
Can I Remove This Method? How Live Feedback from
the Ecosystem Supports Co-Evolution

Manuel Leuenberger
Software Composition Group

University of Bern
Bern, Switzerland

manuel.leuenberger@inf.unibe.ch

Abstract
Albeit open-source projects have been co-evolving since
years, upgrading a library can still be a tedious task for
developers. APIs change over time, and breaking changes re-
quire precious developer time to adapt a dependent project’s
code. We present our vision on how embracing co-evolution
in general, and library upgrades in specific, as a first-class
citizen in our IDE, can support both API authors and API
users. In a tiny self-experiment we show how API authors
can profit from live feedback on the compatibility of their
changes. API users can profit by being provided migrations
to be applied on the dependent’s code.

CCS Concepts • Software and its engineering → Soft-
ware maintenance tools; Patterns;

Keywords co-evolution, API migration, refactoring, IDE,
API usage
ACM Reference Format:
Manuel Leuenberger. 2019. Can I Remove This Method? How Live
Feedback from the Ecosystem Supports Co-Evolution. In Proceed-
ings of International Workshop on Smalltalk Technologies (IWST’19).
ACM, New York, NY, USA, 5 pages.

1 Introduction
When a library’s API changes over time, its dependents have
to adapt to the new version of the API. While many of
these changes are refactorings that can be recovered and
replayed [3], some changes are of a more complex nature
and require careful changes in a dependent [2]. Due to the
non-triviality of the co-evolution of a library and its depen-
dents, library developers are reluctant to change their public
APIs [2], and developers of dependents are reluctant to up-
grade to new versions of a library [7]. This situation leaves
unexploited potential for improvement on both sides. Once a
version of an API is defined and published, library developers
may value backwards-compatibility higher than changing
and improving an API. Developers of dependent projects
stick to older versions of a library because an upgrade would
require changes in their code and extensive retesting. Stick-
ing to an old version of a library is not without risk, e.g.,

IWST’19, August 27-29, 2019, Cologne, Germany
2019.

outdated dependencies potentially reveal known security
issues.1
Although a library and its dependent projects co-evolve,

communication of changes across projects is usually only
possible by rudimentary means. Libraries may publish a new
version along with a change log or a migration guide in
textual form.2 Developers of dependents have to filter out
the relevant changes and assess the impact on their projects
individually and mostly without tool support. Developers
of a library dependent can provide bug reports in case they
observe broken behavior in a new version. Library devel-
opers on the other side are eager to know how their APIs
are used [5]. Yet, to learn about how their library is used,
developers have to explore the ecosystem. All of the afore-
mentioned tasks lack proper support by the IDE, therefore
developers have to rely on external resources, e.g., issue track-
ers, wikis, mailing lists, Q&A communities, which can be
hard to search and extract the relevant aspects for a specific
project. We believe that is in the interest of the actors on
both sides of the story to establish a tighter feedback loop
that is well integrated into their tooling. Adapted tools for
the ecosystem-aware co-evolution context should support
library developers in exploring the ecosystem and assess-
ing the impact of changes. Library dependents should be
able to collect the changes affecting themselves quickly, as
well as they could profit from a migration path reified as an
executable, inspectable, and debuggable entity.

In this paper we present our vision on how an ecosystem-
aware, tool-supported co-evolution could look like.We present
a small self-experiment around the post-mortem analysis of
a breaking change introduced by the author of this paper.
The redesign of a dropdown widget in a widget library lead
to the removal of a method, which in turn broke a dependent
that relied on this method. As a mean to avoid or mitigate
the effects of a breaking change, we propose an integrated
approach that enables the observation and control over the
effects of a change in a library on its dependents. By run-
ning the dependent’s examples or tests relevant to a library
change automatically, we can provide live feedback on the
effects of the change to the library developer. This makes

1https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
2For an example of the Elasticsearch project, see https://www.elastic.co/
guide/en/elasticsearch/reference/current/breaking-changes-7.1.html

https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://www.elastic.co/guide/en/elasticsearch/reference/current/breaking-changes-7.1.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/breaking-changes-7.1.html
Manuel Leuenberger
preprint



IWST’19, August 27-29, 2019, Cologne, Germany Manuel Leuenberger

the dependent system both inspectable and debuggable for
the library developer, which in turn opens the opportunity
to create migration scripts to be used by the developers of
the dependent.

The rest of the paper is structured as follows. In section 2
we present a tiny case study of a breaking change. Our im-
plementation of a live feedback prototype for co-evolution
is outlined and discussed in section 3. Related work is sum-
marized in section 4, and conclusions and future work can
be found in section 5.

2 A Tiny Case Study
Our tiny case study is based on the experience of the author
of this paper.

While working on a UI widget library for Pharo Smalltalk3,
the dropdown widget required a redesign to make it more
flexible and easier to use. As the widget included some du-
plicated code as well as unused state and methods, the goal
of the first phase was to clean up the dropdown code. In
the course of this clean up, the method BrDropdownLook >>

#dropdownTarget: was removed, which sets the element the
dropdown is attached to. Running hundreds of examples
that exercise the widget library confirmed that the method
was indeed unused by these examples. Thus, the change was
considered viable and the changes were pushed. A few days
later, it was discovered that the removal of the method broke
the tests in a dependent project that used the method. As a
consequence, the initially removed method was added again
to support the needs of the dependent project.

An analysis of this story reveals multiple moments where
a lack of information leads to suboptimal decisions. First,
it was unclear that the removed method was public. The
method was removed because it was believed to be internal,
as it was neither documented as public, nor exercised in the
library’s tests. Better tests and better documentation could
help to mitigate this problem. Second, it was unclear that
a dependent used the method. This is generally the point
where the integration in IDEs breaks. IDEs usually assume a
closed ecosystem around the projects in the local workspace.
This assumption does not hold in the case of libraries. The
ecosystem includes its dependents that live outside of the
common IDE workspace.

In total it took several days from the initial question “Can
I remove this method?” to the conclusive answer “No, it is
used.”. We want to answer this question and similar ones
quicker, live in the best case.

3 Live Feedback from the Ecosystem
We want to give library developers quick feedback on the
effects of their changes, with only minimal changes to their
development setup. To achieve this we need to be able to

3http://www.pharo.org

query the ecosystem in a similar way as it is done in the
Ecosystem Monitoring Framework. [10]

3.1 Architecture

<<image>>
Dependent

changes

<<image>>
Library Development

example runner

Figure 1. Architecture to connect and synchronize a library
image with a dependent image running dependent code.

Our prototype is based on a library image, in which the
library developer performs the library changes, and a de-
pendent image, which has a dependent installed together
with the library. Figure 1 shows how the two images are con-
nected. The dependent image runs on the same machine as
the library image, but it could also run on another machine,
e.g., as on-demand images on a continuous integration server.
In our prototype the dependent image offers two endpoints.
Through the changes endpoint the library image pushes all
code changes to the dependent image to synchronize the
library code in both images. The example runner endpoint
provides an interface to evaluate a code snippet in the de-
pendent image and answers the snippet’s result or exception.
The communication relies on Seamless4, which enables in-
teraction with remote objects by proxying message sends
through a network tunnel.

3.2 Tool Integration
Our main goal is to provide live feedback on the effects of li-
brary changes.We extend the system browser with badges on
classes and methods, indicating whether the class or method
is used by the dependent, as well as a green/red colors repre-
senting success or failure of the executed dependent exam-
ples, see Figure 2 and Figure 3.
Whenever some code changes in the library image, the

changes are automatically pushed and applied on the depen-
dent image. Additionally, a change also triggers the execution
of examples to exercise the dependent system and gather
feedback on the effects of the change. In our case study, we
are only interested in examples exercising the code of the
dropdown widget. Hence we instrument the methods in the
dropdown widget package and track which examples in the
dependent use a specific method. After the first change in
the library image the 75 relevant method are instrumented
and all of the 189 examples of the dependent are run in
25.2s, yielding 51 examples that exercise the dropdown wid-
get. The instrumentation can be removed for subsequent
4https://github.com/pharo-ide/Seamless

http://www.pharo.org
https://github.com/pharo-ide/Seamless


Can I Remove This Method? IWST’19, August 27-29, 2019, Cologne, Germany

Figure 2. Class browser before removing #dropdownTarget:.
Extensions visualize library usage and dependent health.
Green badges show how many dependent examples execute
successfully and use a class or a method. A click on the
badges allows to inspect example return values, e.g., badges
circled in orange.

changes. From now on we only have to execute 51 examples
without any instrumentation, which takes as little as 4.7s.

As the whole process is automated, the library developer
receives live feedback on the effects on a dependent on of
every change in the library.

3.3 Discussion
The presented prototype for live feedback from the ecosys-
tem has several drawbacks. First, library dependents have
to be detected. This could be solved by mining dependency
relation in package repositories, such as GitHub. Second,
running multiple images besides a library development im-
age requires resources that can be allocated. In the setup of
the case study the dependent image is running on the same
machine as the library development image, which makes
inspection and debugging of the effects of changes easy. We
could also imagine a setup where dependent images are run
on-demand on a continuous integration server, which makes
inspection and debugging more complex though. Third, the
feedback has to be treated with care as the quality depends
on the quality of the dependent tests. Depending on how
exhaustive the examples and tests of a dependent exercise
the relevant library code can vary. No observed exceptions
do not necessarily imply a non-breaking change. Likewise,
not breaking one specific dependent cannot guarantee that

Figure 3. Class browser 4.7s after removing
#dropdownTarget:. Extensions visualize library usage
and dependent health. Red badges show how many
dependent examples fail during execution, but use a class or
a method. A click on the badges allows to inspect and debug
exceptions, e.g., badges circled in orange.

no dependent is affected by a change. As a counter measure,
static analysis techniques could be combined with the dy-
namic technique currently used to gain a more complete
picture of the library usage in the ecosystem.

Embracing co-evolution as a first-class citizen in our IDE
also offers new opportunities. First, live feedback tightens
the feedback loop from a change in a library to its effects in
its dependents. Breaking changes become immediately evi-
dent as such, given the information is gathered by running
examples representative for the library use in the ecosystem.
Second, exceptions can be inspected and debugged. This al-
lows the library developer to design a migration script that
can be applied when upgrading the library in the depen-
dent. These scripts can then be distributed along with the
new version of the library, potentially easing the upgrade of
other dependents as well. Instead of readding a temporarily
removed method again, such a script could rewrite the call
sites of this method either statically or dynamically. Pushing
the migration idea further, it might also be possible to design
a library upgrade in a dependent as a pull request submitted
automatically on the release of a new library version. The
pull request could already apply the necessary code trans-
formations on the dependent code, the maintainers of the
dependent could review the changes.



IWST’19, August 27-29, 2019, Cologne, Germany Manuel Leuenberger

4 Related Work
Our work is motivated by the observation that, besides the
fact that many open-source project have been co-evolving
and depending on each other for years, upgrading a library
dependency is still costly.

Kula et al. performed a study on over 4 600 GitHub Maven
projects, concluding that the majority of the projects have
outdated dependencies, revealing security vulnerabilities. [7]
Bavota et al. studied the evolution of the Apache ecosystem
and find that dependency upgrades are mostly performed
when many bugs are fixed or a new major version of the de-
pendency provides new features or services. [1] Both studies
report the reluctance of developers to upgrade dependencies
as it is presumed to be risky and costly.
Automating the upgrade process has been an ongoing

subject in the field of API usage research. These approaches
attempt to derive the necessary code tranformations on the
dependent of an API. Dig et al. reported that many API
changes can be modelled by reconstructing basic refactor-
ings on the API, which in turn can then be replayed on the
code of a dependent. [3, 4, 8] Hora et al., as well as Robil-
liard et al., inferred additional API properties that support
the migration from one version to another one. [6, 9]. All
of these approaches have in common that they are applied
post-mortem, i.e., after a change in a library has already been
published. Our approach tries to make the effects of changes
more imminent, with the goal to enable more informed deci-
sions when changing code. Tymchuk showed that timing for
feedback matters, and developers appreciate contextualized
and live feedback for code quality measures. [11]
Our current implementation of live ecosystem feedback

draws a lot of similarities to the more generally applicable
Ecosystem Monitoring Framework by SpasojeviÄĞ. [10]

5 Conclusions and Future Work
We present how the integration of co-evolution as a first-
class citizen of the IDE can look like, and we discuss its
benefits and drawbacks. Exemplified by a tiny case study of
a breaking change, we show how live feedback on the effects
of a change on ecosystem supports library developers by
immediately revealing a change as a breaking change. We
propose to further explore the integration of co-evolution
with the goal to lower to cost of upgrading a library depen-
dency.

5.1 Future Work
We believe that our approach also has the potential to enable
exploration, creation, and validation of necessary migrations
on library dependents for library upgrades. In this work we
only hint at how the upgrade process might be improved, we
intend to further investigate this research direction. Further-
more, the evaluation of the usefulness of our approach needs

to be extended by applying it over a longer time within a
real world experiment.

Acknowledgments
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software
Assistance” (SNSF project No. 200020-181973, Feb 1, 2019 -
Apr 30, 2022).



Can I Remove This Method? IWST’19, August 27-29, 2019, Cologne, Germany

References
[1] Gabriele Bavota, Gerardo Canfora, Massimiliano D. Penta, Rocco

Oliveto, and Sebastiano Panichella. 2013. The Evolution of Project
Inter-dependencies in a Software Ecosystem: The Case of Apache. In
2013 IEEE International Conference on Software Maintenance. 280–289.
https://doi.org/10.1109/ICSM.2013.39

[2] A. Brito, L. Xavier, A. Hora, and M. T. Valente. 2018. Why and how
Java developers break APIs. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 255–265.
https://doi.org/10.1109/SANER.2018.8330214

[3] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of
refactoring. Journal of Software Maintenance and Evolution: Research
and Practice (JSME) 18, 2 (April 2006), 83–107.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. 1999. Refactoring: Improving the Design of Existing Code.
Addison Wesley.

[5] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz.
2014. A Quantitative Analysis of Developer Information Needs in
Software Ecosystems. In Proceedings of the 2nd Workshop on Ecosystem
Architectures (WEA’14). 1–6. https://doi.org/10.1145/2642803.2642815

[6] Andre Hora, Anne Etien, Nicolas Anquetil, Stéphane Ducasse, and
Marco Túlio Valente. 2014. APIEvolutionMiner: Keeping API
Evolution under Control. In Proceedings of the Software Evolu-
tion Week (CSMR-WCRE’14). http://rmod.inria.fr/archives/papers/
Hora14a-CSMR-WCRE-APIEvolutionMiner.pdf

[7] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and
Katsuro Inoue. 2017. Do developers update their library dependencies?
Empirical Software Engineering (2017), 1–34.

[8] Don Roberts, John Brant, and Ralph E. Johnson. 1997. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Systems (TAPOS) 3, 4
(1997), 253–263.

[9] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and
Tristan Ratchford. 2013. Automated API Property Inference Tech-
niques. Software Engineering, IEEE Transactions on 39, 5 (2013), 613–637.
https://doi.org/10.1109/TSE.2012.63

[10] Boris Spasojević. 2016. Developing Ecosystem-aware Tools. PhD thesis.
University of Bern. http://scg.unibe.ch/archive/phd/spasojevic-phd.
pdf

[11] Yuriy Tymchuk. 2017. Quality-Aware Tooling. PhD thesis. University
of Bern. http://scg.unibe.ch/archive/phd/tymchuk-phd.pdf

https://doi.org/10.1109/ICSM.2013.39
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1145/2642803.2642815
http://rmod.inria.fr/archives/papers/Hora14a-CSMR-WCRE-APIEvolutionMiner.pdf
http://rmod.inria.fr/archives/papers/Hora14a-CSMR-WCRE-APIEvolutionMiner.pdf
https://doi.org/10.1109/TSE.2012.63
http://scg.unibe.ch/archive/phd/spasojevic-phd.pdf
http://scg.unibe.ch/archive/phd/spasojevic-phd.pdf
http://scg.unibe.ch/archive/phd/tymchuk-phd.pdf

	Abstract
	1 Introduction
	2 A Tiny Case Study
	3 Live Feedback from the Ecosystem
	3.1 Architecture
	3.2 Tool Integration
	3.3 Discussion

	4 Related Work
	5 Conclusions and Future Work
	5.1 Future Work

	Acknowledgments
	References

