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Specifying Dynamic Analyses
by Extending Language Semantics

Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz

Abstract—Dynamic analysis is increasingly attracting attention for debugging, profiling, and program comprehension. Ten to twenty
years ago, many dynamic analyses investigated only simple method execution traces. Today, in contrast, many sophisticated dynamic
analyses exist, for instance for detecting memory leaks, analyzing ownership properties, measuring garbage collector performance, or
supporting debugging tasks. These analyses depend on complex program instrumentations and analysis models, making it challenging
to understand, compare, and reproduce the proposed approaches. While formal specifications and proofs are common in the field of
static analysis, most dynamic analyses are specified using informal, textual descriptions. In this article we propose a formal framework
using operational semantics that allows researchers to precisely specify their dynamic analysis. Our goal is to provide an accessible and
reusable basis on which researchers that may not be familiar with rigorous specifications of dynamic analyses can build. By extending
the provided semantics, one can concisely specify how runtime events are captured and how this data is transformed to populate the
analysis model. Furthermore, our approach provides the foundations to reason about properties of a dynamic analysis.

Index Terms—Dynamic Analysis, Formal Definitions and Theory, Tracing, Debugging
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1 INTRODUCTION

DYNAMIC analysis has gained increasing attention
during the last decade. Historically, dynamic anal-

ysis was used for debugging, testing, and profiling.
As programs have become larger and more complex,
dynamic analysis has come to play an important role in
the research field of program comprehension [1]. Never-
theless, most models and instrumentation techniques are
described only informally. This poses no problem as long
as the analysis is based on simple call traces. Informal
descriptions of more complex approaches, however, may
be difficult to understand, let alone to reproduce.

We experienced this problem while describing our
previous work on Object Flow Analysis [2], [3]. We
illustrated our meta-model by means of a UML class
diagram and the properties derived from it in OCL, and
we described the overall approach informally. However,
our description lacked a precise explanation of how the
dynamic data is captured at runtime and how the object
flow model is built in the first place. This is a nontrivial
part as it involves tracking of how object references are
transferred at runtime. Without these details the results
are hardly reproducible by an independent researcher.

We can find similar limitations in many other publica-
tions. For instance, Quante et al. describe only superfi-
cially how in their Object Process Graph approach data
are gathered from C programs, leaving room for different
interpretations [4]. The following two sentences offer an
example. “By object, we mean a local or global variable
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or a variable allocated on the heap at runtime. Hence,
we consider a trace a sequence of operations applied to
an object.” [5]. Talking about variables allocated on the
heap is rather ambiguous (e.g., does this include primitive
type values?). On the other hand it is not clear which
operations on those objects are meant, as operations could
mean to change the state of an array or record, passing
pointers to a value, or changing the value of a variable.

To overcome the limited precision of many of today’s
dynamic analysis publications, a more rigorous approach
is required that allows authors to specify how they trace
a running system and how their analysis models are
populated from the gathered data. There exist approaches
to specify dynamic analyses formally, such as the work
by Flanagan et al. [6], [7], [8] in the area of runtime
verification. Nevertheless, using formal specifications has
not yet become a common practice in dynamic analysis
publications – in particular not in the fields of program
comprehension and reverse engineering. Hence, the goal
of this article is to provide a framework that is:

• Reusable. It should not be necessary for each publi-
cation to come up with a new kind of formalization,
which would require an extensive explanation and
hence take precious space. The formalizations should
be concise and built from a common ground.

• Accessible. The formalization should be simple to
devise and understand, taking into account that
authors and readers of dynamic analysis publications
may not be familiar with formal methods.

To meet these goals we propose a formal framework
for specifying dynamic analyses of class-based object-
oriented programs based on a small object-oriented im-
perative language with operational semantics, influenced
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by established approaches [9], [10], [11]. While existing ap-
proaches typically use a separate layer of instrumentation
rules [6], we propose that for specific analyses the core
reduction rules provided by our framework are directly
extended and modified. This provides the freedom for
novel analyses to specify unanticipated run-time events
and models, and it makes the resulting formalization
more concise and hence simpler to understand.

We intelligibly introduce the formal semantics and
provide examples for real, non-trivial dynamic analyses
to illustrate how the framework can be used in practice.
With our formal approach one can direct attention to is-
sues that might otherwise be overlooked. Our framework:
(i) allows analyses to be precisely specified, (ii) makes
design dimensions and corner cases explicit, and (iii)
serves as a common reference for comparing approaches.

Even though standard operational semantics have been
known for years and approaches exist that use operational
semantics to specify dynamic analyses, to the best of our
knowledge there is no common practice nor a reusable
framework, which is accessible to authors and readers
of dynamic analysis publications. Hence, we envision
this article to be able to serve as a common reference for
future dynamic analysis specifications.

The remainder of this article is structured as follows.
We present a categorization of data that dynamic analyses
gather in Section 2. This categorization serves as a basis
to decide what to support in the proposed base language.
We define the syntax and operational semantics of this
language in Section 3, and exemplify it in Section 4. In
the second part we evaluate our approach by formalizing
two significantly distinct, non-trivial dynamic analyses
(Section 5, Section 6). We discuss related work in Section 7
and conclude in Section 8.

2 CATEGORIZING DYNAMIC ANALYSIS DATA

To decide which language features are required for a
generally applicable, yet minimal formal language, we
systematically categorize the data used by recent dynamic
analyses of class-based object-oriented programs.

We reviewed the literature to select illustrative exam-
ples that cover a large spectrum of the different kinds
of data points generally analyzed. The most common
technique used to gather runtime data is to instrument
the bytecode by adding probes that emit events. Also,
more recently, the Java VM Tool Interface and DTrace
[12] with support for object-oriented languages provide
means to efficiently capture runtime data. Both kinds
of techniques yield a trace of events, which is analyzed
either at runtime or after the execution has terminated.

2.1 Runtime events in object-oriented programs

We categorize the types of events into four categories as
follows (see also Figure 1):

De Pauw Pothier Rayside Pheng

Control 
flow

Data 
flow

Heap

VM

Method entry � � �

Method return � �

Message send � �

Exception raise � �

Exception catch �

Field read � �

Field write � � �

Array read � �

Array write � � �

Local variable read �

Local variable write � �

Method argument read �

Method return value � �

This reference �

Literal reference �

Class instantiation � � �

Array creation � � �

Cloning �

Object finalization � �

GC cycle begin/end �

Thread start/suspend/...

Lock (de-)allocation

Calls to reflection API

System calls: I/O, ...

Figure 1. Types of dynamic analysis events (supported
events highlighted in gray).

(A) Control flow. Most approaches trace method execu-
tions either by capturing method entry/exit or by
capturing message sends. Exceptions belong also to
this category as they influence the flow of control.

(B) Data flow. This category is composed of events of
operations that transfer data (object references or
primitive type values). This includes reading and
writing to fields, arrays, and local variables. We
also include in this category accessing of method
arguments, returning of values from method calls,
access to the pseudo variable this (the target of the
current method call), and accessing of literal values
(that is, each time the execution pushes a literal,
such as a boolean or string literal, on the stack).

(C) Heap. This category includes the events of creating
new objects and arrays on the heap and the event
triggered when an object or array is garbage col-
lected (finalization). As a variant of instantiation,
cloning refers to making a copy of an existing object.

(D) VM. This category lists events that are triggered
through primitive calls or that are not directly
related to any code execution: garbage collection,
thread start/stop, lock (de-)allocation, reflection
API calls (both structural and behavioral reflection,
including dynamic code loading), and system calls.

The columns in Figure 1 show four selected dynamic
analyses [13], [14], [15], [16]. For each event, a tick
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indicates that the analysis uses the given event.

The first analysis we chose is “Modeling Object-
Oriented Program Execution” proposed by De Pauw et
al. [13], which represents a traditional dynamic analysis
that traces only method execution and object creation
and finalization. The second column shows the back-in-
time debugger “Trace-Oriented Debugger” by Pothier et
al. [14]. This debugger records the execution history to
reconstruct past call stacks and object states. It captures
control flow events and data flow events that produce
side effects. The memory leak profiler proposed by
Rayside et al. captures field and array reads and writes,
object creation and finalization, and GC events [15]. The
dynamic analysis proposed by Pheng et al. [16] captures
a complete trace of instructions to reconstruct an internal
model of the heap. Their goal is to help developers
understand how programs use and manipulate heap-
based data structures and the effect of garbage collection.

2.2 Selecting events for the base language

The categorization of the 23 runtime events shown in
Figure 1 serves as the basis on which to decide what
events should be supported. We have selected 10 events
that capture the core of most OO languages and their
dynamic analyses: (i) method entry, method return, and
message send; (ii) field read and field write; (iii) method
argument read, method return value, this reference, and
literal reference; (iv) class instantiation. These events are
essential because we have to represent the heap, and we
need to capture message sending including the passing
of arguments and return values.

The remaining events can be divided into the following
three categories: (i) events that are closely related to the
above selected events and hence do not necessarily need
special treatment, (ii) events that are not often used but
can be modeled by extending the base language without
much effort, and (iii) events that are complex to model.

In the first category fall the three events array read,
array write, and array creation. Without a significant loss
of generality we can omit these events because they are
very similar to the events field read, field write, and class
instantiation. Arrays could be represented very similarly
to objects on the heap, but with indexed slots instead
of named slots. However, if an analysis requires one to
explicitly specify the tracing of array accesses, the rules
of our base language can be extended with modest effort.

The same rationale holds for not modeling local
variables. The event local variable read is very similar to
method argument read. An extension of the base language
would again be possible, although a bit more complicated
(method contexts need to be extended to hold local
variable bindings). We omit the clone event because only
very few analyses use it and it would not be difficult to
model this event. On the other hand, we omit exceptions,
events related to garbage collection, concurrency , and

system calls. These events would significantly increase
the complexity and hence we decided to not support
them directly for the sake of simplicity.

We believe that the set of events selected is adequate
for covering the bulk of the state of the art, while serving
as a good starting point for future extensions. One of the
most important extensions is to model concurrency. A
recent study shows that 12 out of 114 articles concerning
program understanding through dynamic analysis moni-
tor multithreaded applications [1]. Although this is still
a small minority, the analysis of concurrent programs is
becoming increasingly important.

3 THE BASE OBJECT LANGUAGE L

We now specify the operational semantics of L, a mini-
mal object-oriented language that expresses the events
selected in Section 2. Structural operational semantics,
pioneered by Plotkin [17], describes in a mathematically
rigorous way how a program is interpreted as sequences
of computational steps. We do not define the static
semantics that describes well-formed programs. From
a program P we only assume sets of identifiers for class
names Class, field names Field, and method names Method,
and we use variables c ∈ Class, f ∈ Field, and m ∈ Method.
Moreover, we assume that MethodLookup(m, c) yields a
tuple (e, c′). The element e is the expression constituting
the body of the method that is returned from a lookup
of m starting in class c. The element c′ is the class in
which this method is implemented. MainBody() returns
the body of the main method (from which the program is
started). The function FieldsOf(c) returns the set of field
identifiers of class c.

3.1 Syntax

In Figure 2 we define an abstract syntax of L with source
expressions Expr. To simplify our presentation, but with-
out loss of generality, we define methods to have exactly
one argument, referred to by the variable x. A runtime
expression RExpr is a source expression, an address, or
a call with its stack frame σ. Runtime expressions do
not have primitive type values, such as null. All values
in runtime expressions are addresses referencing objects
on the heap. The literal null is represented as the single
instance of the class UndefinedObject (other literal values
would be represented in the same way).

3.2 Dynamic aspects

The heap maps addresses ι to objects o. Objects are
defined as tuples carrying their class name and a finite
mapping from field names to addresses. We use the
notation H(ι) to denote the lookup of the object stored
at address ι on the heap H . The double lookup H(ι)(f)
returns the address stored in the field f of object H(ι). The
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(NULL)

σ · null, H, T → σ · 0, H, T

(THIS)
σ = (ι, _, _, _)

σ · this, H, T → σ · ι,H, T

(FIELD-READ)
ι′ = H(ι)(f)

σ · ι.f,H, T → σ · ι′, H, T

(FIELD-WRITE)
H ′ = H[ι �→ H(ι)[f �→ ι′]]

σ · ι.f = ι′, H, T → σ · ι′, H ′, T

(ARG)

σ = (_, ι, _, _)
σ · x, H, T → σ · ι,H, T

(CONTEXT)
σ · er, H, T → σ · e′r, H ′, T ′

σ · C[er], H, T → σ · C[e′r], H ′, T ′

(NEW)
FieldsOf(c) = {f1, ..., fn}

ι is fresh in H
H ′ = H[ι �→ (c, f1 �→ 0, ..., fn �→ 0)]

σ · new c,H, T → σ · ι,H ′, T

(MESSAGE-SEND)
(c, _) = H(ι)

MethodLookup(m, c) = (e, c′)
σ′ = (ι, ι′,m, σ)

σ′ · e,H, T → σ′ · ι′′, H ′, T ′

σ · ι.m(ι′), H, T → σ · ι′′, H ′, T ′

log(T, v) ::= (T [id �→ v], id)
where id smallest n ∈ N, n fresh in T

Figure 3. Reduction rules of L.

Source and runtime expressions

e ∈ Expr ::= new c (new object)
| this (this reference)
| e.m(e) (message send)
| x (argument)
| e.f (field read)
| e.f=e (field write)
| null (null reference)

er ∈ RExpr ::= e (source expressions)
| ι (address)
| σ · er (nested call)

Dynamic aspects

o ∈ Object = Class × (Field → Address)
ι ∈ Address = N
H ∈ Heap = Address → Object

σ ∈ StackFrame = Address × Address × Method × Sender
Sender = StackFrame | ε

T ∈ Trace = ID → Event
v ∈ Event = (to be defined)

Reduction Contexts (call-by-value)

C ::= [ ] | C.m(e) | ι.m(C) | C.f | C.f = e | ι.f = C | σ · C
Figure 2. Syntax and dynamic aspects.

notation o[f �→ ι] denotes the update of o with binding
f �→ ι. The initial heap contains the object representing
null at the fixed address 0: H0 = {0 �→ (UndefinedObject)}.

A stack frame σ is a 4-tuple composed of (1) the target
address, (2) the argument address, (3) the method name,
and (4) the sender frame. The initial stack frame is σ0 =
(0, 0, ε, ε). The trace T is a store mapping identifiers to
events. The definition of Event is intentionally missing
and is specified by each analysis. The initial trace is T0 =
∅. With C we define evaluation contexts taking the Wright-
Felleisen approach of context-sensitive reductions [18].

3.3 Operational semantics

We use a big step operational semantics, given by the
relation

→ ⊆ (RExpr×Heap×Trace)× (RExpr×Heap×Trace)

defined in Figure 3. A computation is started with σ0 ·
MainBody(), H0, T0.

The rule NEW creates an object with class c, and
initializes all fields of the new object with null (i.e.,
mapping fields to the address 0). The heap H is extended
to the heap H ′ that additionally contains a binding for
the new address ι. As with the following rules, the trace
T is passed unchanged.

NULL, the rule for literal variable access (note, we only
have one literal, null), replaces the syntactic element null
with the reserved address 0. The heap is not modified.
THIS and ARG fetch the target address, respectively the
argument address, from the current stack frame (the
underscore “_” is used as a placeholder for arguments
that can be neglected for the present consideration).
FIELD-READ looks up the object with address ι and then
from this object the field f . FIELD-WRITE updates the
heap with the mapping of the address ι to the object
with updated mapping of the field f .

MESSAGE-SEND is slightly more complicated. First, the
class c is extracted from the target object (the class is
stored as the first element of an object tuple). Once c
is determined, MethodLookup returns the expression e
representing the body of the method and the class c′ in
which this method is implemented. In the second step, a
new stack frame σ′ is created as the tuple containing the
target and argument. If the expression e in the context
of the stack frame σ′ and the heap H evaluates to the
object at address ι′′ with heap H ′, then the message send
is replaced with ι′′ (return value) and the new heap.

CONTEXT, in conjunction with evaluation contexts C
(see Figure 2) limits the positions in which reduction
rules can be applied. This defines how an expression is
normalized as successive applications of the rules.

In addition to the reduction rules, we define log, which
takes a trace T and an event v and returns a tuple
consisting of a new trace and the id of the newly added
event. The returned trace is the trace T with a new
binding of an id to the event. (Note, we use the same
notation for accessing and updating T as for the heap H .)
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Many dynamic analyses model their events to have
mutual relationships. Therefore, we represent the trace T
as a store, which makes it possible for events to refer to
each other through their unique identifier. To maintain the
temporal order of events, the ids are increasing numbers.

We assume that programs are well-formed, i.e., they do
not access undefined fields or send messages that cannot
be understood. This is a reasonable assumption given
that our goal is to detail the semantics of an analysis.

The reduction rules of our base language L allow us
to capture the ten events we selected in the previous Sec-
tion 2: field read and write, this reference, argument read,
literal reference, class instantiation, and message send are
directly accessible through the respective reduction rule.
The events method entry, method return, and method
return value are less obvious because we use a big step
operational semantics. These events can be captured in
MESSAGE-SEND as this rule not only captures message
sending but also already sets up the new stack frame, σ′,
and as it also captures the returned value, ι′′. How to
capture these events is shown in Figure 9 (Section 5).

4 INTRODUCTORY EXAMPLE

We demonstrate our approach on a specification of a very
simple dynamic analysis: tracing the creation of objects.
We capture the address of each new object and the stack
frame of the method in which the object is instantiated.

Figure 4 specifies this dynamic analysis as follows.
We define an event to be a 2-tuple with elements of
the set Address and StackFrame. The definition of Event
completes the definitions of the dynamic aspects of L.

Extended dynamic aspects (in addition to Figure 2)

v ∈ Event = Address × StackFrame
(address of created object and stack frame)

Figure 4. Event specification for object creation analysis.

Next we adapt the reduction rules as shown in Figure 5
to emit events to the trace. The only rule that we need to
modify is NEW. In the modified definition, NEW reduces
to a runtime expression with trace T ′. The new trace
T ′ is given by the convenience function log. The event
that we emit is the tuple consisting of the address of the
instantiated object, ι, and the current stack frame, σ.

(NULL), (THIS), (ARG), (FIELD-READ), (FIELD-WRITE),
(MESSAGE-SEND), and (CONTEXT) same as in Figure 3

(NEW)
FieldsOf(c) = {f1, ..., fn}

ι is fresh in H
H ′ = H[ι �→ (c, f1 �→ 0, ..., fn �→ 0)]

(T ′, _) = log(T, (ι, σ))
σ · new c,H, T → σ · ι,H ′, T ′

Figure 5. Reduction rules for object creation analysis
(differences compared to Figure 3 highlighted in gray).

To illustrate the specification of this analysis given by
Figure 4 and Figure 5, we evaluate a simple example
program P step by step. Figure 6 defines the program
P with two classes. The first class, IRBuilder, having
one field, the second class, IRSequence, having no fields.
MainBody() is the function that returns the expressions
of the main method. This code instantiates IRBuilder and
sends the message startNewSeq. Since in our language L,
each method requires exactly one parameter, we use null,
although in the real code the method takes no parameters.
The implementation of the method startNewSeq of the
class IRBuilder creates a new IRSequence instance and
assigns it to the field currentSeq of the target object.

In Figure 7 the reduction steps of executing P are
listed. The evaluation of the initial expression requires
three reduction steps (1–3). For the MESSAGE-SEND rule
of step 3, three more reductions (3.1–3.3) are required as
part of the rule’s premise.

The rule NEW is applied in reduction steps 1 and 3.2. In
the final state, the trace contains two events, one for each
object on the heap (except for null). We can see that the
first object (its address is ι1) is created in main, whereas
the second object (ι2) is created in startNewSeq.

This example demonstrates how to use the proposed
framework by extending its reduction rules. The example
demonstrates that a specification can be quite small (only
one single redefinition as shown in Figure 5). The default
semantics provide all required definitions for syntax,
dynamic aspects, and reduction rules so that the users
can focus on the specification of their dynamic analysis.

5 CASE STUDY: TOD

The Trace Oriented Debugger (TOD) is a back-in-time
debugger for Java [14], [19]. Back-in-time debuggers
make it possible to navigate backwards within a pro-
gram execution history, drastically improving the task
of debugging. A formal description of queries is given
to specify operations such as stepping, state and control
flow reconstitution. The queries are based on the concepts
of filters and cursor operations. While querying is well-
defined, the publication does not detail the emission of
the events. We apply our approach to evaluate how it
can be used to formally specify TOD.

Class := {IRBuilder, IRSequence}
Field := {currentSeq}

Method := {startNewSeq}

MainBody() := new IRBuilder.startNewSeq(null)
MethodLookup(startNewSeq, IRBuilder) :=

(this.currentSeq = new IRSequence, IRBuilder)

FieldsOf(IRBuilder) := {currentSeq}
FieldsOf(IRSequence) := {}

Figure 6. Definition of example program P.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6

σ0 · new IRBuilder.startNewSeq(null),
{0 �→ (UndefinedObject)},
{}

→(1) NEW

σ0 · ι1.startNewSeq(null),
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ 0)},
{id1 �→ (ι1, σ0)}

→(2) NULL

σ0 · ι1.startNewSeq(0),
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ 0)},
{id1 �→ (ι1, σ0)}

(ι1, 0, startNewSeq, σ0) · this.currentSeq := new IRSequence,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ 0)},
{id1 �→ (ι1, σ0)}

→(3.1) THIS

(ι1, 0, startNewSeq, σ0) · ι1.currentSeq := new IRSequence,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ 0)},
{id1 �→ (ι1, σ0)}

→(3.2) NEW

(ι1, 0, startNewSeq, σ0) · ι1.currentSeq := ι2,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ 0), ι2 �→ (IRSequence)},
{id1 �→ (ι1, σ0), id2 �→ (ι2, (ι1, 0, startNewSeq, σ0))}

→(3.3) FIELD-WRITE

(ι1, 0, startNewSeq, σ0) · ι2,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ ι2), ι2 �→ (IRSequence)},
{id1 �→ (ι1, σ0), id2 �→ (ι2, (ι1, 0, startNewSeq, σ0))}

→(3) MESSAGE-SEND

σ0 · ι2,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ ι2), ι2 �→ (IRSequence)},
{id1 �→ (ι1, σ0), id2 �→ (ι2, (ι1, 0, startNewSeq, σ0))}

Figure 7. Example evaluation of P with extended opera-
tional semantics.

5.1 Requirements for a formal specification of TOD

In the main publication of TOD [14], the following traced
events are listed:

• Field write (FW)
• Local variable write (VW)
• Array write (AW)

• Exception (Ex)
• Behavior call (BC)
• Behavior enter (Bn)
• Behavior exit (Bx)

The events in the left column capture side effects
to reconstruct object states and the events in the right
column capture control flow to revert the debugger to
previous call stacks.

For each event some of the following properties are
recorded depending on the event type: timestamp, thread
id, stack depth, pointer to parent event, source code
location, field id, behavior id, local variable id, array
index, value, return value, target, exception, arguments.

TOD also provides support for scoped trace capture.
This means that the instrumentation scheme described
above is selective. It is possible to supply user-defined
filters that limit the number of emitted events. TOD
supports class selectors, which are predicates on classes
that should generate events.

5.2 Understanding the requirements

At first sight the gathering of the events and their
properties seems straightforward. When looking more
closely, though, the list above (and in the original TOD
publication) is rather ambiguous. Closer reading reveals
that the authors capture the “pointer to the parent event”.
However, no further explanation is given regarding the
meaning of this parent. We contacted the authors and
in private correspondence they explained that a parent
event “is the Bn event that corresponds to the entry into
the current method. It permits us to reconstitute the call.”

In other words, any Bn event will have a parent.
However, looking even deeper it is still unclear why
the authors capture both a BC and a Bn, given that they
appear redundant. When asked, the authors answered:
“The reason we have both BC and Bn is that not all the
program is instrumented. So sometimes instrumented
code is called from non-instrumented code (so you only
have Bn), and sometimes non-instrumented code is called
by instrumented code (and you have only BC).”

When writing the specification, this answer triggered
another question — a hidden edge case of scoping in
relation to the parent event. Let us assume a Bn event
is created in response to a message sent from non-
instrumented code. What is the parent event of this Bn
event? The answer is not obvious since the calling method
is out of scope and hence does not have an associated Bn
event. There are two possible solutions. Either the parent
event pointer is undefined or it is the last triggered Bn
event (that is, the Bn event of the method that called into
code that is out of scope). How this is solved influences
the query results. The latter solution seems to make more
sense as it facilitates connecting two sequences of events
— even if there are unknown method calls in between.

The above reveals two of the ambiguities present in the
description of TOD’s original publication [14]. Although
all the events and their properties are listed, the paper
does not define how this data is generated and hence
lacks the completeness and precision that would be
required to understand the approach in detail.

5.3 Specification

Representation of events. In a first step of the formal
specification we define how to represent events. Figure 8
defines Event as a set of tuples of size 9. The elements of
an event tuple are its parameters. At the first position the
event type is given, then the stack depth, the parent event
id, field name, etc. Fields and methods are given by their
name, whereas field values, return values, the target and
method argument are all object addresses. Depending on
the event type, some elements of events are undefined,
like in the informal specification in the TOD publication.

We have omitted the event Ex as our framework does
not support exceptions without extension of the syntax
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and reduction rules. For the sake of simplicity we have
also omitted the event types of local and array writes.
We do not miss significant precision because these two
events are very similar to the field write event (i.e., the
local variable event has a variable index property instead
of a field index property). From the list of properties we
have omitted thread id and source code location as our
formalization does not model multiple threads and the
location of the source code is part of the static model (a
mapping from expressions to source code).

Extending dynamic aspects. Extracting the values of
the properties given in Figure 8 is straightforward except
for the parent event id. The difficulty is that the parent
event of a new event is created in a different execution
context (or, more precisely, in a different reduction
rule in the formalization). To specify the parent event
property, we extend the definition of StackFrame of the
base semantics (given in Figure 3) to associate an event
id with each stack frame (see bottom of Figure 8).

Extended reduction rules. The event id of a stack
frame is defined to hold the parent event id for this
execution context. For instance, when creating the field
write event in the rule (FIELD-WRITE), we can extract
the id p from the current stack frame σ (see Figure 9) and
pass it to the newly created log entry. Another special
property stored in an event is the stack depth that is
computed by the function depth(σ) (counting the number
of frames in the current call stack). The other properties
(field name, field value, target) can be directly accessed
in the reduction rule.

The rule (FIELD-WRITE) illustrates how we specify
structural scoping (see Figure 9). Depending on the
predicate inscope(σ) a new event and trace are generated.
If the current stack frame is out of scope, the trace is left
unmodified. inscope(σ) is defined to depend on whether
the class of the current target object is instrumented.

The reduction rule (MESSAGE-SEND) is similar. It
models the events behavior call (BC), behavior enter (Bn),
and behavior exit (Bx). The event BC is triggered when a
message is sent, while Bn is triggered when the method
is actually called. Since we do not have two rules for
message send and method call, we capture both events
in the (MESSAGE-SEND) reduction rule. The difference is
nevertheless clear as BC is triggered in the calling context
(σ) and Bn is triggered in the newly created context (σ′).
Therefore, it is possible that only one or none of the two
events is triggered — depending on whether their current
context is in scope. The properties of the three events
are the same except for the Bx event that additionally
captures the returned value.

Note how the edge case is treated when the called
method is not in scope. In this case the previous parent
event id p is used for the new id p’. In this way the
most recent parent id is carried along through non-
instrumented method calls.

Extended dynamic aspects (in addition to Figure 2)

Event = D1 × D2 × ... × D9

D1 = {FW,BC,Bn,Bx} (event kind)
D2 = N (stack depth)
D3 = ID (parent event id)
D4 = Field (field name)
D5 = Method (method name)
D6 = Address (field value)
D7 = Address (return value)
D8 = Address (target)
D9 = Address (argument)

StackFrame = Addr. × Addr. × Method × Sender×N
Figure 8. TOD events and extension of StackFrame.

5.4 Evaluation

This case study has shown that a significant part of TOD
can be formalized by modeling events, extending stack
frames, and redefining four reduction rules. We left out
three of seven events, but still managed to specify the
crucial part of the analysis. Important questions arose
that we had not thought about before and that could
only be answered by the authors of TOD.

The required specification takes the space of half a page,
and about one full page if the base syntax and dynamic
aspects (Figure 2) are included (with explanations). That
is, the specification of TOD could have been added as
part of the original publication [14].

This case study indicates that our approach:

• provides a compact but appropriate basis to write
new specifications with moderate effort,

• supports the most critical object-oriented features
but lacks support for other events like exceptions
that may be relevant in some cases,

• forces one to be precise and define important edge
cases that otherwise are easily overlooked (an ex-
ample is the parent event of a Bn called from non-
instrumented code), and

• is flexible enough to be adapted to new requirements
that are not readily supported (to extend the formal-
ization to pass the parent event id between reduction
steps required only minor adaptations).

6 CASE STUDY: OFA

In this second case study we present how our approach
can be applied to Object Flow Analysis (OFA), a more
complex analysis than the one of TOD. OFA is a dynamic
analysis for object-oriented programs that captures how
objects are passed through the system. OFA proved
essential for building a scalable virtual machine (VM)
for supporting practical back-in-time debugging [3]. In
contrast to previous approaches, like TOD, Object Flow
Analysis is not based on a sequential trace of events
but on an extended model of the heap that keeps track
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(NEW), (NULL), (FIELD-READ),
and (CONTEXT) same as in Figure 3

(THIS)
σ = (ι, _, _, _, _)

σ · this, H, T → σ · ι,H, T

(ARG)

σ = (_, ι, _, _, _)
σ · x, H, T → σ · ι,H, T

(FIELD-WRITE)
H ′ = H[ι �→ H(ι)[f �→ ι′]]

(_, _, _, _, p) = σ

(T ′, _) =

8<
:

log(T, (FW, depth(σ),
p, f,⊥, ι′,⊥, ι,⊥)) if inscope(σ)

(T ′, ε) else
σ · ι.f = ι′, H, T → σ · ι′, H ′, T ′

(MESSAGE-SEND)
(c, _) = H(ι)
(_, _, _, _, p) = σ

(T ′, _) =

8<
:

log(T, (BC, depth(σ),
p,⊥,m,⊥,⊥, ι, ι′)) if inscope(σ)

(T, ε) else
MethodLookup(m, c) = (e, c′)

p′ is fresh in T
σ′ = (ι, ι′,m, σ, p′)

(T ′′, p′) =

8<
:

log(T ′, (Bn, depth(σ′),
p,⊥,m,⊥,⊥, ι, ι′)) if inscope(σ′)

(T ′, p) else
σ′ · e,H, T ′′ → σ′ · ι′′, H ′, T ′′′

(T ′′′′, _) =

8<
:

log(T ′′′, (Bx, depth(σ′),
p,⊥,m,⊥, ι′′, ι, ι′)) if inscope(σ′)

(T ′′′, ε) else
σ · ι.m(ι′), H, T → σ · ι′′, H ′, T ′′′′

inscope(σ) ::= c ∈ InstrumentedClasses
where (c, _) = H(ι) and σ = (ι, _, _, _, _)

depth(σ) ::=

j
1 if (_, _, _, ε, _) = σ
depth(σ′) + 1 if (_, _, _, σ′, _) = σ

Figure 9. TOD Reduction rules of operational semantics
(differences compared to Figure 3 highlighted in gray).

of historical runtime data. Object references are first-
class entities (called aliases) and they hold additional
information, such as the origin of the reference. OFA was
also used for several approaches in reverse engineering
and program understanding [2].

6.1 Requirements for a formal specification of OFA

The key step of OFA is the tracking of the transfer of
object references at runtime. The underlying principle is
to explicitly represent object references and to capture
the relationships between these references. For example,
when writing to a field or when passing an object
as method argument, object flow analysis tracks the
newly created references (the one stored in the field,
respectively the one stored in the method argument). In
this model the entity representing object references is

called Alias. Relationships among aliases represent the
transfer of references by capturing from which other
alias an alias originates. By tracking the origins one can
then accurately reconstruct the flow of each object in the
system. Furthermore, the predecessor relationship of field
aliases models side effects. For a detailed description of
the model we refer the reader to our previous work [3].

OFA is a challenging analysis to formalize because it
not only generates events that are stored in a trace (like
in the case of TOD), but it requires modifications to the
interpretation of the program because the structure of the
heap needs to be modified. Since OFA requires significant
modifications to the interpretation of the base language,
we want to formally prove that the original semantics
of the language are preserved. With this case study
we demonstrate how our framework supports formal
reasoning about the properties of dynamic analysis.

6.2 The specification

To formally specify OFA, we introduce a level of indi-
rection between runtime expressions and objects. Object
addresses in the extended language are represented by
an alias record. Conceptually, an alias in the OFA model
represents an object reference. Similar to objects, aliases are
referred to by an address and are stored, separate from
the main heap, in an alias store. The syntax and basic
structure of the reduction rules are kept unchanged.

Figure 10 shows the extended syntax and dynamic
aspects of La. In comparison to L (Section 3) we replace
trace T with an alias store A. We renamed this store to
make its use in the following explanations more clear.
Expressions are unchanged except for the symbol κ
that we use to refer to an address of an alias. Runtime
expressions do not contain addresses to objects anymore.

6.2.1 Dynamic aspects

Addresses κ in runtime expressions refer to a binding in
the alias store A, which maps addresses to aliases. An
alias is a tuple (ι, κorig, κpred, σ), where ι is the address
of the actual object, κorig is the address of the origin alias,
κpred is the address of the predecessor alias, and σ is the
stack frame. Depending on the class of an alias, κorig and
κpred can be undefined (⊥). For conciseness, the class of
an alias is not stored.

We define the following convenience function that
yields the object address that an alias wraps.

Definition 1 (Object of alias)

o(κ, A) := ι where A(κ) = (ι, _, _, _)

Intuitively, the function o takes an alias address and an
alias store, looks up the alias tuple in the alias store and
then yields the object address located at the first position.
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(NULL)

(κ,A′) = literalA(σ,A, 0)
σ · null, H,A → σ · κ,H,A′

(THIS)

σ = (κ, _, _, _)
σ · this, H,A → σ · κ,H,A

(ARG)

σ = (_, κ, _, _)
σ · x, H,A → σ · κ,H,A

(NEW)

FieldsOf(c) = {f1, ..., fn}
(κ1, A1) = writeA(σ,A0, 0,⊥,⊥), ...,
(κn, An) = writeA(σ,An−1, 0,⊥,⊥)

ι is fresh in H
H ′ = H[ι �→ (c, f1 �→ κ1, ..., fn �→ κn)]

(κ,A′) = allocA(σ,An, ι)
σ · new c,H,A0 → σ · κ,H ′, A′

(CONTEXT)

σ · er, H → σ · e′r, H ′

σ · C[er], H → σ · C[e′r], H ′

(FIELD-READ)

κorig = H(o(κ,A))(f)
(κ′′, A′) = readA(σ,A, κorig)
σ · κ.f,H,A → σ · κ′′, H,A′

(FIELD-WRITE)

ι = o(κ,A)
κpred = H(ι)(f)

(κ′′, A′) = writeA(σ,A, o(κ′, A), κ′, κpred)
H ′ = H[ι �→ H(ι)[f �→ κ′′]]

σ · κ.f = κ′, H,A → σ · κ′, H ′, A′

(MESSAGE-SEND)

(c, _) = H(o(κ,A))
MethodLookup(m, c) = (e, c′)

κ′′ is fresh in A
σ′ = (κ, κ′′,m, σ)

(κ′′, A′) = paramA(σ′, A, κ′)
σ′ · e,H,A′ → σ′ · κ′′′, H ′, A′′

(κ4, A
′′′) =

j
returnA(σ,A′′, κ′′′) if κ′′′ �= κ
(κ,A′′) else

σ · κ.m(κ′), H,A → σ · κ4, H
′, A′′′

(Alias creation functions)

allocA(σ,A, ι) := (κ,A[κ �→ (ι,⊥,⊥, σ)])
literalA(σ,A, ι) := (κ,A[κ �→ (ι,⊥,⊥, σ)])

paramA(σ,A, κorig) := (κ,A[κ �→ (o(κorig, A), κorig,⊥, σ)])
returnA(σ,A, κorig) := (κ,A[κ �→ (o(κorig, A), κorig,⊥, σ)])
readA(σ,A, κorig) := (κ,A[κ �→ (o(κorig, A), κorig,⊥, σ)])

writeA(σ,A, ι, κorig, κpred) := (κ,A[κ �→ (ι, κorig, κpred, σ)])
...where κ fresh in A

Figure 11. Extended reduction rules (differences to Figure 3 are highlighted in gray).

Source and runtime expressions

e ∈ Expr ::= ...

er ∈ RExpr ::= e (source expressions)
| κ (alias addresses)
| σ · er (nested call)

Dynamic aspects

o ∈ Object = Class × (Field → Address)
a ∈ Alias = Address × Address×

Address × StackFrame
ι, κ ∈ Address = N

H ∈ Heap = Address → Object
A ∈ AliasStore = Address → Alias

σ ∈ StackFrame = Address × Address × Method × Sender
Sender = StackFrame | ε

Reduction Contexts (call-by-value)

C ::= [ ] | C.m(e) | κ.m(C) | C.f | C.f = e | κ.f = C | σ · C
Figure 10. Extended syntax and dynamic aspects (differ-
ences to Figure 2 highlighted in gray).

6.2.2 Operational semantics

The runtime semantics is given by the extended relation:

→ ⊆ (RExpr×Heap×AliasStore)×
(RExpr×Heap×AliasStore)

This relation is defined by the rules from Figure 11.

NEW creates two types of aliases. First, for each field in
the new object, a write alias is created using the function
writeA() defined in Figure 11. The context of the write
alias is the stack frame σ in which the object is created

with new. Second, an allocation alias is created pointing
to the new object ι and to the same stack frame σ.

NULL creates a literal alias for the object null. The rules
THIS and ARG do not have to be modified, except for
the address symbol ι that is replaced with κ to point out
that the addresses in the stack frame point into the alias
store instead of the heap.

FIELD-READ first extracts ι, the address of the actual
object, which is stored at the first position of the alias
tuple. Then the value of the field of the object is looked
up and a read alias is created for this reference transfer.
The origin alias of the field read alias is the alias κorig

currently stored in the field.

FIELD-WRITE also first extracts the address of the actual
object. It then looks up the current value of the field that
is going to be changed. This value, aliased by κpred, is
then remembered as the predecessor in the new field
write alias. The origin of the field write alias is κ′, the
right hand side of the assignment. What this rule also
shows is that the result of the assignment is the alias κ′,
that is, the original right hand side value rather than the
newly created field write alias.

In the MESSAGE-SEND rule again two types of aliases
are created. First, before the new method body is evalu-
ated, an alias is created for the parameter. Note that the
context σ′ is the new stack frame, not the one in which
the message m is sent. Furthermore, the target of the
message send, the object address represented by the alias
κ, is directly used as this in the new stack frame; no new
alias is created in this case.
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Under the condition that the address returned from
the evaluation of e is not identical to this, a return alias is
created. The rationale to not create a return alias on each
return from a method call is that we want to capture
only cases in which a different value than this is returned.
This is especially important in languages like Smalltalk
that implicitly return this. Also important to notice with
return aliases is that their context σ is the stack frame to
which they are returned, rather than the one from which
they originate.

6.3 Example evaluation

We illustrate the extended operational semantics by
evaluating the example program introduced in Section 4.
The source code is given in Figure 6. At the left side
of Figure 12 the reduction steps are listed. The initial
state is an empty stack frame and the source expression
of the main method body. The heap is initialized with
the unique instance of null, and the alias store is empty.
The evaluation of the initial expression requires three
reduction steps (1–3). For the MESSAGE-SEND rule of
step 3, three more reductions (3.1–3.3) are required as
part of the rule’s premise.

(1) In the first reduction step, (NEW), the target of the
messsage send is reduced, which produces the new object
with address ι1 on the heap. This address is represented
by the allocation alias κ2. The field of the new object is
initialized with a write alias κ1 pointing to null.

(2) In the second reduction step, the literal null used
as method parameter, is evaluated. This step produces a
literal alias κ3 but does not modify the heap.

(3) In the third reduction step, the method startNewSeq
is called. For passing the parameter κ3, a new parameter
alias κ4 is created, which is stored together with the target
κ2 in the new stack frame. The following three reduction
steps are evaluated in this new context.

(3.1) This step simply applies the rule (THIS), which
does not modify the heap or alias stack.

(3.2) This step reduces the right hand side of the
assignment. It instantiates IRSequence, producing a new
heap binding with address ι2. In the runtime expression
this object is represented by the allocation alias κ5.

(3.3) The rule (FIELD-WRITE) is evaluated, producing a
write alias κ6 as follows. First the predecessor alias κpred

is obtained by looking up the current alias stored in the
field. The origin alias of the field write alias is the right
hand side of the assignment since the object flows from
there into the field.

Eventually, the resulting value of reduction step 3
is the return alias κ7. At the right of Figure 12 the
heap and the alias store of this example evaluation is
illustrated. It shows the three objects created on the heap
and the 7 aliases on the alias store. The different arrows
indicate references between objects and aliases. Each alias

points to its object (value), and the parameter, write, and
return aliases point to their origin. The write alias in
addition points to the alias previously stored in the field
(predecessor). The field currentSeq first points to the
write alias κ1, and later to the write alias κ6.

6.4 Proving that original semantics are preserved

Dynamic analysis is based on instrumentation of a
program. This process should never alter its behavior. In
a trivial case like logging of events it is obvious that the
interpretation of the program is not modified. However,
in the case of OFA, because it implies deep changes in
the language model and in the virtual machine imple-
mentation, the preservation of the underlying semantics
is not at all clear. In this case, we would need to be able
to prove this constraint.

The formalization of OFA enables us to proof that an
execution of a program with the original language L is
behaviorally equivalent to an execution in La — that is,
it merely generates additional data (aliases) but except
for that the language semantics are the same. Intuitively,
our proof shows that at any step of the execution of a
program in the extended language, its flattened heap and
flattened runtime expression is identical to the heap and
runtime expression of the same program being executed
up to this step in the original language.

To compare the similarity of a state s of a program in
La with a state t of a program in L we define the relation
F that relates s to t by flattening the heap (and runtime
expression). Figure 13 illustrates the flattening of the final
state of the example evaluation shown in Figure 12.

write �6

:IRBuilder �1

:IRSequence �2

currentSeq

Alias StoreHeap

:IRBuilder �1

:IRSequence �2

currentSeq

Heap

L
a

L

F

s t

Figure 13. Relation F maps state s in language La to
state t in language L.

We have defined the two languages as state transition
systems. La is defined as (S, →) where S = (RExpr ×
Heap × AliasStore) and L is defined as (T , →) where
T = (RExpr × Heap). The definitions of → are given
by the reduction rules in Figure 11. We now define the
simulation preorder F , a relation between La and L, to
show that each reduction step in La can be matched by a
step in L. The simulation we define is a strong simulation
(or lock-step simulation) as each step in La is matched
by exactly one step in L.
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init κ1

alloc κ2

literal κ3

alloc κ5

write κ6

return κ7

:IRBuilder ι1

null 0

:IRSequence ι2

currentSeq

param κ4

Alias StoreHeap

Legend
value of alias

origin of alias

predecessor of alias

value of object field

σ0 · (new IRBuilder).startNewSeq(null),
{0 �→ (UndefinedObject)},
{}

→(1) NEW σ0 · κ2.startNewSeq(null),
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ1)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..)}

→(2) NULL σ0 · κ2.startNewSeq(κ3),
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ1)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..)}

(κ2, κ4) · this.currentSeq := new IRSequence,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ1)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..), κ4 �→ (0, κ3, ..)}

→(3.1) THIS (κ2, κ4) · κ2.currentSeq := new IRSequence,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ1)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..), κ4 �→ (0, κ3, ..)}

→(3.2) NEW (κ2, κ4) · κ2.currentSeq := κ5,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ1), ι2 �→ (IRSequence)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..), κ4 �→ (0, κ3, ..), κ5 �→ (ι2, ..)}

→(3.3) FLD-W. (κ2, κ4) · κ5,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ6), ι2 �→ (IRSequence)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..), κ4 �→ (0, κ3, ..), κ5 �→ (ι2, ..),
κ6 �→ (ι2, κ5, κ1, ..)}

→(3) MSG-SEND σ0 · κ7,
{0 �→ .., ι1 �→ (IRBuilder, currentSeq �→ κ6), ι2 �→ (IRSequence)},
{κ1 �→ (0, ..), κ2 �→ (ι1, ..), κ3 �→ (0, ..), κ4 �→ (0, κ3, ..), κ5 �→ (ι2, ..),
κ6 �→ (ι2, κ5, κ1, ..), κ7 �→ (ι2, κ5, ..)}

Figure 12. Left: example evaluation with extended semantics. Right: resulting heap and alias store.

Proposition 1 The relation F ⊆ (S × T ) is a simulation,
that is, (s, t) ∈ F implies that for s′ with s → s′ there is t′

such that t → t′ and (s′, t′) ∈ F .

Figure 14 illustrates Proposition 1. Solid lines indicate
hypotheses and dashed lines indicate conclusions. To
verify our proposition, we first define the relation F .

 s  

 s' 

 t  

 t' 

 F 

 F 

Figure 14. Simulation diagram

The relation F flattens a runtime expression and a heap
with respect to a given alias store.

Definition 2 (Simulation preorder F )

F := {(RExpr, H,A), (fr(RExpr, A), fh(H,A))} where

fr(er, A) :=

8<
:

e if er = e
o(κ,A) if er = κ
fσ(σ,A) · fr(e′r, A) if er = σ · e′r

where fσ((κ, κ
′), A) := (o(κ,A), o(κ′, A))

and

fh(H,A) := {ι1 �→ (C, f1 �→ o(κ,A), ...), ...ιn �→ ...}
where H = {ι1 �→ (C, f1 �→ κ, ...), ...ιn �→ ...}

Intuitively, fr takes a runtime expression and replaces
each occurrence of an alias address κ with the corre-
sponding object address o(κ, A). And fh replaces all alias
addresses referred to by fields of objects on the heap with
corresponding object addresses. Details of the proof are
provided in the appendix.

6.5 Evaluation

The OFA case study shows that:

• Our approach supports the specification of sophis-
ticated dynamic analyses with relative ease. The
introduction of an alias store is a major change
of how the runtime works as direct addressing is
replaced by an additional level of indirection. Yet,
specification requires no fundamental rewrite of the
dynamic aspects and rules of the base language.

• Our approach provides a good framework to reason
about properties of the dynamic analysis. Since the
implementation of OFA potentially has inadvertent
side effects on the behavior of programs, it is
worthwhile to show that the analysis is correct, i.e.,
to prove that the semantics are not altered.

7 RELATED WORK

Operational semantics, pioneered by Plotkin [17], is a
well known way of specifying language semantics in
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terms of sequences of computational steps. A large body
of research exists that uses operational semantics. Our
approach uses language semantics as a way to formally
define and reason about dynamic analysis.

The minimal object language on which our framework
is based is influenced by established approaches [9], [10],
[11]. The main difference in the syntax and reduction
rules compared to the approach by Drossopoulou et
al. [11] is that we unify primitive type values and
reference values. In our language, we refer to primitive
values, such as null, in runtime expressions through
addresses. That is, the value null is represented as an
instance on the heap. This unification simplifies our
extended reduction rules because an explicit distinction
between primitive type values and addresses can be
avoided. Furthermore, message send is specified as a
big step operational semantics as in a recent publication
of Clarke and Drossopoulou [10], which makes passing
of parameters and return values more explicit.

Operational semantics is being used as a foundation
to formalize and reason about dynamic analyses. Several
publications in the field of runtime verification, like
the work of Flanagan et al. [6], [7], [8], use dedicated
operational semantics. Their approach is to select a small
set of operations relevant for the problem at hand (atom-
icity checking) and to define additional “instrumentation
rules” that are applied to a sequence of operations. In
comparison to our framework, their approach does not
define complete semantics (because it is not needed for
their problem), i.e., it lacks source and runtime expres-
sions, objects, message sending, etc. Their formalization
assumes the existence of a trace of operations but does
not define how this trace is generated. Their approach
also differs in that it uses a layer of instrumentation rules
whereas we propose to modify the relevant reduction
rules directly. Being able to do “invasive” modifications
is necessary for dynamic analyses that require changes
in the execution of the program.

Numerous researchers have investigated the semantics
of AOP, often building on the work of Walker et al. [20].
Walker et al. present a core calculus for first-class aspects,
which identifies program points for instrumentation
through explicit labels. In contrast to this static approach
that uses labels, the formalization of Wand [21] et al.,
a denotational semantics, avoids an intermediate level
and formalizes events that happen at runtime. A notable
related work in this area is the formal framework of Klose
and Ostermann for the comparison of pointcut languages
[22]. Their framework allows one to specify joinpoints
on a reduced object-oriented language. Joinpoints, which
locate program points that can be used to trace runtime
data, are specified using syntactic elements and reduction
contexts of a small-step operational semantics. While
focusing on joinpoint models and pointcut languages,
the underlying language semantics are left unspecified.
In contrast to our approach, their object language does

not define a heap nor syntax and semantics for field
write, argument access, etc.. The key difference is that
with our approach the generation of events is specified by
extending the reduction rules of the operational semantics
whereas in their approach joinpoints are defined at a
higher level of abstraction. Hence, our approach leaves
more freedom to define where and exactly what data
is logged, which is important as the application of our
framework is intended to be as open as possible to be
applicable to future, yet unknown, dynamic analyses.

Another interesting related work in the area of AOP
formalization is TraceMatches [23] as it proposes an
extension to AspectJ [24] that allows programmers to
trigger code depending on patterns of events in an
execution trace. The execution trace is given by enter and
exit events from standard AOP joinpoints. TraceMatches
provides a framework based on a formal semantics
that can potentially also be used to define dynamic
analyses. The main difference from our approach is that
TraceMatches does not allow one to specify how the
execution trace is generated. The possible patterns are
limited by the events provided by the joinpoint model.
Hence, TraceMatches is not generic enough to be used for
dynamic analyses that depend on specialized traces (like
the presented example of the Trace Oriented Debugger
that passes an id along non-instrumented execution
paths) or analyses that are based on a dedicated run-
time instrumentation like Object Flow Analysis.

In the book “Virtual Machines”, Iain D. Craig provides
specifications for VMs of simple imperative languages
[25] using a transition system similar to our operational
semantics. While his specification operates on single in-
structions, our reduction rules work at the level of source
expressions. As such, our framework is independent of
a specific implementation model (e.g., stack- vs. register-
based VMs). The abstraction level of source expressions
in our view is more appropriate for specifying dynamic
analyses as one is usually not interested in tracing, for
instance, single operations of the operand stack.

Belblidia et al. propose operational semantics for the
Java VM [26]. For each bytecode instruction a reduction
rule is specified. The reduction rules are at a lower level
of abstraction and have to take the idiosyncrasies of
Java into account. The semantics also captures exceptions
and multi-threading, which we have omitted for sake of
conciseness. This work shows how our approach could
be extended to include these language features.

8 CONCLUSIONS

We propose that dynamic analysis approaches are for-
mally specified by extending language semantics. We
propose the L language, which models key OO concepts,
including a heap and field assignment. L is concise,
therefore it can be understood and applied to new
dynamic analyses with modest effort. The semantics
of L is expressed by means of operational semantics
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— an approach established in the field of static analysis.
We show how dynamic analyses can be specified by
extending its reduction rules. We demonstrated how two
complex analyses can be formally specified using L.

The TOD case study dealt with logging of events. The
authors neglected to explain what exactly the parent of
an event is, although this is key to their analysis. Even
if apparently a small oversight, this leads to important
ambiguities regarding the exact collection of traces. The
L specification exposed the ambiguity and enabled it to
be resolved.

The OFA case study showed how we can capture the
semantics of the runtime objects’ dynamics. Given the
complex changes it performs on the core of the language,
it is no longer obvious whether the semantics of the
underlying language is preserved. Thus, we have shown
how our formalization provides the basis to reason about
a dynamic analysis, and eventually to prove that it does
not alter the language semantics. In the case of OFA the
actual implementation of the VM followed closely the
described model, and this proof is particularly important
because it conceptually ensured that the changes in the
VM preserved the behavior of existing programs.

Overall, the two case studies are significantly distinct
and thus show that our language covers an important area
of analysis. Furthermore, even if these analyses concern
many details, the specifications are still succinct.
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APPENDIX

Proof of Proposition 1. We case split on the reduction
rules → of La. For each rule, we first take the path to
the right and then to the bottom in Figure 14 (that is, s
mapped to t reduced to t′) and then we take the other
path (s reduced to s′ mapped to t′) to show that we
obtain the identical t′ along both paths.

Case (NULL): We start with this case because it is not
trivial but also not the most complex one. The two listings
below show each step at the left and how a step was
derived at its right. It has to be proven that both resulting
states are equal.
(σ · null, H,A)
(fr(σ · null, A), fh(H,A)) Definition 2
(fσ(σ,A) · null, fh(H,A)) Definition 2
(fσ(σ,A) · 0, fh(H,A)) (NULL) in L

(σ · null, H,A)
(σ · κ,H,A′) where κ = (0,⊥,⊥, σ) (NULL) in La

(fσ(σ,A) · o(κ,A), fh(H,A)) Definition 2
(fσ(σ,A) · 0, fh(H,A)) Definition 1

Case (NEW): To proof this case we introduce:

Lemma 1. fh(H[ι �→ (c, f �→ κ)], A) = fh(H,A)[ι �→
(c, f �→ o(κ, A))]
This lemma says that updating the binding of a heap
in La and then flattening this heap is equivalent to
first flattening the heap and then updating the binding
with the same object but with its alias addresses being
unwrapped. This lemma follows directly from fh in
Definition 2.

Like in the previous case, we follow the two paths to
show that they lead to the identical state:
σ · new c,H,A
fσ(σ,A) · new c, fh(H,A) Definition 2
fσ(σ,A) · ι,H ′ (NEW) in L

where H ′ = fh(H,A)[ι �→ (c, f1 �→ 0, ..., fn �→ 0)]

σ · new c,H,A
σ · κ,H ′, A′ (NEW) in La

where H ′ = H[ι �→ (c, f1 �→ κ1, ..., fn �→ κn)]
and A′ = A[κ1 �→ (0, ...)]...[κn �→ (0, ...)][κ �→ (ι, ...)]

fσ(σ,A) · o(κ,A′), fh(H ′, A′) Definition 2
fσ(σ,A) · ι, fh(H ′, A′) Definition 1
fσ(σ,A) · ι,H ′′ Lemma 1

where H ′′ = fh(H,A
′)[

ι �→ (c, f1 �→ o(κ1, A
′), ..., fn �→ o(κn, A

′)]
fσ(σ,A) · ι,H ′′ Definition 1

where H ′′ = fh(H,A
′)[ι �→ (c, f1 �→ 0, ..., fn �→ 0)]

The differences between A and A′ are the new bindings
for κ1, ..., κn and κ, which all are fresh in A, and
hence fh(H,A) = fh(H,A′). Therefore, both states are
equivalent.

Case (THIS) and (ARG): Follow directly from reduction
rules and Definition 2.

Case (FIELD-READ): We first proof the following lemma,
which is the counterpart to Lemma 1.

Lemma 2. fh(H,A)(ι)(f) = o(H(ι)(f), A)

This lemma says that flattening a heap and then looking
up a field yields the same object address as first looking
up the field and then unwrapping the returned alias.
let H = {..., ι �→ (_, f �→ κ, ...), ...} be a heap in La, then:

fh(H,A)(ι)(f)
H ′(ι)(f) Definition 2 and H
where H ′ = {..., ι �→ (_, f �→ o(κ,A), ...), ...}

o(κ,A) field lookup in H ′

o(H(ι)(f), A) binding of κ in H

Having introduced Lemma 2, we can now again proof
that both paths in the case of the rule (FIELD-READ) are
equivalent.
σ · κ.f,H,A
fσ(σ) · o(κ,A).f, fh(H,A) Definition 2
fσ(σ) · fh(H,A)(o(κ,A))(f), fh(H,A) (FIELD-READ) in L
fσ(σ) · o(H(o(κ,A))(f), A), fh(H,A) Lemma 2

σ · κ.f,H,A
σ · κ′′, H,A′ (FIELD-R.) in La

where A′ = A[k′′ �→ (o(H(o(κ,A))(f), A), ...)]
fσ(σ) · o(κ′′, A′), fh(H,A′) Definition 2
fσ(σ) · o(H(o(κ,A))(f), A), fh(H,A′)

The difference between A and A′ is the update of κ′′,
which is fresh in A, and hence fh(H,A) = fh(H,A′).
Therefore, both end states are equivalent.

Case (FIELD-WRITE): This case is analogous to (FIELD-
READ), except that Lemma 1 instead of Lemma 2 is used.

Case (MESSAGE-SEND): For the intermediate reduction
that is part of the rule’s premise, we have to show that
its left hand side is equivalent with respect to F to the
left hand side of the same rule in L. In particular, this
means to show that for σ′ in La fσ(σ′) is equivalent to
σ′ in L. This is straightforward because it requires only
to show that the parameter alias is an alias of the object
passed as argument.

Case (CONTEXT): Follows directly since the rules are
identical in both languages and the reduction contexts
defined by C preserve the reduction order.
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