
Flow-Centric, Back-In-Time Debugging?

Adrian Lienhard, Julien Fierz, Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch

Summary. Conventional debugging tools present developers with means to ex-
plore the run-time context in which an error has occurred. In many cases this
is enough to help the developer discover the faulty source code and correct it.
However, rather often errors occur due to code that has executed in the past, leav-
ing certain objects in an inconsistent state. The actual run-time error only occurs
when these inconsistent objects are used later in the program. So-called back-in-
time debuggers help developers step back through earlier states of the program
and explore execution contexts not available to conventional debuggers. Never-
theless, even back-in-time debuggers do not help answer the question, “Where
did this object come from?” The Object-Flow Virtual Machine, which we have
proposed in previous work, tracks the flow of objects to answer precisely such
questions, but this VM does not provide dedicated debugging support to explore
faulty programs. In this paper we present a novel debugger, called Compass, to
navigate between conventional run-time stack-oriented control flow views and
object flows. Compass enables a developer to effectively navigate from an object
contributing to an error back-in-time through all the code that has touched the
object. We present the design and implementation of Compass, and we demon-
strate how flow-centric, back-in-time debugging can be used to effectively locate
the source of hard-to-find bugs.

1 Introduction

When debugging object-oriented systems, the hardest task is to find the actual root
cause of a failure as this can be far from where the bug actually manifests itself [1].
In a conventional debugger, the developer is provided with an interface to explore the
run-time context at a particular point in time in the execution of the program. Very often
defective code leads very quickly to a run-time failure, so in these cases the run-time
context is exactly what we need to identify bugs. Unfortunately there are also frequent
situations where the failure occurs an arbitrary period of time after the defective code
has executed, in which case the run-time context at the time of the failure contains little
or no useful information about the source of the error. In a recent study, Liblit et al.
examined bug symptoms for various programs and found that in 50% of the cases the
execution stack contains essentially no information about the bug’s cause [2].

Back-in-time debuggers have been developed to help developers step back through
earlier states of the program and explore execution contexts not available to con-
ventional debuggers. Back-in-time debugging has gained increasing attention recently

? In Proceedings of TOOLS Europe 2009, LNBIP 33 p. 272-288, © Springer-Verlag, 2009.

http://scg.unibe.ch


2 A. Lienhard, J. Fierz, O. Nierstrasz

[3, 4, 5, 6]. Still, even back-in-time debuggers are of only limited help, since they pro-
vide no dedicated mechanism to identify which past contexts led to the defective state.
As a consequence, developers have to manually inspect the execution history to back-
track the origins of an object. Manual inspection of the execution history can be tedious
because of the overwhelming amount of data that is typically recorded from program
runs. Essentially, we need an effective way to answer the question: “Where did this
object come from?”.

We have previously proposed an approach to track the flow of objects in a dedicated
Object Flow Virtual Machine to answer precisely such questions [7], but the prototype
VM does not include any debugging support to exploit object-flows. This paper pro-
poses the novel concept of flow-centric debugging to support an effective navigation of
object-oriented execution history during debugging, and presents Compass, a proof-of-
concept flow-centric debugger based on the Object Flow VM.

Compass provides several novel views to aid the developer in navigating between
the historical control flow and object flow information spaces. One of these views rep-
resents the entire history of a running application as an interactive call graph using a
“fisheye” view. In this view, the method execution currently in focus is represented as
a large circle, and more distant nodes are correspondingly smaller. As one navigates
through the call graph, nodes shift and are resized as though they were viewed through
a fisheye lens.

The contributions of this paper are: (i) a novel approach, called flow-centric de-
bugging, to bridge control flow views offered by conventional debuggers and historical
object state views of back-in-time debuggers, and (ii) a scalable and practical imple-
mentation strategy with a proof-of-concept prototype called Compass.

Outline. In Section 2 we present a simple example to motivate the need for flow-centric
debugging. In Section 3 we review existing approaches to back-in-time debugging, and
demonstrate how they fall short in tracing back through object flows. Section 4 de-
scribes Compass, a proof-of-concept, object-centric, back-in-time debugger. Section 5
describes a realistic example that illustrates how Compass can be used effectively to dis-
cover hard-to-track software bugs. In Section 6 we present our implementation, which
is based on a metamodel for a debugger that integrates control and object flow into
a common approach. Section 7 presents conclusions and remarks on possible future
extensions.

2 Motivating example

Let us consider a simple toy example that illustrates the shortcomings of both con-
ventional debuggers and back-in-time debuggers for tracking down a common class of
software defects. Figure 1 shows a UML sequence diagram of a scenario leading to a
software failure. A Bank is responsible for logging new deposits and adding interest
to individual BankAccount instances. It makes a request to an InputReader instance for
(1) a new deposit, which is (2) returned to the Bank. The returned value happens to be
nil, but this does not lead to an immediate failure. The value is (3) returned to the Bank



Flow-Centric, Back-In-Time Debugging 3

BankAccount a BankAccount an InputReader an InterestCalculator

example

getDeposit

readDeposit

nil

deposit: (deposit:nil)

addInterest

nil

deposit

nil

calculateNewDeposit (deposit : nil, interest: 0.05)

1

2

3

4

5

6

7

8

Bank

Fig. 1. Sequence diagram of the crashing example.

from a helper method. The value is (4) saved in a BankAccount and (5) stored in a pri-
vate field. The Bank then triggers the BankAccount to compute interest, so it (6) reads
the value with an accessor that (7) returns it. The BankAccount then (8) passes the value
to the InterestCalculator instance, which blows up when it tries to compute interest for
a nil value.

Now consider a developer trying to debug this with a conventional debugger. We
can clearly see that the failure is due to the nil value, but the debugger only gives us the
run-time context back to the point where the value was (6) read from the field where
it was stored. We would have to set a breakpoint where the variable is stored (5) and
re-run the program. Now we can see that the value was returned (3) from the method
getDeposit, but since this method context is not on the stack anymore, we have to set
another breakpoint to find out where the value comes from, etc.

A back-in-time debugger would allow us to step back in time, but we do not know
how far back in time we must travel. We have no information to tell us where to go.
Although the given scenario is tiny, a real-world scenario might include many thousands
of events between the failure and the point where the faulty value is computed and
stored. As we shall see in the following section, present back-in-time debuggers do not



4 A. Lienhard, J. Fierz, O. Nierstrasz

offer adequate mechanisms to identify the contexts that the faulty object has passed
through.

3 Limitations of current back-in-time debuggers

Next we look briefly at three examples of back-in-time debuggers and summarize the
mechanisms they provide for navigating through historical contexts. In particular we
look at how well they support the task of tracing object flow.

TOD. The Trace-Oriented Debugger [4] is a back-in-time debugger for Java, imple-
mented as an Eclipse plugin, that improves the performance by using a high-speed
distributed database backend.

Omniscient Debugger. The Omniscient Debugger [3] is a back-in-time debugger for
Java, which instruments bytecode at load time, and offers a user interface to step
through the generated traces and inspect the state of objects at any time.

Unstuck. The Unstuck debugger [5] is a back-in-time debugger for Squeak Smalltalk2.

These approaches adopt a common perspective of the program execution history.
All three debuggers provide views that are stack-oriented and state-centric. The user
can browse and step through the method execution trace (run-time control flow) and
inspect the past state of objects.

Figure 2 shows a debugging session of our running example introduced in Section 2
with the Trace-Oriented Debugger (TOD). The stack is displayed in view (A) and the
current values of variables are shown in view (D). With the buttons (B) the user can step
forward and backward in the recorded control flow.

This perspective is a natural extension from conventional debuggers, which show
the current call stack and a snapshot of the current state of objects. Back-in-time debug-
gers have extended these views with historical run-time data. The call stack is extended
to the complete execution trace, and the object inspector is extended to all previous
values of an object’s fields.

Considering our example, with this perspective we can identify the faulty value
of the deposit field in the bank account instance. Furthermore, we can jump to any past
method execution. However, none of the three debuggers provides sophisticated support
to link the symptom of the bug (null pointer exception) with its root cause (where the
null value is introduced). Hence, we do not know how far back we need to jump. If
we knew the origin of null, the root cause could be identified in one step. In practice,
however, bugs tend to be more complex as faulty variables may infect other variables
[8, 9]. Therefore, to trace back the infection chain, often several objects have to be
backtracked.

The features that the TOD, Omniscient Debugger, and Unstuck provide to backtrack
object flow are ad hoc:

– TOD: a “why?” hyperlink (see Figure 2 (D)) allows the focus to be moved to the
statement that assigned the current value

2 http://squeak.org

http://squeak.org


Flow-Centric, Back-In-Time Debugging 5

A D

B

C

Fig. 2. TOD. Control flow (A) can be stepped (B), and stays in sync with events in the source
code (C). Current objects are also shown (D).

– Omniscient Debugger offers similar functionality like TOD
– Unstuck: allows one to color all methods in the call trace in which a selected object

was used

The features provided by TOD and Omniscient Debugger support only one back-
tracking step (from a field value to where it was assigned or from a method parameter
to where the method was called). Hence, to get to the origin of the value, manual steps
are required. This includes figuring out by which method execution an object was re-
turned, which can be hard if loops are involved. Therefore, backtracking non-trivial
object flows can quickly become a tedious task.

The coloring feature provided by Unstuck (see Figure 3) gives a good overview of
how often an object was used but it provides only limited support for tracking object
flows. For objects that are often used, a lot of code gets highlighted even if the code is
not in the path of the object that the developer is interested in. This limitation becomes
especially obvious if one wants to backtrack the flow values like null, true, and false.
Since these values occur in a very large number of methods, the highlighting of Unstuck
is of little use.



6 A. Lienhard, J. Fierz, O. Nierstrasz

26 CHAPTER 4. EXAMPLES

Figure 4.7: The place where the only change of the interesting variable
happend.

Figure 4.8: The abstract syntax tree for the method.

26

Fig. 3. Unstuck. The method trace (at left) stays in sync with the source code view (at right).
Methods of the currently selected object are highlighted (reprinted from reference [5]).

Further related work. Omnicore’s CodeGuide3 and RetroVue4, two commercial prod-
ucts, provide similar stack-oriented functionality like the three above presented ap-
proaches. Probably the most interesting earlier related work is ZStep95, a reversible
debugger for Lisp. A notable feature of ZStep95 is to directly access from graphical
objects the code that drew them [10]. Approaches, such as the Data Display Debugger
[11] and Reference Patterns [12], explicitly focus on graphical state-centric views. Most
other back-in-time debugging related work is focused on improving performance and
addressing the memory explosion problem rather than researching ways to exploit the
gathered data [13, 14, 15].

Problem summary. Since existing back-in-time debuggers adopt the traditional stack-
oriented and state-centric views and introduce only minimal innovations to take history
into account, they fail to capture the orthogonal issue of object flow. As Figure 4 illus-
trates, the problem we face is to link the control flow and object flow spaces. What we
are missing is a means to link these spaces and to provide views to navigate between
them.

4 Compass: a flow-centric back-in-time debugger

Compass5 is a proof-of-concept debugger for object-oriented programs. We chose the
name “Compass” because its goal is to be an instrument that provides directions to
3 http://www.omnicore.com
4 http://www.visicomp.com
5 http://scg.unibe.ch/Research/ObjectFlow/

http://www.omnicore.com
http://www.visicomp.com
http://scg.unibe.ch/Research/ObjectFlow/


Flow-Centric, Back-In-Time Debugging 7

Object flow space

?

Control flow space

Fig. 4. A debugger must offer mechanisms to navigate between control and object flow views.

effectively navigate the large information space. Compass is implemented using the
Object Flow VM, which efficiently tracks object-flow at run-time [7].

The Compass user interface is shown in Figure 5. We briefly introduce each of the
views provided by Compass, and then we focus on the views that are especially inter-
esting from the perspective of navigating between the object and control flow spaces.

1 8

2

4

6

5

3

7

9

Fig. 5. The Compass debugger.

1. The method trace view visualizes the entire run-time control flow as a tree of nodes
in a fisheye view. Object flows are shown as green arrows between nodes.

2. Call stack of the currently selected method execution.
3. Lists each reference transfer of the flow of the object selected by the developer, by,

e.g., double-clicking on an item in the sub-method statements list (5).
4. Source code of the selected method and buttons to step forward and backward

through the method trace.



8 A. Lienhard, J. Fierz, O. Nierstrasz

5. List of reference transfers and message sends of current method execution.
6. Variable inspector panes.
7. Lists of control flow statements the method depends on.
8. Displays changes in relationships between objects in the subtrace of the selected

method execution.
9. Lets the developer go back and forth, or jump to bookmarked method executions.

We now focus on how these views present control flow and object flow, and how
they enable navigation between these two spaces.

4.1 Navigating method execution traces

Compass provides two synchronized views of method execution traces. The method
trace view ((1) in Figure 5) shows the entire method execution trace as a tree, and view
(2) offers a more conventional stack-oriented view of a single slice of the trace, focused
on a given method execution.

The challenge in presenting the entire trace as a tree is that the obvious approach
of using a conventional tree list does not scale well. For this reason Compass offers a
novel approach to navigating traces based loosely on the notion of a fisheye view [16].
The key idea is to present method executions not as text but as circles, showing the cur-
rently selected method execution as a large circle in the center of the view. More distant
method executions are shown as progressively smaller circles, progressively closer to
the edge of the view.

Fig. 6. A method trace view synchronized with a stack view. Mousing over a node pops up a tool
tip identifying the method execution. Clicking on it shifts the focus to that node.



Flow-Centric, Back-In-Time Debugging 9

In Figure 6 we see the currently selected method execution simultaneously high-
lighted in the method trace view and the call stack view. Note that we sacrifice the
textual feedback of a tree list view for a high level graphical overview of the method
execution tree, but we lose little since the synchronized stack view gives us detailed
information of the method execution in focus. We can rapidly navigate to nearby nodes
in the tree by clicking on them. Since nodes in neighbouring branches are not repre-
sented in the stack view, the fisheye view offers tooltips with the name of each method
execution as the mouse hovers over its node.

The layout of the method trace tree is not strictly a conventional fisheye view be-
cause we independently scale the x and y coordinates of each node. We compute the
x coordinate as a function ft of the timestamp t of a given node, as shown in the fol-
lowing equation, where tfocus is the start timestamp of the currently selected method
execution, Ct is a constant configured in the tool, and w is the width of the view:

ft = 1− 1
|tfocus − t| · Ct + 1

x =

{
w
2 + ft · w

2 (t ≥ tfocus)
w
2 − ft · w

2 (t < tfocus)

The value of ft is always in the interval [0, 1); the more ft tends to 0, the closer
the node is positioned horizontally to the focused node. The y coordinate is computed
similarly, but using the nesting level (depth of the call stack) of method executions
instead of their timestamp.

The size s of each circular node is computed as follows:

s = (1− ft) · sfocus

where the constant sfocus is the size of the focused method execution. Both constants
sfocus and Ct, where the latter defines the relative distance between nodes, can be
adjusted by the user.

When the focused node changes, the transition from the old to the new state of the
method trace view is animated. The smooth transition is intended to help the user follow
how the point of view changes. This proved especially useful when backtracking object
flows that jump between a large number of method executions.

4.2 Navigating object flows

Object flow is visualized as follows: for a given method execution selected in either the
method trace view (1) (Figure 5) or the stack view (2), all object flow events are listed
in view (5). An object flow is selected by double-clicking on one of these events. The
entire object flow is then simultaneously displayed textually as a list in view (3), and
graphically as green arrows connecting nodes in the method trace view (1), as shown
in Figure 7. An object flow answers the question “Where did this object come from?”
by displaying the path of reference transfers from the instantiation event to the selected
reference. One may then navigate through the object flow by using either the textual or
graphical views.

The beginning of an object flow represents the creation event. An arrow from a
parent to a child node usually means that an object reference was passed as a method



10 A. Lienhard, J. Fierz, O. Nierstrasz

Fig. 7. Object flow visualized in method trace. Synced with the stack view at bottom left and the
list of reference transfers of the selected object flow at bottom right.

argument, and an arrow from a child to its parent node means that the reference was
returned from that method. Arrows between more distant nodes mean that the first node
wrote the object to a field and that the second node read it. Arrows between parent and
child nodes may also indicate that a field was written and then read, but this is relatively
rare.

To directly navigate to where the object was instantiated one can select the last item
in the textual list. (Like the call stack, which grows from bottom to top, the most recent
transfer of the object is at the top of the list and its instantiation is at the bottom of the
list.)

Often, not only the flow of an object is of interest but also where one of its field
values comes from. Compass and the Object Flow VM treat objects and values of prim-
itive type the same. Hence, to track back the origin of a field value (even if it is nil) one
simply changes the focus of Compass to this value.

For more details about the other views and the design and implementation of Com-
pass, the interested reader is referred to the Masters thesis by Fierz [17].

5 Flow-centric debugging in action

In this section we demonstrate how Compass can be used in practice with an example
of an actual, hard-to-debug defect in a multi-threaded application. The defect occurred
in Pharo Smalltalk6 in the software update feature, which downloads and installs both
6 http://pharo-project.org

http://pharo-project.org


Flow-Centric, Back-In-Time Debugging 11

kernel and library updates. The example has been simplified for presentation purposes,
but otherwise reflects the actual defect.

Problem. The example application downloads and installs software updates using two
concurrent processes. The download process is handled by an UpdateDownloader class.
It puts updates into a queue shared with an installer process and puts a special marker
in the queue to indicate that all updates have been downloaded:

self getUpdates withIndexDo: [ :code :i |
aSemaphore wait.
aQueue nextPut: i.
aQueue nextPut: code ].

aQueue nextPut: ''.
aQueue nextPut: #finished

The installer process is handled by an UpdateLoader class, which simply gets up-
dates from the shared queue and evaluates them:

[ this := docQueue next.
nextDoc := docQueue next.
nextDoc ∼= #finished ] whileTrue: [
Compiler evaluate: nextDoc.
docQueueSema signal ].

Unfortunately the application freezes unexpectedly. If we interrupt the application,
a traditional debugger tells us that the update loader is blocked on an empty queue. This
suggests that the downloader has not only stopped putting updates into the queue, but
it has also failed to put the “finished” marker into the queue. Inspecting the stack trace
and reading the source code does not help us to get any further in tracking down the
source of the problem.

Solution. In Compass, when more than one process is traced, the method trace view
simply displays more than one root method execution.

Starting Compass, we find ourselves in the context of the block method execution
of next in the shared queue. Stepping up the stack one level, we find ourselves in the
UpdateLoader method responsible for sending the blocking request (Figure 8).

Fig. 8. Execution of the update loader.

We see here that next has been sent 5 times, after which the method blocks on the
shared queue. Therefore, this context is clearly interesting and we bookmark it so that
we can easily return here.



12 A. Lienhard, J. Fierz, O. Nierstrasz

Now we want to understand where the objects in the shared queue are coming from,
so we double-click the statement return '4+4' to backtrack the flow of the string '4+4'
(Figure 9).

Fig. 9. Object flow of a element in the queue.

We follow back the object flow, which brings us from the update loader process to
the execution of withIndexDo: in the download process (see Figure 10).

Fig. 10. Loop on downloaded updates.

We can clearly see that a fifth update has been downloaded, but then the downloader
stops abruptly. Something has interrupted this process, but we do not know what. The
other active process is the update loader, so we follow our bookmark back to there.

We note (Figure 8) that updates read from the queue are evaluated by the compiler,
so now we step into the last evaluation and explore what happened during the last up-
date. Quickly we arrived at the cleanup method of the update loader and remark some-
thing unusual in the side effects graph (right side of Figure 11), namely that the update
loader used to have a reference to the downloader, but now it points to nil. Furthermore,
the downloader no longer refers to its process.

Fig. 11. Side effects of the executed update code.



Flow-Centric, Back-In-Time Debugging 13

Stepping further we discover that the cleanup method terminates the downloader
and nils it out (Figure 12). Evidently this update has erroneously initiated the cleanup
procedure, which is only supposed to be invoked when all updates have been down-
loaded.

Fig. 12. Cleanup method that stops the download process.

Alternative solution. Of course, there are other ways to home in on the defect. For
example, the update loader initializes and starts the downloader as follows:

retrieveUpdatesOntoQueue: aQueue withWaitSema: aSemaphore
self downloader ifNotNil: [

self downloader terminate ].
self downloader: (UpdateDownloader new

initializeWith: aQueue with: aSemaphore).
self downloader start

We can then use another feature of Compass, the forward flow explorer, to see what
happens with the downloader afterwards (Figure 13).

Fig. 13. The forward flow of the downloader object.

The forward flow shows us that the downloader is later instructed to terminate itself.
When we shift our focus to this point, the run-time stack tells us that this request has
originated from one of the downloaded updates.

6 Implementation: a flow-centric debugging metamodel

Existing approaches commonly collect run-time data by introducing sensors into the
bytecode to emit events whenever a method is entered or exited, or when a variable is
assigned. The result is a trace of events organized into a control flow. The data for the
user interface is then obtained by querying this trace.



14 A. Lienhard, J. Fierz, O. Nierstrasz

Fig. 14. A metamodel combining control flow and object flow.

In contrast, we implement our new approach to flow-centric debugging by making
the relevant metamodel explicit. In order to effectively exploit the opportunities offered
by back-in-time debuggers, we must connect these views at the metamodel level. The
metamodel is populated by run-time data gathered by the Object Flow VM, which tracks
object-flow by creating an alias whenever an object reference is transferred [7].

Figure 14 presents our proposal for a combined metamodel. The upper portion of
the figure shows our metamodel for representing control flow information [18]. The
lower portion presents our metamodel for expressing object flow.

Control flow. The execution trace is modeled by the entity MethodExecution, which
points to the caller and holds a timestamp to capture the order and nesting of method
executions in the control flow. Each method execution is associated with the entity
Method, its static counterpart. The code of a method is represented as a list of statements
(we could also use an abstract syntax tree representation, but a flat list is sufficient for
our purpose). This control flow metamodel provides the means to step through the run-
time control flow and to map each method execution to the source code statement from
which it was called (notice the association between MethodExecution and the Send
statement). Hence, one main reason for capturing single statements is to be able to map
dynamic events, like method executions, to the source code.



Flow-Centric, Back-In-Time Debugging 15

Object flow. Object-flow is captured by representing every object reference created at
run-time as an instance of the entity Alias. A new alias is created whenever an object is
created, passed as a parameter to a method, returned from a method, written to a field,
or read from a field. The flow of an object is then given by all its aliases. Through the
origin association, each alias points to the alias from which it originates. This allows
us to track the flow of an object from a specific point in the program execution back to
where it was instantiated. Furthermore, aliases capture historical object state, modeled
by the predecessor association.

The combined control flow and object flow metamodel establishes the links between
these two: each alias is linked to the control flow that caused the alias to be created.
That is, each alias captures the method execution in which it is created and it captures
the static statement that caused its creation. This linking in our metamodel allows us
to precisely map object flow to control flow. Hence, the metamodel not only supports
stepping in the execution trace, but it also directly supports navigating along the flow of
objects.

Scalability. Benchmarks of our Object Flow VM have shown significant improvements
over existing approaches. By only keeping track of still-relevant past data, memory
consumption stays within reasonable bounds and the run-time overhead is reduced. Our
solution makes use of the garbage collector to release the objects that are not referenced
anymore in memory and that are not relevant anymore in the program’s history. The
relevance of a historical data point depends, among other properties, on the flow of
objects. For instance, a method context (and its associated call stack) is retained in
history as long as objects exist in memory that were passed through this method context.
The Object Flow VM tracks object flow and hence the Compass debugger can directly
access this information without requiring a static analysis.

For a more detailed description of the Object Flow VM and its performance char-
acteristics we refer the interested reader to our previous work [7, 19].

7 Conclusions and future Work

We have proposed flow-centric, back-in-time debugging as a novel way to improve the
effectiveness of back-in-time debuggers by tracking the flow of object references back
through the method executions responsible for their flow. We have presented Compass,
a proof-of-concept prototype that offers several novel views to aid the developer in nav-
igating between historical control flow and object flow views. We have presented a typ-
ical scenario that demonstrates how empirically hard-to-find defects can be effectively
tracked down with flow-centric debugging. Finally we have formalized our approach
by presenting a simple metamodel that integrates conventional control-flow analysis of
running applications with object flow analysis.

Although Compass was not especially designed for debugging multi-threaded ap-
plications, it turns out to be remarkable effective since object flows capture precisely
the interesting interactions between processes. The fisheye view displays the method
executions of each relevant process as a tree. These trees then interleave. The view



16 A. Lienhard, J. Fierz, O. Nierstrasz

could be further improved by better distinguishing the different processes, yet keeping
the property of revealing object reference transfers between processes.

We have not yet carried out an empirical study to evaluate the effectiveness of flow-
centric debugging. We hypothesize that Compass will considerably speed up the process
of identifying the root cause of typical bugs in object-oriented programs compared to
the identical tool lacking object-flow navigation features.



Flow-Centric, Back-In-Time Debugging 17

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 - Sept. 2010). We would also like to thank David Röthlisberger and
Tudor Gı̂rba for their help in reviewing drafts of this paper.

References

1. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann
(October 2005)

2. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI’05), New York, NY, USA, ACM (2005) 15–26

3. Lewis, B.: Debugging backwards in time. In: Proceedings of the Fifth International Work-
shop on Automated Debugging (AADEBUG’03). (October 2003)

4. Pothier, G., Tanter, E., Piquer, J.: Scalable omniscient debugging. Proceedings of the 22nd
Annual SCM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’07) 42(10) (2007) 535–552

5. Hofer, C., Denker, M., Ducasse, S.: Design and implementation of a backward-in-time
debugger. In: Proceedings of NODE’06. Volume P-88 of Lecture Notes in Informatics.,
Gesellschaft für Informatik (GI) (September 2006) 17–32

6. Maruyama, K., Terada, M.: Debugging with reverse watchpoint. In: Proceedings of the
Third International Conference on Quality Software (QSIC’03), Washington, DC, USA,
IEEE Computer Society (2003) 116

7. Lienhard, A., Gı̂rba, T., Nierstrasz, O.: Practical object-oriented back-in-time debug-
ging. In: Proceedings of the 22nd European Conference on Object-Oriented Programming
(ECOOP’08). Volume 5142 of LNCS., Springer (2008) 592–615 ECOOP distinguished pa-
per award.

8. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT ’02/FSE-10:
Proceedings of the 10th ACM SIGSOFT symposium on Foundations of software engineer-
ing, New York, NY, USA, ACM Press (2002) 1–10

9. Cleve, H., Zeller, A.: Locating causes of program failures. In: ICSE ’05: Proceedings of the
27th international conference on Software engineering. (2005) 342–351

10. Lieberman, H., Fry, C.: ZStep 95: A reversible, animated source code stepper. In Stasko, J.,
Domingue, J., Brown, M.H., Price, B.A., eds.: Software Visualization — Programming as a
Multimedia Experience, Cambridge, MA-London, The MIT Press (1998) 277–292

11. Zeller, A., Lütkehaus, D.: DDD — a free graphical front-end for Unix debuggers. SIGPLAN
Not. 31(1) (1996) 22–27

12. De Pauw, W., Sevitsky, G.: Visualizing reference patterns for solving memory leaks in Java.
In Guerraoui, R., ed.: Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP’99). Volume 1628 of LNCS., Lisbon, Portugal, Springer-Verlag (June 1999)
116–134

13. Feldman, S.I., Brown, C.B.: Igor: a system for program debugging via reversible execu-
tion. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and
distributed debugging (PADD’88), New York, NY, USA, ACM (1988) 112–123

14. Boothe, B.: Efficient algorithms for bidirectional debugging. In: Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and implementation
(PLDI’00), New York, NY, USA, ACM (2000) 299–310



18 A. Lienhard, J. Fierz, O. Nierstrasz

15. Xu, G., Rountev, A., Tang, Y., Qin, F.: Efficient checkpointing of java software using context-
sensitive capture and replay. In: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC-FSE’07), New York, NY, USA, ACM (2007) 85–94

16. Furnas, G.W.: Generalized Fisheye View. In: Proceedings of CHI ’86 (Conference on Human
Factors in Computing Systems), ACM Press (1986) 16–23

17. Fierz, J.: Compass: Flow-centric back-in-time debugging. Master’s thesis, University of
Bern (January 2009)

18. Richner, T.: Recovering Behavioral Design Views: a Query-Based Approach. PhD thesis,
University of Bern (May 2002)

19. Lienhard, A.: Dynamic Object Flow Analysis. Phd thesis, University of Bern (December
2008)


	Flow-Centric, Back-In-Time Debugging  
	Adrian Lienhard, Julien Fierz, Oscar Nierstrasz

