalltalkhub.com/#!/~Moose/PetitParser
http://www.webcitation.org/6k62sGRlg
http://www.webcitation.org/6k62uAxHz
http://www.webcitation.org/6k62vRsWA

Parsing contexts are used by the #indent and #dedent combinators (see

the implementation in Listing B.6 and Listing B.7 in subsection B.1). Whenever1435

#indent or #dedent is recognized, the indentation stack in context is
accessed and a new column is pushed or popped.

Parser Invocation. When a root parser is asked to attempt a parse on an input,
(i) context is created, (ii) parseOn: context is called on the root

parser, and (iii) the result of this call is returned. During an invocation, parser1440

combinators delegate their work to the underlying combinators.
As an example, consider an Action parser (its implementation is in List-

ing B.2) used in the class . The underlying parser (i.e., a sequence of

classToken , idToken and body) is invoked and its result is evaluated by

the block. In case the underlying parser fails, a failure result is returned imme-1445

diately without evaluating the block.

Backtracking and Memoization. PetitParser uses backtracking. Thanks to the
backtracking capabilities, a top-down combinator-based parser is not limited to
LL(k) grammars [3], and handles unlimited lookahead.

In PetitParser, before a possible backtracking point, the current context is1450

remembered in a Memento instance. In case a decision turns out to be a wrong
one, the context is restored from the memento. The same memento is used
when memoizing the result of a parse attempt (to allow for packrat parsing).

A dedicated Memoizing parser combinator creates a memento, performs the
parse attempt and stores the memento-result pair into a buffer. Later, if the1455

memoizing parser is invoked again and a memento is found in the buffer, the
result is returned directly.

Creating a memento of a context-free parser is easy: it stores the current
position in the input stream. However, for context-sensitive parsers, a memento
holds a deep copy of the whole context [33], e.g., for layout-sensitive grammars1460

it is a position in the input stream together with a copy of the indentation stack
(see Listing B.11 in subsection B.1).

To understand how PetitParser backtracks, consider the sequence of ′class′

and &#space in classToken (the Sequence parser implementation is

in Listing B.8 in subsection B.1). If the parsed input is not the class keyword1465

(e.g., ’classifier’) the first rule ′class′ consumes ’class’ and in-

creases the position by five and the second rule &#space fails. The sequence

restores the position into the original state before ’class’ and returns a fail-
ure. Note that in PetitParser a parser returning a failure from parseOn: is
responsible for restoring the context to its initial state, i.e., as it was on the1470

parseOn: invocation.

Trimming and Tokenization. Because PetitParser is scannerless [52], a dedi-
cated TokenParser is at hand to deal with whitespaces. It trims the whites-
paces (or comments if specified) from input before and after a parse attempt.

51

ActionParser>>parseOn: context
| result |
"evaluate the underlying combinator"
result ← child parseOn: context.
"return if failure"
result isFailure ifTrue: [↑ result]

"evaluate block with result as an argument"
↑ block withArguments: result

Listing B.2: Implementation of ActionParser .

AndPredicateParser>>parseOn: context
| memento |
memento ← context remember.
result ← parser parseOn: context.
context restore: memento.
↑ result isFailure ifTrue: [

↑ result
] ifFalse: [

↑ nil
]

Listing B.3: Implementation of AndPredicate .

As a result a Token instance is returned holding the parsed string and its1475

start and end positions. As an example, consider the classToken rule, which

(when provided with the ’class’ input) returns an instance of Token with

start and stop positions and ’class’ as a value (see Listing B.10 in subsec-
tion B.1).

B.1. Implementation of Combinators1480

In this section we provide an implementation of all the combinators men-
tioned in this work to help the reader better understand the overhead of a
combinator library.

CharClassParser>>parseOn: context
(context atEnd not and:
[charClass includes: context peek]) ifTrue: [
↑ context next

] ifFalse: [
↑ PPFailure message: ’Character not expected’

]

Listing B.4: Implementation of CharClassParser .

52

ChoiceParser>>parseOn: context
| result |
self children do: [:child |

result ← child parseOn: context.
result isSuccess ifTrue: [

↑ result
]

].
↑ result

Listing B.5: Implementation of ChoiceParser .

IndentParser>>parseOn: context
| memento lastIndentation indentation |
memento ← context remember.
self consumeWhitespace.
lastIndentation ← context indentationStack top.
indentation ← context column.
(lastIndentation < indentation) ifTrue: [

context indentationStack push: indentation.
↑ #indent

] ifFalse: [
context restore: memento.
↑ Failure message: ’No indent found’

]

Listing B.6: Implementation of Indent .

DedentParser>>parseOn: context
| memento lastIndentation indentation |
memento ← context remember.
self consumeWhitespace.
lastIndentation ← context indentationStack top.
indentation ← context column.
(lastIndentation >= indentation) ifTrue: [

context indentationStack pop.
↑ #dedent

] ifFalse: [
context restore: memento.
↑ Failure message: ’No dedent found’

]

Listing B.7: Implementation of Dedent .

53

SequenceParser>>parseOn: context
| memento retval result |
retval ← OrderedCollection new.
"memoize"
memento ← context remember.
children do: [:child |

"evaluate an underlying child"
result ← child parseOn: context.
"restore and return if failure"
result isFailure ifTrue: [

context restore: memento
↑ result

].
retval add: result

].
↑ retval

Listing B.8: Implementation of SequenceParser .

StarParser>>parseOn: context
| retval result |
retval ← OrderedCollection new.
[

result ← child parseOn: context.
result isSuccess

] whileTrue: [
retval add: result

]
↑ retval

Listing B.9: Implementation of StarParser .

TokenParser>>parseOn: context
| memento result |
memento ← context remember.
whitespace parseOn: context.
result ← parser parseOn: context.

result isFailure ifTrue: [
context restore: memento
↑ result

].
whitespace parseOn: context.

↑ Token new
value: result flatten;
start: memento position;
end: context position

Listing B.10: Implementation of TokenParser .

54

Context>>remember
↑ Memento new

position: position
stacks: stacks deepCopy

Context>>restore: memento
self position: memento position

stacks: stacks deepCopy

Listing B.11: Implementation of Context remember and restore.

55

	Introduction
	Motivating Example
	Parser Combinators in PetitParser
	Composition Overhead
	Superfluous Intermediate Objects
	Backtracking Overhead
	Context-Sensitivity Overhead

	A Parser Combinator Compiler
	Adaptable Strategies
	Adaptable Scanner

	Parser Optimizations
	Regular Optimizations
	Regular Parsing Expressions
	Specializations
	Recognizers

	Context-Free Optimizations
	Deterministic choices
	Nondeterministic choices

	Context-Sensitive Optimizations
	Context-Sensitive Parsing Expressions
	Context-Free Memoization
	Combinators

	Performance analysis
	PetitParser Compiler
	Benchmarks
	Performance Details
	Scanner Impact
	Memoization Impact
	Smalltalk Case Study
	Time Complexity

	Discussion and Related Work
	Limitations
	Extensibility
	Hand-tuning.
	Future Work
	Related Work

	Conclusion
	Parsing Expression Grammars
	Regular Parsing Expressions
	PEG Analysis
	First Set
	Abstract Simulation
	Push-Pop Analysis

	PetitParser
	Implementation of Combinators

