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Abstract

A software system may become very large during its evolution, getting less maintain-
able while its complexity rises. Since replacing the system with a new one is often out
of question because of economic considerations, reengineering techniques are being
developed to change the system into a form which makes it easier to maintain and to
further develop. However, before a system can be reengineered, it has to be reverse
engineered in order to understand its nature and inner logic.

This work deals with a lightweight approach to software reverse engineering com-
bining simple graphs with simple object oriented metrics. Our goal is to obtain a simple
and scalable graphical display of a system and its parts through which we succeed to
visually extract information, which is useful to the understanding of the system and the
detection of its design problems.

The primary goal of this work is to put up a repository of combinations of graphs
and metrics which are useful to reverse engineer an object oriented system. To validate
our approach we implemented a tool called CodeCrawler, which can graphically dis-
play source code while providing a layer of interactivity to the user: we use the term
navigating the code.

We ran CodeCrawler on two Smalltalk case studies and one large industrial case
study written in C++. The positive experiences and reactions which we obtained are a
proof of the usefulness of our idea.
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Chapter 1

Introduction

“While the benefits of object-oriented technology are widely recognised,
the indiscriminate use of object-oriented mechanisms and weaknesses in
analysis and design methods are rapidly leading to a new generation of
inflexible legacy systems.”[CASA 98]

The ability to reverse engineer object-oriented legacy systems has become a vital mat-
ter in today’s software industry. Early adopters of the object-oriented programming
paradigm are now facing the problem of transforming their object-oriented legacy sys-
tems into full-fledged frameworks, hence need to understand the inner workings of
their legacy systems and identify potential design anomalies. However, since legacy
systems tend to be big –hundreds of thousands lines of poorly documented code are
not an exception– there is a definite need for approaches providing a fast overview and
focusing on the problematic parts.

Among the various approaches that exist today, two seem very interesting for large
scale reverse engineering:

1. Program visualisation, often applied because good visual displays allow the hu-
man brain to study multiple aspects of complex problems in parallel1.
See [CONS 92], [KLEY 88], [LAMP 95], [MÜLL 86], [DEPA 93], [JERD 97] and
[SAND 96], [STOR 95], [SUGI 81], [CROS98], [BALL 96], [JERD 97] to name
but a few.

2. Metrics, because metrics are known to scale up well.
See among others [DEME 99], [KONT 97], [LEWE 98], [LORE 94], [MARI 98].

This paper investigates a hybrid reverse engineering approach based on the com-
bination of graph visualisation and metrics. Moreover, we impose ourselves the extra
constraint of simplicity:

� The graph layout should bequite trivial.

� The extracted metrics should besimpleto compute.

Indeed, our goal is to identify useful combinations of graphs and metrics that can be
easily reproduceable by reverse engineers using some scriptable reengineering toolset

1This is often phrased as ”One picture conveys a thousand words”.

1



2 CHAPTER 1. INTRODUCTION

like Rigi [M ÜLL 86, STOR 95] or RainCode2. Thus, a reverse engineer should be able
to customise a reverse engineering tool in a very short amount of time — say a couple
of weeks. Afterwards, the whole reverse engineering team should be able to gain back
that time by applying the tool in their daily working practices. To summarise, our goal
is to identify useful combinations of simple graphs enriched with metric information
that reverse engineers can reproduce easily.

We make use of a range of simple metrics which are easy to calculate to filter infor-
mation and focus attention. We circumvent the use of composite metrics by exploiting
the graphical nature of the visualisation tool, to display up to five different measure-
ments in a single visualisation.

Furthermore we mix the two approaches with a layer of interactivity, which can
provide a quick and intuitive way tonavigatethrough the code. Instead of taking static
snapshots for analysis, we support the use of a dynamic and playful approach towards
reverse engineering, because we think that with such an approach, a complex structure
like a software system can be understood much more intuitively.

1.1 Goals

We set ourselves a set of goals we would try to reach and questions we would like to
have answered during the course of this work. Among these are:

� Put up a repository of graphs which are useful for the reverse engineering of
software systems3 We’d like to have a set of graphs, each of which can emphasise
one or more aspects of software structures and be useful for reverse engineering.

� Detect which metrics are useful in this context, and what supplemental metrics
have to be developed to further enhance this approach.

� Investigate what the benefits and where the limits are for such a lightweight
approach.

� Lay the basis for a methodology consisting of graphs, metrics and interaction
which can be used to approach a reverse engineering experience.

1.2 Structure Of This Document

The main document contains the following chapters:

� In Chapter 2 we investigate the problems of reverse engineering, and discuss
some possible approaches which have been found to alleviate those problems.

� In Chapter 3 we make a few considerations on object oriented metrics and discuss
their usefulness in the software development process.

2See http://www.raincode.com for additional information.
3In computer science a graph is defined as a set of nodes and edges. In this work we use the term graph

in a wider and more visual sense: we mean by it a collection of nodes which may be connected with edges
although this is not necessary. The nodes can vary in size and color. Each node represents a language
independent metamodel entity, which can be a class, a method or an attribute. Each edge represents a
relationship, which can be inheritance, invocation or access. In certain chapters (especially Chapter 4 and
Chapter 6) of this document we also use the termgraph to express its graphical representation as a picture
on screen or on paper rather than its scientific definition.
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� In Chapter 4 we focus on visualisation techniques and graphs in general. We
also see how metrics can be incorporated into graphs with our approach, and
what kind of properties auseful graphshould have to help reverse engineering.

� Chapter 5 contains a short overview of CodeCrawler, the tool which we imple-
mented during this work and which realizes our idea of combining metrics and
graphs with interaction. We examine what other frameworks have been used
for the implementation of CodeCrawler. We include a section containing some
comments about the implementational details of CodeCrawler, with a short dis-
cussion on its design and on the central classes. We decided to include this for a
possible extension of the program.

� In Chapter 6 we put up a repository of useful graphs. Each graph is discussed in
detail as well as the case studies on which we applied them, with a closer look
on the obtained results. We include a section of graphs and layouts (Section 6.4),
as they are used throughout the chapter.

� In Chapter 7 we explain how to use the graphs discussed in Chapter 6. We set
up a possible methodology which can be used to approach a system for reverse
engineering using our idea.

� Chapter 8 contains a short resumee of the experiences obtained with our ap-
proach during a one week workshop with a large industrial case study.

� Chapter 9, the conclusion, is a resumee of the results of this work and a few
considerations on the limits and the potential of the discussed approach. We also
include some proposals on possible future work in this context.

The appendix of this document contains the following chapters:

� Chapter A is a dictionary of all graphs and layouts implemented in CodeCrawler
which were not used or mentioned in Chapter 6.



Chapter 2

Object Oriented Reverse
Engineering

“The primary purpose of reverse engineering a software system is to in-
crease the overall comprehensibility of the system for both maintenance
and new development.”[CHIK 90]

2.1 Introduction

Software systems have become more and more complex due to the fact that they are
dealing with more and more complex fields. By adapting themselves to the needs of
those fields, they have started to rapidly grow in size and complexity. Since rebuilding
a system from scratch each time the specifications change would be too expensive,
those systems are mainly being maintained and expanded. The expansion becomes
harder with time, since design errors are being dragged along the way, making the
further evolution of the system very difficult. The development of new programming
techniques [BROO 75] which should facilitate the design and evolution of a system
(Object Oriented programming languages, fourth generation languages, visual GUI
programming) has brought no real relief to this problem, because these techniques
could not cope with the order of magnitude increase in complexity we have been facing
in the last two decades.

Although low-level languages like C and Pascal have an appealing property, which
is their efficiency and compactness, at a certain level of complexity the overview is
lost because programmers often have to care about implementation details instead of
keeping an eye on a good and clear design: the more low-level a language is, the harder
it becomes for the programmer to think in broader terms at a higher abstraction level.
However, thinking at higher abstraction levels has become vital in software engineering
because of the enormous complexity of current systems.

As these procedural languages could not ease coping with complexity, in the last
two decades object oriented languages have become the main force in software devel-
opment nowadays. Especially C++, Java and Smalltalk are widely used in industry.
Object oriented languages have an important advantage: They divide the world in ob-
jects which communicate with each other and which possess attributes (properties).
This distinction enables developers to work at a higher abstraction level, which is very
important when they deal with large and complex systems.
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However, the last decade showed that even using the object oriented paradigm,
coping with very large software systems is a hard task: Very large software systems
can become several millions of lines of code long, with many different people having
taken part on its implementation lasting into months or years. Many problems can
affect those systems, naming but a few:

� The original developers left and there is nobody who fully understands the orig-
inal design decisions.

� Missing, sparse or erroneous documentation [BROO 75, CASA 98, WILD 92].

� Obsolete programming tools, platform migrations and outdated hardware makes
it hard to find people knowing such techniques or willing to deal with such prob-
lems. A good example in this case is the so-called millennium bug, also known
as the Y2K - problem, where suddenly a huge number of experts was needed to
test software written in languages which are no longer used nowadays.

� Maintenance is often done by less experienced programmers which have to face
not only the problem of complexity but also the problem of dealing with code
from unknown areas. In fact, experienced programmers which often tend to
move on to other projects and areas of interest, take also a great deal of domain-
specific knowledge with them which the maintainers sometimes lack.

� Several design errors have made the evolution of the system nearly impossible:
small changes can affect large parts of the system.

� There is duplicated code everywhere, which means the programmers used to
copy and paste often. Duplicated code can cause code bloat, error propagation
(errors are copied as well!) and decrease flexibility (a change has to be done in
many places) [BAXT 98, BAKE 92, DUCA 99].

Even with all those points speaking for a reprogramming from scratch of the sys-
tem, there is one main point speaking against it:The system is working.Maintenance
of such systems is thus the only possible approach. [WILD 92] states that maintenance,
in its widest sense of ’post deployment software support’, is likely to continue to rep-
resent a very large fraction of total system cost. Rebuilding the system from scratch
would mean months or years of development, but with the ongoing technology race
such a long delay can mean financial ruin.

2.2 The Problems of Software Industry

Software industry has a somewhat schizophrenic approach to itself: while the academic
faction is preaching high level concepts like architectures, engineering patterns and
reusable components, what is practised in reality by the industry is of a wholly different
nature.

Systems often resemble abig ball of mudas stated in [FOOT 97]:

“A haphazardly structured, sprawling, sloppy, duct-tape and bailing wire,
spaghetti code jungle. Its code shows unmistakable signs of unregulated
growth, and repeated, expedient repair. Information is shared promiscu-
ously among distant elements of the system, often to the point where nearly
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all the important information becomes global or duplicated. The overall
structure of the system may never have been well defined. If it was, it
may have eroded beyond recognition. Programmers with a shred of ar-
chitectural sensibility shun them. Only those who are unconcerned about
architecture, and, perhaps, are comfortable with the inertia of the day-to-
day chore of patching the holes in these failing dikes, are content to work
on such systems.”

There are several forces which can produce such systems:

� Lack of time. Looming deadlines can drive out any attempt to bring some archi-
tecture and design into the system.

� Complexity and lack of experience. The application domains of today’s soft-
ware systems often require domain-specific knowledge which often cannot be
provided by the implementors. This experience often comes with time, when
the major design decisions have already been taken and it’s too late to rebuild
the system from scratch. Another phenomenon is that programmers who have
gained domain-specific knowledge after years of development, prefer to change
domain because of boredom or lack of interest.

� Rapid employee turnover. When experienced programmers leave an organisation
they take important knowledge from the organisation’s common memory. The
so-called fresh blood brought in by new programmers often means months of
building up their understanding, during which their productivity remains at a
low level.

� Programmer skills. Programmers differ in their levels of skill, as well in exper-
tise, predisposition and temperament. Skilled programmers prefer to move on to
new more interesting tasks, leaving the dirty job of maintenance and evolution
of systems to the less experienced ones.

� System changes. Successful systems are especially prone to changes desired by
the users. These changes often come at a time where the system has already
reached considerable complexity. While redesigning the system would be the
only right thing to do, the system if patched to satisfy the new requirements.

� Scalability. An often discussed topic is the size of software systems. Often they
are developed over time spans of years or decades, by hundreds or thousands of
programmers. Such systems cannot be compared to small projects because of
the evident supplemental logistic overhead of the large projects.

� Cost. The practice of rapid prototype development has gained popularity over
the last few years. The prototypes, originally intended to show ”what a sys-
tem could do”, are often shipped out because the management wishes to do so.
This involves that systems have to be patched and changed from the beginning.
Good architecture, is often put aside because it is considered expensive. This
is somehow true: a perfectly designed system, which is however released after
the quick-and-dirty designed one from a competitor, often has selling problems,
because the market has already been eaten up by the competitor.

Once these systems are up-and-running, it’s hard to convince managers that they
have to be redesigned. Major changes to those systems can increase their instability
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and have to be applied very carefully. There are vital systems which have to work 24
hours a day / 7 days a week. If such a system breaks down, this could involve loss of
money, time and possibly human life. Although maintenance needs accumulate, and
the systems become obsolete with the years, an overhaul could break them.

This implies that changes have to be applied very carefully, and the prerequisite for
such changes is clearly a good understanding of the system.

2.3 Software Reengineering

“Reengineering, also known as both renovation and reclamation, is the
examination and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form. It generally
includes some form of reverse engineering (to achieve a more abstract
definition) followed by some form of forward engineering or restructuring.
This may include modifications with respect to new requirements not met
by the original system.”[CHIK 90].

It’s important to understand that without reverse engineering, the reengineering
of a system is unthinkable: changing a large and complex system without sufficient
knowledge of its inner structure, will almost certainly trigger unwanted side effects
which could make the system inoperable.

Software Reengineering can roughly be divided into three steps, the first two of
which have been termed asreverse engineering. [CHIK 90].

1. Understanding and Design Extraction. We have to gain knowledge of the
system. This can be achieved in many ways:

� Reading the manuals if they are present.

� Talking to one of the original developers.

� Looking at the source code in a textual or graphical form.

� Running the software and see how it behaves.

Once we have understood the inner workings of the system, we should try to
distill the original design decisions which made the program become the way it
is.

2. Problem detection. Once we have extracted the design, we can detect wrong de-
sign decisions or areas of the system which should be refactored and redesigned.

3. Reengineering. Once we know where the problems lie, the system has to reengi-
neered, i.e. transformed into a state which makes it easier to maintain and to
further develop. For this purpose several reengineering tools, techniques and
patterns have recently been developed [CASA 98].

2.4 Reverse Engineering

The problem which arises when we try to understand a system, is the huge amount of
information we have to keep in mind. Furthermore we have to discern the important
pieces of information from the less important. We have to know which are the im-
portant classes or subparts of the system. How can this be done? Scrolling through
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thousands of lines of code and browsing hundreds of classes is of no use, we’d have
to spend weeks just to get a feeling for the system. We could try to stick to rules like
’look for the big ones, they’re probably important’, but experience has shown that such
ad hoc rules fail far too often [DEME 99]. There are two main paths that are followed
these days:

1. Metrics. A first good approach is to use metrics and tomeasurethe system.
We count the number of methods in a class, the lines of code of a method, the
hierarchy nesting level of a class, etc. There is a wide array of possible metrics
we can use, and many have been proposed [LORE 94]. Once we have measured
the system we can make assessments about it. The problem is, that even with
this kind of information we cannot really grasp the inner workings of the system.
However, their advantage is that they can enrich the semantic properties of a
software entity, which can express its size or complexity with a simple number.
We will discuss metrics in depth in Chapter 3.

2. Program Visualisation. A second, often used approach is to represent source
code graphically. Such a representation introduces an abstraction level which
hides the source code behind a graphical entity. Several techniques exist in this
domain, which include complex layout algorithms, filtering and interaction. We
will further discuss this issue in Chapter 4.

To summarise, reverse engineering is mainly about understanding complex things.
As the textual representation of source code hinders such an understanding in case of a
large and complex structure, techniques have been developed to alleviate this problem.
All techniques have in common that they provide an abstraction of the code while at the
same time they must cope with scalability and complexity, i.e. if possible they should
work with any amount of code and not break at a certain level of complexity.



Chapter 3

Object Oriented Software
Metrics

3.1 Introduction

Improving software product quality and performance and development team produc-
tivity has become a primary priority for almost every organisation that relies on com-
puters. The process of developing new software and maintaining old systems has in
many cases been poorly implemented, resulting in large cost overruns and squandered
business opportunities [MOLL 93]. Indeed, the software problem is huge. The main
reason for this is that often estimations on time and cost are based on feelings rather
than numbers.

The rise in popularity of object oriented methods raises questions about how we
measure object-oriented structures[FENT 97]. A milestone in this regard was the paper
A Metrics Suite for Object Oriented Designby Shyam R. Chidamber and Chris F.
Kemerer, where an attempt was made of a formal definition of metrics based upon
measurement theory [CHID 91, CHID 94].

The paper had three main goals:

1. Propose metrics that are constructed with a firm basis in theoretical concepts in
measurement and the ontology of objects, and which incorporate the experiences
of professional software developers.

2. Evaluate the proposed metrics against established criteria for validity.

3. Present empirical data from commercial projects to illustrate the characteristics
of these metrics on real applications, and suggest ways in which these metrics
may be used.

Although much discussed and criticised [CHUR 95, HITZ 95] afterwards, it broke
new ground because of its clarity and precision and it cleared the way for further re-
search [LORE 94, FENT 97] in this field, which has by now become a recognised dis-
cipline of software engineering.

The metrics that have been developed over the years can be divided in two groups.
We use the definitions used in [LORE 94]:

9
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1. Design Metrics.These metrics are used to assess the size and in some cases the
quality, size and complexity of software. They take a look at the quality of the
project’s design at a particular point in the development cycle. Design metrics
tend to be more locally focused and more specific, thereby allowing them to
be used effectively to directly examine and improve the quality of the product
components.

2. Project Metrics. They deal with the dynamics of a project, with what it takes
to get to a certain point in the development life cycle and how to know you’re
there. They can be used in a predictive manner, for example to estimate staffing
requirements. Being at a higher level of abstraction, they are less prescriptive
and more fuzzy but are more important from an overall project perspective.

3.2 The Metrics In Our Project

In this project we make extensive use of object oriented software metrics.
However, we don’t use every possible metric as we focus ourselves on design met-

rics for several reasons:

� We make use of metrics in a very concrete way: we use them to assess the size
and complexity of software entities. For that reason we can’t make use of project
metrics, as they can’t be used in that regard.

� As the lightweight aspect of our approach is one of its most important proper-
ties, we decided to apply this aspect for the used metrics as well: we chose to use
metrics that have a simple definition which can be directly expressed. As such
we dont make use ofcomposite metricswhich raise the issue of dimensional con-
sistency: since one cannot compare apples and oranges, care is demanded when
combining different measurements [HEND 96]. Furthermore we don’t make use
of indirect measurement, where metrics are combined and calculated. A good
example for such metrics are average and percentage metrics.

Our idea is the following: object oriented languages introduced the idea of enti-
ties (classes), which have properties (variables, attributes) and which communicate by
invoking methods. These three types of entities can not only be identified by unique
names, we can also assign numerical values to them. By that we mean that they can
be measured in many ways and these measures constitute a considerable part of their
identity.

We are convinced that for a reverse engineer the notion of size (or complexity) of
an entity can mean much more than a name, which is often domain-specific. For that
reason we need metrics which can be termed asdirect measurementmetrics [FENT 97],
i.e. they involve no other attribute or entity.

We now list all metrics we used during this project, and which were implemented
in the Moose metamodel discussed in Chapter 5. The metrics are divided into three
groups, namely class, method and attribute metrics, i.e. these are the entities that
the metric measurements are assigned to. The following tables of metrics contain an
acronym (name) and its description.
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3.2.1 Class Metrics

In Table 3.1 we list every class metric that was used during this project. Classes, which
are the central points of every object oriented language implement methods and define
attributes. The class metrics address thus this aspect: their complexity can be expressed
through methods and attributes1 and the way these entities behave.

Name Description
HNL Hierarchy nesting level, also calleddepth of inheritance tree. The number of classes in

superclass chain of class. In case of multiple inheritance, count the number of classes
in the longest chain.

NA Number of accessors, the number of get/set - methods in a class.
NAM Number of abstract methods.
NC Number of constructors.
NCV Number of class variables.
NIA Number of inherited attributes, the number of attributes defined in all superclasses of

the subject class.
NIV Number of instance variables.
NMA Number of methods added, the number of methods defined in the subject class but not

in its superclass.
NME Number of methods extended, the number of methods redefined in subject class by in-

voking the same method on a superclass.
NMI Number of methods inherited, i.e. defined in superclass and inherited unmodified.
NMO Number of methods overridden, i.e. redefined in subject class.
NOC Number of immediate children of a class.
NOM Number of methods, each method counts as 1. NOM = NMA + NME + NMO.
NOMP Number of method protocols. This is Smalltalk - specific: methods can be grouped into

method protocols.
PriA Number of private attributes.
PriM Number of private methods.
ProA Number of protected attributes.
ProM Number of protected methods.
PubA Number of public attributes.
PubM Number of public methods.
WLOC Lines of code, sum of all lines of code in all method bodies of the class.
WMSG Number of message sends, sum of number of message sends in all method bodies of

class.
WMCX Sum of method complexities.
WNAA Number of times all attributes defined in the class are accessed.
WNI Number of method invocations, i.e. in all method bodies of all methods.
WNMAA Number of all accesses on attributes.
WNOC Number of all descendants, i.e. sum of all direct and indirect children of a class.
WNOS Number of statements, sum of statements in all method bodies of class.

Table 3.1: The class metrics used in this project.

3.2.2 Method Metrics

In Table 3.2 we list every method metric used in this project. Methods can be seen as
a flow of instructions which take input through parameters and which produce output.
Methods can invoke other methods or access attributes. The method metrics are defined
in this context.

1In this work the terms instance variable and attribute are used interchangeably. We tend to use the term
attribute because it’s more general, but in most cases and if not mentioned otherwise we are talking about
instance variables.
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Name Description
LOC Lines of codein method body.
MHNL Hierarchy nesting levelof class in which method is implemented.
MSG Number of message sendsin method body.
NI Number of invocationsof other methods in method body.
NMAA Number of accesses on attributesin method body.
NOP Number of parameterswhich the method takes.
NOS Number of statementsin method body.
NTIG Number of times invoked by methods non-local to its class, i.e. from methods imple-

mented in other classes.
NTIL Number of times invoked by methods local to its class, i.e. from methods implemented

in the same class.

Table 3.2: The method metrics used in this project.

3.2.3 Attribute Metrics

In Table 3.3 we list every attribute metric used in this project. Attributes as properties
to classes. Their main function is to return their value when accessed by methods. The
attribute metrics are defined in such a context.

Name Description
AHNL Hierarchy nesting levelof class in which attribute is defined.
NAA Number of times accessed.NAA = NGA + NLA.
NCM Number of classes having methods that access it.
NGA Number of times accessed by methods non-localto its class.
NLA Number of times accessed by methods localto its class.
NM Number of methods accessing it.

Table 3.3: The attribute metrics used in this project.



Chapter 4

Combining Metrics and Graphs

“Continuous visual displays allow users to assimilate information rapidly
and to readily identify trends and anomalies. The essential idea is that
visual representations can help make understanding software easier.”
[BALL 96]

4.1 Introduction

Although the object-oriented paradigm lets programmers work at higher levels of ab-
straction than procedural models, the tasks of understanding, debugging, and tuning
large systems remain difficult. This has numerous causes: the dichotomy between the
code structure as hierarchies of classes and the execution structure as networks of ob-
jects; the atomisation of functionality - small chunks of functionality dispersed across
multiple classes; and the sheer numbers of classes and complexity of relationships in
applications and frameworks. The fields of scientific visualisation and program vi-
sualisation have demonstrated repeatedly that the most effective way to present large
volumes of data to users is with a continuous visual fashion [DEPA 93].

In this chapter we list some properties that a graphical representation of source
code should possess to be useful for reverse engineering. We then see in what respect
our approach fulfils those requirements and include a short scenario to explain our
approach. We also list some problems concerning the visualisation of metrics, colors
and issues concerning interactivity.

The central point of this chapter is to show how we merge the concepts of program
visualisation, metrics and interactivity. These three aspects are the cornerstones of this
work. The concepts that are explained here have been implemented in a single tool
called CodeCrawler, which we present in the next chapter.

4.2 Graphs for Reverse Engineering

In this section we list some features that in our eyes graphs for reverse engineering
should have. We emphasise that we use the term graph in a very broad sense: often we
mean its picture or graphical representation on screen or on paper and not necessarily
its scientific definition.

13
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� Simplicity and Quality. The first important prerequisite is that the generated
pictures of a graph have to be relatively simple and easy to grasp. The main
reason for that is that too much displayed information overloads the viewer’s
perception. This tends to backfire and causes an unwanted information loss. A
secondary aspect is that simple graphs are also easily reproducible, while com-
plex techniques like hyperbolic trees [LAMP 95] are affected by a considerable
complexity which is hard to grasp and reproduce. Many approaches have been
discussed as to how a software entity could be represented for program visu-
alisation ([BALL 96, DEPA 93, KLEY 88] to name but a few). We think that a
graphical representation of an object oriented entity should be easy to grasp and
not make use of a specific dictionary of shapes which has first to be learned. A
graph should be able to transmit useful information to the viewer at first sight.

� Quantity. We have to be able to select how much of the subject system we want
to display and at what level of granularity. Thus, we should be able to zoom in
and out of such a graph and reduce the amount of displayed information at will.

� Colors. Program visualisation can be supported by colors, because they can at-
tract the eye to interesting hot spots, while other parts of the graph which look
less colorful can be ignored by the viewer. Colors have often been used in pro-
gram visualisation [RIVA 98]. While colors are a good way to attract the atten-
tion of the eye, the usage of too many colors in a graph is not advised, since this
results in an optical overload for the viewer of the graph. We also advise against
the use of color conventions which have first to be learned by the viewer, as this
lessens the impact of the colors.

� Scalability. As reverse engineering is especially crucial in very large systems, a
visualisation should be scalable and work if possible at any level of granularity.
The number of displayed entities should not affect the quality of the graph.

� Interactivity. A very important aspect of graphs is not only their layout al-
gorithm but also that they can provide interactivity to the user through direct-
manipulation interfaces. Making a static display of nodes and trying to extract
information from the graph has clearly defined limits, which we discuss below
in Section 4.2.1.

� Metrics. Although intangible in the physical sense, softwarehassize. It can
be measured, especially in object-oriented code we can assign numerical val-
ues (metric measurements) to its entities. Although the concept of software is
abstract and often exists only in the head of the programmer, we can measure
it. Once we can measure it, we can assign a size to it and represent this size
graphically. We think that metrics enrich the semantic value of a graphical rep-
resentation of a software entity, and discuss this below in Section 4.2.3.

4.2.1 Interactivity

A graph which lacks interactivity has certain drawbacks:

1. The user can’t produce new views starting from a part of the graph.

2. The user can’t find out secondary information (e.g. he can’t inspect the nodes or
browse through their source code).
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3. The user can’t reduce the amount of displayed data by either removing nodes by
hand or by filtering out nodes through algorithms.

Those limits can be overridden if the graph is interactive:

� If we produce a view on a system and one particular node is drawing our atten-
tion, we’d like to know more about this node and the entity that it is representing.
So we should be able to know its name, to have a look at its properties, to zoom
in into the node, to have a list of all nodes that have a relationship with this node,
or even to have a look at the source code behind the node (suppose the node is a
method).

� Starting from a part of the graph or from one single node we’d like to be able
to generate new views without having to go through the whole graph genera-
tion procedure again. The viewer should be able to ’navigate’ around the code
travelling from one point of interest to the next.

� Sometimes the relationship edges in a graph make the whole graph look like a
cobweb. We should be able to switch off edges and switch them on again on
demand depending on nodes we selected, etc.

� Suppose we have displayed a graph with a lot of nodes and edges. One particular
node is of interest to us. But since there are too many edges in the graph it’s
hard to see how many times and to which other nodes the node in question is
connected. So the graph should also be able to provide a ’highlighting feature’
where we can display on top of all edges and nodes the connections of the node
in question. It is important to note here that compared to the previous point we
don’t want to reduce the complexity of the displayed graph. We just want to have
a better view on it.

It is an important point we are stating: The interactivity of a graph isnot just a nice
featurebut one of itsmost important aspects.

4.2.2 The Use of Layout Algorithms

Perhaps the most difficult aspect of showing software through graphs involves the graph
layout problem. The nodes and edges of the graph must be positioned in a pleasing and
informative layout that clearly shows the underlying graph’s structure. Many tech-
niques have been proposed for laying out arbitrary graphs. Unfortunately, in practice,
drawing informative graphs is exceedingly difficult, particularly for large systems. The
resulting graphs, even when drawn carefully, are often too busy and cluttered to inter-
pret [BALL 96].

The opposite case can also be true: sometimes elaborate layout algorithms can’t
ameliorate the user’s perception or can do that only at the cost of algorithm complexity:
There are various (and sometimes very complex) techniques to display a tree graph, but
in the end it’s still just a tree.

However, we don’t want to minimise the importance of complex layout algorithms,
on the contrary: we believe they could bring many more benefits than drawbacks. Good
layout algorithms just were not part of the constraints of this work. But it is certainly
a very promising field of research in this context. We go further into the details of this
subject in Chapter 9. The layout algorithms used in this work are discussed in detail in
Chapter 6 and Chapter A.
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4.2.3 The Use of Metrics in Graphs

In [BALL 96] the following statement is made: ”Software is intangible, having no phys-
ical shape or size. Software visualisation tools use graphical techniques to make soft-
ware visible by displaying programs, program artifacts, and program behaviour.”

It is obvious that everything regarding metrics possible through their graphical dis-
play is also possible by just calculating and analysing the metric measurements. So the
question arises why we should have a graphical display of them, since the information
sought is in the metrics themselves. But in the same way one could think to listen to
music by just reading the partiture of a song instead of using the sense normally de-
signed for that (the hearing)1. What changes is the perception and the impact of what
is perceived.

Our Idea. The whole concept is fairly easy: we map metric measurements of soft-
ware entities on their graphical representation on the screen. As we said before we
chose the entities to be represented by rectangles. Rectangles have a certain width and
a certain height. They can be filled with a color. Their position can also bear a certain
amount of information.

With this approach, in a two-dimensional graph consisting of nodes and eventually
edges between the nodes, up to five metrics can be assigned to a node and rendered
visually at the same time. These are:

1. The X coordinate of the position

2. The Y coordinate of the position

3. The width

4. The height

5. The color shade

This concept is rendered clearly in Figure 4.1, where we see where the metrics can
be applied on a node.

Not every graph can make use of five the metrics at the same time. In a graph
that does not have an origin (which defines an absolute coordinate system) it makes
no sense using two metrics for the position of the nodes. A good example for such
a graph is a tree graph, where the position on the nodes is implicitly defined by the
logical position of the nodes in the tree. Another property which came up during our
experiments was that sometimes the multiple use of the same metric (for example if we
choose the same metric to reflect width and height) can emphasise certain parts of the
graph and render them more clearly for the viewer.

4.2.4 The Node Size Problem

The Problem. We map metric measurements to the size of a rectangle (node). How-
ever, we have to make some important considerations regarding the distortion of infor-
mation.

1A short comment on perception: the size of software can be seen through other means: if we scroll
through the source code of a very large class, we probably have to either move the mouse or press some
keys on the keyboard to scroll on. This physical act of scrolling can also transmit size and complexity to the
viewer.
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Figure 4.1: An example of nodes and their possible metrics.

If a node has a metric measurement of 5 for its width we want the displayed node
on the screen to be 5 pixels wide. But, which width will the node have in case the
measurement is zero? The node would not be displayed then because it wouldn’t have
a size. This is the introduction of the node size problem, which we discuss now.

We have to consider two points:

� Consistency. We have to alleviate the problem of a distorted mapping function.
As we have seen in the case of a metric measurement equal to zero, it’s not
possible to stick to a linear function.

� Interactivity. As we want our graphs to provide direct-manipulation interfaces,
we’d like to be able to click with a mouse pointer on a node. This is very hard to
impossible for sizes from 1 to 3 pixels.

Possible Solutions. We list here a few solutions which came to our mind:

� Because of the problem above, we decided to introduce aminimal node size
(MNS). If the metric measurement was below a certain predefined threshold, we
assigned a fixed size to the node.

Yet this generates another problem: Suppose the chosen minimal node size is 4.
We have two different entities whose metric measurement is respectively 1 and
3. With the technique described above both of them are drawn as nodes with a
size of 4. However this is a serious distortion of reality: The second entity has
a metric measurement which is three times as big as that of the first entity, but
nonetheless they are drawn the same size. This cannot be a correct assumption.

� Another solution which we found, was to map all present metrics into a prede-
fined interval which then would be used as node size (we have seen before that
this solution works with color shades). The problem is, that this is again an even
heavier distortion of reality. In this case the node size would not reflect the metric
measurements anymore. So this solution could not be correct either.

� Let us make a few other considerations which come into mind: We could use the
MNS as asize factor. This would mean that the first node would get a size of 1
* 4 = 4. The second one would get a size of 12 ( = 3 * 4). However: what could
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we do with a third node whose metric measurement is zero? We could find a
workaround by adding 1 to all metric measurements.

Thus the first node would have a size of (1 + 1) * 4 = 8. The second one would
have a size of (3 + 1) * 4 = 16. The third one would be (0 + 1) * 4 = 4 pixels big.
This approach is not satisfactory either, we still have distorted the values and
there is another drawback to this approach: The nodes easily tend to get very big
with this approach: Classes often have dozens of methods. The number of nodes
displayable on the same screen would rapidly decrease, but we made the use of
easily displayable graphs one of the constraints of this work, and we don’t want
to scroll around through dozens of screens because the drawn graph has gotten
so big. This would hinder the intuitive approach to such graphs.

Our Solution. We finally settled for the following compromise: We use the MNS as
a starting point for the metric value. This means that if we use a MNS of 4, a node
with a metric measurement of 1 would have a size of 4 + 1 = 5 pixels. A node with a
metric measurement of 3 would have a size of 7. This is the best compromise we have
found, but it isstill a slight distortion of reality: the second node isnot three times as
big as the first one, although it should be. However, we found this solution more than
adequate, as our experiences later showed. Consider also that the smaller the MNS is,
the less impact it has on the node size.

Considerations. Note that the same problems are present when it comes to the max-
imal node size: At first we also tried to restrict the size of nodes to a certain maximum
value (because of space intensive graphs which would not fit on one screen), but this
approach was even more problematic, since often it’s just the big nodes that we are
looking for. We opted for the introduction of two shrink factors, one for the width and
the other for the height. The user can decide whether he wants to use shrink factors or
not. If he opts for that, each time a node size exceeds a certain maximal node size, all
nodes are recursively shrunk by factor 2, until the biggest node gets smaller than the
defined upper threshold.

This can introduce yet another problem: suppose we are interested in theshape
of the node. If only the heightor the width are shrunk, the nodes change their form.
The logical solution to this problem was to give the user another choice on whether he
wants to shrink the nodes in both dimensions at the same time, even if only one of the
dimensions exceeded the threshold.

Conclusion. Let’s resume the possible approaches to the node size problem in Ta-
ble 4.1: We put up three possible metric measurements of 1, 3 and 0 and see how the
possible solutions behave. The emphasised column is the solution we chose to adopt
in this case.

The Node Size Problem
Metric Measurement (m) Resulting size

MNS m + MNS m * MNS (m + 1) * MNS
1 4 5 4 8
3 4 7 12 16
0 4 4 0 4

Table 4.1: Some solutions to the Node Size Problem.



4.2. GRAPHS FOR REVERSE ENGINEERING 19

4.2.5 A Concrete Graph Specification.

In our approach aconcrete graph, this means the resulting displayed graph, is the
combination of four factors :

1. The Graph Type. Its purpose is to render a certain aspect of a system: a tree
graph is good for displaying hierarchical information, a circle for communica-
tion, a confrontation graph for dependencies, etc.

2. The Layout Algorithm . Starting from the original idea of the graph, variations
refine the concrete display. The layout takes into account the following issues:

� Display concerns (i.e. the fact that the complete graph should or not: fit
into the screen, minimise the space used, sort the nodes according to certain
criteria, etc.).

� The entities and their relationships. This implies the choice of the repre-
sented entities (class, attribute and/or method) to be rendered as graphic
elements and the logical link between the graphical elements and the met-
rics. For example in some graphs the position of the nodes reflects the size
of the entities whereas in others this is the size of the node.

3. The Metric Selection. Once the layout algorithm stands, metrics are associated
to the graph. This application depends on the specification of the previous step.

4. The Interaction. Since the goal of a graph is to support the reverse engineering
of the application, the interaction that a user can perform should be specified.
All the graphs support basic navigation functionality which allows one to ac-
cess code elements. However, the interaction is refined for specific graphs, for
example to walk through it, to highlight the edges, to zoom in/out, etc.

4.2.6 A Short Example

To make the whole idea of visualising software structures with the help of metrics a bit
more understandable we included here a short example of our approach.

Suppose we want to understand the inheritance hierarchy of a small system. The
idea that comes up is to display the graph as a tree. The nodes in tree represent classes,
the edges represent inheritance relationships.

Figure 4.2: A simple inheritance tree.

The layout algorithm for displaying a tree is arbitrary, for reason of simplicity we
chose a very simple one, which sometimes can make edges cross nodes, but it renders
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the whole concept nonetheless. Keep in mind that this layout part can also make use of
very complicated algorithms for space optimisations, edge crossing reduction, etc.

Once we have displayed the tree as we see in Figure 4.2 we apply size and color
metrics to the nodes. The use of position metrics is not possible here, as the position of
the nodes is intrinsically defined by their logical position in the tree. As the nodes rep-
resent classes, we use class size metrics. The width and height of the nodes render the
number of methods (NOM) while the color renders the number of attributes (instance
variables).

Figure 4.3: An inheritance tree that makes use of size and color metrics.

Once the tree is rendered as in Figure 4.3 we can start interacting with the graph. We
can freely move nodes around, delete them, inspect them (i.e. browse the underlying
classes), filter out parts, etc.

In fact, if we left out the interactive part, the amount of useful information that we
could extract would be limited to the display in Figure 4.3.

4.3 Our Approach

We listed above some properties that graphs for reverse engineering should possess. In
this section we see how our approach behaves in their respect.

� Simplicity and Quality. We chose to visualise the basic object-oriented enti-
ties (classes, methods, attributes) as colored rectangles. The advantages of this
choice is discussed in Section 4.2.3, where we include the representation of met-
rics in our visualisations. The basic relationships that occur between those en-
tities (inheritance, invocation, access) are rendered as edges between the entity
rectangles.

� Quantity. We enabled our tool CodeCrawler to be able to display information
at will, i.e. edges can be removed, nodes can be removed and we can zoom
into parts of the graph, while removing the other parts from our selection. The
quantity of displayed code is thus arbitrary and gives us an important freedom of
choice.

� Colors. What we think is a good approach, is to usecolor shades. This has the
advantage that numerical information can be transmitted by colors. While nu-
merical values are easy to transmit by size (bigger numerical values are mapped
on bigger things), we can thus also map a numerical value into a certain color
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shade. For the work done during this project we chose to use color shades be-
tween white and black, going over all shades of gray. The higher the numerical
value thedarkerthe mapped color is. Thus light gray means ’smaller’ than dark
gray. Although this is a good way to represent a supplemental numerical value,
there are a few considerations to be made:

– Since the perception of a color tone is less precise than the perception of
size, the color cannot reflect small differences in the numerical values, this
technique is thus only useful for the detection of considerable color shade
differences.

– The linear mapping from an interval of values into a predefined interval
(like 0..1), which itself defines the color shade, is based on the range of
the first interval. If the first interval is stretched by extremely big or small
values, the whole mapping function is distorted. These big values are nor-
mally rare, but they can make all the other ’average’ values to be mapped
into a small color shade interval and will thus look similar. We found a par-
tial workaround for this problem, by enabling the use of a logarithmic and
an exponential mapping function. Although this is of some help, both of
them have a major drawback, which is that the mapped values are distorted
because of the non-linearity of the mapping functions.

� Scalability. We found out graphs which are scalable and which work with high
numbers of nodes. We saw in a real industrial case study of considerable size
that our approach worked very well. We describe that experience in Chapter 8.

� Interactivity. We provide interactivity in many aspects: the nodes in the graph
can be moved around freely and removed from it. The underlying software entity
can be inspected, browsed, and queried. This adds to our solution a playful nature
which we think is primarily responsible for the intuitive approach.

� Metrics. In Section 4.2.3 we have discussed the way metrics are used with our
approach. The way we use metrics is direct and intuitive and easy to grasp.

4.3.1 Conclusion

We have seen that our approach fulfils most of the above mentioned requirements.
However, we emphasise that simplicity comes at a certain cost: Using an elaborate
algorithm could be of more use, the same goes for the metrics.

We now have seen that there is a substantial difference in the above mentioned four
levels of conception of a graph.

If we consider that we have a certain number of graphs and layouts at out dispo-
sition, and that we can apply a set of metrics on them, we can easily estimate that the
number of possible graphs is huge. The heart of this whole work is the discovery of
so-calleduseful graphs. We refer to such graphs as useful is we can use them for re-
verse engineering a system. However, we are not only trying to build a collection of
useful graphs which can produce useful insights on systems. We are forcing the whole
concept of reverse engineering as a creative, investigative process. The interactive part
is tightly connected to the reverse engineering process and is sometimes crucial to the
usefulness of a graph.
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CodeCrawler

5.1 Introduction

CodeCrawler is the program implemented during this work and which generated all
graphs in this document. The program has been written entirely in Smalltalk in the
Visual Works 3.0 environment, which comes from ObjectShare, and which is free for
non-commercial use1. The framework that CodeCrawler uses for the graphical output
is called HotDraw[BRAN 95] and is treated in Section 5.4. The framework used to
generate metamodel information is the Smalltalk implementation of the FAMIX meta-
model called Moose and is described in Section 5.3. CodeCrawler does not work
without the above mentioned frameworks. We include a section on the implementa-
tional details of CodeCrawler at the end of this chapter.

5.2 Requirements and functionality

When the implementation of CodeCrawler started, we had some functionalities and
properties in mind which we thought would be necessary for the program to have:

� Language Independency. To preserve maximum flexibility, we thought it nec-
essary for CodeCrawler to be based on a language independent metamodel. One
of the major drawbacks of many software visualisation tools, is that they run
only under certain environments and they can display only certain languages.
However, reverse engineering is a field independent of the used language (there
are systems which have been implemented in more than one language!). Code-
Crawler has been successfully tested on systems written in Smalltalk, C++ and
Java. Ada is soon to be expected.

� Platform Independency. The VisualWorks 3.0 non-commercial environment,
in which CodeCrawler has been written is platform independent, as it is based
on a virtual machine. It is available for the following platforms: Unix, Windows
95/98/2000/NT, Mac OS and Linux. This increases the utility of such a tool, as
it doesn’t have to be ported explicitly to other platforms.

� Interactivity . Through means of direct-manipulation interfaces, we want to give
the user of CodeCrawler the chance tonavigatethrough the source code. This

1Please consult http://www.objectshare.com on the Internet for additional information.

22



5.2. REQUIREMENTS AND FUNCTIONALITY 23

interaction with the graphs can also deepen the understanding of the displayed
information.

� User friendliness. For the boundaries of such a work this prerequisite does not
seem important, since the main part should be the graphs and they can be very
well generated without dialog boxes, etc. However, with the program getting
more and more complex, it soon became necessary for CodeCrawler to provide
the means to rapidly change the parameters.

� Flexibility . We saw the need for an implementation which is easy to extend, and
where graphs, layouts and metrics could be added without much fuss. This can
also seen as a countermeasure against the short life cycle which such tools tend
to suffer and which we wanted to prevent.

� Availability . CodeCrawler is free to be used and available on the Internet at the
following URL:
www.iam.unibe.ch/ �scg/Archive/Software/CodeCrawler/

Nearly all of the above goals have been reached to our satisfaction. We will now
have a look at the program and its user interface. CodeCrawler has one main window,
and several secondary windows, which are

1. The main window

2. The graph generatorconsisting of

(a) The graph panel

(b) The metrics panel

(c) The options panel

(d) The repository panel

3. The model builder

4. The selection viewer

5. The control panel

We will now have a closer look at those components:

1. The Graph Window. This window is where the graphs are displayed after the
user has chosen what kind of graph he wants to display. In Figure 5.1 we can
see the main window with an inheritance tree display of CodeCrawler . The
graphical display is interactive and the user can click on the nodes and edges
and extract further information. He can freely delete nodes and edges, highlight
them, etc.

2. The Graph Generator. This window is a sort of control center where the user
can select and set the parameters for the graph to be generated. Once the se-
lections have been taken and accepted, the graph will be displayed on the main
window. It should be noticed that while we implemented error-catching rou-
tines, the user is not protected from generating senseless graphs. The generator
consists of four panels which are listed and described below.
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Figure 5.1: CodeCrawler’s main window.

Figure 5.2: The generator’s graph selection panel.

In the graph selection panel (Figure 5.2) the graph and layout can be selected, and
we can also choose which kind of entities and relationships we want to display.
In the metric selection panel (Figure 5.3) we can assign metrics to the entities we
want to display. CodeCrawler supports all metrics listed in Chapter 3. Further
options can be chosen in the options panel (Figure 5.4). The graph repository
panel we see in Figure 5.5 serves as a database for generated graphs, which
can be loaded and saved from/to disk. If we select a graph in the repository all
options that can be selected in the other panels will be automatically set.

3. The Metamodel Builder. In this window the user can build a metamodel, either
by selecting Smalltalk classes and building it on the spot, or by loading a meta-
model from a CDIF file. A model which has been built can also be saved to disk
as a CDIF file. As a further and very important note: the meta model isnot part
of a graph. The graph is always built upon parts of the metamodel, but saving a
graph does not also save the meta model.

4. The Selection Viewer. Since we don’t want our graphs to be built on the whole
model, but often only on parts of it, this window provides the functionality to
filter out parts of the model or just a way to list all entities present in the model.
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Figure 5.3: The generator’s metric selection panel.

Figure 5.4: The generator’s options selection panel.

Removing an entity from this selection, for example a class, causes CodeCrawler
to remove all entities which are associated with it (i.e. the methods, the attributes,
etc.). The selection can be extended and shrunk at will. Removing nodes from
a graph display on the main window can also involve removing the associated
entity from the current selection, if the user wishes to do so.

5. The control panel. The control panel is an add-on to the main window. Here a
few parameters regarding the graphical output can be inspected and changed.

5.3 FAMIX

The implementation of the FAMIX metamodel written in Smalltalk is called Moose and
has been developed at the University of Bern, Switzerland, by Dr. S. Demeyer and Dr.
S. Ducasse. It is part of a European project called FAMOOS (Framework based Ap-
proach for Mastering Object Oriented Systems). The FAMOOS ESPRIT project 21975
investigates tools and techniques for transforming object-oriented legacy systems into
frameworks. Seehttp://www.iam.unibe.ch/�famoos/for more information.
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Figure 5.5: The generator’s graph repository panel.

Figure 5.6: CodeCrawler’s metamodel builder window.

The model itself is a language-independent database of Object Oriented entities.
Once a model has been built, we can make queries to the model and its entities. Sup-
pose we have an entity representing a class. We can now ask this class to give us all its
methods, attributes etc. The Moose framework has been written in Smalltalk. We can
build models out of systems written in other Object Oriented programming languages
than Smalltalk through an interface called CDIF.

In Chapter 3 we list the metrics that the Moose model is currently supporting.

The Data Model. CodeCrawler is based on an language independent representa-
tion of object-oriented source code, named FAMIX (FAMoos Information EXchange
model, see [TICH 98]). FAMIX is defined in the context of the FAMOOS project and
exploits meta-modelling techniques to make the data model extensible.

The data model model comprises the main object-oriented concepts –namely Class,
Method, Attribute and Inheritance Definition– plus the necessary associations between
them –namely Invocation and Access (see Figure 5.9).

� Advantage: Due to the language independent nature of FAMIX, CodeCrawler
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Figure 5.7: CodeCrawler’s selection viewer window.

Figure 5.8: CodeCrawler’s control panel.

can in principle be applied on all object-oriented implementation languages. Be-
ing language independent is an important criterium, as it is an argument support-
ing the “Help Yourself” approach, because chances are higher that the effort in
tool construction will pay off.

� Limitation: In practice, we must limit ourselves to languages that can be parsed
into a FAMIX representation. At the time of writing, these are SMALLTALK ,
Java and a subset of C++. Ada is soon to be expected.

Metrics. The measurements of given source code entities are attached to the FAMIX
counterparts (see Figure 5.9). Thus, a class entity knows about its number of meth-
ods and number of attributes; a method entity knows about its number of statements,
etcetera. Most of the metrics listed in Chapter 3 can be derived from the data model
itself, thus are language independent. However, a few of them (i.e.; number of state-
ments in method body - M-NOS; number of methods overridden & extended - NMO
& NME) require a language independent interpretation.

� Advantage: Since most of the metrics applied in CodeCrawler are language
independent in nature, a lot of the CodeCrawler can be reused across different
implementation languages, again supporting the principle of ”Help Yourself”.

� Limitation: A considerable part of the reverse engineering capabilities – espe-
cially analysing the quality of the inheritance tree – is based on the language
dependent metrics. Thus, if one wants to reuse a hybrid metrics-visualisation
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Figure 5.9: The FAMIX Data Model underlying CodeCrawler

toll across implementation languages, some language dependent customisation
will be required.

5.4 HotDraw

HotDraw is a two-dimensional graphics framework for structured drawing editors that
is written in Smalltalk by John Michael Brant [BRAN 95].

A HotDraw application edits drawings that are made up of figures. Figures are
graphics elements such as lines, boxes, and text, and they can represent other objects.
A drawing editor built from HotDraw (such as CodeCrawler ) contains a set of tools
that are used to manipulate the drawing. When a figure is selected by the selection tool,
it presents a set of handles. Manipulating a handle changes some property of its figure
or performs some action. For further information on the HotDraw framework, which
is still being maintained, see also [BECK 94, JOHN 92, BRAN 95].
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5.5 Implementation

This chapter deals with a few aspects regarding the implementation of CodeCrawler.

Figure 5.10: The general structure of CodeCrawler’s logic.

In Figure 5.10 we can see the way CodeCrawler has been built. The language
independent metamodel developed during the FAMOOS project is called FAMIX, and
based on the specifications a Smalltalk implementation called Moose has been written.
The entities can be stored into Moose either by filing in a CDIF file or by directly
generating the model out of Smalltalk classes. CodeCrawler itself is also implemented
in Smalltalk. The graphical framework used for the output on the screen is called
HotDraw.

The general idea of CodeCrawler is to have a drawing on which nodes are repre-
sented. The nodes are eventually connected to each other by edges. Each node repre-
sents a language independent metamodel entity, which can be a class, a method or an
attribute. Each edge represents a relationship, which can be inheritance, invocation or
access.

5.5.1 Attachment To The FAMIX Model

The underlying metamodel serves primarily as a database for CodeCrawler. It returns
the entities CodeCrawler wants to represent and is able to calculate the metrics and
respond to queries. The attachment is present in three places:

� CCSelection. This class represents a subset of the model. This enabled us to
filter out unwanted entities without tampering with the actual model.
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� CCService. This class needs to know what metrics can be calculated for the
entities present in the model. Each time a new metric is added to the model it
has to be registered in CCService. A major change in the future will be that this
class fetches the appropriate metrics (i.e. language specific) on its own from the
model.

� CCNode. This class holds a direct reference to the underlying metamodel en-
tity it represents and can query the model in case this is needed to return some
information.

5.5.2 Attachment To HotDraw

HotDraw is the graphical framework upon which CodeCrawler is based. HotDraw
itself is not changed in any way, because CodeCrawler subclasses everything it needs.
At this time CodeCrawler subclasses the following HotDraw classes:

� DrawingEditor. This is done through the class CodeCrawler, which is the main
application class.

� Drawing. The corresponding CodeCrawler class is named CCDrawing and re-
turns some supplemental information on displayed nodes and edges.

� RectangleFigure. The subclass is named CCFigure in CodeCrawler. It is de-
scribed in the next section.

� Tool. The class CCTool implements the method which is responsible for display-
ing the node specific information in the lower left corner of the main application
window, when the mouse pointer is floating above a CCFigure in the drawing.

5.5.3 Important Classes

CodeCrawler

CodeCrawler is the main application class. It is a subclass of a HotDraw DrawingEd-
itor. However, it implements much more functionality, like all the functionality acces-
sible through the menus. It holds references to all subwindows like the generator and
the control panel. It also holds a direct reference to the current graph.

CCGraphAbstract

This class defines all functionality common to the graphs implemented in CodeCrawler.
It holds collections of nodes and edges. A graph is built upon the current state of the
class CCSelection. This class needs to be subclassed if a new graph is to be added
to CodeCrawler. CCGraphAbstract can’t be instantiated, because it returns no layout
algorithms. A concrete graph class can have several layout algorithms, which have to
be registered in the class CCService.

CCNode and CCTreeNode

A CCNode represents a node in a CodeCrawler graph. A CCTreeNode is a subclass
which implements some added functionality which is needed in a tree graph. In Fig-
ure 5.11 we can see that a node directly references itsfigureand the metamodel entity it
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Figure 5.11: The class CCNode and its partners.

represents (assignedEntity). The assigned entity can be any Moose entity. A CCNode
is part of agraphand can return functionality like menus, operations like highlighting
etc.

CCFigure

This class is a subclass of a HotDraw RectangleFigure. It is the graphical representation
of a node class and directly references it through the variablemodel, as we can see in
Figure 5.11. A few operations which can be done on a CCFigure are reflected directly
on its assigned CCNode or CCTreeNode object.

CCSelection

This class is responsible for managing six collections of objects, which are the classes,
methods, attributes, inheritances, invocations and accesses present in the current model.
Since the user will not want to interact on the whole current model all the time, this
class presents a subset of the model which can be changed without tampering with
the actual model. This selection can be filtered either programmatically (by applying
filters) or interactively (by removing nodes from the drawing whose entities are then
removed from the selection). It is always possible to trace back the selection to its
original state, which is identical to all entities in the model. At this time this class
is a singleton, but this is certain to change in the future to allow the use of multiple
selections.

CCConfiguration

This class holds all attributes which are necessary to identify a graph configuration.
Each time the user interacts with the graph generator by selecting the properties of the
graph he’d like to have, when at the end the user decides to build a new configuration,
all possible options from the generator are put into a new configuration object. Such a
configuration object is also what gets saved when we save a graph in the repository sub-
canvas. Each time a CodeCrawler graph configurations file (*.tln) is loaded into Code-
Crawler the repository is filled with configuration objects. When such a configuration
is selected in the repository, all possible options in the generator are set accordingly.

CCService

This class provides services to many classes in CodeCrawler. It is a singleton class,
and should be cleared each time its implementation changes. It can return the graphs
and layouts implemented, the metrics and where they can be applied, etc.
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CCConstants

The constants class has a somewhat deceiving name. In fact it holds all values which
are used in CodeCrawler for layout. These are are divided into three dictionaries named
colors, magnitudesandpoints. The constants class is a singleton and should be cleared
as soon as its implementation changes. The magnitudes and the points are used in the
layout algorithms and can be changed interactively through the control panel.
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Useful Graphs

6.1 Introduction

This chapter is dedicated to the graphs which prove to be useful when it comes to
the understanding of software systems and the detection of design problems using the
approach discussed in this work. Although this may seem a little confusing, what in this
chapter is called a ‘useful graph’ is not only its layout, but primarily thecombination
of a layout with object-oriented metrics and the consequent extraction of information
made by the viewer through interaction with the graph.

Before we start with our classification, we want to make a few statements about the
graphs discussed below:

� Not every graph here is effective on our case studies. This is due to the fact
that since some of these graphs serve to detect problems, sometimes they can’t
do that because the problem which a graph should detect is not present in the
system.

� We divided the graphs treated here into 4 distinct groups, which we callclass,
method, attributeandclass internal. The names indicate which kind of entities
are displayed in the graphs. Class internal treats the special case where methods
and attributes are displayed at the same time.

� The graphs presented here are only a selection of those discovered by us which
we judge to be useful. However, we preferred to make a selection to keep the
amount of presented graphs reasonable.

� A general rule for all graphs presented here is that each one has drawbacks which
another one may be able to alleviate or remove at the cost of developing itself in
turn one or more disadvantages.

Structure. The structure of this chapter is the following:

� Useful Graph Structure. In Section 6.2 we explain the structure which we
adopted to discuss each useful graph.

� Cases Studies. In Section 6.3 we have a short presentation of the two case
studies which we used to test CodeCrawler on.

33
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� Layout Algorithms. In Section 6.4 we present each layout algorithm which is
mentioned in this chapter and explain their properties.

� Useful Graphs.The rest of the chapter discusses each useful graph in detail and
presents the results when applied on our case studies.

6.2 Graph Structure

For each graph which we treat in this chapter, we discuss the following properties:

� Graph: Indicates what type of graph and layout has to be chosen, and whether a
sorting of the nodes has to precede the display.

� Scope: At what granularity level the graph can be applied. We differentiate be-
tweenfull system, subsystemandsingle class. Sometimes the subsystems are
indicated as a single inheritance hierarchy. We also indicate if the graph is lan-
guage specific.

� Metrics: We list five metrics in the following order: width metric, height metric,
color metric, horizontal position metric, vertical position metrics. When we write
a dash (-), this means that the metric should not be set. In case we write an
asterisk (*) this means that the metric can be set freely. In the case of class
internal graphs we repeat the five metrics twice, once for the method nodes and
once for the attribute nodes.

� General idea: We write what the graph is all about and what ideas lie underneath
it. We also indicate what the user should be searching for in the graph.

� Results: Here we present the results obtained after applying the graph on our
case studies.

� Possible Alternatives: We list a few alterations that could be made regarding
the metrics, so as to obtain slightly different graphs, and list also some eventual
interactions that could be applied on the graph to increase its usefulness.

� Evaluation: Some statements about the advantages and drawbacks of the graph.

6.3 Case Studies

This section contains a short overview of the systems we used as case studies for this
work. Basically we use them to test the graphs listed in the remainder of this chapter.
We chose these two case studies for the following reasons:

� Availability. Both case studies are public domain and can be downloaded freely.
With this point we can ensure that the results are reproducible.

� Size. We chose two case studies which can be termed as being of anaverage
sizeand are representative of medium-sized standalone applications. We think
that very small applications can’t reflect results properly because the purpose of
most graphs is coping with complexity, which in such cases is not necessary. On
the other hand, if we had chosen very big applications, it would have been hard
to present results in a concise manner, because many graphs can be applied in
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Application Refactoring Browser Duploc

Classes 166 123
Methods 2365 2382
Attributes 365 386

Table 6.1: An overview of the size of our case studies.

various areas and at various levels of granularity. However, we present some
experiences we had with very large systems in Chapter 8.

� Level of maturity. We chose one very mature application which has gone through
some refactorings and redesigns, and another one which has been developed in
a rush and which has yet to undergo its first redesign. We did this to see if the
results of our experiments would differ and in what way they would do that.

6.3.1 Refactoring Browser

The Refactoring Browser is a widely used tool for the implementation of Smalltalk
programs [ROBE 97]. We took it as a case study because it is an application which
has gone through several refactorings and redesigns and has been written by some very
experienced programmers. This quality of implementation should thus be visible in
such a system. It is a medium sized application as we can see in table 6.1.

6.3.2 Duploc

Duploc is a tool for the detection of duplicated code [RIEG 98]. Duploc was the first
application written in Smalltalk by its developer, Matthias Rieger and has yet to un-
dergo its first major redesign. Thus we expect it to have some of the flaws which new
systems tend have, like oversized classes and methods, obsolete attributes, etc.
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6.4 Layout Algorithms

6.4.1 Introduction

This section is dedicated to the graphs and layouts we have selected to implement in
CodeCrawler. We discuss the properties, advantages and drawbacks of each one of
them. We include this here because they are mentioned throughout the remainder of
this chapter. As some layouts are not being used in this chapter we decided to put them
in the appendix in Chapter A.

We discuss the original idea of a graph and the scope of its applicability. Each
graph has at least one possible kind of layout and we discuss it with a regard for the
metrics that can be applied for that special layout. Sometimes a sorting of the nodes
has an influence on the usefulness of a graph and we discuss that as well as the general
pros and contras for each graph.

In Table 6.2 we have an overview of all graphs and their properties supported by
CodeCrawler. The circle graph is discussed in Chapter A.

Graph Type Metrics Entities Sort Scope
Tree 3 C Global
Correlation 5 CMA Global- Local
Histogram 3 CMA X Global- Local
Checker 3 CMA X Global- Local
Stapled 3 CMA XX Global- Local
Confrontation 3 + 3 MA X Local
Circle 3 CMA X Global- Local

Table 6.2: CodeCrawler’s graph layouts.

The ’Metrics’ column specifies how many metrics can be rendered by the graph.
5 means that the a single node can render 5 metrics at the same time. 3+ 3 means
that two separate groups of entities and metrics can be defined. The ’Entities’ column
refers to the kind of entities the graph can be applied upon: C for class, M for method
and A for attribute1. The ’Scope’ column specifies if the graph can be applied to the
complete (sub)system or only to some entities like a class or a method. The ’Sort’
column indicates if a sorting of the nodes according to a certain metric measurement
can enhance the usefulness of the graph in question.

1The limitation to these three types of entity is due to the current implementation of the Moose model.
Future implementations of it may include supplemental entities as we point out in Chapter 9.
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6.4.2 The Tree Graph

Figure 6.1: A tree graph of a system.

Overall Idea. A tree graph is useful for the display of hierarchical structures like
inheritance hierarchies containing classes. The nodes represent classes, while the edges
between the nodes represent inheritance relationships.

Scope. The scope of this graph ranges from very large systems to subsystems con-
sisting of few classes. A requirement is that there is some usage of inheritance in the
system. Otherwise the graph gets very flat and wide.

Layouts. We implemented three slightly different layout algorithms, which we sim-
ply called left, centered and right. Each one of them is based on recursion.

Metrics. The number of possible metrics that can be applied is 3. The two position
metrics cannot be used, as the position of the nodes is defined by the layout algorithm.
However, a virtual fourth metric is present, HNL. It is rendered by the layout algorithm
through the vertical position of the nodes.

Sort influence. This graph is one of the few cases where a sorting of the nodes is not
advised, as it disturbs the recursive layout algorithm.

Pro et contra. The advantage of this graph is that it can render a complex system in
a very simple manner. Its only drawback is that because the position of the nodes is
defined by the layout algorithm, this graph tends to get very large for big systems and
will sometimes not fit on one single screen. The use of node shrinking can alleviate
this problem.
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6.4.3 The Correlation Graph

Figure 6.2: A correlation graph of method nodes using LOC and NOS as position
metrics.

Overall Idea. This graph can render the relationship between two metrics when they
are applied to entities. The two metrics are directly mapped onto the position coordi-
nates of the nodes. This graph needs an absolute origin within a coordinate system,
which in our case is the upper left corner of the graph. If the chosen metrics are in
close relation to each other, the nodes are positioned along a certain correlation axis,
which is defined by the metrics. If a node finds itself far away from this correlation
axis, it means that its metric measurements are somehow abnormal compared to the
other nodes and should be inspected. Very large measurements put a node far away
from the origin, if one of the two position metric measurements is very small, the node
finds itself near the left or top border of the graph.

Scope. This graph can be applied to any type of entity. The maximum number of
displayable nodes is very big, as the expansion of the graph drawing depends on the
outliers in the system and not on the number of displayed nodes. This involves an
overlapping of nodes, which however is not negative, because we are mainly interested
in the outliers (i.e. the extreme values).

Layouts. There is only one possible layout in this case, which directly maps the
position metrics to the position of the nodes.
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Metrics. The number of possible metrics that can be applied is 5. Indeed, each metric
can be applied in this case. However, if we choose to select size metrics this involves
that the nodes overlap, while without size metrics the nodes will either be positioned
next to each other or cover up other nodes entirely. The overlap problem is especially
acute when the chosen size metrics tend to have big values, like LOC.

Sort influence. A sort has no influence on the layout.

Pro et contra. The main advantage of this graph is its scalability. Another advantage
is that we can pick out the outliers at one glance. The drawback is a certain loss of
overview, because the nodes overlap. However, as we often do not make use of size
metrics for this graph, we can circumnavigate this problem.
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6.4.4 The Histogram

Figure 6.3: A horizontal histogram.

Figure 6.4: A horizontal histogram using the size addition layout

Overall Idea. A histogram provides a representation of the distribution of entities
related to a certain metric. The distribution of the nodes can in turn give us general
information about a system. For example if we use as vertical position metric LOC of
methods, we are able to gather if the methods tend to be overlong or not, and if there
are any significant outliers.

Scope. This graph can be applied to any type of entity, class, method or attribute.
The number of displayable nodes is also very large. However, since a large part of the
nodes distribute around a certain value, a few of the rows of this graph can get very
large and eventually get bigger than the screen. This problem is sometimes acute if we
use the size addition layout described below. One of the fields where its use is advised,
is to make a distribution of the methods of single classes or of attributes of subsystems.

Layouts. There are two possible layouts. The first, calledhorizontal, ignores size
metrics and displays every node with the same size. The second one, calledsize addi-
tion, makes use of the width metric, and puts the nodes next to each other, while taking
their size in consideration. Only the horizontal layout can be considered to be a real
histogram, the kind which is used in the field of statistics.

Metrics. The number of possible metrics depends on the used layout. The horizontal
layout can make use of 2 metrics, namely the color and the vertical position.The size
addition layout can also make use of the width metric.
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Sort influence. In the case of the horizontal layout, a sort has a positive effect if we
take the color metric as sort criterion. It makes the detection of color metric outliers
easier. In the case of the size addition layout, a sort according to the width metric also
has some positive effect for the detection of width metric outliers.

Pro et contra. This graph shows a good behaviour in terms of scalability. Its major
drawback is that the vertical position metric needs to have a rather large measurement
interval, otherwise the nodes will be distributed all near the same vertical position.
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6.4.5 The Checker Graph

Figure 6.5: A checker graph using a sorted horizontal layout.

Figure 6.6: A checker graph using a quadratic layout with method nodes and invocation
edges.

Overall Idea. The base idea for this kind of graph is simplicity. We want to lay out
nodes without a special algorithm, we just place them one next to each other, to prevent
them from overlapping.

Scope. This graph scales up quite well (especially if node shrinking is applied).
Therefore it can be used for any kind on entity. However, it’s not advisable to use
edges in this graph, because it looks very chaotic, as they will cross the nodes.
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Figure 6.7: A checker graph using a maximal space usage layout.

Layouts. The first layout kind is calledhorizontalandvertical. We just place the
nodes next to each other. We see such a layout in Figure 6.52. Because this wastes
a lot of space, we introduced thequadraticlayout which tries to lay out the nodes to
make them form a rectangle, whose width is dependent of the number of displayed
nodes. The graph which makes the best use of space is calledmaximal space usage,
which tries to put as many nodes on the visible part of the drawing as possible.

Metrics. As the position metrics can’t be used in this graph, we can only use size and
color metrics.

Sort influence. The sort is essential for this graph. Indeed, if we don’t make use
of it, the nodes are placed randomly on the screen and it will be very hard to discern
significant nodes. If we do make use of a sort according to a metric (especially the
width metric), the detection of outliers will be very easy.

Pro et contra. The advantage is that we end up with a very easy to analyse layout.
If the nodes are sorted, the detection of outliers is very easy, and the detection of sus-
picious node shapes is easy as well. This graph scales up well and several hundreds of
nodes can be displayed at the same time without overlapping.

2This figure suggests that a histogram is a special case of a checker graph. This is not true: a histogram
makes use of a more complex layout algorithm which makes use of position metrics, as we see in the follow-
ing sections.
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6.4.6 The Stapled Graph

Figure 6.8: A stapled graph of class nodes.

Overall Idea. The idea for this graph came up when we tried to cure a small flaw in
the horizontal checker layout: The width of the whole graph is defined by the summed
widths of the nodes and cannot be influenced by the user. In such cases it often happens
that the checker graph is wider than the screen. The stapled graph is thus a derivate: the
user can indicate the maximum width of the graph he’d like to have, and all the node
are accordingly shrunk in their width to make the graph fit the indicated space.

Scope. This graph can also display any kind of entity.

Layouts. A this time there is only one possible layout, which displays the nodes
horizontally.

Metrics. The size and color metrics can be used, while this is not possible for the
position metrics.

Sort influence. The sorting of nodes is essential for this graph to get some mean-
ingful results. In fact it can be used for the detection of outliers regarding the height
metric, if the nodes are sorted according to the width metric. If the two metrics are in
close relation we often get a ”staircase effect” because the nodes tend to get equally
bigger in width and height. If this is not the case, the staircase effect breaks and we’ll
be able to easily detect those cases.

Pro et contra. One major drawback is that the width of a node will not directly
reflect its metric, because it’s being distorted by the graph width mapping function.
Another drawback is that if the summed undistorted node widths of all nodes is bigger
than the desired graph width, the nodes are shrunk in their width (otherwise they will
be enlarged). If this shrinking is heavy, many small nodes will somehow disappear
because they get very narrow, often only one pixel wide. The pro is obviously the
intuitive detection of abnormal nodes whichdon’t have to be outliers, but which stand
out because two normally related metrics are not closely related in their case. Another
pro is also that the graph will always fit the screen.
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6.4.7 The Confrontation Graph

Figure 6.9: A confrontation graph using an horizontal layout

Overall Idea. This graph grew out of the necessity to display the access relationships
between methods and attributes. An access is the only type of relationship between two
entities of a different type.

Scope. This graph can only be applied on methods and attributes at the same time
with accesses as edges. It’s best used with the methods and attributes of one class.

Layouts. There are two possible displays. The first, called eitherhorizontalor ver-
tical displays on one row (column) the attributes and on the other one the methods.
We can see such a layout in Figure 6.9. However, since in a class often the number of
methods is much greater than the number of attributes, and the graph very soon gets
larger than the screen, we introduced thethree rowlayout. In this case the attributes
are in the middle row, while the methods are in the upper and lower row.

Metrics. The size and color metrics can be used, while this is not possible for the
position metrics.

Sort influence. A sort is advised for this graph. In the case of the method nodes
it’s especially useful according to the metrics LOC, NOS and NMAA. In case of the
attribute nodes it’s best to use NAA. If such a sort is applied, the number of edge
crossings tends to drop and makes the graph look less cluttered.

Pro et contra. The major contra for this graph is that there is no special ordering of
the nodes like clustering, except for a possible sort. However, it’s the best graph to look
at the internals of a class.
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6.5 Class Graphs

In this section we list all graphs which display class nodes. We have noticed that the
following graphs can be separated in two distinct groups. The graphs in the second
group are normally applied after those in the first group, because they address more
precise issues. We distinguish the following groups:

1. Those which serve primarily for system understanding. They work at a higher
abstraction level, and in some cases can only return a general statement about
the system. Problem detection is secondary in such graphs and in some cases not
even possible. The following graphs fall under this category:

� SYSTEM COMPLEXITY, Section 6.5.1.

� SYSTEM HOT SPOTS, Section 6.5.2.

� WEIGHT DISTRIBUTION, Section 6.5.3.

� ATTRIBUTE ORGANISATION, Section 6.5.4.

� ROOT CLASS DETECTION, Section 6.5.5.

2. Those which primarily address problem detection, and secondarily program un-
derstanding. They must be applied on subsystems, rather than full systems. We
list the following:

� SERVICE CLASS DETECTION, Section 6.5.6.

� COHESION OVERVIEW, Section 6.5.7.

� METHOD PROTOCOL USAGE, Section 6.5.8.

� SPINOFF HIERARCHY, Section 6.5.9.

� INHERITANCE IMPACT, Section 6.5.10.

� INTERMEDIATE ABSTRACT, Section 6.5.11.
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6.5.1 System Complexity

Graph Inheritance tree, without sort.
Scope Full system.
Metrics
Size NIV (number of instance vari-

ables)
NOM (number of methods)

Color WLOC (lines of code)
Position - -

General Idea: This is one of the first graphs that should be applied to a system. It is
an overview of the inheritance hierarchies of a whole system. This graph can give clues
on the complexity and structure of the system (how many classes are present?), as well
as information on the use of inheritance in the system (how deep do the hierarchies
go and is the system in general flat or deep?). If we furthermore apply some class
complexity metrics we can extract some more information. In this case we use as
size metrics NIV and NOM3, while for the color we choose WLOC. The detection of
aberrant classes is now made easy: we can see if there arevery large classes, small
classesor evenempty classes.

Results with the Refactoring Browser: In Figure 6.10 we see theSYSTEM COM-
PLEXITY graph applied on the Refactoring Browser. It shows few stand-alone classes
and a few deep hierarchies. The first thing that strikes the eye is the classBrowser-
Navigator(A) which has a huge number of methods (175) and lines of code (1495)
compared to the other classes present in the system. At the same time it only has one
instance variable (this is the reason for its very narrow look). It may be a case for refac-
toring. If we take a look at the inheritance tree on the right side we can spot the class
BRStatementNode(B) which is completely empty. When I asked the developers of the
Refactoring Browser about this case, they told me that they were aware of the prob-
lem and that this class had been created to duplicate a hierarchy of another program.
The same case can be spotted on one of the stand-alone classesRefactoringError(D)
which is also empty. The next point of interest is the classBRScanner(C) which has
the most instance variables (14) while it implements comparatively few methods (52).
Perhaps this massive stand-alone class could be split up into subclasses. Another thing
we can see is, that in the inheritance hierarchy in the middle of the graph, the root class
Refactoring(E) is implementing by far the most methods, while there are quite a few
very small classes deeper down the inheritance chain.

Results with Duploc: When we apply theSYSTEM COMPLEXITY graph on Duploc,
we can spot the following in Figure 6.11: The system shows some very flat inheri-
tance hierarchies, with many stand-alone classes which can have considerable sizes.
This could mean that the system has not yet been refactored. There are three deep
hierarchies, although in all three we can see that the main work is being done by the
roots, which indicates top-heavy hierarchies. We also see that the main classcalled

3For an explanation on the metric acronyms used in this chapter please consult the tables in Chapter 3.
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Figure 6.10: The system complexity graph applied on the Refactoring Browser using
as size metrics NIV and NOM, and as color metric WLOC.

DuplocApplication(A) is very large and has only one very small subclass called it Du-
plocInformationMural4. AlthoughDuplocApplicationhas the most methods and has
the second most instance variables, the class with the most lines of code isFastSpar-
seCMatrix(B). This class has only half the number of methods ofDuplocApplication
(74 vs. 130) but has nearly twice as much lines of code (1641 vs. 1060). Because of
this we can already deduce thatFastSparseCMatrixhas some very long methods. The
third point of interest are the classes on the left side (C): all of them are empty. These
classes have become empty after being exported from the ENVY environment. The
fourth eye-catch is the classBinValueColoringModel(D) on the right side. This class
has the most instance variables (20), but only 52 methods. This may indicate that it is
a service class which implements a lot of accessor methods. This supposition is being
enforced by the light color value which is a sign for few lines of code (402), and is
confirmed when we browse the source code of this class.

Figure 6.11: The system complexity graph applied on Duploc using as size metrics
NIV and NOM, and as color metric WLOC.

Possible Alternatives: The color metric can be varied at will, especially class com-
plexity metrics like NCV (number of class variables) prove to be useful.

4The InformationMural is a subapplication of Duploc included in a latter phase of development. Evi-
dently the developer did not want to write an own main application class from scratch, but preferred to take
the existing one, subclass it and override only some needed methods. This explains the small size of this
class.
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Evaluation: This is certainly one of the first graphs that should be applied to a sys-
tem, as it can return information on the structure and complexity of the subject system.
However, it suffers one small drawback, which shows in very large systems: Some-
times the number of classes we want to display is so large that this graph takes several
screens of place. It is difficult then to discern the outliers in the systems at one glance.
The system hot spots graph discussed in Section 6.5.2 can counter this problem.
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6.5.2 System Hot spots

Graph Checker, quadratic, sort according to width metric.
Scope Full system.
Metrics
Size NOM (number of methods) NIV (number of instance vari-

ables)
Color WLOC (lines of code)
Position - -

General Idea: For very large systems it’s hard to decide where to start looking for
problems hot spots. One general rule is to look for very large or complex classes
regarding their number of attributes and methods. The graph described here is a very
simple display of all classes in the system sorted according to a certain metric. The
nodes are placed next to each other to prevent overlapping. This graph detects outliers
very easily because of the sorting. We distinguish the following:

� Large nodes at the bottom of the graph. These represent the biggest classes in
the system.

� Small nodes at the top of the graph. These are the smallest classes which can
sometimes even be empty.

� Very flat nodes. These nodes possess very few (if any) instance variables.

� Rather high nodes. This is seldom the case, as classes rarely have many at-
tributes. Sometimes we can detect configuration classes like this.

Results with the Refactoring Browser: In Figure 6.12 we get aHOT SPOTSview
on the Refactoring Browser. While in Figure 6.10 we had to search for the biggest
and smallest nodes, this is made easy in this kind of graph because the nodes have
been sorted: as before we can locate the classBrowserNavigator(A) andBRScanner
(B). The sorting of the nodes makes it easy now to detect empty or very small classes,
which find themselves at the top of the graph (D). Our attention is now also drawn to
other classes likeBrowserApplicationModel(C), which implements 38 methods while
it defines no instance variable, which is visible by its flat shape. The view on the shape
of the nodes is also facilitated, we can now detect classes likeMoveVariableDefinition-
Refactoring(E), which defines 6 instance variables while it implements only 7 methods
(mainly accessors), giving it nearly a square shape.

Results with Duploc: TheHOT POTSview on Duploc reveals also some information
which could not be seen at first sight in Figure 6.11, as we see in Figure 6.13. We see
Duploc has either very large classes (A)(B), or very small ones (D). We can also locate
some classes with many instance variables (C). Two classes which could be interest-
ing for further investigation because of areDuplocCodeReader(F) (32 methods, 17
instance variables) andDuplocProgressMeter(E) (15 methods, 9 instance variables):
both classes have many instance variables and few methods, which could indicate ser-
vice classes apt for refactoring.
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Figure 6.12: The system hot spots graph applied on the Refactoring Browser using as
size metrics NOM and NIV, and as color metric WLOC. The nodes have been sorted
according to NOM.

Figure 6.13: The system hot spots graph applied on Duploc using as size metrics NOM
and NIV, and as color metric WLOC. Sort according to NOM.

Possible Alternatives: The color metric can be varied at will. A sort according to
other metrics (especially WLOC and NCV) can also give interesting results which
emphasise certain nodes.

Evaluation: The main drawback of theSYSTEM COMPLEXITY graph described in
Section 6.5.1 is the fact that through the ordering of the nodes in tree structures we
lose track of the size of the nodes all too easily. Only extreme cases strike our eyes.
The SYSTEM HOT SPOTSgraph described here makes this up through the sorting of
the nodes and an ordering of them which reflects this sorting. However we lose the
notion of inheritance in this case, since displaying the edges would mess up the view.
A certain disadvantage of this graph is that the more nodes we display the more space
is needed.
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6.5.3 Weight Distribution

Graph Histogram, size addition layout, sort according to width metric.
Scope Full system.
Metrics
Size NOM (number of methods) -
Color HNL (hierarchy nesting level)
Position - NOM

Figure 6.14: The weight distribution graph applied on the Refactoring Browser. As
width and vertical position metric we use NOM, as color metric we use HNL.

General Idea: With this graph we are able to make a general assessment on the
system we are investigating. The width and the vertical position of the nodes is reflected
by NOM, the color represents their HNL. This means that the deeper down (in the
graph) the class nodes are, the more methods these classes implement. A dark node on
the other hand means that the class it represents has a deep hierarchy nesting level. The
possible assessments we can now make are:

� The system istop-heavy. This means that the classes that implement the most
functionality are high up in the inheritance hierarchies. Such a graph has big
nodes (on the bottom of the graph) which have very light color values (because
their HNL is small). Top-heavy systems suffer when it comes to subclassing and
reusing, because their root classes do too much themselves.

� The system isbottom-heavy. The most functionality is implemented in classes
deep down the inheritance hierarchies. Such a case displays dark, big nodes on
the bottom of the graph. Bottom-heavy systems are sometimes the results of
overzealous abstracting mechanisms.

� The system iseven. This display looks somehow chaotic, because the dark and
light nodes distribute themselves over the whole graph. This case balances the
two cases described above.
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Figure 6.15: The weight distribution graph applied on Duploc. As width and vertical
position metric we use NOM, as color metric we use HNL.

Results with the Refactoring Browser: The Refactoring Browser is an evenly dis-
tributed system, as we see in Figure 6.14: It’s not possible to locate a majority of the
dark or the light nodes on a certain area of the graph, although we can see there are
three big classes marked as (A) high up the hierarchy.

Results with Duploc: Duploc is clearly a top-heavy system, as we see in Figure 6.15:
The dark nodes are all very small (small NOM) and thus located on the top region of
the graph. The big classes on the bottom of the graph are all very light (high up in the
hierarchy). The system is thus to be classified as top-heavy, which is mainly due to its
young age: Duploc has not yet undergone a reengineering or refactoring. It should be
analysed on whether it’s possible to introduce a supplemental abstraction level high up
in the hierarchy.

Possible Alternatives: The width metric can be varied, especially NIV (number of
instance variables) can give some supplemental information on the complexity of the
classes. The color metric can also be changed, especially WLOC (lines of code) shows
a good behaviour.

Evaluation: This graph can make a general assessment about the system. Such an
assessment may not be very useful and will most probably not involve a specific prob-
lem, but upon such statements about the subject system we can vary our approach.
In fact, the more we know about the system before we dive into its details, the more
precisely we can deploy the other graphs.
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6.5.4 Attribute Organisation

Graph Checker, sort according to width metric.
Scope Full system, language specific: C++ and Java.
Metrics
Size PriA (number of private at-

tributes)
PubA (number of public at-
tributes)

Color ProA (number of protected attributes)
Position - -

General Idea: One of the primary powers of object-oriented languages is certainly
encapsulation; the ability to organize a class in such a way that it can be reused without
having to know all its internal details. Because of this, in most languages the attributes
can be defined as either private (only the class where they are defined can directly
access them), protected (same as private, including all subclasses) or public (every
class in the system can access it directly). The attribute organisation graph renders
these three types of definition. It’s a checker graph which uses as size metrics PriA and
PubA and as color metric ProA. We chose ProA as color metric because several tests
showed that most attributes are defined as either private or public, seldom protected.

We distinguish the following:

� Flat nodes are thus classes which are strictly private.

� Tall, narrow nodes are classes with many public attributes, which are very open
to the system and which of course can be a danger.

� Dark nodes make use of protected definitions and it’s often useful to check this
detail with an inheritance tree display of the system: If the dark nodes hap-
pen to be stand-alone classes, there’s a suspicious situation present: The use of
protected attributes makes sense only in inheritance hierarchies, in stand-alone
classes one could use private definitions just the same.

Possible Alternatives: The same principle works with the metrics PriM (number of
private methods), PubM (number of public methods) and ProM (number of protected
methods). In this case we base our observations on the methods implemented in the
classes.

Evaluation: This graph should be used before we start examining subsystems. It can
return a general statement about the system in general. It’s also a good technique to
apply it on each subsystem, to see if we can make out differences. As this graph is
language specific and does not work for Smalltalk5, we cannot show its application on
our case studies and can thus not include a figure in this case.

5Smalltalk makes no distinction, it knows only protected attributes.
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6.5.5 Root Class Detection

Graph Correlation.
Scope Full system or very large subsystems.
Metrics
Size * *
Color *
Position WNOC (total number of chil-

dren)
NOC (number of children)

General Idea: In very large systems with many inheritance hierarchies it may be
difficult to identify at once the classes which have the most impact on their subclasses.
The impact of a class on its descendants can be measured with the number of direct
subclasses and the total number of subclasses of a class: the more there are, the more
the functionality implemented in a root class is used. This graph shows the correlation
between WNOC (total number of subclasses) and NOC (number of direct subclasses).

The further away from the origin such a class node is, the bigger is its impact. The
type of inheritance used for a class can also be identified with this graph:

� If a node is positioned on the right side of the graph, while holding a vertical
position near the top, this means that while the underlying class has a great num-
ber of descendants its direct subclasses are few. This is often the case when
directly below a root class a supplemental abstraction level of classes has been
introduced.

� If the node finds itself on the 45 degrees axis (it can’t be further left because
WNOC is always at least equal to NOC) and far away from the top of the graph,
this means that the underlying class has a lot of direct subclasses. This is what we
call aflying saucer hierarchybecause the inheritance tree of this class resembles
one.

� If a class node is positioned exactly along the 45 degrees axis this means that all
its subclasses don’t have subclasses themselves, and thus are leaf node classes in
an inheritance tree.

Results with the Refactoring Browser: To make the effect of this graph more vis-
ible, in Figure 6.16 we see on the top left the root class detection graph while on the
bottom right we see a display of two major inheritance trees. We see the classRefactor-
ing (A) which has 43 descendants and 5 direct subclasses as root of major inheritance
tree on the right side of the correlation graph. The other root class,BrowserAppli-
cationModel(B) can also be identified on the right side of the graph. Two classes,
MethodRefactoring(C) andVariableRefactoring(D), which are the heads of minor
flying saucer hierarchies (14 and 13 direct subclasses) can be identified near the 45
degrees axis.

Results with Duploc: The results of this graph are somewhat deceiving in the case
of Duploc, as its inheritance hierarchies are very flat. We can detect however two root
classes, namelyPresentationModelControllerState(A) andPMCS(B). In Figure 6.17
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Figure 6.16: A root class detection graph applied on the Refactoring Browser. As
position metrics we use WNOC and NOC.

we see where the detected root classes are located in one of the inheritance hierarchies
of Duploc.

Figure 6.17: A root class detection graph applied on Duploc. As position metrics we
use WNOC and NOC.

Possible Alternatives: We do not make use of the color and size metrics, which
could add information to this graph.

Evaluation: The detection of flying saucer hierarchies can of course be done through
an inheritance tree display. The resulting tree graph has then to be searched for them.
However, in some cases where the number of classes was very large, the resulting graph
would become several screens big. In such cases it’s not easy to detect flying saucers at
once, and the graph described here comes into play. This graph can come in handy to
see if there are some inheritance hierarchies upon which we want to apply inheritance
specific graphs like intermediate abstract or inheritance impact.
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6.5.6 Service Class Detection

Graph Stapled, sort according to width metric.
Scope Subsystem or small full system.
Metrics
Size NOM (number of methods) WLOC (lines of code)
Color NOM
Position - -

General Idea: This graph has proven to be useful for the detection of so-calledser-
vice classes. A service class is a class which mainly provides services to other classes.
It often contains some tables and dictionaries which other classes can access for their
purposes. Such classes often have an aberrant ratio between NOM and WLOC: they
have very short methods which mainly access or return values. In this kind of graph we
present a selection of some classes (a whole inheritance tree is often a good choice) as a
stapled graph. The classes have been sorted according to their width, which represents
NOM.

Because there tends to be a certain relation between NOM and WLOC, we should
get a sort of staircase effect on the nodes the more we move to the right.

We can make out the following:

� If a class node breaks the staircase effect (by being too short) it is a candidate for
a service class.

� This graph can also serve as detector for classes with overlong methods: If the
class breaks the effect in the other direction (by being too tall) it’s a candidate
for method splitting, because this means that it has many lines of code (tall) and
comparatively few methods (narrow, and because of the sorting pushed to the
left side of the graph).

Results with the Refactoring Browser: In Figure 6.18 we selected a whole inheri-
tance tree (26 classes) of the Refactoring Browser to be displayed in aSERVICE CLASS

DETECTIONgraph. We see one huge classBrowserNavigator(A), which in fact is even
bigger, but we cut it down because of space reasons. We see quite clearly that there is a
certain tendency for a staircase which is severely broken in two places. The first service
class candidate isCodeTool(B), which has 22 methods and 49 lines of code. A closer
inspection reveals that the methods are mainly get/set-methods (accessors). The second
candidate isCodeModel(C) with 40 methods and 136 lines of code. The name itself
already reveals the service function this class is intended to have. As method splitting
candidate we detect the classClassCommentTool(D) which has only 7 methods but 89
lines of code.

Results with Duploc: We obtained the graph in Figure 6.19 by first applying the
graph on the whole system and then by selecting a subset which looked interesting. We
see there are some candidates for service classes: The classCachedObservationData
(A) contains 20 methods for a total count of 50 lines of code. A closer inspection re-
veals it is truly a service class. Nearly the same ratio is visible in the classesCompar-
isonMatrixBody(B) (22/80),PresentationModelControllerState(C) (25/87) andOb-
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Figure 6.18: The service class detection graph applied on a subhierarchy of the Refac-
toring Browser. As width metric and sorting criterion we use NOM, the height metric
is WLOC.

Figure 6.19: The service class detection graph applied on a subset of Duploc. As width
metric and sorting criterion we use NOM, the height metric is WLOC.

servationOnRawSubMatrix(D) (30/122). Some classes tend to have overlong meth-
ods, namelyPMVSInformationMuralMode(E) (22/396) andDuplocCodeReader(F)
(32/530), and should be looked at for possible method splitting.

Possible Alternatives: Nearly the same results can be obtained if we use NIV (num-
ber of instance variables) instead of NOM: both NOM and NIV are closely related in
service classes (because of the accessors). Sometimes abstract classes higher up the
hierarchy tend to have the same properties as service classes, because their abstract
nature makes them have several very short methods which are later overridden or ex-
tended by the subclasses. This can be alleviated if we use HNL (hierarchy nesting
level) as color metric. Service class candidates which are true service classes tend then
to have a darker color shade. Fake service classes like the abstract ones will have a
lighter color shade because they are higher up the hierarchy.



6.5. CLASS GRAPHS 59

Evaluation: As this graph addresses a special problem, it should be used in a second
phase of reverse engineering. Experience has shown that it’s advisable to apply it on
subsystems, especially inheritance hierarchies.
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6.5.7 Cohesion Overview

Graph Checker, quadratic, sort according to width metric.
Scope Full system or subsystem.
Metrics
Size NOM (number of methods) WNAA (number of direct ac-

cesses on attributes)
Color NIV (number of instance variables)
Position - -

General Idea: In this graph the nodes differ greatly in shape and color. In the best
case this graph can give us some clues on which classes we should inspect for a possible
splitting. We distinguish the following:

� The flat nodes indicate that the methods of a class (the width indicates the num-
ber) do not access many times its instance variables. This is further emphasised
by the small height (few instance variable accesses).

� The narrow and high nodes on the other hand, tend also to be very light colored.
This case happens when the classes have many accesses but only few instance
variables. This is mostly the case when the class defines an attribute which is
then heavily accessed directly by its subclasses. This is not advisable because of
the lacking encapsulation: a single access through an accessor which would then
be invoked by other classes, instead of direct accesses on the attribute, would be
much better.

� More or less rectangular nodes with darker color shades indicate a good cohesion
inside those classes, although this is only provable after applying a class cohesion
graph, which is described in Section 6.8.1.

Results with the Refactoring Browser: The resulting graph can be seen in Fig-
ure 6.20. The first thing we notice is that the nodes differ heavily in their shapes and
colors. There are some white nodes that don’t define instance variables (for example
(A)) and because of this absence they can’t have any instance variable access either.
This is the reason for their flat shape. We also gather there are some empty or nearly
empty ones (located around (F)). The classBrowserNavigatorstrikes once again the
eye for its huge number of methods and its small number of instance variables (only
one). The nodes (D) and (E) strike the eye for their narrow shape and light color:
Both have few methods and instance variables, (1,2) and (2,1) respectively, while at
the same time they have a huge number of accesses. The reason for this is that their
variables are directly accessed by their subclasses. The classBRScanner(C) shows a
great complexity and heavy access.

Results with Duploc: The graph in Figure 6.21 shows a few characteristics of Du-
ploc: Many empty or nearly-empty classes (C), quite a few heavy-access classes (B)
and (D) and a few very large classes, for exampleDuplocApplication(A). We see there
are quite a few classes that could be interesting for inspection with a class cohesion
graph and do that for one special case, the classDuplocApplicationin Section 6.8.1.
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Figure 6.20: A cohesion overview graph applied on the Refactoring Browser. As size
metrics we use NOM and WNAA. As color metric NIV is used.

Figure 6.21: A cohesion overview graph applied on Duploc. As size metrics we use
NOM and WNAA. As color metric NIV is used.

Possible Alternatives: None.

Evaluation: This graph can be seen as anin-betweener, because it comes after a
graph for general overview and before a graph which treats class internals. The best
result it can return is a collection of classes which we should further examine with a
class cohesion graph, described in Section 6.8.1.
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6.5.8 Method Protocol Usage

Graph Checker, maximal space usage layout, sort according to width metric.
Scope Full system. Smalltalk specific.
Metrics
Size NOMP (number of method pro-

tocols)
NOM (number of methods)

Color *
Position - -

General Idea: This graph can only be applied to programs written in Smalltalk, as
it makes use of a language-specific metric, NOMP (number of method protocols). In
Smalltalk the methods of a class are logically grouped in so-called protocols. This way
it’s possible to group all accessors, all initialize methods, etc. into a single protocol.
This can make the understanding of a class easier, since we expect the methods located
in the ’accessing’ protocol to be accessors6.

Two cases can harden the understanding of Smalltalk classes related to their logi-
cal structure: if a protocol contains too many methods (inexperienced Smalltalk pro-
grammers tend to do that) or if we have a great number of protocols and few methods
(overzealous Smalltalk programmers tend to do that also). The third possible mistake
is that a method is located in the wrong protocol or the protocol has a non-intuitive
name.

The graph we present here can detect classes in which such a suspicious use of
method protocols has been made. It shows the ratio between the number of methods
(NOM) and the number of method protocols (NOMP) of a Smalltalk class. NOM is
used for the height, while the width reflects the NOMP metric measurement. We are
looking for nodes which have either a square shape (small ratio between NOM and
NOMP) or very narrow, high nodes (big ratio).

Results with the Refactoring Browser: The first class to strike the eye in Fig-
ure 6.22 is once againBrowserNavigator, with 175 methods and 18 protocols. How-
ever, if we browse the class we see that the methods are distributed very irregularly
on the protocols: the protocol ’private-class’ contains itself 63 methods, which is
very much. The same problems are encountered in the classesBRScanner(marked
as (B) with 6 protocols, 49 methods, 25 of which are contained in the protocol ’private-
scanning’) andInlineMethodRefactoring(marked as (C), with 30 methods distributed
on 3 protocols, but 27 of them in the same protocol). The inverse problem is not really
present in the Refactoring Browser: although there are a few nodes which are square,
they’re small size shows they’re not a problem. The only case we want to emphasise
is the classSystemNavigator(D) which has 22 methods distributed on 12 protocols.
Perhaps the number of protocols could be reduced to get a more severe grouping.

Results with Duploc: In Figure 6.23 we gather that there are few aberrant classes,
as Duploc makes extensive and intelligent use of protocols. The only arguable point
are the classesFastSparseCMatrix(A) andDuplocApplication(B), which have many

6The assignment of a method to a specific protocol is a decision taken by the programmer and it does not
entail any constraints. The methods can be moved between the protocols freely.
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Figure 6.22: A method protocol usage graph applied on the Refactoring Browser.

protocols (21 and 19 respectively). The other hot spot is the classBinValueColoring-
Model (C), a very narrow yet tall class node. This brought up a new insight into the
usefulness of this graph: It could also be used for the detection of service classes like
in Section 6.5.6. As in Smalltalk it’s common to put the accessors in the protocol ’ac-
cessing’, this involves that a service class which has many accessors has relatively few
protocols. It thus has a shape like in the case ofBinValueColoringModel.

Figure 6.23: A method protocol usage graph applied on Duploc.

Possible Alternatives: We did not make use of the color metric. Its use could add
supplemental information to this graph.

Evaluation: As this graph addresses a special problem, it should be applied to get
supplemental information about subsystems.
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6.5.9 Spinoff Hierarchy

Graph Inheritance tree, centered, without sort.
Scope Subsystem, especially inheritance hierarchies.
Metrics
Size WNOC (total number of chil-

dren)
NOM (number of methods)

Color WNOC (total number of children)
Position - -

General Idea: We have noticed that in inheritance hierarchies the notion of inheri-
tance is often carried on only by one or two classes on each level of the inheritance
tree. This means that when a class has some subclasses often only one of them is
really carrying on the weight of the inheritance, while its siblings tend to bespinoff
classes implementing only few functionalities. Although this is not a bad thing per se,
an easy detection of such spinoff hierarchies could make us focus on the inheritance
carriers, while we could save time by ignoring (at least at the beginning) the less im-
portant spinoff classes. Spinoff classes often implement few methods and have few or
no subclasses at all.

We distinguish the following:

� Small, light colored nodes. These are thespinoff classeswith few or no children
and few methods.

� Large, dark colored nodes. These are theinheritance carriers.

Results with the Refactoring Browser: In Figure 6.24 we see all inheritance hier-
archies that make up the Refactoring Browser. We filtered out all stand-alone classes
to get a clearer overview. We detect two cases of spinoff hierarchies:

1. The one with the classBrowserApplicationModel(A) as root. We see two classes
split up the second level of this tree, namelyCodeTool(A21) andNavigator
(A11). There are a few spinoff classes on this level, neither of them has sub-
classes. The same situation is present on the next level of this tree where the
classesBrowserTextTool(A22) andBrowserNavigator(A12) carry on the weight
of inheritance. A good example for spinoffs is visible betweenCodeTool(A21)
andBrowserTextTool(A22): CodeToolhas 7 subclasses but only one of them,
BrowserTextTool, carries on the inheritance. Each one of its siblings is very
small (keep in mind that the height reflects NOM) and is thus a spinoff.

2. The one with the classRefactoring(B) as root. Again two main inheritance
threads are visible: The one consisting ofRefactoring(B), MethodRefactoring
(B11) andChangeMethodNameRefactoring(B12). The other consists ofRefac-
toring (B), VariableRefactoring(B21) andRestoringVariableRefactoring(B22).

The other inheritance trees in this display also show some property of a spinoff
hierarchy, and could be a case of further investigation.
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Figure 6.24: The spinoff hierarchy graph applied on the inheritance hierarchies of
the Refactoring Browser. As size metrics we use WNOC and NOM, as color metric
WNOC.

Results with Duploc: After removing the many stand-alone classes from Duploc, the
remaining graph in Figure 6.25 can only show us the absence of spinoff hierarchies.
Especially in the tree with the classPresentationModelControllerState(A) as root, we
see that on the third level we have 5 siblings, 4 of which are all inheritance carriers,
with only one tiny spinoff class with the meaningful namePMCSDummyMode(B).

Figure 6.25: The spinoff hierarchy graph applied on Duploc. As size metrics we use
WNOC and NOM, as color metric WNOC.

Possible Alternatives: We have to emphasise that a preprocessing consisting of fil-
tering out all stand-alone nodes is advised for this graph, as they add unnecessary
complexity to the displayed graph. This graph does not have real alternatives, as it
addresses a special problem.

Evaluation: This graph should come into play in a later phase of the reverse en-
gineering, as it addresses a special problem which may not be present at all in the
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system. The detection of an inheritance carrier could be important, as it is the place
which should be checked out because subclasses depend on it. The spinoff classes on
the other hand, can be examined for possible push-ups of functionality.
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6.5.10 Inheritance Impact

Graph Inheritance tree, without sort.
Scope Subsystem, especially inheritance hierarchies.
Metrics
Size NMO (number of methods over-

ridden)
NME (number of methods ex-
tended)

Color NOM (number of methods)
Position - -

General Idea: This graph is able to tell us if there has been made an improper or
suspect use of inheritance: it can tell us if a class that implements many methods
does not make use of method overriding or method extension, or uses it only rarely.
Overriding and extending methods is one of the powerful properties of object-oriented
languages and should be used if possible.

Nodes that override or extend a lot are bigger, nodes that implement many methods
are dark. We are looking for dark nodes (many methods) which are at the same time
very small (no use or rare use of overriding and extension).

Results with the Refactoring Browser: One of the hierarchies of the Refactoring
Browser seems to have one such class which should certainly be further investigated:
In Figure 6.26 we can detect the classBrowserNavigator(A) which implements many
methods (175), while it only overrides one and extends two methods.

Figure 6.26: The inheritance impact graph applied on an inheritance tree of the Refac-
toring Browser. As size metrics we use NMO and NME, as color metric NOM.

Results with Duploc: This graph returns no meaningful results if applied on Duploc.
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Possible Alternatives: No real alternatives, as it addresses a specific problem. This
graph is often obtained after filtering out all stand-alone classes and all inheritance
hierarchies which show no sign we are looking for.

Evaluation: A graph which addresses a very special problem. It’s not always useful,
but if it can detect something, it can be an important discovery which can affect a whole
inheritance hierarchy.
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6.5.11 Intermediate Abstract Class

Graph Inheritance tree, without sort.
Scope Subsystem, especially inheritance hierarchies.
Metrics
Size NOM (number of methods) NMA (number of methods

added)
Color NOC (number of children)
Position - -

General Idea: This graph is useful for the detection of abstract classes or nearly-
empty classes which are located somewhere in the middle of an inheritance chain.
Often they tend to have a superclass which implements a lot of methods. The program-
mer then started to subclass this class. The number of direct subclasses would soon be
too big so an attempt was made to logically group several subclasses under an abstract
intermediate class.

Such an intermediate subclass would normally have many children, while at the
same time its size is very small (because it is abstract or nearly empty). We thus have
to look for small, dark nodes in the middle of inheritance hierarchies.

The dark color comes from the greater number of direct subclasses, while the small
size from the small functionality implemented. We chose NMA as height metric to
reflect the fact that often such intermediate abstract classes don’t override superclass
methods, which in turn means that is we use NOM as width metric, the node is square
(no functionality implemented, or if there is a bit of implemented functionality, then it
doesn’t come from the superclass). Intermediate abstract classes are of some interest,
because often we can try to push up some functionalities of its subclasses into it, thus
concentrating them in one place, instead of spreading the functionality all over the
subclasses, risking to obtain duplicated code.

Figure 6.27: The intermediate abstract class graph applied on a subset of the Refactor-
ing Browser. As size metrics we use NOM and NMA, as color metric NOC.

Results with the Refactoring Browser: The Refactoring Browser harbours in one of
its inheritance hierarchies two intermediate abstract classes, as we see in Figure 6.27.
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The root classRefactoring(A) implements quite a few methods, while we can spot
the two intermediate abstract classes asMethodRefactoring(B) andVariableRefactor-
ing (C). These two classes implement themselves very few methods (2 and 1 respec-
tively) and are the roots of smaller subhierarchies. In the case ofMethodRefactoring
we see that its subclasses are implementing several methods, as we see inInlineMetho-
dRefactoring(D) andMoveMethodRefactoring(E). Perhaps an attempt could be made
to extract duplicated code and push it up into the intermediate abstract class.

Figure 6.28: The intermediate abstract class graph applied on an inheritance hierarchy
of Duploc. As size metrics we use NOM and NMA, as color metric NOC.

Results with Duploc: One of Duploc’s inheritance hierarchies also contains an in-
termediate abstract class, as we see in Figure 6.28: The subclassPMCS(B) of the root
classPresentationModelControllerState(A) implements only 4 methods and is obvi-
ously an intermediate abstract class. The subclasses ofPMCSshould be searched for
duplicated code which could be pushed up intoPMCS.

Possible Alternatives: None.

Evaluation: The detection of abstract classes is very important: several object ori-
ented languages either directly provide a declaration or support a standard idiom for
identifying abstract classes. Abstract or nearly abstract classes can be seen as the hinges
of the system, upon which several classes depend. It’s where the common functionality
is defined and where we should start to look at source code if we want to understand
the logic of their subclasses.
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6.6 Method Graphs

Method graphs can work at any level of granularity most of the time. However, the
more method nodes we display, the harder it is to make out outliers. Methods are the
entities which are responsible for the action in a system. This implies that every graph
which uses method nodes is often followed by an examination of the actual underlying
source code. This means that the graphs listed here have a very concrete context.

In this section we list the following graphs:

� METHOD EFFICIENCY CORRELATION, Section 6.6.1.

� CODING IMPACT HISTOGRAM, Section 6.6.2.

� METHOD SIZE NESTING LEVEL, Section 6.6.3.
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6.6.1 Method Efficiency Correlation

Graph Correlation.
Scope Full system, subsystem or single class.
Metrics
Size NOP (number of parameters) NOP
Color *
Position LOC (lines of code) NOS (number of statements)

Figure 6.29: A method efficiency correlation graph.

General Idea: This graph is a good way to locate thefreaky entitiesinside a group
of methods, when it comes to their efficiency. By efficiency we mean how many state-
ments are put on each line. By displaying the nodes in the correlation graph (as in
Figure 6.29), we see that most of the nodes are near a certain correlation axis. How-
ever, there are a few which do not adhere to this rule.

The methods that are not near the correlation axis may have some problems, which
may be

1. High LOC (lines of code) and low NOS (number of statements). This is for
example the case with ”forgotten methods”, that at some point have been com-
mented out and then been forgotten. This may also be the case for overzealous
line indentation, when a single parenthesis is put on a line of its own or when
many blank lines have been used.

2. Low LOC and high NOS. This can be the case when the methods are written
without indentation and several statements are on the same line, which is a bad
thing too, since this decreases the readability, and it may also break the law of
Demeter [LIEB 89].

3. Long methods (high LOC and high NOS). Normally a case for redesign, since
long methods should be split up in smaller, better understandable and reusable
ones [BECK 97].

4. Empty methods. These nodes position themselves on the top left of the graph.
Although they can be viewed there by selecting and moving, the overlapping of
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the nodes which is characteristic for this graph makes it hard to see those empty
methods at one glance. A better graph for the detection of empty methods is the
Coding Impact Histogram described in Section 6.6.2.

Other hot spots can be detected by looking at the size of the nodes:

� Big nodes have many parameters. Although it’s hard to define a threshold on
the number of parameters, we think that methods taking more than 5 parameters
should be looked at.

� Very small nodes on the outskirts of the graph should be looked at: these are very
long methods which do not take any input parameter. Perhaps they could be split
up easily.

The interesting property of this graph is its scalability. Since most of the nodes
overlay each other, and those nodes are of no real interest to us, because they have
average metric measurements, we can display several thousands of nodes at the same
time. Our interest is drawn by the nodes which find themselves on the outer skirts of
the graph, and which do not suffer overlaying, as their position is defined by their non-
average metric measurements. The size of this graph is not affected by the number of
displayed nodes, but on the maximum values for the position metrics.

Results with the Refactoring Browser: The method efficiency correlation graph
shows some interesting results when applied to the Refactoring Browser. In Figure 6.30
we display all 2365 methods of the Refactoring Browser. We can spot several cases
which should be looked into. The first nodes to meet the eye are those on the right
edge of the graph (A). These three methods are very long (45, 51 and 65 lines of code)
compared to the other methods in the system, which does not have a great distribution,
thus signifying that the system is homogeneous related to the method lengths. The
opposite case can be seen on the top left side of the graph (B). Upon closer inspection
(by selecting and moving the nodes) we can see that the RefactoringBrowser contains
20 empty methods. The next point of interest is the method marked (C): this method
takes 7 input parameters which is of course very much. The methodreInstallInterface
(D) on the top of the graph is also a case of closer study: While it has 16 lines of code it
contains no statements. If we browse its source code, we see that the whole body of the
method has been commented. The methodneedsParenthesisFor:(E) on the other hand
contains 31 statements in only 19 lines of code and should perhaps be reformatted. The
group of methods marked as (F) should also be looked into, since all of them contain
comparatively few statements in long method bodies.

Results with Duploc: When this graph is applied to Duploc, as we see in Figure 6.31,
the first thing to strike the eye is the large distribution of the nodes. Duploc obviously
does have some very long methods. The second thing that meets the eye is that the
main correlation axis has a different angle compared to the Refactoring Browser in
Figure 6.30. The methodputPerlCode: (A) is 201 lines long but does have only 2
statements. Upon closer inspection we see that its purpose is to print out a very long
string. We have some other very long methods, (B) with 135 lines, (C) with 95 lines,
(D) with 109 lines. We have some method that are far away from the system corre-
lation axis, like (A), (C), (E), (F) and (G). (E) for example has 64 lines of code with
only 1 statement. A closer inspection reveals its body is mainly commented code for
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Figure 6.30: The method efficiency graph applied on the Refactoring Browser, using
as position metrics LOC and NOS, as color metric HNL, and as size metric NOP.

testing purposes, i.e. when the system is tested some parts of the method body are
uncommented. (F) reveals the same situation, where the 18 lines long method body
doesn’t contain any statements at all. (G) has 32 statements packed in 14 lines of code.
Reformatting makes it more readable. The empty methods can of course be detected as
(H), while we should also note the nodes around (I), which seem to be very short and
at the same time badly formatted methods. The two methods (J) also draw attention
due to their considerable size, which reflects the fact that they take 9 input parameters
each.

Figure 6.31: The method efficiency graph applied on Duploc, using as position metrics
LOC and NOS, as color metric HNL, and as size metric NOP.

Possible Alternatives: We chose the size of the nodes to be represented by NOP
(number of parameters). Since the distribution tends to get sparse the more we move to
the right and to the bottom, we can see the methods which take many parameters more
clearly, since it’s normally the large methods that take more parameters. Generally in
this graph the size metrics can be chosen freely, although it’s advisable to use metrics
which tend to have small measurements. Otherwise the nodes get very big and clutter
up the view. The color metric can also be used freely. We chose HNL (hierarchy
nesting level) in this case, but since the nodes in this graph tend to be very small, the
color node metric doesn’t really matter.

Evaluation: This is one of the few graphs which works very well at any level of
granularity. As such it can be used anytime. We saw it can be useful to apply it on a
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subsystem before we dive into its details. At class level it can help to detect problem
cases for a concrete reengineering.
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6.6.2 Coding Impact Histogram

Graph Histogram, size addition layout, sort according to width metric.
Scope Single class or small subsystem.
Metrics
Size LOC (lines of code) -
Color LOC
Position LOC -

General Idea: This graph shows the coding impact of methods and where the most
coding has happened. While the normal histogram can only tell us how methods are
distributed regarding their lines of code, this graph (Figure 6.32) can reveal where
the real programming effort has been made: Writing 20 methods each one line long
is easier than writing one method 20 lines of code long. It shows if there are any
aberrant methods that are too long or if the system is unbalanced because of too long
and complex methods. As a nice side-effect we can also grasp at one glance if there are
any empty methods (those at the very top of the graph). A good design should have a lot
of tiny methods so this is where the biggest columns in the graph should be. Methods
not following this rule should be analysed as possible ”split candidates” which could
be broken down into smaller pieces. While this graph is inefficient on whole systems
because of the huge number of methods, it has proven to be very useful when applied
to the methods of one single class. It should also be noted that the average length of
a method implemented in typical industrial Smalltalk applications is around 6 lines
[BECK 97].

Figure 6.32: A coding impact histogram.

Results with the Refactoring Browser: Since this is one of the graphs which can
hardly be applied on whole systems, but rather on specific small subsystems or sin-
gular classes, we do not compare the systems from our case studies with each other,
but we rather show a few illustrative examples taken out randomly7 from the Refac-
toring Browser. We selected only the two classes (BrowserNavigator(B) andBRPro-
gramNode(A)) with the most methods for this graph. We see in Figure 6.33 that
each class has its own coding impact topography. We see thatBrowserNavigator(B)
has many methods which tend to be overlong, and especially 6 very long ones which
isolate themselves (B1) from the others. On the other handBRProgramNodehas an
irregular topography with many accessors (A2) and one very long method (A1).

7This randomness should also express the interactive approach of such systems, which is guided by
intuition rather than a systematic methodology, although experience has shown that at the beginning of a
reverse engineering experiment we tend to apply a certain fixed set of graphs. This reflects the fact that the
graphs address each a different level of abstraction.
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Possible Alternatives: This graph knows many useful mutations, especially those
which keep LOC as vertical position metric, but use other size and color metrics and
a different sort criterion. In these cases, especially NI (number of invocation) and
NMAA (number of accesses on attributes) showed good behaviour.

Figure 6.33: The coding impact graph applied on two classes of the Refactoring
Browser. The width metric, as well as the color and vertical position metric is LOC.

Evaluation: This graph is very useful toget a feelingfor certain classes or subsys-
tems. It can show us what kind of implementation lies behind the subject entities and
in certain cases what we should continue to explore.
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6.6.3 Method Size Nesting Level

Graph Checker, quadratic, sort according to width metric.
Scope Subsystem, especially inheritance hierarchy. No stand-alone classes.
Metrics
Size LOC (lines of code) NOS (number of statements)
Color MHNL (hierarchy nesting level)
Position - -

General Idea: A general rule is that big methods should be split up [BECK 97] into
smaller chunks to increase their reusability and to make them easier to understand.
This is especially true for methods that are implemented in classes deep down the
inheritance hierarchy: perhaps parts of those big methods could be extracted and put
up into a higher class to reuse them across several subclasses. The method size nesting
level graph can help us to detect large methods deep down the inheritance hierarchy:
It’s a checker graph of methods with LOC and NOS as size metrics and MHNL as color
metric. The nodes are sorted according to LOC, which puts the larger methods on the
bottom area of the graph.

Since the color reflects the MHNL of the methods, we should be looking for big,
dark nodes in the bottom area of the graph: these are possible split candidates. We call
such methods split-and-push-up candidates.

Figure 6.34: The method size nesting level graph applied on the largest Refactoring
Browser methods. Size metrics: LOC, NOS. Color metric: MHNL.

Results with the Refactoring Browser: The Refactoring Browser shows in Fig-
ure 6.34 that is has been refactored itself a few times: there remain very few large
methods, after filtering out all those with a LOC measurement smaller than 20. Yet,
there are some large methods which also have medium MHNL values like those in the
last row (A). Their lengths vary from 65 to 37 lines, which makes them also possible
split-and-push-up candidates.



6.6. METHOD GRAPHS 79

Figure 6.35: The method size nesting level graph applied on several Duploc methods.
Size metrics: LOC, NOS. Color metric: MHNL.

Results with Duploc: We display in Figure 6.35 only the methods that have more
than 20 LOC and belong to non-stand-alone classes. The resulting graph shows us
there are several very large methods, which on one hand don’t have big MHNL values,
but since they’re not methods belonging to root classes either, are all the same split-
and-push-up candidates. The biggest methods (A) have 201, 135 and 109 LOC, which
is way too much for Smalltalk methods. This excessive size is again due to the fact that
most of them have never been refactored and written in one pull.

Possible Alternatives: The same graph using only LOC as size and color metric can
be applied on whole systems (including stand-alone classes). In such a case the graph
serves to easily detect very large methods which could be split up.

Evaluation: Since this graph is useful for classes belonging to inheritance hierar-
chies, it should primarily be used to get insights into such structures as to where the
methods are which could be reengineering candidates.
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6.7 Attribute Graphs

Attributes define the properties of classes. As such, it’s mandatory that to understand
the purpose of an attribute, we have to understand the class in which it is defined. This
implies that very soon after applying one of the following graphs, we have to look at
the source code of the class.

In this section we list the following graphs:

� DIRECT ATTRIBUTE ACCESS, Section 6.7.1.

� ATTRIBUTE PRIVACY, Section 6.7.2.
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6.7.1 Direct Attribute Access

Graph Checker, quadratic, sort according to width metric.
Scope Full system or subsystem.
Metrics
Size NAA (number of times accessed

directly)
NAA

Color NAA
Position - -

General Idea: This is a graph of all attributes of a system or subsystem. As metrics
we use NAA (number of times accessed) for the size and the color. We then also sort
the nodes according to NAA. What we get is a clear display of which attributes are
accessed the most in a system. These attribute nodes are positioned at the bottom of
this graph. The largest nodes should be a case for closer inspection. The general rule
should be that attributes which are accessed directly can break the system if the inner
implementation of the attribute changes. This can be avoided by using an accessor
method which returns the value(s) of the attribute. An accessor on such an attribute
can provide a defensive wall of protection against such changes. There may also be
some attributes which are never accessed and which may have been forgotten in the
system and thus only add unnecessary complexity to it. They could be removed from
the system. Such attribute nodes are positioned on top of the graph.

Results with the Refactoring Browser: In Figure 6.36 we notice at once that there
is the attributeclass(A) defined in the classMethodRefactoringwhich is directly ac-
cessed 86 times. We also see there are some never accessed attributes which should
also be further investigated (B).

Figure 6.36: The direct attribute access graph applied on the Refactoring Browser. The
size, color metric and sort criterion is NAA.
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Results with Duploc: In Figure 6.37 we see that while in Duploc there are no at-
tributes which are heavily accessed (the maximum is 31 direct accesses for the attribute
region(A) defined in the classAbstractRawSubMatrix) there are many attributes which
are never accessed (B) and which should be looked into for possible removal.

Figure 6.37: The direct attribute access graph applied on Duploc. The size, color metric
and sort criterion is NAA.

Possible Alternatives: An interaction with interesting nodes is necessary to see if
accessors have been implemented for them and if those accessor methods are used all
the time.

Evaluation: A graph which works at every level of granularity. The next step which
has to follow such a graph is to examine the classes in which the outlier attributes are
defined. Note that this graph takes only the direct accesses into account. If an attribute
is accessed very often through the use of an accessor method this will not show in
this graph. Note that the quality of this graph depends heavily on the quality of the
metamodel. Especially when building a model out of a CDIF file we have often seen
that sometimes accesses are left out. This can lead us to wrong conclusion on never
accessed attributes. Again, a check against the code has to be done to be sure.
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6.7.2 Attribute Privacy

Graph Checker, quadratic, sort according to width metric.
Scope Full system or subsystem. Better performance with C++ or Java.
Metrics
Size NAA (number of times accessed

directly)
NCM (number of classes which
access this attribute)

Color *
Position - -

General Idea: Attributes may be directly accessed several times in a system. As we
said in Section 6.7.1 such a situation is not ideal and can be detected with the graph
described there. Apart from the number of times an attribute is accessed, another metric
may prove to be useful for a similar graph: NCM, the number of classes which have
methods that directly access a certain attribute. The attribute privacy graph is a checker
graph which uses as size metrics NAA and NCM.

We are looking for wide, high nodes: such nodes are directly accessed a lot of
times by many classes and should have an accessor at all costs, because the system
easily breaks if such an attribute is tampered with.

Very wide but shallow nodes should also be looked at: although they are directly
accessed a lot, it’s by few or often only one class. If it’s the case of only one accessing
class, it should be checked it the attribute in question is private. If not, it can be made
private without impact on the rest of the system.

Figure 6.38: The direct attribute access graph applied on the Refactoring Browser. The
size metrics are NAA and NCM.

Results with the Refactoring Browser: In Figure 6.38 we can spot some heavily
accessed attributes marked as (A) which are accessed by many classes. We also see
there are some very flat but wide nodes which are attributes heavily accessed by only 1
or very few classes.

Results with Duploc: In Figure 6.39 we can see that as a difference to the Refactor-
ing Browser, Duploc has attributes which are seldom accessed by more than one class.
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Figure 6.39: The direct attribute access graph applied on Duploc. The size metrics are
NAA and NCM.

The maximum NCM value is 3. We deduce from that that the implementor of Duploc
keeps an eye on encapsulation8.

Possible Alternatives: None.

Evaluation: A graph whose purpose is to find attributes which have to be examined.
Since such an examination takes place at textual level, it’s a graph which can help find
problems at once. The results are incomplete in this case: the last step after detecting
wide and flat nodes would be to check if the attributes concerned are defined as private.
If not they could be made private. However, this does not work in Smalltalk, so we had
to leave that part out with our case studies.

8The implementor of Duploc used to implement a lot in C++, which could be a reason for the tight
encapsulation.
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6.8 Class Internal Graphs

A class internal graph treats the special case where the components of a class are dis-
played at the same time: methods and attributes.

In this case we find ourselves at a low level of abstraction, the source code is only
one step away and it’s necessary to look at it after applying a class internal graph.

In this section we list the following graph:

� CLASS COHESION, Section 6.8.1.
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6.8.1 Class Cohesion

Graph Confrontation graph, nodes sorted according to their width metrics..
Scope Single class.
Metrics (Method Nodes)
Size LOC (lines of code) NOS (number of statements)
Color LOC
Position - -
Metrics (Attribute Nodes)
Size NAA (number of times accessed

directly)
NAA

Color NAA
Position - -

General Idea: This graph is a confrontation graph where the edges represent instance
variable accesses between methods and attributes. This graph can indicate us how
strong the internal cohesion of a class is. If a class has many accesses and looks very
chaotic, this means that the class is difficult to split. On the other hand, if we can
make out two or more separate clusters in this display, this is an indication that the
class is a good split candidate. If the root class of an inheritance hierarchy shows such
characteristics it is a sign that the hierarchy tends to be top-heavy. If the class shows
sparse attribute accesses it could be easier to subclass.

Results with the Refactoring Browser: In Figure 6.40 we displayed the methods
and attributes of the classBRScannerwhich has been identified as (C) in Figure 6.20.
We gather at once that this class is heavily coupled internally and that splitting such a
class is next to impossible.

Figure 6.40: A class cohesion graph applied on the class BRScanner. The method
nodes (in the lower row) use as size metric NOS and as color metric LOC. The attribute
nodes (in the upper row) use as color and size metric NAA.

Results with Duploc: We obtained some impressive results when we applied this
graph to some classes of Duploc. We show only one here: the classDuplocApplication.
After filtering out all methods that never accessed attributes, we got the graph displayed
in Figure 6.419. We clearly see two distinct clusters of attribute and method nodes.

9Note that the graph resulted like this after direct manipulation of the graph (i.e. moving around nodes)
and not because of a layout algorithm that can identify clusters. However, we included into CodeCrawler
the functionality to help us quickly identify such clusters.
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This class is thus certainly a split candidate. This suspect was confirmed afterwards
when I asked the implementor of Duploc about this class. He confirmed that this class
was to be split up during the next redesign of the system.

Figure 6.41: A class cohesion graph applied on the class DuplocApplication.

Possible Alternatives: We advise the user to remove all stand-alone nodes from the
graph, as they are of no use in this case. The metrics, especially the color metric in the
method nodes can be varied freely.

Evaluation: This graphs needs some interaction before it can express its full poten-
tial. However, its usefulness is indisputable: Up to this moment we haven’t seen a
technique which can detect split candidates with such an easy and quick method.



Chapter 7

Towards a Methodology

In this chapter we try to propose a methodology on how to reverse engineer a system
with the approach discussed in this work.

In Chapter 6 we listed several useful graphs which can come in handy, but we did
not always mention when and where they could be applied, and in which order. As they
each address a different level of granularity, such a methodology is indeed important,
because there is the risk to get lost in details if we start off in the wrong direction.

However, we emphasise again the playful nature of this approach, which can be
summarised asnavigation through the code. The fact that the graphs are interactive and
that we can change the level of granularity at which we are moving through the system
is primary. In no way can this methodology be seen as a strict set of instructions. It
may very well be the case that we headed off in the wrong direction and tracing back
our steps is often the only way out.

A good way to consider such a methodology is a labyrinth: Time and again we
arrive at a certain position in the system where the path splits and we have several
choices on how to go on. The more useful graphs we know, the better we can take our
decision, because we have more choices at hand.

7.1 Getting an Overview

The first thing to do with an unknown system is to gain an overview. We should know
how complex the system is (how many classes are there) and in which way the system
is organised (how many inheritance hierarchies are there, how deep are they and is
there multiple inheritance).

The first graph is thus asystem complexitygraph discussed in Section 6.5.1. This
graph can answer us the above questions plus a few more: since it makes use of class
size metrics like NOM, NIV and WNOC we are also able to detect extremely big
classes at once. If the system is too big to fit on a single screen we could also select
subparts of it and display it. Experience has also shown that removing all stand-alone
classes from this graph can help reduce the complexity of the display, as in this case
we’re not really interested in the stand-alone classes. However, if one of the stand-
alone classes is huge or many classes are very small or empty, we should focus our
attention on those and after inspecting them come back to the system overview.

The overview part is characterised by thishit and runtactic: Each time we detect
something interesting we head off in that direction and come back only when our cu-
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riosity is satisfied, while at the same time we have to take the risk of getting lost in
details.

The system complexity graph has a drawback, which is the fact that the layout of
the nodes depends solely on the layout algorithm. We will have a hard time at detecting
very small or very big nodes if the graph is several screens wide. Asystem hot spots
graph described in Section 6.5.2 alleviates this problem. Since the nodes should be
sorted according to their size the detection of outliers gets easy. It also important there
to play around with the metrics: The best strategy is to display the graph as described
in Section 6.5.2 and change then the metrics following our interests.

The combination of these two graphs should be enough to get an overview. But
we can use some other graphs to get further insights likeweight distributiondescribed
in Section 6.5.3,method protocol usagedescribed in Section 6.5.8,root class detec-
tion correlationdescribed in Section 6.5.5,service class detectiondescribed in Sec-
tion 6.5.6, etc.

The decision we have to take now is whether we focus ourselves on subparts of
the system (especially inheritance hierarchies) or if we change the level of granularity
(going down to methods, attributes and class internals).

A good way to postpone this decision is to display the whole system at a different
level of granularity: We can display all methods and all attributes of the subject system
with either correlation graphs, checker graphs or histograms.

At the granularity level of methods themethod efficiencyand thecoding impact
graphs described in Section 6.6.1 and Section 6.6.2 are certainly useful. Again, we
stress the point of varying the metrics once those graphs are displayed to see what
happens with the graph and to see if we can detect something interesting. One of the
insights which could come from this is general information of how long the methods
are and in which way they have been written, whether they are badly commented or
not, etc.

At the granularity level of attributes we can use adirect attribute accessgraph
described in Section 6.7.1 and again vary the metrics there. Possible insights could be
how the attributes are used in a system and where they have been used, etc.

The best results we can obtain after getting an overview is a mental list of things
we’d like to examine. This can be subparts of the system, inheritance hierarchies, big
classes, small classes, certain very long methods, empty methods, attributes that are
used very often or that are never used at all, etc.

With such results we can take the next step, which is diving into the system inter-
nals.

7.2 The Internals of a System

As internals of a system we consider to be subparts, sets of classes and their methods
and attributes. It can even be just one class. The graphs that can be applied in this case
can’t be applied on the whole system without encountering some negative aspect like
layout problems or graph size problems.

Note that every graph that can be applied to the whole system can be applied with-
out problems to subparts of it. We won’t mention them in this section to minimise
redundancies in the text.

There are some graphs which can’t be applied in certain cases, or where their ap-
plication makes no sense: Every graph that deals with the inheritance aspect is useless
if applied on single classes, etc.
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The graphs that can be applied on inheritance hierarchies are thespinoff hierarchy
described in Section 6.5.9,inheritance impactdescribed in Section 6.5.10,intermedi-
ate abstract classdescribed in Section 6.5.11,method size nesting leveldescribed in
Section 6.6.3,cohesion overviewdescribed in Section 6.5.7,attribute organisationand
attribute privacydescribed in Section 6.5.4 and Section 6.7.2.

Finally there are some graphs which can be applied only to single classes like the
class cohesiongraph described in Section 6.8.1 or which prove to be useful at this level
of navigation, like thecoding impactdescribed in Section 6.6.2.

7.3 Scenarios of Navigation

It’s hard to put up a real how-to, as there is no predefined path. Experience has shown
however, that there are indeed some step-by-step techniques which are useful and
which work most of the time.

An example. Suppose we want to look into a system to see if there are any split
candidates. The first graph to be applied is thesystem complexitygraph. If there
are top-heavy hierarchies or big stand-alone nodes we should go on with acohesion
overviewgraph. If we are lucky we will detect some nodes which are worth a further
investigation. We finally examine each node of interest with aclass cohesiongraph.
Through interaction with the graph we possibly could end up with a split candidate
layout. Once such a candidate is identified we have to look at the actual source code to
really be sure that we have been successful with our navigation.

In the same as above several small navigation scenarios can be defined, each for
a specific task, like splitting large methods, removing unused methods and attributes,
pushing up or pulling down class functionality, etc.

7.4 Conclusion

The main lesson we can learn from this chapter is that thenavigational (lightweight)
approachdiscussed in this work is not a magic box, which can present meaningful
results on a silver tablet.

On the contrary, this approach can only be really successful if it’s used by an expe-
rienced reverse engineer who knows what he should look for and who can fully exploit
the tool and its functionalities.

The advantage of this approach is its intuitive aspect, its high speed combined with
an enormous reduction of complexity. The actual source code has to be read (it at all)
only at the end of a navigation. This decreases the needed amount of time, cost and
frustration of the reverse engineer.



Chapter 8

An industrial experience

We had the luck to test our approach on a real industrial case study during a five day
workshop at the Nokia Research Center in Helsinki. The results obtained during the
experience can’t be directly discussed here, because of a non-disclosure agreement
with Nokia. We want rather to present the knowledge gained during the workshop.

Context. The case study in question is a large application in the communication do-
main. Its size is approximately one million lines of code. It contains approximately
2300 classes and 25000 methods. It’s implemented in C++ and C. It was thus very in-
teresting to test our approach against language independency, scalability and platform
independency.

The whole experience can be considered to bereal in a wide sense: on the morning
of the first day we didn’t know anything about the case study, and we had to organize
ourselves: install our tools, take a quick look at the case study, and apply our knowledge
and tools on a large case study coming from a specific domain.

The main problems were indeed centered around limited resources: As one week
is a very short amount of time for reverse engineering, it was not possible to study the
application in detail.

The first two days were used to generate CDIF - files out of the C++ source code.
This process is done by the tools Sniff+ and Sniff2Famix1. It worked all quite well,
although we saw that the CDIF format has some holes which need to be filled. These
holes are mainly present in the case of low-level programming2.However, the fact that
we succeeded in processing one million lines of C++ code into CDIF files showed the
potential of the FAMIX model in an impressive way.

As the results had to be presented on the fifth day, for the actual experience only
two days were left.

Goals. We set ourselves a list of goals we would try to reach during the workshop.
The workshop was the first real acid test for CodeCrawler and our approach, because
we had to reverse engineer under time pressure a very large and unknown system writ-

1To get additional information on this subject please consult the FAMOOS resources at
http://www.iam.unibe.ch/�famoos/.

2Two short examples: In the source code there were inheritance relationships based on conditional state-
ments and unnamed structs. In the first case the CDIF parser interpreted it as a multiple inheritance, in the
second case it gave the unannmed structs dummy names.
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ten in a language which CodeCrawler could process only through the CDIF interface.
We set ourselves the following goals for the workshop:

� Detect what graphs and metrics are really useful for such an experience. See
if the graphs listed in Chapter 6 could be applied in all cases or if there were
exceptions to their applicability.

� If possible, discover some new useful graphs which are specific for very large
systems.

� Discover and remove bugs from CodeCrawler and the Moose framework.

� Study the way we were using our graphs repository and in which order. See if
we could detect a methodology in the way we were approaching the system.

� Test our approach against scalability. See if the size of the application to be
reverse engineered matters and in what respect it does that.

Results. During the workshop, we saw that nearly all of the goals listed above could
were reached and we obtained the following results and insights:

� During the workshop we discovered some graphs which are especially useful
for very large systems. A good example is theROOT CLASS DETECTIONgraph
described in Section 6.5.5: The subject system was so large that a inheritance
tree graph would use several screens of space and looking for important root
classes would be difficult and time consuming.

� Our approach is scalable indeed. Several times a simple visualisation could re-
duce the enormous complexity of the whole system down to an easily under-
standable graph, where hot spots or problem cases could be made out at once for
further investigation.

� In Chapter 7 we point out atop to bottom approach. This worked well in this
case: after a general overview on the whole system (mainly done by tree and
checker graphs), we had to focus ourselves on interesting hot spots where we
could reduce the level of granularity by diving into subsets of the system.

� A system which needs reengineering is seldom in a state in which it can be
reverse engineered at once and without preparation. A mental preprocessing,
consisting mainly of understanding the domain and purpose of the system must
precede it. As we didn’t have the time to obtain such information, we often had
to proceed on assumptions about the actual functionality of classes. This was
mainly done based on the class and method names and on the commentaries in
the source code. Our knowledge of the system was very limited. It was very
difficult to grasp a global overview of the system and to identify the roles of the
different layers and subsystems. We could not easily identify the main applica-
tions or entry points. Tools can automate labour intensive tasks and can help in
localising possible anomalies but expert judgements are still of vital importance
for a reverse engineering approach. Although the source code was available, we
could use it only for validating the results of our tools and for confirming our
intuitions but not for getting more insights of the behaviour of the system. A
next similar experimentation should be conducted or at least helped by a system
expert.
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� The fact that something looks suspicious on a graph is not enough to mark out
spots which need reengineering. Real world programming often has to stick to
time schedules and hardware requirements. Sometimes a quick and dirty solution
which works, is far better than an elaborate solution which eats up time and
money. Especially low level programming (which mainly addresses the needs of
the underlying hardware) sticks to the quick and dirty rule. We saw that in the
case of low level programmed parts of the system, the general rules of software
design have to make place to hardware requirements. In such cases it’s very hard
to question the quality of the code.

� An insight that came up during the presentation of the results was that in some
cases the programmers of the system were well aware of certain problems, but
they let them stay because those parts of the system worked all right and needed
no reengineering because their implementation was not to change anyway in the
near future. Indeed, not every design problem needs a solution.

� As the subject system is implemented in C++, not all our metrics worked, be-
cause the first metrics we included in the Moose model were mainly Smalltalk
and language independent metrics. During the workshop we implemented a few
metrics which are specific for C++, but there are many more which could be
added, as we point out in Chapter 9.

Conclusion. We were very satisfied with our tool CodeCrawler, as it worked well
in every aspect. If we take stock of all those experiences, we can summarise it in the
following way: Our approach is scalable and stable. We had a very positive feedback
on CodeCrawler and proved its usefulness during the workshop. This acid test was also
a good way for us to improve CodeCrawler and to lay the foundation of a methodology
which we are trying to expand now. Right now we are looking for other industrial case
studies on which we can apply CodeCrawler.



Chapter 9

Conclusion and Future Work

9.1 Summary

The intention of this work was to discuss a lightweight approach on object oriented
software reverse engineering usinga combination of program visualisation, software
metrics and interactivity. We wanted to analyse how effective such an approach can be
to help us to reverse engineer a software system and how scalable this approach is.

We began with a discussion of both fields:

� Program visualisation is already largely used in industry and is still a field of
growing interest, as it has proven to be very useful to reduce complexity. The
ways to visually display source code are diverse and in some cases very complex
indeed. Our approach enables us to visualise up to five metrics at the same time
for each displayed software entity. This is described in Chapter 4.

� We then focused our attention on the second area,software metrics. A constant
point of discussion, the theoretical bases have been laid in the past few years and
a great interest of ongoing research in this field is present. We use very simple
metrics and list those in Chapter 3.

We then discussed a possible way to combine those two fields to use it for reverse
engineering. We saw that there are some problems regarding the ways to visualise
metrics, but at the same time we saw an appealing aspect of this approach, which is its
intuitivity and flexibility.

We saw later on that combining those two fields withinteractivity , we could ex-
tract several useful graphs which can be used for reverse engineering, and we laid the
foundations for a methodology on how to approach systems for reverse engineering
with this idea. We realize the concept of interactivity by using a graphics framework
which enables us to dynamically change and interact with the displayed graph. We
present our tool CodeCrawler in Chapter 5.

One of the points of interest is that with our idea we can get a different look at
object oriented software: we arenavigating the code. One of the prerequisites for this
is that the actual source code is only mouse click away: we are not looking at static
pictures, we are rather moving through the object oriented entities.
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9.2 Main Contribution

The main contribution of this work is the following:

1. Simplicity. There is the appealing aspect of a lightweight approach. Without
making use of complex algorithms or composed metrics we were able to obtain
several useful results, which address either program understanding or problem
detection.

2. Scalability. We saw that this approach is also scalable in many aspects, and
that the enormous reduction of complexity is useful to reverse engineer even
very large systems, as a one week workshop with an industrial case study clearly
showed.

3. Interactivity. The interactivity of this approach showed a glimpse of a different
way to look at software: the interactivity enables us tonavigatethrough the
source code and adds to this approach quite a playful and intuitive nature.

4. Language and Platform Independency.Our approach is language and plat-
form independent. We stress this fact because this gives it an enormous flexibil-
ity and applicability. We tested our tool CodeCrawler on systems written in C++,
Java and Smalltalk using CodeCrawler on the platforms Windows 95/98/NT,
Unix, Mac OS and Linux.

9.3 Future Work

We pointed out on some occasions where possible extensions of this work could lie.
This section summarises these extensions and presents additional ideas.

1. Extend CodeCrawler. First, the inclusion of additional layout algorithms which
could increase the usefulness of our tool. Second, add more metrics which could
be used by our tool. Third, extend the interactive potential of CodeCrawler, and
add more functionality to it. CodeCrawler is right now a research tool, and there
is a considerable risk that it will stay so. However, we decided to extend it in the
future and make it available to the people. The incoming feedback would also
help to decrease its flaws and increase its strengths.

2. Enlarge the repository of useful graphs we set up in Chapter 6. We are firmly
convinced that many more useful graphs are waiting to be discovered, and in
this context we’re looking forward to applying our tool on other case studies,
especially large industrial ones.

3. Such experiences could also help to increase the theoretical and practical aspects
of an actual methodology. We started to lay the foundation of such a method-
ology in Chapter 7, and are convinced that there are great opportunities in this
area. Another direction of study could be to make a direct mapping between such
a methodology and the recently developed reverse engineering and reengineering
patterns.

4. The underlying Moose model does not yet take data types into consideration.
Smalltalk as such does not contain types. However, C++ and Java do, and the
additional information which comes along with the types could be exploited to
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increase the usefulness of our approach. The inclusion of data types into the
Moose model is one of the next steps.

5. Right now the Moose model and CodeCrawler consider only three types of enti-
ties, namely classes, methods and attributes. There are more entities which could
be considered as such: files, packages, applications and subapplications, direc-
tories, etc. The inclusion of such entities into the metamodel could also increase
its usefulness and open up new paths of exploration.

6. The Moose model is currently supporting more than 40 metrics. There are many
more which we want to add. In this regard the whole metrics framework of the
model is soon to change to become more flexible and powerful.

7. CodeCrawler can right now be applied on static information. It would be interest-
ing to see how such a concept can be applied on dynamic (run-time) information.

9.4 Final Remark

The importance of this work is reflected in the increasing importance of reverse en-
gineering. Large object oriented legacy systems have become a major problem in the
software industry. Their reengineering, which is preceded by a reverse engineering, has
become a major economical factor in the software industry, and needs large amounts
of time, money and human resources.

We are convinced that the ideas discussed in this work can be of great help to
solving one of the largest problems present in software industry.



Appendix A

Graphs

A.1 Introduction

This chapter is dedicated to the graphs and layouts which were not used in Chapter 6.
The discussion of the layouts is identical to the discussion of the graphs in Section 6.4.

A.2 The Circle Graph

Figure A.1: A plain circle graph with method invocations.

Overall Idea. This idea originally comes from the field of psychology, where a circle
graph is used to display relationships between people. We use it to display relationships
between entities. However, the use is not advised for inheritance relationships between
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Figure A.2: A circle graph using a cloud layout.

classes, because those relationships are directed and because a tree graph can render
such a situation much better. The best use that can be made with this graph is display-
ing invocation relationships between methods. The circle layout has a certain appeal
because the eye tends to follow the imaginary circle line built out of nodes.

Scope. As we said, although it could be applied anywhere, we mainly use it to display
methods, and especially all methods of one single class or of two classes invoking each
other.

Layouts. There are several possible derivate layouts for this kind of graph. The origi-
nal one is a plain circle with a fixed radius, which is given by the user. However, such a
layout tends to get cluttered as soon as the number of nodes and edges grows. The first
derivation is calledcloud. A cloud graph displays each node at a certain distance from
the center. The distance renders a supplemental position metric. The supplemental
metric being its inherent advantage, there is also a certain drawback: since most metric
measurements tend to be inside a certain interval with small values, the graph with a
cloud layout looks cluttered around the center. We tried to remove this drawback with
another derivate, calledspiral. The only difference is in fact that the nodes are sorted
according to the supplemental position metric. The nodes will most of the times be
displayed as a spiral. The advantage that a spiral has, is that a greater number of nodes
can be put on the same surface as a circle, and that since the eye tends to follow the
lines of the spiral, the cluttering of the nodes will be alleviated. The next two layout
derivates, calledconcentricandinverse concentricare very similar: the user has to de-
fine a number of layers. The nodes are positioned in one of those layers according to
a position metric measurement. The advantage of the concentric layout is that a major
number of nodes can be displayed on the same surface as a circle. A nice side effect
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Figure A.3: A circle graph using a spiral layout.

Figure A.4: A circle graph using a concentric layout.

is, that through the layer mapping we can classify the nodes in respect to their metric
measurement. However, the concentric layout has a small drawback: Since most metric
measurements are often small values, the concentric layout looks cluttered in the inner
layers, while in the outer layers there will be only few nodes. In the inverse concentric
layout we inverted the mapping function, so that the nodes with smaller position metric
measurements are put in the outer layers of the graph. The only true drawback of the
concentric and inverse concentric layout is that to be able to see on which layer the
nodes reside, there has to be a certain amount of nodes on the layer to help the eye to
mentally connect those nodes as belonging to the same layer.

Metrics. Each layout supports 4 metrics except the fixed radius circle layout which
supports only three, namely size and color metrics. The cloud, spiral, concentric and
inverse concentric layout support all a further position metrics which must be given by
the user for the algorithm to work correctly.

Sort influence. A sorting of the nodes is effective in all layouts. In the case of the
spiral layout it’s even necessary for the algorithm to work, and in that case the sort
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Figure A.5: A circle graph using an inverse concentric layout.

criterion must be the position metric. In all other layouts a sorting can sometimes help
to make the graph less cluttered.

Pro et contra. The biggest contra for this graph is that a circle occupies quite a lot of
space on the screen while it doesn’t use it up well. We tried to minimise this drawback
by derivating the initial layout. The pro is that the nodes are laid out in an appealing
manner and if the number of nodes is small it is quite useful to get insights into classes.
However, another major drawback is that the graph does not scale up well in case there
are many nodes that have to be laid out.
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