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Abstract

We need to understand the impact of side effects when-
ever changing complex object-oriented software systems.
This can be difficult as side effects are at best implicit in
static views of the software, and typically execution traces
do not capture data flow between parts of the system. To
solve this problem, we complement execution traces with
dynamic object flow information. In our previous work we
analyzed object flows between features and classes. In this
paper, we use object flow information to analyze side effects
in execution traces and to detect how future behavior in the
trace is affected by it. Using a visualization, the developer
can study how a selected part of the program accessed pro-
gram state and what side effect its execution produced. Like
this, the developer can investigate how a particular part
of the program works without needing to understand the
source code in detail. To illustrate our approach, we use
a running example of writing unit tests for a legacy system.

1 Introduction

With object-oriented programs, the gap between static
structure and runtime behavior is particularly large. Un-
like pure functional languages where the entire flow of data
is explicit, in object-oriented systems the flow of objects
is not apparent from the source code. Through reference
fields, objects may outlive the execution scope in which
they are created and thus may influence behavior of another
part of a system at a later point in time. This character-
istic of object-oriented systems represents side effects on
the program state. As this is a key characteristic of object-
orientation, it is crucial when analyzing a program function-
ality, to take side effects into consideration.

While the concept of data flow has been widely studied
in static analysis [11], it has attracted little interest in the
field of dynamic analysis. Most approaches either analyze
traces of method execution events [8, 22] or they analyze the
interrelationships of objects on the heap [4, 10]. However,
to detect side effects and how they affect future behavior in
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the trace, we need to also capture fine-grained information
about the transfer of object references.

Side effects are difficult to understand, not only be-
cause of implicit information flow, but also because com-
plex chains of method executions can hide where they are
produced [20]. In this paper we explore how exposing side
effects in execution traces can support a developer to bet-
ter understand and to maintain an object-oriented system.
Before making a change to complex object-oriented legacy
system, a developer needs to identify and understand side
effects produced by the behavior he intends to change, and
the parts of the system are potentially affected by it.

To facilitate the detection of side effects we adopt our
Object Flow Analysis technique [14]. We demonstrated in
previous work the usefulness of this technique to identify
dependencies between features [15] and to discover rela-
tionships between classes by analyzing how they exchange
objects [13]. The use of Object Flow Analysis as presented
in this paper takes a different angle. Our focus here is to re-
late object flows to method execution events to reason about
side effects in object-oriented systems.

Motivating example. As a motivation for side effect
analysis, we present an example use case where knowledge
of side effects supports the production of tests. Writing re-
gression tests for legacy systems is a crucial maintenance
task [5]. Tests are used to assess if legacy behavior has
been preserved after modifying the code. They also doc-
ument reengineering efforts. However, the task of writing
tests is nontrivial when there is a lack of internal knowledge
of a legacy system [6].

Without prior knowledge of a system, a test writer needs
to accomplish the following steps to produce a unit test:

• Creation of a fixture. This involves determining which
objects should be initialized so that the behavior to be
tested can be successfully executed.

• Execution of a method under test. Once the fixture is
established, this just involves executing the method un-
der test using the appropriate receiver and arguments.

• Verification of the expected results. We need to know
which conditions to test, i.e., what the expected side
effect is and what the return value of the method is as
a result of execution.



We propose a visualization to expose side effects, which
serves as a blueprint to set up a minimal fixture and to verify
the expected test results.

Outline. In Section 2 we introduce our approach and
subsequently in Section 3 we illustrate how it can be applied
to facilitate the generation of unit tests. We outline related
work in Section 4 and we conclude in Section 5.

2 Approach

To analyze side effects, we complement execution traces
with dynamic object flow information by tracing the trans-
fer of object references (i.e., a dynamic pointer analysis).
With this additional behavioral information, we can detect
for a selected part of an execution trace, the precise effect it
had on the program state and which future behavior in the
trace was affected by the resulting heap modifications. We
consider the term program state to be limited to the scope of
the application under analysis and the system classes it uses.
We do not take changes outside this scope into considera-
tion, e.g., writing to a network socket or updating the dis-
play. Therefore, we refer to the side effect of some program
behavior as the set of all heap modifications it produces.

We structure the discussion as follows. First we present
our analysis of information flows in execution traces and
how we detect side effects. Then, in Section 2.2 we describe
how to expose the side effects. A visualization shows how
program execution used and affected the program state. In
Section 2.3 we present how side effects were propagated so
as to influence behavior in the trace at a later point in time.

2.1 Detecting side effects

Typically, UML sequence diagrams are used to visualize
execution traces (or parts of them) [7]. We base our analy-
sis of side effects on an adaptation of a more scalable view
introduced by De Pauw et al. [3], which was later also im-
plemented in the Jinsight tool [4].

Figure 1 (left) illustrates a small portion of an execution
trace represented by the experimental tool we built for side
effect analysis. The trace is presented as a tree where the
nodes represent method executions. The layout emphasizes
the progression of time; messages that were executed later
in time appear further to the right on the same line or further
down than earlier ones. For a comparison with sequence
diagrams we refer the reader to work by de Pauw et al. [3].

This visual representation emphasizes the underlying
model of our approach — namely, to consider a method
execution as including the transitively executed methods.
We refer to a partial execution trace as a sub-trace. This
corresponds to the call-return procedure abstraction of most
programming languages. Figure 1 illustrates a selected sub-
trace indicated by a rectangle in the execution trace.

arguments

implicilty imported references

implicitly exported references

sub-trace

receiver

return value

Figure 1. Flow of objects into and out of a
sub-trace.

To contribute to the computation of a program, the
method executions of a sub-trace must have some effect
on information flow. A sub-trace defines an encapsulation
boundary with respect to object references being passed in
and out of it. The out going flows are represented by the
returned value (of the first method) and all objects stored in
fields. We refer to those flows as exports.

During execution, the methods of the sub-trace also use
existing program state. Accessible objects are the receiver
and the arguments (of the first method execution) and fur-
ther objects obtained from fields and global variables. We
refer to those in going flows as imports (see Table 1).

import export
explicit receiver and arguments return value
implicit field/global read field/global write

Table 1. Flows at the sub-trace boundary

The receiver, arguments and the return value are explic-
itly passed at the sub-trace boundary. However, the flows
out of or in to fields or global variables are hidden in the
methods of the sub-trace. Therefore, it is often complex to
grasp those implicit flows when studying an object-oriented
system.

The implicitly exported flows represent the side effects
of the execution of the sub-trace on the program state. The
implicitly imported flows show us which objects have been
used to produce those effects.

The strategy we adopt for detecting the object flows de-
scribed above is based on the concept of Object Flow Anal-
ysis. The core of this analysis is the notion of object aliases
(i.e., object references) as first class entities [14, 13], as
shown in the Object Flow meta-model in Figure 2.

The Object Flow meta-model explicitly captures the fol-
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Figure 2. Core Object Flow meta-model.

lowing object references (represented as alias entities in the
meta-model) created in a method execution (represented by
the activation entity in the meta-model). An alias is created
when an object is (1) instantiated, (2) stored in a field or
global variable (including indexable fields), (3) read from
a field or global variable, (4) stored in a local variable, (5)
passed as argument, or (6) returned from a method execu-
tion. The transfer of object references is modeled by the
parent-child relationship between aliases of the same ob-
ject.

Once we have established our Object Flow meta-model,
we can detect the import and export sets of a sub-trace. The
implicit object flows are defined as follows:

• The implicitly exported references are exactly those
that are represented by the field and global write aliases
that are created in activations of the sub-trace.

• The implicitly imported references are exactly those
that are represented by the field and global read aliases
that (i) are created in activations of the sub-trace and
that (ii) do not have a parent write alias in the set of
exported references.

The constraint (ii) makes use of the object flow infor-
mation. That is, for each field read alias the corresponding
field write alias is known (parent relationship). This con-
straint ensures that field references that are defined in the
same sub-trace where they are used, are not considered as
imports.

2.2 Exposing side effects

In the previous section we discussed how exported and
imported object references are detected. The implicitly ex-
ported object references represent the side effects produced
by a sub-trace, while the imported object references indi-
cate which previously existing program state is used during
its execution.

In this section we present our approach to expose side ef-
fects. Our experimental tool provides two interactive views,

which are both illustrated in Figure 3. On the left side of
Figure 3 the view with the execution trace is shown (as dis-
cussed previously). When clicking on a sub-trace in this
view, a new window is opened (see Figure 3 right). We re-
fer to the view it shows as the side effect view.

This view is similar to a UML object diagram [7] in that
it shows objects and how they refer to each other. The key
differences are: (1) it is scoped to the behavior of a selected
sub-trace, and (2) it provides additional information based
on the side effect analysis.

FunctionScope>>addTemp:

Legend

imported reference
exported reference (side effect)

Figure 3. The side effect view of a selected
part of the execution trace.

Figure 3 shows all objects being accessed (but not nec-
essarily receiving messages) during the execution of a se-
lected sub-trace. We annotate the class name of objects
that have been explicitly passed into a sub-trace, i.e., the re-
ceiver, the arguments, and the return value. We use regular
typeface to indicate objects that existed before the execution
of the sub-trace, whereas we use bold typeface to indicate
objects that are instantiated during its execution.

An edge between objects indicates that one object has a
field reference to another object. Gray edges indicate refer-
ences that already existed before the sub-trace was run, i.e.,
they refer to imported object references. If a gray edge is
dashed this means that the reference is deleted during the
execution of the sub-trace. Black edges indicate the refer-
ences that are established during the execution of the sub-
trace, i.e., the ones that are exported. Thus, the black edges
represent references that are the side effects of the sub-trace.

The main goal of this view is to (i) show which objects
are used by the sub-trace, (ii) what side effects are pro-
duced on those objects, and (iii) how the objects refer to
each other, i.e., to make the reference paths between objects
visible.

In Figure 3 we see, for example, the execution of a
method addTemp: by an instance of FunctionScope (re-
ceiver). A ByteString is passed as argument. This execution
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produces a side effect: a new TempVar instance is created (it
is displayed with bold text), and the instance is not only re-
turned but also stored in an already existing array. Another
side effect is that the returned object is assigned a back ref-
erence to the receiver. Also, the object passed as argument,
a ByteString, is stored in a field of the TempVar instance.

In our prototype, the name of a field (object reference) is
displayed as a tooltip when moving the mouse over it.

2.3 Exposing the impact of side effects

In the previous section we discussed how we expose the
side effects produced by the execution of a sub-trace. In
this section we show which future behavior in the trace is
affected by the side effect.

The side effects of a sub-trace are essentially the im-
plicitly exported references (field or global stores). Other
sub-traces, which occur later in the trace, may then import
these references. The importing sub-traces may then pro-
ceed to further export the references. Therefore, to detect
also method executions indirectly affected by the side ef-
fects of a sub-trace, we need to track how imported refer-
ences are further propagated in the trace.

In the execution trace under analysis we highlight meth-
ods that are affected by a side effect. When a sub-trace is
selected, we highlight all method executions that contain
references originating from its exported references.

An execution trace with affected method activations is
illustrated in the subsequent section (see highlighted meth-
ods in Figure 4), which exemplifies how the detection of
side effects can be used to support the task of writing tests.

3 Case Study: Using the Side Effect View as
a Test Blueprint

With our approach we make use of dynamic informa-
tion captured from instrumented example runs of the sys-
tem. The side effect view serves as a blueprint for writing
tests by making explicit:

• The minimal fixture: only the gray objects and gray
references are expected to exist before executing the
method to be tested.

• What results to verify: the black objects and black ref-
erences, which are produced as side effects of execut-
ing the method.

We motivate our work by presenting an example to il-
lustrate how knowledge of side effects supports writing unit
tests. The example is taken from an open-source Smalltalk
bytecode compiler. The compiler works in three phases: (1)
scanning and parsing, (2) translating the Abstract Syntax

InstanceScope>>newMethodScope

FunctionScope>>addTemp:

FunctionScope>>lookupVar:

NonClosureScopeFixer>>acceptVarNode:

Figure 4. Side effect views serving as
blueprints for writing tests.

Tree (AST) representation to the intermediate representa-
tion (IR), and (3) translating the IR to bytecode.

Let us assume we want to test the implementation of
how variables are captured in the AST to IR transformation
phase. Since variables are always defined in a specific scope
(method, block closure, instance, or global scope), classes
like InstanceScope or FunctionScope look like interesting
classes to test. However, they are complex to understand
without studying the source code in detail.

First, we identify in the source code the method
InstanceScope�newMethodScope, which looks promising
as a starting point. Thus, we first query the trace for one
of the executions of the method. Figure 4 on the top right
shows the side effect view of an execution. On the top left
the corresponding sub-trace is highlighted in green.
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For the test we want to write, setting up the fixture only
requires the creation of an InstanceScope (this is the only
object that is used but not created in the sub-trace and there
are no gray references). Then we can execute the method
we want to test.

instance := InstanceScope new.
function := instance newMethodScope.

Next, we investigate the side effect view to determine
what conditions we need to verify. First we want to as-
sert that the return value actually is a function scope object.
Then we check whether the function scope correctly refer-
ences the instance scope as its outerScope (this is the name
of the field, which in our prototype is obtained by a tooltip
and hence is not shown in Figure 4). Both keyed sets, temp-
Vars and capturedVars, are assumed to be empty. Also a
new instance of ThisContextVar is created, which is stored
in the function scope and has a back reference.

self assert: function class = FunctionScope.
self assert: function outerScope = instance.
self assert: function tempVars isEmpty.
self assert: function capturedVars isEmpty.

var := function thisContextVar.
self assert: var class = ThisContextVar.
self assert: var scope = function.
self assert: var name = ’thisContext’.

With the assertions above, we have tested all side effects
that the method, together with the 9 methods it indirectly
executes, is expected to produce. Now, what further tests
can we write for this part of the system? We can answer
this question by investigating the methods that are affected
by the side effects of the method under test. In the exe-
cution trace, the affected methods are marked with orange.
In our example (see Figure 4), we identify five locations
in the trace where methods are affected, the last one being
much later in time than the others. These method executions
are examples of which other behavior uses the state that is
changed as a result of running the method we are testing.

For instance, addTemp: is called on the function scope
we created. We can now take its side effect view (see Fig-
ure 4) to write the next test. It shows that for the fixture the
function scope as it is created in the previous test is suffi-
cient. Additionally, we need the string ‘x’ as an argument.
We can now test the expected side effects, for instance, that
the function scope includes the new instance TempVar and
that this instance correctly references the name of the tem-
porary variable we passed as an argument.

...
var := function addTemp: ’x’.

self assert: var class = TempVar.
self assert: var name = ’x’.
self assert: var scope = function.
self assert: (function tempVars includes: var).

Along the same lines we can write tests for the remain-
ing usage examples. For instance, to write a fixture for
FunctionScope�lookupVar:, we see that it depends on the
TempVar produced as a side effect of the previous test.
Therefore, we only need to add the following lines to it.

result := function lookupVar: ’x’.
self assert: result = var.

The method lookupVar: is special in that it produces no
side effects (there are no bold instance names nor black ref-
erences).

The last side effect view shown in Figure 4 is more com-
plex than the previous ones. It is also an example for the
deletion of a reference. The reference from the RBVari-
ableNode to the TempVar instance is deleted (dashed arrow)
and replaced by a reference to a newly instantiated TempVar
object.

function := InstanceScope new newMethodScope.
block := function newFunctionScope.
var := block addTemp: ’x’.
node := (RBVariableNode named: ’x’) binding: var.
fixer := NonClosureScopeFixer new scope: method.

fixer acceptVariableNode: node.

newVar := method lookupVar: ’x’.
self assert: newVar class = TempVar.
self deny: newVar = var.
self assert: node binding = newVar.
self assert: newVar scope = method.

4 Related work

Typically, dynamic analysis techniques focus on execu-
tion traces, which capture method execution events [3, 9,
21]. As dynamic analysis implies large amounts of data,
much research effort has been concerned with the accessi-
bility of large traces using filtering or summarization tech-
niques [3, 9], or by identifying recurring execution patterns
[12]. While those approaches mainly analyze method ex-
ecution sequences, our approach additionally takes into ac-
count the object flow, and hence is capable to relate program
execution and its effect on the program state.

Another dynamic analysis research area is concerned
with the structure of object relationships. For instance,
Tonella et al. extract the object diagram from test runs [19],
Super-Jinsight visualizes object reference patterns to detect
memory leaks [4], and the visualizations of ownership-trees
proposed by Hill et al. show the encapsulation structure
of objects [10]. To support debugging, tools like the GNU
Data Display Debugger [23] visualize program state. The
key difference to our approach is that we not only extract
the object reference relationships, but in addition we detect
how reference relationships are modified by a specific part
of the program execution.
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Dynamic data flow analysis is a method of analyzing
the sequence of actions (define, reference, and undefine) on
data at runtime. It has mainly been used for testing procedu-
ral programs, but has been extended to object-oriented pro-
gramming languages as well [1, 2]. Since the goal of those
approaches is to detect improper sequences on data access,
they do not capture how objects are passed through the sys-
tem, nor how read and write accesses relate to method ex-
ecutions. To the best of our knowledge, Object Flow Anal-
ysis is the only dynamic analysis approach that explicitly
models object reference transfers.

In the area of static analysis, there is a large body of re-
search on interprocedural side effect analysis. More recent
research addresses the precision problem of static side ef-
fect analysis (or the analysis of pure methods) in object-
oriented programs [16, 17, 18]. As static analysis does not
take a concrete execution scenario into account, it provides
a conservative view (which may even include infeasible ex-
ecution paths of the program). Dynamic analysis on the
other hand produces a precise under-approximation. Our
approach makes use of this property by accurately detecting
the side effects as they are produced during example runs of
the program. This allows for directly relating side effects to
where they occur in an execution trace. Another advantage
of our approach is that it handles reflection, multi-threading,
or dynamic code updates, which typically pose problems in
static analysis.

5 Conclusions

In this paper we propose to expose side effects in execu-
tion traces through Object Flow Analysis. We use the dy-
namic object flows to define the side effect view, and we ex-
emplify how we can use this information to guide the devel-
oper when writing tests, in particular in the case of legacy
object-oriented systems.

As with most other dynamic analysis approaches, scal-
ability is a potential limiting factor. Object Flow Analysis
gathers both object references and method executions, thus
it consumes about 2.5 times the space of conventional exe-
cution trace approaches [13].

Apart from the amount of data gathered, the side effect
view is most vulnerable to large amount of data because it
shows single objects and references between them. Our ini-
tial case studies indicate that also sub-traces of the size of
several hundred method executions can be analyzed. How-
ever, the view does not scale for the analysis of truly large
parts of the execution in which hundreds of objects are mod-
ified. We plan to tackle this problem by collapsing and sum-
marizing parts of the object reference graph shown in the
view. In this way, implementation details such as the inter-
nal structure of collections can be hidden to yield a more
concise side effect view.

In our current studies we limit the analysis of program
state to the application and the system library classes. How-
ever, side effects outside this scope, for instance, writing on
a network socket or updating the display, are not captured.
For future work we plan to extend the analysis to take also
side effects into account that are outside this scope (e.g., to
capture how data in a RDBMS is affected).
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