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Abstract
Writing unit tests for legacy systems is a key maintenance

task. When writing tests for object-oriented programs, ob-
jects need to be set up and the expected effects of executing
the unit under test need to be verified. If developers lack
internal knowledge of a system, the task of writing tests is
non-trivial. To address this problem, we propose an ap-
proach that exposes side effects detected in example runs of
the system and uses these side effects to guide the developer
when writing tests. We introduce a visualization called Test
Blueprint, through which we identify what the required fix-
ture is and what assertions are needed to verify the correct
behavior of a unit under test. The dynamic analysis tech-
nique that underlies our approach is based on both tracing
method executions and on tracking the flow of objects at
runtime. To demonstrate the usefulness of our approach we
present results from two case studies.

Keywords: Dynamic Analysis, Object Flow Analysis,
Software Maintenance, Unit Testing

1 Introduction
Creating automated tests for legacy systems is a key

maintenance task [9]. Tests are used to assess if legacy be-
havior has been preserved after performing modifications or
extensions to the code. Unit testing (i.e., tests based on the
XUnit frameworks [1]) is an established and widely used
testing technique. It is now generally recognized as an es-
sential phase in the software development life cycle to en-
sure software quality, as it can lead to early detection of
defects, even if they are subtle and well hidden [2].

The task of writing a unit test involves (i) choosing an
appropriate program unit, (ii) creating a fixture, (iii) execut-
ing the unit under test within the context of the fixture, and
(iv) verifying the expected behavior of the unit using asser-
tions [1]. All these actions require detailed knowledge of
the system. Therefore, the task of writing unit tests may
prove difficult as developers are often faced with unfamiliar
legacy systems.
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Implementing a fixture and all the relevant assertions re-
quired can be challenging if the code is the only source of
information. One reason is that the gap between static struc-
ture and runtime behavior is particularly large with object-
oriented programs. Side effects1 make program behavior
more difficult to predict. Often, encapsulation and complex
chains of method executions hide where side effects are pro-
duced [2]. Developers usually resort to using debuggers to
obtain detailed information about the side effects, but this
implies low level manual analysis that is tedious and time
consuming [25].

Thus, the underlying research question of the work we
present in this paper is: how can we support developers
faced with the task of writing unit tests for unfamiliar legacy
code? The approach we propose is based on analyzing run-
time executions of a program. Parts of a program execu-
tion, selected by the developer, serve as examples for new
unit tests. Rather than manually stepping through the ex-
ecution with a debugger, we perform dynamic analysis to
derive information to support the task of writing tests with-
out requiring a detailed understanding of the source code.

In our experimental tool, we present a visual represen-
tation of the dynamic information in a diagram similar to
the UML object diagram [11]. We call this diagram a Test
Blueprint as it serves as a plan for implementing a test. It
reveals the minimal required fixture and the side effects that
are produced during the execution of a particular program
unit. Thus, the Test Blueprint reveals the exact information
that should be verified with a corresponding test.

To generate a Test Blueprint, we need to accurately an-
alyze object usage, object reference transfers, and the side
effects that are produced as a result of a program execution.
To do so, we perform a dynamic Object Flow Analysis in
conjunction with conventional execution tracing [17].

Object Flow Analysis is a novel dynamic analysis which
tracks the transfer of object references in a program execu-
tion. In previous work, we demonstrated how we success-

1We refer to side effect as the program state modifications produced by
a behavior. We consider the term program state to be limited to the scope
of the application under analysis (i.e., excluding socket or display updates).



fully applied Object Flow Analysis to reveal fine-grained
dependencies between features [18]. While the concept of
data flow has been widely studied in static analysis , it has
attracted little attention so far in the field of dynamic analy-
sis. Typically, dynamic analysis approaches focus on traces
of method execution events [14, 24] or they analyze the in-
terrelationships of objects on the heap [8, 15].

We have implemented a prototype tool to support our
approach and applied it to two case studies to assess its use-
fulness. The main contributions of this paper are to show
(i) a way to visually expose side effects in execution traces,
(ii) how to use this visualization, the Test Blueprint, as a
plan to create new unit tests, and (iii) a detection strategy
based on our Object Flow meta-model.

Outline. This paper is organized as follows. Section 2
discusses difficulties of writing unit tests in the reengineer-
ing context. Section 3 introduces the Test Blueprint, which
is fundamental to our approach. Section 4 presents our ap-
proach and Section 5 presents the case studies. The remain-
der of the paper (Section 6 – Section 9) includes a presen-
tation of our implementation, a discussion of our approach,
an outline of related work and a conclusion.

2 The Challenge of Testing Legacy Code

To illustrate the task of writing unit tests for unfamil-
iar code, we take as an example system a Smalltalk byte-
code compiler. The compiler consists of three main phases:
(1) scanning and parsing, (2) translating the Abstract Syn-
tax Tree (AST) to the intermediate representation (IR), and
(3) translating the IR to bytecode.

The following code (written in Smalltalk) illustrates a
test we would like to generate for the addTemp: method of
the FunctionScope class of our Compiler example. During
the AST to IR transformation phase of compilation, vari-
ables are captured in a scope (method, block closure, in-
stance, or global scope). The temporary variables are cap-
tured by the class FunctionScope, which represent method
scopes.

function := FunctionScope new.
name := ’x’.

var := function addTemp: name.

self assert: var class = TempVar.
self assert: var name = name.
self assert: var scope = function.
self assert: (function tempVars includes: var).

Without prior knowledge of a system, a test writer needs
to accomplish the following steps to write a new test:

1. Selecting program unit to test. When writing tests
for a legacy system, the developer needs to locate ap-

propriate units of functionality, i.e. a unit which is cur-
rently not already covered by a test and is not too large
a unit for which to write a test.

2. Creating a fixture. To create a fixture, the developer
has to find out which objects need to be set up as a
prerequisite to execute the behavior under test. In this
example, we need to create a FunctionScope instance,
which is used as the receiver, and a string, which is
used as the argument of the message send addTemp:.
Creating this fixture is straightforward, however, if
more objects need to be set up, it may be difficult to un-
derstand how they are expected to reference each other
and how to bring them into the desired state. Incor-
rectly set up objects may break or inadvertently alter
the behavior of the unit under test.

3. Executing the unit under test. Once we have the
fixture, this step just involves executing the method,
addTemp: in our example, using the appropriate re-
ceiver and arguments from the fixture. The execution
of the program unit stimulates the fixture, that is, the
execution returns a value and produces side effects.

4. Verifying expected behavior. We need to know what
the expected return value and the side effects are. In
our example, the returned object is expected to be a
new TempVar instance with the same name ‘x’. Fur-
thermore, the returned TempVar should reference the
FunctionScope object that we used as receiver. And
finally, the FunctionScope should include the returned
object in its tempVars collection. It is difficult to de-
tect which side effects have been produced as a result
of a program execution, as this information may be ob-
scured in complex chains of method executions. Fur-
thermore, by browsing the source code, it is difficult to
ascertain this information. And although a debugging
session reveals the required information, this may be a
tedious approach in a large and complex system.

3 The Test Blueprint

In this section we introduce the Test Blueprint, which is
fundamental to our approach. In Section 4 we then present
how it supports writing tests to revealing the information
required to establish the fixtures and identify the required
assertions to verify the correct behavior.

The Test Blueprint exposes the object usage and the ob-
ject state modifications, that is, side effects, in an execution
trace. It is scoped to provide the required information about
only a part of the program execution. We refer to such a
part of the execution trace as an execution unit.

The left of Figure 1 illustrates an excerpt of an execution
trace, displaying the method executions as a tree (the no-



tation follows the pattern targetclass�methodsignature).
The sub-tree with the root FunctionScope�addTemp: rep-
resents an execution unit. The Test Blueprint of this execu-
tion unit is displayed on the right side of Figure 1.

ASTChecker>>declareVariableNode:

FunctionScope>>addTemp:
TempVar class>>new

...initialization...
TempVar>>name:
TempVar>>scope:
KeyedSet>>add:

...library code...

...

...

Execution 
Unit

Legend
existing reference new reference (side effect)

Test BlueprintExecution Trace

:Class existing instance :Class new instance

Figure 1. An execution unit and the Test Blue-
print produced from it.

The Test Blueprint is similar to a UML object dia-
gram [11] in that it shows objects and how they refer to
each other. The key difference is that the Test Blueprint
is scoped to the behavior of an execution unit and that
it also shows (i) which objects were used by the execu-
tion unit, (ii) which references between the objects have
been accessed, (iii) what objects have been instantiated, and
(iv) what side effects were produced.

This information is encoded as follows in the Test Blue-
print. We use regular typeface to indicate objects that ex-
isted before the start of the execution unit and bold typeface
to indicate objects that are instantiated in the execution unit.
The receiver object, the arguments, and the return value are
annotated. The visualization shows only objects that have
actually been accessed (but not necessarily received mes-
sages).

An arrow between two objects indicates that one object
holds a field reference to another object. Like with objects,
only references are displayed that have actually been ac-
cessed. Gray arrows indicate references that already existed
before the execution unit was run.

A gray arrow displayed as a dashed line means that
the corresponding reference is deleted during the execution
unit. Black arrows indicate references that are established
during the execution unit. Thus, the black and dashed ar-
rows represent the side effects produced by the execution
unit.

Let us consider again the highlighted execution unit in
Figure 1, which contains all methods in the sub-tree rooted
in FunctionScope�addTemp:. In the execution trace this
method is called in the following code.

ASTChecker�declareVariableNode: aVarNode
| name var |
name := aVarNode name.
var := scope rawVar: name.
var ifNotNil: [ ... ] ifNil: [ var := scope addTemp: name ].
aVarNode binding: var.
↑ var

As the Test Blueprint in Figure 1 shows, the receiver
of the addTemp: message is an instance of the class
FunctionScope and the single argument is a string. Fur-
thermore, the returned object is a newly created instance
of the class TempVar. The Test Blueprint in Figure 1 also
shows the state of the returned object and what side effect
the method execution addTemp: produced. Let us compare
it to the addTemp: method printed below.

FunctionScope�addTemp: name
1 | temp |
2 temp := TempVar new.
3 temp name: name.
4 temp scope: self.
5 tempVars add: temp.
6 ↑ temp

In the Test Blueprint we see that a new TempVar instance
is created (compare to the code at line 2). The string passed
as argument is stored in a field of the TempVar instance (3).
Another side effect is that the new object is assigned a back
reference to the receiver (4) and that it is stored in a keyed
set of the receiver (5). Eventually, the new instance is re-
turned (6).

In the case of the above example, most information con-
tained in the Test Blueprint could also be obtained manually
from the source code without too much effort (although, the
successively called methods like name:, scope: and add:
need to be studied as well). However, this task would not
be so trivial in the case of more complex execution units,
which may contain many executed methods and complex
state modifications.

4 Approach: Supporting Test Writing

In this section we present our approach and experimental
tool to support a developer to overcome the problems stated
in Section 2 when writing tests. The underlying idea of our
approach is to analyze the execution of the program to find
examples for new unit tests.

Figure 2 provides an overview of our approach. From
instrumented program and test executions we obtain data
about the object flows, method execution events, and the ex-
isting test coverage. An analysis of this data then generates
the interactive views for the user (the analysis is described
in more detail in Section 6).

From the developer’s perspective, the approach works as
follows. In a first step, the developer interacts with our pro-
totype tool to select an appropriate execution unit serving
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Figure 2. Overview of the Approach.

as an example for writing a new test in the execution trace.
This is described in detail in Section 4.1. The selection
causes the Test Blueprint view to be updated. The devel-
oper subsequently uses the view as a reference or a plan,
providing him with the information necessary to implement
the fixture (Section 4.2), to execute the unit under test (Sec-
tion 4.3) and to write the assertions (Section 4.4).

4.1 Selecting a program unit to test

The left view of our tool illustrated in Figure 2 shows
a filtered execution trace of the program, which was exer-
cised by the developer. The trace is shown as a tree where
the nodes (vertical rectangles) represent method executions.
The layout emphasizes the progression of time; messages
that were executed later in time appear further to the right on
the same line or further down than earlier ones. This view
is an adaptation of a view proposed by De Pauw et al. [7],
which was later used in the Jinsight tool [8].

The goal of this view is to provide the developer a visual
guide to search for appropriate example execution units in
the trace that need to be tested. The tool provides options
for filtering the amount of information in the trace based on
different criteria, for example to show only the execution of
methods of a particular package or a class of the system for
which tests should be created.

Additionally, the execution trace is annotated with test
coverage information. We compute this information by de-
termining if, for each method in the trace, there exists a test
that covers that method. Methods that are not covered are
shown in black, whereas methods that are already exercised
by a test are shown in gray. With the help of these visual
annotations, a developer can more easily locate execution
units of untested code on which he needs to focus.

4.2 Creating a fixture

When the developer selects an execution unit, the corre-
sponding Test Blueprint is generated and displayed in the
right view of our tool (see Figure 2). The selected execu-
tion unit (highlighted in green) now serves as an example to
create a new unit test. To create the fixture of the new test,
the Test Blueprint can be interpreted as follows.

First, the Test Blueprint reveals which objects need to be
created, namely the ones that are not displayed in bold. Sec-
ond, the gray references show the object graph, that is, how
the objects are expected to refer to each other via field ref-
erences. (In our tool, the name of the field can be accessed
with a tooltip). The created object graph represents a min-
imal fixture as the Test Blueprint shows only those objects
and references that have been accessed in the execution unit.

Unfortunately, it can be difficult to implement the fixture
as proposed by the Test Blueprint. The problem is that it
not always obvious how to create and initialize the objects.
Often, not only the constructor has to be called with appro-
priate parameters but also further messages have to be sent
to bring the object into the desired state. In some cases,
the order in which those methods are executed may also be
relevant.

To address this problem, the Test Blueprint provides a
means to query for more detailed information about the cre-
ation of any of the objects it displays. We exploit the in-
formation we captured with our Object Flow Analysis of
the system behavior. For each object, we backtrack its flow
starting from the location where it is first used by the ex-
ecution unit. Figure 3 shows the popup window for the
FunctionScope instance.

This view reveals (i) the path of methods through which
an object was passed into the execution unit (the top method
indicates where the object under investigation was instanti-
ated), and (ii) all messages sent to the object along this path.
The number in parentheses indicates how many state modi-
fications were produced, including transitive state.

In Figure 3 we see that the FunctionScope object
of our running example is instantiated in the method
newFunctionScope and that its constructor, initialize, pro-
duced seven side effects. In the same method, the execution
of outerScope: produces one side effect. No other method
execution except for addTemp: modified the object.



Figure 3. Backtracking object setup

Using the backtracking view, we can also find out
that the KeyedSet is instantiated in the constructor of
FunctionScope. Since no other object state is needed in
the fixture apart from the string used as the argument, the
following fixture is sufficient.

function := FunctionScope new.
name := ’x’.

4.3 Executing the unit under test

With the fixture created in the previous step, executing
the unit under test is straightforward. The Test Blueprint
shows which object from the fixture is the receiver and
which objects are used as arguments:

var := function addTemp: name.

4.4 Verifying expected behavior

In this last step, the test writer needs to verify the ex-
pected behavior of the unit under test using assertions. The
Test Blueprint reveals which assertions should be imple-
mented:

• The objects shown in bold typeface are the instances
that are expected to be created. Thus, assertions should
be written to ensure their existence.

• The expected side effects have to be verified: black and
dashed arrows between objects denote newly created
or deleted field references.

• The Test Blueprint reveals which is the expected return
value.

Once again, we illustrate this with our running example.
Here the assertions derived step by step from the Test Blue-
print are the following.

self assert: var class = TempVar.
self assert: var name = name.
self assert: var scope = function.
self assert: (function tempVars includes: var).

The assertions verify that the FunctionScope includes in
its tempVars set the returned TempVar instance and that the
back pointer from the TempVar to the FunctionScope ex-
ists. Furthermore, the new TempVar is expected to store the
string passed as argument.

5 Initial Case Studies

In this section we present the results of two preliminary
case studies. The first case study provides anecdotal evi-
dence of the applicability of our approach for an industrial
system, which supports the daily business of an insurance
company. Our main focus with this study was to investigate
how well our approach performs in the context of a real
world legacy application and to gain experience for future
controlled experiments.

In our second case study we applied our approach to a
web content management system to evaluate how tests writ-
ten supported by our approach differ from the tests already
present, written by an expert.

5.1 Insurance broker application

In this case study we wanted to investigate questions re-
garding the applicability of our approach in a real world
scenario, such as: How straightforward is it to use our tool?
How large do tests written using our approach get? Does
the Test Blueprint concisely communicate the required in-
formation?

Context. The Insurance Broker system is a web based
application used both in-house by the insurance company
employees as well as remotely by the external insurance
brokers. The system has been in production for six years.
While the system has been constantly extended over time,
its core, which implements the insurance products and their
associated calculation models, has not changed much. For
the near future, however, a major change affecting core
functionality is planned.

One problem associated with this project is that two of
the three original developers of this application have left the
team and the new members lack detailed knowledge about
older parts of the system. At the time we carried out this
experiment, the system consisted of 520 classes and 6679
methods. The overall test coverage amounted to 18% (note
that we consider only method coverage).

Study setup. To investigate the usefulness of our ap-
proach in this context, we had access to a developer to write
tests for the application core, which comprises 89 classes
and 1146 methods. This developer has only ever worked



on newer parts of the system. This meant that he had basic
knowledge of the system but was lacking internal knowl-
edge about the core of the system.

As we wanted to ensure that the developer did not have
to test any of the code he himself had implemented, we se-
lected a version of the system dating from the time before
he joined the team. In the first part of our study we trained
him in our experimental tool and demonstrated how to use
it to implement a new test. During the following two hours
he used our tool to write new tests for the selected part of
the system.

Results. The developer quickly understood the principle
of the Test Blueprint and how to use it. Within these two
hours, the developer created 12 unit tests. With the new
tests, the coverage of the core increased from 37% to 50%.

Table 1 shows figures from the analysis of the devel-
oper’s work. The first column labels the tests from 1 to 12.
The second column indicates the total time the developer
spent to find a new execution unit, to study the Test Blue-
print and to implement the test. In the remaining columns
we show the following measurements:

• The number of method executions in the selected exe-
cution unit.

• The size of the fixture in the Test Blueprint (number of
pre-existing objects plus number of gray references).
This number is about the same as the number of state-
ments required to set up the fixture.

• The number of side effects in the Test Blueprint (num-
ber of new objects plus number of black and dashed
references). This number corresponds to the number
of assertions.

test # time exec. unit fixture side eff.
1 13 7 2 5
2 6 13 1 3
3 12 7 4 3
4 6 66 2 2
5 5 1 3 2
6 4 1 2 1
7 4 3 3 5
8 5 35 7 2
9 32 194 21 13
10 5 3 1 2
11 10 201 3 4
12 15 349 10 1
average 10 73 5 4

Table 1. Measurements of 12 tests (time in
minutes, size of execution unit, fixture size,
number of side effects).

The most complex test the developer created was #9,
which tests critical functionality of the system (the calcu-
lation of discounts and subsidies). Surprisingly, this func-
tionality was not covered by existing tests. A part of the
Test Blueprint of this test is shown in Figure 4.

Figure 4. Detail of Test Blueprint from test #9

As Table 1 shows, this is an exceptional test with respect
to the size of the Test Blueprint (the size of the Test Blue-
print is the sum of the last two columns). Most tests were
created from rather small Test Blueprints. Roughly, the size
of the Test Blueprint corresponds to the number of minutes
spent implementing the test.

On the other hand, the size of the execution unit (number
of executed methods) does not seem to have a direct rela-
tionship to the complexity of writing a test. For instance,
test #4 has an execution unit of size 66 but only a size of
the Test Blueprint of 4. This test exercises the functional-
ity of querying for available products. This involves iterat-
ing over all product models and verifying their availability,
which caused the 66 method executions.

The largest execution unit is test #12 with 349 method
executions. This behavior verifies the validity of a set of
products, which involves complex business logic. This test,
however, only required one assertion, which is to verify the
returned boolean value.

Observations. One problem we observed was that se-
lecting appropriate execution units in the execution trace is
not supported well enough. Although the filtering of rel-
evant methods and the highlighting of uncovered method
proved very useful, the developer spent unnecessary time to
find execution units that were not too trivial (for example,
accessor methods) or not too complex to test.

On the other hand, the Test Blueprint worked very well
and as intended. The developer used it as the primary source
of information to implement the tests. Yet, sporadically he
resorted to consulting the source code, for instance to study
how to set up an object. Although, the backtracking of ob-
ject setup helped to indicate what methods to look at, it did
not completely replace the activity of consulting the code.



In summary, the developer successfully applied our tool
to write tests for a system he only had basic knowledge of.
Most of the chosen execution units had rather small Test
Blueprints, so that it was generally not a problem to keep
track of the objects and references to write the fixture and
assertions. Large execution units in the trace did not neces-
sarily indicate large Test Blueprints.

In a future case study, it would be interesting to measure
how productive developers using our tool are compared to
developers without tool support. Also, it would be inter-
esting to see how and which program units are chosen and
how the quality of the tests differ. The study we present in
the following section, provides initial insights into the dif-
ferences of the tests.

5.2 Web content management system

In this case study we wanted to investigate the following
question: How do tests written using our approach differ
compared to conventional tests written by an expert?

For this study, we selected the Pier web content manage-
ment system [20]. Its core comprises 377 classes. We chose
this application because we have access to the source code
and we have direct access to developer knowledge to verify
our findings.

Setup. To be able to directly compare tests written us-
ing the Test Blueprint with tests written by an expert of the
system, we performed the following study. We randomly
selected 14 non-trivial unit tests that are shipped with Pier.
First we removed all assertions from the source code of the
tests (84 in total), leaving only the code for the setup of the
fixture and the execution of the unit under test. In the next
step we used our approach to analyze the execution of each
stripped down test case. Using the guidance of our Test
Blueprint, we then systematically rewrote assertions for the
tests as demonstrated in Section 4.

Results. In summary, the difference of the recreated as-
sertions compared to the original 84 assertions is: (a) 72
of the recreated assertions are identical to the original ones,
(b) 12 original assertions had no corresponding assertion in
our test, and (c) our tests had 5 additional assertions not
existing in the original code.

In 85% of the cases, the assertions we derived from the
Test Blueprint were exactly the same as the ones imple-
mented by the main author of the system. But with our ap-
proach some assertions were also missed (result b). A closer
investigation revealed that most of the missing 12 assertions
verify that special objects are left unmodified by the unit un-
der test. The focus of our approach is the side effects, that is,
on the modified state. Assertions to verify that special pro-
gram state was left unchanged require in depth knowledge
of the implementation. Our approach does not provide hints
which unmodified objects would be worthwhile to verify.

The last result (c), shows that we found additional as-
sertions not existing in the original tests. For instance,
one of those assertions tests whether the state of the object
passed as argument is correctly modified. The developer of
Pier confirmed that, indeed, those relevant assertions were
missed (and that he plans to integrate them).

6 Implementation

To generate the Test Blueprint, we employ our Object
Flow Analysis technique. This dynamic analysis captures
object reference transfers (i.e., a dynamic pointer analysis)
as well as method execution events as captured by tradi-
tional tracing techniques. Currently, our tracing infrastruc-
ture is implemented in Smalltalk, and is based on bytecode
manipulation. The analysis, as described in the remain-
der of this section, has been performed postmortem in the
Moose reengineering environment [19].

With the object flow data we can detect for any part of
an execution trace the side effect its method executions pro-
duced on the program state. We consider the term program
state to be limited to the scope of the system (for instance,
arrays, streams, etc.) and the application under analysis.
We do not take changes outside this scope into considera-
tion, for instance, writing to a network socket or updating
the display. Therefore, we refer to the side effect of some
program behavior as the set of all heap modifications it pro-
duces.

The strategy we adopt for detecting the object flows de-
scribed above is based on the concept of Object Flow Anal-
ysis [17]. The core of this analysis is the notion of ob-
ject aliases (i.e., object references) as first class entities, as
shown in the Object Flow meta-model in Figure 5.

dynamic model static model

Alias

Instance

*

0..1

*0..1
Method* 1

Class1*

*

1

creator

Activation

parent

receiver

Execution-
Unit

root

children

createdAliases

* 1

activations
*

1

Figure 5. Core Object Flow meta-model.

The Object Flow meta-model explicitly captures object
references, represented as alias entities, which are created
in a method execution, represented by the activation en-
tity. An alias is created when an object is (1) instantiated,
(2) stored in a field or array, (3) read from a field or array,



(4) stored in a local variable, (5) passed as argument, or
(6) returned from a method execution.

Each alias is bound to exactly one creator activation, the
activation in which the alias makes the object visible. The
transfer of object references is modeled by the parent-child
relationship between aliases of the same object.

Once we have established our Object Flow meta-model,
we can detect the import and export sets of an execution
unit. We refer to imports and exports as the set of aliases
through which an object is passed into respectively out of
an execution unit. The imported flows show us how ref-
erences to previously existing objects have been obtained,
whereas the exported aliases represent the side effect of the
execution unit. In the Test Blueprint, the imported aliases
are represented as gray arrows and the exported aliases as
black arrows.

We define the imported and exported aliases of an exe-
cution unit in OCL as shown in Figure 6 (according to the
model in Figure 5).

context Activation::allChrildren : Set(Activation)
derive: children->union(children.allChildren)

context Alias::allParents : Sequence(Alias)
derive: parent->append(parent.allParents)

context ExecutionUnit::activations: Set(Activation)
derive: root->union(root.allChildren)

context ExecutionUnit::exported : Set(Alias)
derive: activations.createdAliases.isWriteAlias

context ExecutionUnit::imported : Set(Alias)
derive: activations.createdAliases.isReadAlias
->reject(a | self.exported->includes(a.parent))

context Alias::path : Sequence(Activation)
derive: creator->append(allParents.creator)

Figure 6. OCL specification of an execution
unit’s derived properties.

The constraint exported derives all aliases that are
written to a field or array, that is, the side effects produced in
the execution unit. Similarly, the constraint imported de-
rives all aliases created in the execution unit that are reading
from a field or array that was written outside the execution
unit. To check for the latter restriction, we test whether the
parent of the read alias (which always is a write alias) is in
the exported set. This ensures that the situation where a
value is read from a field, but the field was defined in the
execution unit, is not considered an import.

The constraint path is used for backtracking object
setup (Figure 3). It returns the method activations that cre-
ated an alias and its parents. To backtrack the path of an
object, we select the first alias through which an object is

imported into an execution unit. The messages sent through
an alias are modeled by the 1:n relationship between aliases
and activations.

7 Discussion
In this section we discuss the limitations and the scalabil-

ity of our approach, and we lay out the required capabilities
of the dynamic analysis technique.

Limitations. As the goal of our approach is to support
test writing for unfamiliar systems, it is of less value for de-
velopers with in depth knowledge of the system. With our
approach, the developer is limited to writing tests for only
the program units that have been exercised in the example
runs of the program. The tests created with our approach
only verify the behavior for one particular fixture, whereas
an expert may know how to vary the the fixture. Further-
more, our approach does not support finding existing de-
fects in the system. In spite of those limitations, we believe
that our approach is valuable in the context of legacy sys-
tem maintenance and reengineering as expert knowledge is
typically missing in such projects.

The Test Blueprint has limitations with respect to the
amount of data it can display. As the insurance broker case
study showed, Test Blueprints of the size of 30 objects can
still be understood, but the view does not scale for the anal-
ysis of truly large parts of the execution. For our approach,
this is not directly a problem since unit testing practice sug-
gests to choose small units [1]. Therefore, if the Test Blue-
print contains too many objects, this is a sign that the unit
covers too much functionality and should be split into sev-
eral unit tests. Yet, we believe that the Test Blueprint can be
enhanced to be more concise.

Another limitation of the Test Blueprint is that it does not
indicate exceptions thrown but not caught in the execution
unit. In some cases, tests are written to verify that an excep-
tion is thrown. Since the behavior of normal program runs
usually does not rely on the exceptions, this is not a severe
limitation but it should still be added for completeness.

Scalability. As with most other dynamic analysis ap-
proaches, scalability is a potential problem. Object Flow
Analysis gathers both object reference transfers and method
execution events. It consumes about 2.5 times the space
of conventional execution trace approaches. Our approach
does not require tracing programs over a long period of time
but rather captures single user sessions. Therefore, making
our implementation performant enough to be practically us-
able was not a big problem. For instance, the trace used in
the insurance broker case study is 54MB on disk and it takes
about 2 minutes to load it, generate the model and analyze
it (on a MacBook Pro, 2GHz Intel Core Duo).

Dynamic analysis requirements. To cover all object
flows in a concrete program execution, the tracing technique
has to be implemented carefully. Our Object Flow tracer not



only tracks objects of application classes but also instances
of system classes and primitive type values. For example,
collections and arrays have to be taken into account as they
preserve permanent object references between the holder
of the collection and its contained elements. Furthermore,
since all method executions and state modifications have to
be captured, also behavioral reflection has to be dealt with
appropriately. The execution of multiple concurrent threads
are captured as different traces to make them distinguish-
able in the user interface.

We chose Smalltalk to implement a dynamic analysis
prototype because of its openness and reflective capabili-
ties, which allowed us to evaluate different alias tracking
techniques. We are currently implementing an Object Flow
Tracer for Java. In its current state, it allows us to detect
side effects, but lacks support for tracking the transfer of
object references, which is required for precisely detecting
imported aliases and the backtracking of object setup.

8 Related work
Specification based testing. There is a large body of

research on automatically generating tests or test input from
specifications and models [22]. In the work of Boyapati
et al., they present the Korat framework which generates
Java test cases using method preconditions [4]. Compared
to our approach, these test generation tools require a priori
specifications, which often do not exist for legacy systems.
For our approach, the code and the running system are the
only required sources.

Automatic testing. Fully automated testing tools exist
such as DART [12]. DART performs random testing and
employs dynamic analysis to optimize coverage. In con-
trast, our approach analyses real program execution that has
been initiated by the developer to create example scenarios
for which to write tests. The result of applying our approach
are conventional unit tests. In contrast to the automated test-
ing approaches, the intent of our approach is not to achieve
a full branch coverage as required by McCabes structured
testing criterion [23].

Trace based testing. Testlog is a system to write tests
using logic queries on execution traces [10]. Testlog tack-
les the same problem as our approach, however, it does so
in a very different way. The problem of creating a fixture
is eliminated by expressing tests directly on a trace. With
our approach, the developer creates conventional unit tests
without the need to permanently integrate a tracing infras-
tructure into the system to be able to run the tests.

Other query based approaches primarily targeted for de-
bugging can also be used for testing [16, 13]. In contrast
to our approach, the query based approaches are tailored to-
wards finding inconsistencies rather than to support writing
new tests because these techniques require a priori knowl-
edge to write queries.

Object reference analyses. Related to the Test Blue-
print and our underlying Object Flow Analysis is the dy-
namic analysis research concerned with the runtime struc-
ture of object relationships. For instance, Super-Jinsight vi-
sualizes object reference patterns to detect memory leaks
[8], and the visualizations of ownership-trees proposed by
Hill et al. show the encapsulation structure of objects [15].
The key difference of our Object Flow Analysis is that it
has an explicit notion of the transfer of object references.
This is crucial as it allows us to analyze side effects of ar-
bitrary parts of a program execution. Also, the object flow
information is required for backtracking object setup.

Tonella et al. extract object diagrams statically and dy-
namically from test runs [21]. As discussed earlier in this
paper, the Test Blueprint is similar to an object diagram.
The difference is that the Test Blueprint provides additional
information such as side effects. Our approach is based on a
dynamic analysis because dynamic analysis produces a pre-
cise under-approximation whereas static analysis provides
a conservative view. This property of dynamic analysis is
welcome we are interested in concrete and minimal exam-
ples, since unit testing else is rendered unpractical.

Dynamic data flow analysis is a method of analyzing
the sequence of actions (define, reference, and undefine) on
data at runtime. It has mainly been used for testing procedu-
ral programs, but has also been extended to object-oriented
languages [3, 6]. Since the goal of those approaches is to de-
tect improper sequences on data access, they do not capture
how read and write accesses relate to method executions.
The output of the dynamic analysis is used directly as test
input, whereas our analysis is used to instruct the developer.

9 Conclusions

In this paper we present an approach to provide support
to developers faced with the task of writing unit tests for un-
familiar legacy code. The underlying idea of our approach
is to use example runs of the program to expose side effects
in execution traces. The paper illustrates how the proposed
visualization, the Test Blueprint, serves as a plan to write
new unit tests without requiring a detailed understanding of
the source code.

A preliminary evaluation of our approach indicates its
usefulness for real world reengineering projects. From the
insights of our case studies, we plan to improve our ap-
proach in the following two ways. First, we want to make
the Test Blueprint more concise to achieve a better guidance
of the developer during test writing. A potentially interest-
ing way would be to collapse and summarize parts of the
Test Blueprint. For instance, this would allow us to hide im-
plementation details such as the internal structure of collec-
tions. Second, we want to evaluate existing execution trace
analysis approaches to ease the identification of interesting



execution units. For instance, the clustering of event traces
to identify related functionality [24] or the use of metrics to
predict testability [5] would be interesting starting points.

Eventually, further empirical evaluations are needed to
obtain more evidence of the applicability of our approach
in large object-oriented systems.
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